Smart seru production system for Industry 4.0: a conceptual model based on deep learning for real-time monitoring and controlling

Seru production system is an innovative assembly system and combines the flexibility of job shop production and high efficiency of assembly lines. This production system easily adapts to product replacements, reduces product wastages by eliminating work-in-process inventories and delay time, and pro...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of computer integrated manufacturing Vol. 37; no. 4; pp. 385 - 407
Main Authors Torkul, Orhan, Selvi, İhsan Hakan, Şişci, Merve
Format Journal Article
LanguageEnglish
Published Taylor & Francis 02.04.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Seru production system is an innovative assembly system and combines the flexibility of job shop production and high efficiency of assembly lines. This production system easily adapts to product replacements, reduces product wastages by eliminating work-in-process inventories and delay time, and provides enterprises with a competitive advantage through reducing the operating costs, required workforce, and space. Besides these advantages, the disadvantage of seru type production is that, in assembly lines, specific tasks are completed in specified stations, whereas in seru production, the tasks required for the assembly of a product are completed in a yatai by a cross-trained worker. This, in turn, results in a higher risk of production errors. Accordingly in this research, a conceptual model is proposed to monitor and control multiple factors of the production process like worker, environment, assembly tools, ergonomics, storage and inventory and issue warning for prevention of process and quality errors in seru production by use of advanced analytics based on deep learning. In addition to providing support to the worker, the proposed Smart Seru Production System Model will assist system participants in obtaining and understanding data about the production processes and reacting quickly based on this information.
AbstractList Seru production system is an innovative assembly system and combines the flexibility of job shop production and high efficiency of assembly lines. This production system easily adapts to product replacements, reduces product wastages by eliminating work-in-process inventories and delay time, and provides enterprises with a competitive advantage through reducing the operating costs, required workforce, and space. Besides these advantages, the disadvantage of seru type production is that, in assembly lines, specific tasks are completed in specified stations, whereas in seru production, the tasks required for the assembly of a product are completed in a yatai by a cross-trained worker. This, in turn, results in a higher risk of production errors. Accordingly in this research, a conceptual model is proposed to monitor and control multiple factors of the production process like worker, environment, assembly tools, ergonomics, storage and inventory and issue warning for prevention of process and quality errors in seru production by use of advanced analytics based on deep learning. In addition to providing support to the worker, the proposed Smart Seru Production System Model will assist system participants in obtaining and understanding data about the production processes and reacting quickly based on this information.
Author Şişci, Merve
Torkul, Orhan
Selvi, İhsan Hakan
Author_xml – sequence: 1
  givenname: Orhan
  orcidid: 0000-0003-2690-7228
  surname: Torkul
  fullname: Torkul, Orhan
  organization: Sakarya University
– sequence: 2
  givenname: İhsan Hakan
  orcidid: 0000-0002-8837-2137
  surname: Selvi
  fullname: Selvi, İhsan Hakan
  organization: Sakarya University
– sequence: 3
  givenname: Merve
  orcidid: 0000-0001-7449-3571
  surname: Şişci
  fullname: Şişci, Merve
  email: mervesisci@sakarya.edu.tr
  organization: Kütahya Dumlupınar University
BookMark eNp9kMtKBDEQRYOM4MzoJwj5gR7z6KcrZfAxMOBCBXdNJqlISzppkjTSS__ctKNbN1VU1T0X6q7QwjoLCF1SsqGkJlekKSht2NuGEcZSqeqC5idoSXnJMk4KtkDLWZPNojO0CuGDEMqLmizR13MvfMQB_IgH79QoY-csDlOI0GPtPN5ZNYboJ5xvyDUWWDorYYijMLh3Cgw-iAAKJ0gBDNiA8Laz7z-sB2Gy2PWQpLaLzs8HYdVsEr0zJs3n6FQLE-Dit6_R6_3dy_Yx2z897La3-0xySmIGFSWgJC_zQ6GgzjmveVlpmjOuG83SVnCq6rKRh1xLpSsFigNlSkFJm6ria1QcfaV3IXjQ7eC79PzUUtLOObZ_ObZzju1vjom7OXKdTS_14tN5o9ooJuO89sLKLrT8f4tvPwV-pA
CitedBy_id crossref_primary_10_1080_0951192X_2023_2257665
crossref_primary_10_1016_j_cie_2023_109680
Cites_doi 10.1016/j.eswa.2016.04.032
10.1016/j.aei.2020.101058
10.1016/j.jpdc.2017.08.009
10.1109/TPAMI.2012.59
10.1109/JIOT.2019.2920283
10.1016/j.proeng.2013.08.172
10.1016/j.ast.2018.02.026
10.1016/j.egypro.2017.12.423
10.1016/j.cie.2018.02.035
10.1155/2016/9748378
10.1109/ACCESS.2018.2890675
10.1111/itor.12014
10.4018/978-1-4666-5958-2.ch003
10.1016/j.inffus.2018.07.007
10.1016/j.inffus.2017.10.006
10.1016/j.aei.2019.101009
10.1016/j.eswa.2018.11.027
10.1016/j.procs.2018.05.068
10.4018/jsds.2012010104
10.1016/j.envsoft.2019.104502
10.1016/j.jmsy.2012.02.003
10.1016/j.imavis.2019.03.002
10.1016/j.jom.2017.01.003
10.1016/j.ijpe.2013.06.009
10.1007/s42524-019-0028-1
10.1155/2019/4036794
10.1016/j.robot.2017.11.014
10.1016/j.patcog.2019.107149
10.1016/j.fcij.2017.12.001
10.1007/s11042-018-6425-3
10.1016/j.promfg.2020.01.289
10.1007/s00170-013-5027-5
10.1016/j.knosys.2017.07.023
10.1007/s10845-017-1325-3
10.1016/j.neucom.2015.09.116
10.1016/j.enconman.2018.03.098
10.1002/9781119525813
10.1080/00207543.2017.1403664
10.1016/j.dss.2017.10.001
10.1016/j.knosys.2020.105590
10.1016/j.omega.2016.01.013
10.1016/j.procir.2016.04.107
10.1016/j.apergo.2019.05.004
10.1038/nature14539
10.1186/s40064-016-2445-5
10.1016/j.cogsys.2017.02.006
10.1016/j.jpdc.2017.09.006
10.1109/ACCESS.2018.2849820
10.1108/IMDS-07-2017-0303
10.1016/j.ejor.2014.01.029
10.1007/978-981-13-2553-3_24
10.1016/j.eswa.2019.112875
10.1016/j.cie.2016.11.035
10.5120/19852-1764
10.1007/s11518-018-5379-3
10.1016/j.patrec.2018.02.010
10.1016/j.future.2017.08.043
10.1080/00207543.2016.1277594
10.1016/j.cma.2017.08.040
10.1080/19761597.2010.9668694
10.3390/s17112476
10.1016/j.autcon.2018.05.033
10.1016/j.neunet.2017.12.003
ContentType Journal Article
Copyright 2022 Informa UK Limited, trading as Taylor & Francis Group 2022
Copyright_xml – notice: 2022 Informa UK Limited, trading as Taylor & Francis Group 2022
DBID AAYXX
CITATION
DOI 10.1080/0951192X.2022.2078514
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1362-3052
EndPage 407
ExternalDocumentID 10_1080_0951192X_2022_2078514
2078514
Genre Research Article
GroupedDBID .7F
.DC
.QJ
0BK
0R~
29J
30N
4.4
5GY
5VS
8VB
AAAVI
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABJVF
ABLIJ
ABPEM
ABPPZ
ABQHQ
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACTIO
ADCVX
ADGTB
ADXPE
AEGYZ
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFOLD
AFWLO
AGDLA
AGMYJ
AHDLD
AHDZW
AIJEM
AIRXU
AJWEG
AKBVH
AKOOK
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DKSSO
EBO
EBR
EBS
EBU
ECS
E~A
E~B
FUNRP
FVPDL
GTTXZ
HF~
HZ~
H~P
IPNFZ
J.P
KYCEM
LJTGL
M4Z
NA5
O9-
P2P
QWB
RIG
RNANH
RNS
ROSJB
RTWRZ
S-T
SNACF
TEN
TFL
TFT
TFW
TNC
TTHFI
TWF
UPT
UT5
UU3
V1K
ZGOLN
ZL0
~S~
AAYXX
ABPAQ
CITATION
DGEBU
H13
NX~
TBQAZ
TDBHL
TH9
TUROJ
ID FETCH-LOGICAL-c310t-e710edc364b5de84338367f1423f9f24b5a31d869cb4fcdf7ded3e12dde619773
ISSN 0951-192X
IngestDate Fri Aug 23 03:12:36 EDT 2024
Fri Mar 29 04:09:47 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c310t-e710edc364b5de84338367f1423f9f24b5a31d869cb4fcdf7ded3e12dde619773
ORCID 0000-0003-2690-7228
0000-0001-7449-3571
0000-0002-8837-2137
PageCount 23
ParticipantIDs informaworld_taylorfrancis_310_1080_0951192X_2022_2078514
crossref_primary_10_1080_0951192X_2022_2078514
PublicationCentury 2000
PublicationDate 2024-04-02
PublicationDateYYYYMMDD 2024-04-02
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-02
  day: 02
PublicationDecade 2020
PublicationTitle International journal of computer integrated manufacturing
PublicationYear 2024
Publisher Taylor & Francis
Publisher_xml – name: Taylor & Francis
References Siegel N. G (e_1_3_2_49_1) 2019
e_1_3_2_41_1
e_1_3_2_66_1
e_1_3_2_22_1
e_1_3_2_43_1
e_1_3_2_64_1
e_1_3_2_24_1
e_1_3_2_26_1
e_1_3_2_47_1
e_1_3_2_68_1
Singh S (e_1_3_2_52_1) 2017
e_1_3_2_39_1
e_1_3_2_9_1
Jagdale K. N. (e_1_3_2_21_1) 2015; 10
Amira L. (e_1_3_2_5_1) 2017; 31
e_1_3_2_18_1
e_1_3_2_7_1
Giuliano I. (e_1_3_2_17_1) 2014
Sun W. (e_1_3_2_56_1) 2016; 2016
e_1_3_2_31_1
e_1_3_2_54_1
e_1_3_2_77_1
e_1_3_2_33_1
e_1_3_2_75_1
e_1_3_2_12_1
e_1_3_2_35_1
e_1_3_2_58_1
e_1_3_2_14_1
e_1_3_2_37_1
e_1_3_2_3_1
e_1_3_2_50_1
e_1_3_2_73_1
e_1_3_2_71_1
Bilen H. (e_1_3_2_10_1) 2016
e_1_3_2_27_1
e_1_3_2_29_1
Wang Y. (e_1_3_2_60_1) 2017
e_1_3_2_42_1
e_1_3_2_65_1
e_1_3_2_44_1
e_1_3_2_63_1
e_1_3_2_23_1
e_1_3_2_46_1
e_1_3_2_69_1
Bay M. (e_1_3_2_8_1) 2007; 3
e_1_3_2_25_1
e_1_3_2_48_1
e_1_3_2_61_1
Li X. (e_1_3_2_28_1) 2017
Ren H. (e_1_3_2_45_1) 2019; 2019
Stecke K. E. (e_1_3_2_55_1) 2014
Estrada G. (e_1_3_2_16_1) 2007
e_1_3_2_38_1
e_1_3_2_19_1
e_1_3_2_2_1
e_1_3_2_30_1
e_1_3_2_76_1
e_1_3_2_11_1
e_1_3_2_32_1
e_1_3_2_53_1
e_1_3_2_74_1
e_1_3_2_6_1
e_1_3_2_13_1
e_1_3_2_34_1
e_1_3_2_59_1
e_1_3_2_4_1
e_1_3_2_15_1
e_1_3_2_36_1
e_1_3_2_57_1
e_1_3_2_78_1
e_1_3_2_51_1
e_1_3_2_72_1
Yin Y. I. K. (e_1_3_2_67_1) 2008; 2
e_1_3_2_70_1
Huang K. (e_1_3_2_20_1) 2020; 84
Wang J. (e_1_3_2_62_1) 2019; 119
References_xml – ident: e_1_3_2_47_1
  doi: 10.1016/j.eswa.2016.04.032
– ident: e_1_3_2_6_1
  doi: 10.1016/j.aei.2020.101058
– ident: e_1_3_2_63_1
  doi: 10.1016/j.jpdc.2017.08.009
– ident: e_1_3_2_22_1
  doi: 10.1109/TPAMI.2012.59
– ident: e_1_3_2_9_1
  doi: 10.1109/JIOT.2019.2920283
– ident: e_1_3_2_58_1
  doi: 10.1016/j.proeng.2013.08.172
– ident: e_1_3_2_14_1
  doi: 10.1016/j.ast.2018.02.026
– ident: e_1_3_2_48_1
  doi: 10.1016/j.egypro.2017.12.423
– ident: e_1_3_2_29_1
  doi: 10.1016/j.cie.2018.02.035
– start-page: 83
  year: 2017
  ident: e_1_3_2_52_1
  article-title: A Study on Seru Production System
  publication-title: International Journal of Applied Research in Science and Engineering
  contributor:
    fullname: Singh S
– volume: 2016
  start-page: 1
  year: 2016
  ident: e_1_3_2_56_1
  article-title: Formulations, Features of Solution Space, and Algorithms for Line-Pure Seru System Conversion
  publication-title: Mathematical Problems in Engineering
  doi: 10.1155/2016/9748378
  contributor:
    fullname: Sun W.
– volume: 3
  start-page: 53
  year: 2007
  ident: e_1_3_2_8_1
  article-title: Tam Zamanında Üretim Sistemlerinde Hata Önleyiciler: Poka
  publication-title: Karamanoğlu Mehmetbey Üniversitesi Sosyal Ve Ekonomik Araştırmalar Dergisi
  contributor:
    fullname: Bay M.
– ident: e_1_3_2_66_1
  doi: 10.1109/ACCESS.2018.2890675
– ident: e_1_3_2_33_1
  doi: 10.1111/itor.12014
– start-page: 45
  volume-title: Analytical Approaches to Strategic Decision-Making: Interdisciplinary Considerations
  year: 2014
  ident: e_1_3_2_55_1
  doi: 10.4018/978-1-4666-5958-2.ch003
  contributor:
    fullname: Stecke K. E.
– ident: e_1_3_2_46_1
  doi: 10.1016/j.inffus.2018.07.007
– ident: e_1_3_2_78_1
  doi: 10.1016/j.inffus.2017.10.006
– ident: e_1_3_2_44_1
  doi: 10.1016/j.aei.2019.101009
– start-page: 3034
  volume-title: Proceedings of the IEEE conference on computer vision and pattern recognition
  year: 2016
  ident: e_1_3_2_10_1
  contributor:
    fullname: Bilen H.
– ident: e_1_3_2_38_1
  doi: 10.1016/j.eswa.2018.11.027
– ident: e_1_3_2_7_1
  doi: 10.1016/j.procs.2018.05.068
– volume-title: International Conference on Engineering Design
  year: 2007
  ident: e_1_3_2_16_1
  contributor:
    fullname: Estrada G.
– ident: e_1_3_2_54_1
  doi: 10.4018/jsds.2012010104
– ident: e_1_3_2_65_1
  doi: 10.1016/j.envsoft.2019.104502
– start-page: 1406
  volume-title: A Cooperative Co-Evolution Approach for A Line-Seru Conversion Problem
  year: 2017
  ident: e_1_3_2_28_1
  contributor:
    fullname: Li X.
– ident: e_1_3_2_31_1
  doi: 10.1016/j.jmsy.2012.02.003
– ident: e_1_3_2_37_1
  doi: 10.1016/j.imavis.2019.03.002
– ident: e_1_3_2_68_1
  doi: 10.1016/j.jom.2017.01.003
– ident: e_1_3_2_71_1
  doi: 10.1016/j.ijpe.2013.06.009
– volume: 2
  start-page: 27
  year: 2008
  ident: e_1_3_2_67_1
  article-title: The Evolution of Seru Production Systems Throughout Canon
  publication-title: Operations Management Education Review
  contributor:
    fullname: Yin Y. I. K.
– ident: e_1_3_2_75_1
  doi: 10.1007/s42524-019-0028-1
– volume: 2019
  start-page: 1
  year: 2019
  ident: e_1_3_2_45_1
  article-title: Analysis of the Effect of the Line-Seru Conversion on the Waiting Time with Batch Arrival
  publication-title: Hindawi Mathematical Problems in Engineering
  doi: 10.1155/2019/4036794
  contributor:
    fullname: Ren H.
– ident: e_1_3_2_12_1
  doi: 10.1016/j.robot.2017.11.014
– ident: e_1_3_2_35_1
  doi: 10.1016/j.patcog.2019.107149
– ident: e_1_3_2_39_1
  doi: 10.1016/j.fcij.2017.12.001
– volume: 10
  start-page: 14
  issue: 3
  year: 2015
  ident: e_1_3_2_21_1
  article-title: A Smart Manufacturing Execution System
  publication-title: IOSR Journal of Electrical and Electronics Engineering
  contributor:
    fullname: Jagdale K. N.
– ident: e_1_3_2_50_1
  doi: 10.1007/s11042-018-6425-3
– ident: e_1_3_2_23_1
  doi: 10.1016/j.promfg.2020.01.289
– ident: e_1_3_2_32_1
  doi: 10.1007/s00170-013-5027-5
– ident: e_1_3_2_27_1
  doi: 10.1016/j.knosys.2017.07.023
– ident: e_1_3_2_59_1
  doi: 10.1007/s10845-017-1325-3
– ident: e_1_3_2_18_1
  doi: 10.1016/j.neucom.2015.09.116
– volume: 84
  start-page: 1
  year: 2020
  ident: e_1_3_2_20_1
  article-title: Multiple Instance Deep Learning for Weakly-Supervised Visual Object Tracking
  publication-title: Signal Processing: Image Communication
  contributor:
    fullname: Huang K.
– ident: e_1_3_2_11_1
  doi: 10.1016/j.enconman.2018.03.098
– ident: e_1_3_2_25_1
– volume-title: Engineering Project Management
  year: 2019
  ident: e_1_3_2_49_1
  doi: 10.1002/9781119525813
  contributor:
    fullname: Siegel N. G
– ident: e_1_3_2_69_1
  doi: 10.1080/00207543.2017.1403664
– ident: e_1_3_2_24_1
  doi: 10.1016/j.dss.2017.10.001
– ident: e_1_3_2_43_1
  doi: 10.1016/j.knosys.2020.105590
– ident: e_1_3_2_76_1
  doi: 10.1016/j.omega.2016.01.013
– ident: e_1_3_2_15_1
  doi: 10.1016/j.procir.2016.04.107
– ident: e_1_3_2_2_1
  doi: 10.1016/j.apergo.2019.05.004
– ident: e_1_3_2_26_1
  doi: 10.1038/nature14539
– ident: e_1_3_2_73_1
  doi: 10.1186/s40064-016-2445-5
– ident: e_1_3_2_19_1
  doi: 10.1016/j.cogsys.2017.02.006
– volume-title: 15th Working Conference on Virtual Enterprises (PROVE)
  year: 2014
  ident: e_1_3_2_17_1
  contributor:
    fullname: Giuliano I.
– ident: e_1_3_2_36_1
  doi: 10.1016/j.jpdc.2017.09.006
– ident: e_1_3_2_53_1
  doi: 10.1109/ACCESS.2018.2849820
– ident: e_1_3_2_64_1
  doi: 10.1108/IMDS-07-2017-0303
– ident: e_1_3_2_72_1
  doi: 10.1016/j.ejor.2014.01.029
– ident: e_1_3_2_51_1
  doi: 10.1007/978-981-13-2553-3_24
– volume: 31
  start-page: 46
  issue: 2
  year: 2017
  ident: e_1_3_2_5_1
  article-title: Ergonomic Analysis in a Company of Clothing and Evaluation of an Ergonomic Index Related to MSDs
  publication-title: International Journal of Recent Research and Applied Studies
  contributor:
    fullname: Amira L.
– ident: e_1_3_2_4_1
  doi: 10.1016/j.eswa.2019.112875
– ident: e_1_3_2_57_1
– ident: e_1_3_2_74_1
  doi: 10.1016/j.cie.2016.11.035
– ident: e_1_3_2_41_1
  doi: 10.5120/19852-1764
– ident: e_1_3_2_61_1
  doi: 10.1007/s11518-018-5379-3
– volume: 119
  start-page: 3
  year: 2019
  ident: e_1_3_2_62_1
  article-title: Deep Learning for Sensor-Based Activity Recognition: A Survey
  publication-title: Pattern Recognition Letters
  doi: 10.1016/j.patrec.2018.02.010
  contributor:
    fullname: Wang J.
– ident: e_1_3_2_13_1
  doi: 10.1016/j.future.2017.08.043
– ident: e_1_3_2_70_1
  doi: 10.1080/00207543.2016.1277594
– ident: e_1_3_2_42_1
  doi: 10.1016/j.cma.2017.08.040
– ident: e_1_3_2_30_1
  doi: 10.1080/19761597.2010.9668694
– ident: e_1_3_2_3_1
  doi: 10.3390/s17112476
– ident: e_1_3_2_77_1
  doi: 10.1016/j.autcon.2018.05.033
– ident: e_1_3_2_34_1
  doi: 10.1016/j.neunet.2017.12.003
– volume-title: 14th International Conference on Service Systems and Service Management (ICSSSM)
  year: 2017
  ident: e_1_3_2_60_1
  contributor:
    fullname: Wang Y.
SSID ssj0013580
Score 2.410361
Snippet Seru production system is an innovative assembly system and combines the flexibility of job shop production and high efficiency of assembly lines. This...
SourceID crossref
informaworld
SourceType Aggregation Database
Publisher
StartPage 385
SubjectTerms AI in manufacturing systems
assembly systems
deep learning
flexible assembly
manufacturing management
Seru production system
Title Smart seru production system for Industry 4.0: a conceptual model based on deep learning for real-time monitoring and controlling
URI https://www.tandfonline.com/doi/abs/10.1080/0951192X.2022.2078514
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6F9AIHxFOUl_ZAT5Gj2Lt2stxKaRUhFQ5tRcTF8j6sQkOogo0EN_4lP4eZ3bV301YV5eJEK3v9mM8zs-NvZgh5JQXaAS6SWqawQEm5ToScpUmF8NG8zjKBicKH74v5CX-3yBeDwZ-ItdQ2cqx-XZlX8j9ShTGQK2bJ3kCy_aQwAP9BvrAFCcP2n2R89BUGR3CqFnlW2hWC9cWZLX_QN-b4OeLjiUtrVi5N0SaNYBOcEZoxjZ8MtDHnXRMJR64Ef3KZYPN52BXf_D6h0fPbl53Z-xLo8CG6GNWkUL51RChOoZE222JWhU2TDLHu9Vlrg9If1qcBt0dm-cOyDtD1fTM5_Q5KaV6dhR129vIdsf_Z_hwou-shUjnjmEbmqDBxmBP8vgR8z4WzUk41Y34XaKcN3e0KxniM8kgRM9cIyNt07jrrXjIXnl8p8GNqthjDpWBu3hS8UB7sY8cJuGA2ezJj2lVZ9dOUOE3pp7lFtjJQgbMh2dqdv_30MXzhym1Xv_5Ou-wyrPt-1fVs-E0bVXUjf-j4HrnrFzJ016HyPhmY1QNyJypv-ZD8tvikiE8a8EkdPilMTTt8UsDna1rRgE5q0UktOikchOikHTrtsT06aUAnBXTSCJ2PyMnB_vHePPEtPxIF64wmMeDwGq1YwWWuzYxjAKWY1ik4_bWoMxitWKpnhVCS10rXU200M2kGRrpIYSnDHpPh6tvKPCG0yEHdMKZryQXPmYaF-USBfSpYBUvkSm6TcfdAy3NX2aW8VpTbRMSPvWxsSK12_W9Kdu2xT296smfkdngxnpNhs27NC3B_G_nSI-kv9z6rng
link.rule.ids 315,783,787,27938,27939,60220,61009
linkProvider Library Specific Holdings
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagDMDAG1GeHlgTmthJajaEqAq0XWilblH8YgBKhZIBNv45d3EiUiRYWJNcEtuXu--cu_sIOZcC_QAXnpUBBCgB156Q3cDLUH00t2EosFB4OIr7E343jaaNWhhMq8QY2rpGEaWtxo8bN6PrlLgLhAWATKYQ3oVYTIUE83yZrMRYNoplHJ3R95-EqGRPK-nkUaau4vntNgv-aaF7acPv9DaJqt_YpZs8-UUuffXxo5nj_4a0RTYqWEqvnB5tkyUz2yHrjWaFu-Tz4QXUjILKFnTu-sTCmlLXCprCAGhFA_JOud-5pBlVriSygBuXhDsUXaamIKSNmdOKsOKxlAXs-uwh0T1cilYGn0lhOLTKpceq-T0y6d2Mr_teReDgKUCNuWcAvhitWMxlpE2XYzgcJzYACGeFDeFoxgLdjYWS3CptE200M0EIJhfiuiRh-6Q1e52ZA0LjCJSHMW0lFzxiGsKsjgJrE7MMAp5MtolfL1s6d3060qBuf1rNbYpzm1Zz2yaiubhpXm6QWMdmkrI_ZQ__IXtGVvvj4SAd3I7uj8ganHKJQOExaeVvhTkBjJPL01KJvwDiXO_L
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT4QwEG50TYwefBvXZw9ewYUW2Hoz6mZ9bUx0k70RSlsP6koUDnrznztDS9w10YtXYApth5lvYGY-Qg6lQD_AhWdkAAFKwJUnZDfwMlQfxU0YCiwUvhnE_SG_HEVNNuGbS6vEGNrYRhG1rcaXu1CmyYg7QlQAwGQE0V2ItVTIL89nyRwggQ4qNusMvn8kRDV5Ws0mjzJNEc9vw0y5p6nmpRNup7dMZPPANtvk0a9K6ecfP3o5_mtGK2TJgVJ6YrVolczo8RpZnGhVuE4-755BySgobEUL2yUWdpTaRtAUnp86EpB3yv3OMc1obgsiKxi4ptuh6DAVBSGldUEdXcVDLQvI9clDmnu4FG0M3pPCbKjLpMea-Q0y7J3fn_Y9R9_g5YAZS08DeNEqZzGXkdJdjsFwnJgAAJwRJoSjGQtUNxa55CZXJlFaMR2EYHAhqksStkla45ex3iI0jkB1GFNGcsEjpiDI6uRga2KWQbiTyTbxm11LC9ulIw2a5qdubVNc29StbZuIyb1Ny_rziLFcJin7U3b7H7IHZP72rJdeXwyudsgCnLFZQOEuaZWvld4DgFPK_VqFvwArSe6B
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Smart+seru+production+system+for+Industry+4.0%3A+a+conceptual+model+based+on+deep+learning+for+real-time+monitoring+and+controlling&rft.jtitle=International+journal+of+computer+integrated+manufacturing&rft.au=Torkul%2C+Orhan&rft.au=Selvi%2C+%C4%B0hsan+Hakan&rft.au=%C5%9Ei%C5%9Fci%2C+Merve&rft.date=2024-04-02&rft.issn=0951-192X&rft.eissn=1362-3052&rft.volume=37&rft.issue=4&rft.spage=385&rft.epage=407&rft_id=info:doi/10.1080%2F0951192X.2022.2078514&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_0951192X_2022_2078514
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0951-192X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0951-192X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0951-192X&client=summon