Smart seru production system for Industry 4.0: a conceptual model based on deep learning for real-time monitoring and controlling
Seru production system is an innovative assembly system and combines the flexibility of job shop production and high efficiency of assembly lines. This production system easily adapts to product replacements, reduces product wastages by eliminating work-in-process inventories and delay time, and pro...
Saved in:
Published in | International journal of computer integrated manufacturing Vol. 37; no. 4; pp. 385 - 407 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Taylor & Francis
02.04.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Seru production system is an innovative assembly system and combines the flexibility of job shop production and high efficiency of assembly lines. This production system easily adapts to product replacements, reduces product wastages by eliminating work-in-process inventories and delay time, and provides enterprises with a competitive advantage through reducing the operating costs, required workforce, and space. Besides these advantages, the disadvantage of seru type production is that, in assembly lines, specific tasks are completed in specified stations, whereas in seru production, the tasks required for the assembly of a product are completed in a yatai by a cross-trained worker. This, in turn, results in a higher risk of production errors. Accordingly in this research, a conceptual model is proposed to monitor and control multiple factors of the production process like worker, environment, assembly tools, ergonomics, storage and inventory and issue warning for prevention of process and quality errors in seru production by use of advanced analytics based on deep learning. In addition to providing support to the worker, the proposed Smart Seru Production System Model will assist system participants in obtaining and understanding data about the production processes and reacting quickly based on this information. |
---|---|
AbstractList | Seru production system is an innovative assembly system and combines the flexibility of job shop production and high efficiency of assembly lines. This production system easily adapts to product replacements, reduces product wastages by eliminating work-in-process inventories and delay time, and provides enterprises with a competitive advantage through reducing the operating costs, required workforce, and space. Besides these advantages, the disadvantage of seru type production is that, in assembly lines, specific tasks are completed in specified stations, whereas in seru production, the tasks required for the assembly of a product are completed in a yatai by a cross-trained worker. This, in turn, results in a higher risk of production errors. Accordingly in this research, a conceptual model is proposed to monitor and control multiple factors of the production process like worker, environment, assembly tools, ergonomics, storage and inventory and issue warning for prevention of process and quality errors in seru production by use of advanced analytics based on deep learning. In addition to providing support to the worker, the proposed Smart Seru Production System Model will assist system participants in obtaining and understanding data about the production processes and reacting quickly based on this information. |
Author | Şişci, Merve Torkul, Orhan Selvi, İhsan Hakan |
Author_xml | – sequence: 1 givenname: Orhan orcidid: 0000-0003-2690-7228 surname: Torkul fullname: Torkul, Orhan organization: Sakarya University – sequence: 2 givenname: İhsan Hakan orcidid: 0000-0002-8837-2137 surname: Selvi fullname: Selvi, İhsan Hakan organization: Sakarya University – sequence: 3 givenname: Merve orcidid: 0000-0001-7449-3571 surname: Şişci fullname: Şişci, Merve email: mervesisci@sakarya.edu.tr organization: Kütahya Dumlupınar University |
BookMark | eNp9kMtKBDEQRYOM4MzoJwj5gR7z6KcrZfAxMOBCBXdNJqlISzppkjTSS__ctKNbN1VU1T0X6q7QwjoLCF1SsqGkJlekKSht2NuGEcZSqeqC5idoSXnJMk4KtkDLWZPNojO0CuGDEMqLmizR13MvfMQB_IgH79QoY-csDlOI0GPtPN5ZNYboJ5xvyDUWWDorYYijMLh3Cgw-iAAKJ0gBDNiA8Laz7z-sB2Gy2PWQpLaLzs8HYdVsEr0zJs3n6FQLE-Dit6_R6_3dy_Yx2z897La3-0xySmIGFSWgJC_zQ6GgzjmveVlpmjOuG83SVnCq6rKRh1xLpSsFigNlSkFJm6ria1QcfaV3IXjQ7eC79PzUUtLOObZ_ObZzju1vjom7OXKdTS_14tN5o9ooJuO89sLKLrT8f4tvPwV-pA |
CitedBy_id | crossref_primary_10_1080_0951192X_2023_2257665 crossref_primary_10_1016_j_cie_2023_109680 |
Cites_doi | 10.1016/j.eswa.2016.04.032 10.1016/j.aei.2020.101058 10.1016/j.jpdc.2017.08.009 10.1109/TPAMI.2012.59 10.1109/JIOT.2019.2920283 10.1016/j.proeng.2013.08.172 10.1016/j.ast.2018.02.026 10.1016/j.egypro.2017.12.423 10.1016/j.cie.2018.02.035 10.1155/2016/9748378 10.1109/ACCESS.2018.2890675 10.1111/itor.12014 10.4018/978-1-4666-5958-2.ch003 10.1016/j.inffus.2018.07.007 10.1016/j.inffus.2017.10.006 10.1016/j.aei.2019.101009 10.1016/j.eswa.2018.11.027 10.1016/j.procs.2018.05.068 10.4018/jsds.2012010104 10.1016/j.envsoft.2019.104502 10.1016/j.jmsy.2012.02.003 10.1016/j.imavis.2019.03.002 10.1016/j.jom.2017.01.003 10.1016/j.ijpe.2013.06.009 10.1007/s42524-019-0028-1 10.1155/2019/4036794 10.1016/j.robot.2017.11.014 10.1016/j.patcog.2019.107149 10.1016/j.fcij.2017.12.001 10.1007/s11042-018-6425-3 10.1016/j.promfg.2020.01.289 10.1007/s00170-013-5027-5 10.1016/j.knosys.2017.07.023 10.1007/s10845-017-1325-3 10.1016/j.neucom.2015.09.116 10.1016/j.enconman.2018.03.098 10.1002/9781119525813 10.1080/00207543.2017.1403664 10.1016/j.dss.2017.10.001 10.1016/j.knosys.2020.105590 10.1016/j.omega.2016.01.013 10.1016/j.procir.2016.04.107 10.1016/j.apergo.2019.05.004 10.1038/nature14539 10.1186/s40064-016-2445-5 10.1016/j.cogsys.2017.02.006 10.1016/j.jpdc.2017.09.006 10.1109/ACCESS.2018.2849820 10.1108/IMDS-07-2017-0303 10.1016/j.ejor.2014.01.029 10.1007/978-981-13-2553-3_24 10.1016/j.eswa.2019.112875 10.1016/j.cie.2016.11.035 10.5120/19852-1764 10.1007/s11518-018-5379-3 10.1016/j.patrec.2018.02.010 10.1016/j.future.2017.08.043 10.1080/00207543.2016.1277594 10.1016/j.cma.2017.08.040 10.1080/19761597.2010.9668694 10.3390/s17112476 10.1016/j.autcon.2018.05.033 10.1016/j.neunet.2017.12.003 |
ContentType | Journal Article |
Copyright | 2022 Informa UK Limited, trading as Taylor & Francis Group 2022 |
Copyright_xml | – notice: 2022 Informa UK Limited, trading as Taylor & Francis Group 2022 |
DBID | AAYXX CITATION |
DOI | 10.1080/0951192X.2022.2078514 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1362-3052 |
EndPage | 407 |
ExternalDocumentID | 10_1080_0951192X_2022_2078514 2078514 |
Genre | Research Article |
GroupedDBID | .7F .DC .QJ 0BK 0R~ 29J 30N 4.4 5GY 5VS 8VB AAAVI AAENE AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABHAV ABJNI ABJVF ABLIJ ABPEM ABPPZ ABQHQ ABTAI ABXUL ABXYU ACGEJ ACGFS ACTIO ADCVX ADGTB ADXPE AEGYZ AEISY AENEX AEOZL AEPSL AEYOC AFKVX AFOLD AFWLO AGDLA AGMYJ AHDLD AHDZW AIJEM AIRXU AJWEG AKBVH AKOOK AKVCP ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DKSSO EBO EBR EBS EBU ECS E~A E~B FUNRP FVPDL GTTXZ HF~ HZ~ H~P IPNFZ J.P KYCEM LJTGL M4Z NA5 O9- P2P QWB RIG RNANH RNS ROSJB RTWRZ S-T SNACF TEN TFL TFT TFW TNC TTHFI TWF UPT UT5 UU3 V1K ZGOLN ZL0 ~S~ AAYXX ABPAQ CITATION DGEBU H13 NX~ TBQAZ TDBHL TH9 TUROJ |
ID | FETCH-LOGICAL-c310t-e710edc364b5de84338367f1423f9f24b5a31d869cb4fcdf7ded3e12dde619773 |
ISSN | 0951-192X |
IngestDate | Fri Aug 23 03:12:36 EDT 2024 Fri Mar 29 04:09:47 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c310t-e710edc364b5de84338367f1423f9f24b5a31d869cb4fcdf7ded3e12dde619773 |
ORCID | 0000-0003-2690-7228 0000-0001-7449-3571 0000-0002-8837-2137 |
PageCount | 23 |
ParticipantIDs | informaworld_taylorfrancis_310_1080_0951192X_2022_2078514 crossref_primary_10_1080_0951192X_2022_2078514 |
PublicationCentury | 2000 |
PublicationDate | 2024-04-02 |
PublicationDateYYYYMMDD | 2024-04-02 |
PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-02 day: 02 |
PublicationDecade | 2020 |
PublicationTitle | International journal of computer integrated manufacturing |
PublicationYear | 2024 |
Publisher | Taylor & Francis |
Publisher_xml | – name: Taylor & Francis |
References | Siegel N. G (e_1_3_2_49_1) 2019 e_1_3_2_41_1 e_1_3_2_66_1 e_1_3_2_22_1 e_1_3_2_43_1 e_1_3_2_64_1 e_1_3_2_24_1 e_1_3_2_26_1 e_1_3_2_47_1 e_1_3_2_68_1 Singh S (e_1_3_2_52_1) 2017 e_1_3_2_39_1 e_1_3_2_9_1 Jagdale K. N. (e_1_3_2_21_1) 2015; 10 Amira L. (e_1_3_2_5_1) 2017; 31 e_1_3_2_18_1 e_1_3_2_7_1 Giuliano I. (e_1_3_2_17_1) 2014 Sun W. (e_1_3_2_56_1) 2016; 2016 e_1_3_2_31_1 e_1_3_2_54_1 e_1_3_2_77_1 e_1_3_2_33_1 e_1_3_2_75_1 e_1_3_2_12_1 e_1_3_2_35_1 e_1_3_2_58_1 e_1_3_2_14_1 e_1_3_2_37_1 e_1_3_2_3_1 e_1_3_2_50_1 e_1_3_2_73_1 e_1_3_2_71_1 Bilen H. (e_1_3_2_10_1) 2016 e_1_3_2_27_1 e_1_3_2_29_1 Wang Y. (e_1_3_2_60_1) 2017 e_1_3_2_42_1 e_1_3_2_65_1 e_1_3_2_44_1 e_1_3_2_63_1 e_1_3_2_23_1 e_1_3_2_46_1 e_1_3_2_69_1 Bay M. (e_1_3_2_8_1) 2007; 3 e_1_3_2_25_1 e_1_3_2_48_1 e_1_3_2_61_1 Li X. (e_1_3_2_28_1) 2017 Ren H. (e_1_3_2_45_1) 2019; 2019 Stecke K. E. (e_1_3_2_55_1) 2014 Estrada G. (e_1_3_2_16_1) 2007 e_1_3_2_38_1 e_1_3_2_19_1 e_1_3_2_2_1 e_1_3_2_30_1 e_1_3_2_76_1 e_1_3_2_11_1 e_1_3_2_32_1 e_1_3_2_53_1 e_1_3_2_74_1 e_1_3_2_6_1 e_1_3_2_13_1 e_1_3_2_34_1 e_1_3_2_59_1 e_1_3_2_4_1 e_1_3_2_15_1 e_1_3_2_36_1 e_1_3_2_57_1 e_1_3_2_78_1 e_1_3_2_51_1 e_1_3_2_72_1 Yin Y. I. K. (e_1_3_2_67_1) 2008; 2 e_1_3_2_70_1 Huang K. (e_1_3_2_20_1) 2020; 84 Wang J. (e_1_3_2_62_1) 2019; 119 |
References_xml | – ident: e_1_3_2_47_1 doi: 10.1016/j.eswa.2016.04.032 – ident: e_1_3_2_6_1 doi: 10.1016/j.aei.2020.101058 – ident: e_1_3_2_63_1 doi: 10.1016/j.jpdc.2017.08.009 – ident: e_1_3_2_22_1 doi: 10.1109/TPAMI.2012.59 – ident: e_1_3_2_9_1 doi: 10.1109/JIOT.2019.2920283 – ident: e_1_3_2_58_1 doi: 10.1016/j.proeng.2013.08.172 – ident: e_1_3_2_14_1 doi: 10.1016/j.ast.2018.02.026 – ident: e_1_3_2_48_1 doi: 10.1016/j.egypro.2017.12.423 – ident: e_1_3_2_29_1 doi: 10.1016/j.cie.2018.02.035 – start-page: 83 year: 2017 ident: e_1_3_2_52_1 article-title: A Study on Seru Production System publication-title: International Journal of Applied Research in Science and Engineering contributor: fullname: Singh S – volume: 2016 start-page: 1 year: 2016 ident: e_1_3_2_56_1 article-title: Formulations, Features of Solution Space, and Algorithms for Line-Pure Seru System Conversion publication-title: Mathematical Problems in Engineering doi: 10.1155/2016/9748378 contributor: fullname: Sun W. – volume: 3 start-page: 53 year: 2007 ident: e_1_3_2_8_1 article-title: Tam Zamanında Üretim Sistemlerinde Hata Önleyiciler: Poka publication-title: Karamanoğlu Mehmetbey Üniversitesi Sosyal Ve Ekonomik Araştırmalar Dergisi contributor: fullname: Bay M. – ident: e_1_3_2_66_1 doi: 10.1109/ACCESS.2018.2890675 – ident: e_1_3_2_33_1 doi: 10.1111/itor.12014 – start-page: 45 volume-title: Analytical Approaches to Strategic Decision-Making: Interdisciplinary Considerations year: 2014 ident: e_1_3_2_55_1 doi: 10.4018/978-1-4666-5958-2.ch003 contributor: fullname: Stecke K. E. – ident: e_1_3_2_46_1 doi: 10.1016/j.inffus.2018.07.007 – ident: e_1_3_2_78_1 doi: 10.1016/j.inffus.2017.10.006 – ident: e_1_3_2_44_1 doi: 10.1016/j.aei.2019.101009 – start-page: 3034 volume-title: Proceedings of the IEEE conference on computer vision and pattern recognition year: 2016 ident: e_1_3_2_10_1 contributor: fullname: Bilen H. – ident: e_1_3_2_38_1 doi: 10.1016/j.eswa.2018.11.027 – ident: e_1_3_2_7_1 doi: 10.1016/j.procs.2018.05.068 – volume-title: International Conference on Engineering Design year: 2007 ident: e_1_3_2_16_1 contributor: fullname: Estrada G. – ident: e_1_3_2_54_1 doi: 10.4018/jsds.2012010104 – ident: e_1_3_2_65_1 doi: 10.1016/j.envsoft.2019.104502 – start-page: 1406 volume-title: A Cooperative Co-Evolution Approach for A Line-Seru Conversion Problem year: 2017 ident: e_1_3_2_28_1 contributor: fullname: Li X. – ident: e_1_3_2_31_1 doi: 10.1016/j.jmsy.2012.02.003 – ident: e_1_3_2_37_1 doi: 10.1016/j.imavis.2019.03.002 – ident: e_1_3_2_68_1 doi: 10.1016/j.jom.2017.01.003 – ident: e_1_3_2_71_1 doi: 10.1016/j.ijpe.2013.06.009 – volume: 2 start-page: 27 year: 2008 ident: e_1_3_2_67_1 article-title: The Evolution of Seru Production Systems Throughout Canon publication-title: Operations Management Education Review contributor: fullname: Yin Y. I. K. – ident: e_1_3_2_75_1 doi: 10.1007/s42524-019-0028-1 – volume: 2019 start-page: 1 year: 2019 ident: e_1_3_2_45_1 article-title: Analysis of the Effect of the Line-Seru Conversion on the Waiting Time with Batch Arrival publication-title: Hindawi Mathematical Problems in Engineering doi: 10.1155/2019/4036794 contributor: fullname: Ren H. – ident: e_1_3_2_12_1 doi: 10.1016/j.robot.2017.11.014 – ident: e_1_3_2_35_1 doi: 10.1016/j.patcog.2019.107149 – ident: e_1_3_2_39_1 doi: 10.1016/j.fcij.2017.12.001 – volume: 10 start-page: 14 issue: 3 year: 2015 ident: e_1_3_2_21_1 article-title: A Smart Manufacturing Execution System publication-title: IOSR Journal of Electrical and Electronics Engineering contributor: fullname: Jagdale K. N. – ident: e_1_3_2_50_1 doi: 10.1007/s11042-018-6425-3 – ident: e_1_3_2_23_1 doi: 10.1016/j.promfg.2020.01.289 – ident: e_1_3_2_32_1 doi: 10.1007/s00170-013-5027-5 – ident: e_1_3_2_27_1 doi: 10.1016/j.knosys.2017.07.023 – ident: e_1_3_2_59_1 doi: 10.1007/s10845-017-1325-3 – ident: e_1_3_2_18_1 doi: 10.1016/j.neucom.2015.09.116 – volume: 84 start-page: 1 year: 2020 ident: e_1_3_2_20_1 article-title: Multiple Instance Deep Learning for Weakly-Supervised Visual Object Tracking publication-title: Signal Processing: Image Communication contributor: fullname: Huang K. – ident: e_1_3_2_11_1 doi: 10.1016/j.enconman.2018.03.098 – ident: e_1_3_2_25_1 – volume-title: Engineering Project Management year: 2019 ident: e_1_3_2_49_1 doi: 10.1002/9781119525813 contributor: fullname: Siegel N. G – ident: e_1_3_2_69_1 doi: 10.1080/00207543.2017.1403664 – ident: e_1_3_2_24_1 doi: 10.1016/j.dss.2017.10.001 – ident: e_1_3_2_43_1 doi: 10.1016/j.knosys.2020.105590 – ident: e_1_3_2_76_1 doi: 10.1016/j.omega.2016.01.013 – ident: e_1_3_2_15_1 doi: 10.1016/j.procir.2016.04.107 – ident: e_1_3_2_2_1 doi: 10.1016/j.apergo.2019.05.004 – ident: e_1_3_2_26_1 doi: 10.1038/nature14539 – ident: e_1_3_2_73_1 doi: 10.1186/s40064-016-2445-5 – ident: e_1_3_2_19_1 doi: 10.1016/j.cogsys.2017.02.006 – volume-title: 15th Working Conference on Virtual Enterprises (PROVE) year: 2014 ident: e_1_3_2_17_1 contributor: fullname: Giuliano I. – ident: e_1_3_2_36_1 doi: 10.1016/j.jpdc.2017.09.006 – ident: e_1_3_2_53_1 doi: 10.1109/ACCESS.2018.2849820 – ident: e_1_3_2_64_1 doi: 10.1108/IMDS-07-2017-0303 – ident: e_1_3_2_72_1 doi: 10.1016/j.ejor.2014.01.029 – ident: e_1_3_2_51_1 doi: 10.1007/978-981-13-2553-3_24 – volume: 31 start-page: 46 issue: 2 year: 2017 ident: e_1_3_2_5_1 article-title: Ergonomic Analysis in a Company of Clothing and Evaluation of an Ergonomic Index Related to MSDs publication-title: International Journal of Recent Research and Applied Studies contributor: fullname: Amira L. – ident: e_1_3_2_4_1 doi: 10.1016/j.eswa.2019.112875 – ident: e_1_3_2_57_1 – ident: e_1_3_2_74_1 doi: 10.1016/j.cie.2016.11.035 – ident: e_1_3_2_41_1 doi: 10.5120/19852-1764 – ident: e_1_3_2_61_1 doi: 10.1007/s11518-018-5379-3 – volume: 119 start-page: 3 year: 2019 ident: e_1_3_2_62_1 article-title: Deep Learning for Sensor-Based Activity Recognition: A Survey publication-title: Pattern Recognition Letters doi: 10.1016/j.patrec.2018.02.010 contributor: fullname: Wang J. – ident: e_1_3_2_13_1 doi: 10.1016/j.future.2017.08.043 – ident: e_1_3_2_70_1 doi: 10.1080/00207543.2016.1277594 – ident: e_1_3_2_42_1 doi: 10.1016/j.cma.2017.08.040 – ident: e_1_3_2_30_1 doi: 10.1080/19761597.2010.9668694 – ident: e_1_3_2_3_1 doi: 10.3390/s17112476 – ident: e_1_3_2_77_1 doi: 10.1016/j.autcon.2018.05.033 – ident: e_1_3_2_34_1 doi: 10.1016/j.neunet.2017.12.003 – volume-title: 14th International Conference on Service Systems and Service Management (ICSSSM) year: 2017 ident: e_1_3_2_60_1 contributor: fullname: Wang Y. |
SSID | ssj0013580 |
Score | 2.410361 |
Snippet | Seru production system is an innovative assembly system and combines the flexibility of job shop production and high efficiency of assembly lines. This... |
SourceID | crossref informaworld |
SourceType | Aggregation Database Publisher |
StartPage | 385 |
SubjectTerms | AI in manufacturing systems assembly systems deep learning flexible assembly manufacturing management Seru production system |
Title | Smart seru production system for Industry 4.0: a conceptual model based on deep learning for real-time monitoring and controlling |
URI | https://www.tandfonline.com/doi/abs/10.1080/0951192X.2022.2078514 |
Volume | 37 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6F9AIHxFOUl_ZAT5Gj2Lt2stxKaRUhFQ5tRcTF8j6sQkOogo0EN_4lP4eZ3bV301YV5eJEK3v9mM8zs-NvZgh5JQXaAS6SWqawQEm5ToScpUmF8NG8zjKBicKH74v5CX-3yBeDwZ-ItdQ2cqx-XZlX8j9ShTGQK2bJ3kCy_aQwAP9BvrAFCcP2n2R89BUGR3CqFnlW2hWC9cWZLX_QN-b4OeLjiUtrVi5N0SaNYBOcEZoxjZ8MtDHnXRMJR64Ef3KZYPN52BXf_D6h0fPbl53Z-xLo8CG6GNWkUL51RChOoZE222JWhU2TDLHu9Vlrg9If1qcBt0dm-cOyDtD1fTM5_Q5KaV6dhR129vIdsf_Z_hwou-shUjnjmEbmqDBxmBP8vgR8z4WzUk41Y34XaKcN3e0KxniM8kgRM9cIyNt07jrrXjIXnl8p8GNqthjDpWBu3hS8UB7sY8cJuGA2ezJj2lVZ9dOUOE3pp7lFtjJQgbMh2dqdv_30MXzhym1Xv_5Ou-wyrPt-1fVs-E0bVXUjf-j4HrnrFzJ016HyPhmY1QNyJypv-ZD8tvikiE8a8EkdPilMTTt8UsDna1rRgE5q0UktOikchOikHTrtsT06aUAnBXTSCJ2PyMnB_vHePPEtPxIF64wmMeDwGq1YwWWuzYxjAKWY1ik4_bWoMxitWKpnhVCS10rXU200M2kGRrpIYSnDHpPh6tvKPCG0yEHdMKZryQXPmYaF-USBfSpYBUvkSm6TcfdAy3NX2aW8VpTbRMSPvWxsSK12_W9Kdu2xT296smfkdngxnpNhs27NC3B_G_nSI-kv9z6rng |
link.rule.ids | 315,783,787,27938,27939,60220,61009 |
linkProvider | Library Specific Holdings |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagDMDAG1GeHlgTmthJajaEqAq0XWilblH8YgBKhZIBNv45d3EiUiRYWJNcEtuXu--cu_sIOZcC_QAXnpUBBCgB156Q3cDLUH00t2EosFB4OIr7E343jaaNWhhMq8QY2rpGEaWtxo8bN6PrlLgLhAWATKYQ3oVYTIUE83yZrMRYNoplHJ3R95-EqGRPK-nkUaau4vntNgv-aaF7acPv9DaJqt_YpZs8-UUuffXxo5nj_4a0RTYqWEqvnB5tkyUz2yHrjWaFu-Tz4QXUjILKFnTu-sTCmlLXCprCAGhFA_JOud-5pBlVriSygBuXhDsUXaamIKSNmdOKsOKxlAXs-uwh0T1cilYGn0lhOLTKpceq-T0y6d2Mr_teReDgKUCNuWcAvhitWMxlpE2XYzgcJzYACGeFDeFoxgLdjYWS3CptE200M0EIJhfiuiRh-6Q1e52ZA0LjCJSHMW0lFzxiGsKsjgJrE7MMAp5MtolfL1s6d3060qBuf1rNbYpzm1Zz2yaiubhpXm6QWMdmkrI_ZQ__IXtGVvvj4SAd3I7uj8ganHKJQOExaeVvhTkBjJPL01KJvwDiXO_L |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT4QwEG50TYwefBvXZw9ewYUW2Hoz6mZ9bUx0k70RSlsP6koUDnrznztDS9w10YtXYApth5lvYGY-Qg6lQD_AhWdkAAFKwJUnZDfwMlQfxU0YCiwUvhnE_SG_HEVNNuGbS6vEGNrYRhG1rcaXu1CmyYg7QlQAwGQE0V2ItVTIL89nyRwggQ4qNusMvn8kRDV5Ws0mjzJNEc9vw0y5p6nmpRNup7dMZPPANtvk0a9K6ecfP3o5_mtGK2TJgVJ6YrVolczo8RpZnGhVuE4-755BySgobEUL2yUWdpTaRtAUnp86EpB3yv3OMc1obgsiKxi4ptuh6DAVBSGldUEdXcVDLQvI9clDmnu4FG0M3pPCbKjLpMea-Q0y7J3fn_Y9R9_g5YAZS08DeNEqZzGXkdJdjsFwnJgAAJwRJoSjGQtUNxa55CZXJlFaMR2EYHAhqksStkla45ex3iI0jkB1GFNGcsEjpiDI6uRga2KWQbiTyTbxm11LC9ulIw2a5qdubVNc29StbZuIyb1Ny_rziLFcJin7U3b7H7IHZP72rJdeXwyudsgCnLFZQOEuaZWvld4DgFPK_VqFvwArSe6B |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Smart+seru+production+system+for+Industry+4.0%3A+a+conceptual+model+based+on+deep+learning+for+real-time+monitoring+and+controlling&rft.jtitle=International+journal+of+computer+integrated+manufacturing&rft.au=Torkul%2C+Orhan&rft.au=Selvi%2C+%C4%B0hsan+Hakan&rft.au=%C5%9Ei%C5%9Fci%2C+Merve&rft.date=2024-04-02&rft.issn=0951-192X&rft.eissn=1362-3052&rft.volume=37&rft.issue=4&rft.spage=385&rft.epage=407&rft_id=info:doi/10.1080%2F0951192X.2022.2078514&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_0951192X_2022_2078514 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0951-192X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0951-192X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0951-192X&client=summon |