Forebrain-selective AMPA-receptor antagonism guided by TARP γ-8 as an antiepileptic mechanism

Selective pharmacological blockade of forebrain excitatory AMPA receptors that express the TARP γ-8 subunit enables antiepileptic therapy in rodent models of epilepsy without inducing motor impairments associated with currently used antiepileptic drugs. Pharmacological manipulation of specific neura...

Full description

Saved in:
Bibliographic Details
Published inNature medicine Vol. 22; no. 12; pp. 1496 - 1501
Main Authors Kato, Akihiko S, Burris, Kevin D, Gardinier, Kevin M, Gernert, Douglas L, Porter, Warren J, Reel, Jon, Ding, Chunjin, Tu, Yuan, Schober, Douglas A, Lee, Matthew R, Heinz, Beverly A, Fitch, Thomas E, Gleason, Scott D, Catlow, John T, Yu, Hong, Fitzjohn, Stephen M, Pasqui, Francesca, Wang, He, Qian, Yuewei, Sher, Emanuele, Zwart, Ruud, Wafford, Keith A, Rasmussen, Kurt, Ornstein, Paul L, Isaac, John T R, Nisenbaum, Eric S, Bredt, David S, Witkin, Jeffrey M
Format Journal Article
LanguageEnglish
Published New York Nature Publishing Group US 01.12.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Selective pharmacological blockade of forebrain excitatory AMPA receptors that express the TARP γ-8 subunit enables antiepileptic therapy in rodent models of epilepsy without inducing motor impairments associated with currently used antiepileptic drugs. Pharmacological manipulation of specific neural circuits to optimize therapeutic index is an unrealized goal in neurology and psychiatry. AMPA receptors are important for excitatory synaptic transmission 1 , and their antagonists are antiepileptic 2 . Although efficacious, AMPA-receptor antagonists, including perampanel (Fycompa), the only approved antagonist for epilepsy, induce dizziness and motor impairment 3 , 4 . We hypothesized that blockade of forebrain AMPA receptors without blocking cerebellar AMPA receptors would be antiepileptic and devoid of motor impairment. Taking advantage of an AMPA receptor auxiliary protein, TARP γ-8, which is selectively expressed in the forebrain and modulates the pharmacological properties of AMPA receptors 5 , we discovered that LY3130481 selectively antagonized recombinant and native AMPA receptors containing γ-8, but not γ-2 (cerebellum) or other TARP members. Two amino acid residues unique to γ-8 determined this selectivity. We also observed antagonism of AMPA receptors expressed in hippocampal, but not cerebellar, tissue from an patient with epilepsy. Corresponding to this selective activity, LY3130481 prevented multiple seizure types in rats and mice and without motor side effects. These findings demonstrate the first rationally discovered molecule targeting specific neural circuitries for therapeutic advantage.
AbstractList Selective pharmacological blockade of forebrain excitatory AMPA receptors that express the TARP γ-8 subunit enables antiepileptic therapy in rodent models of epilepsy without inducing motor impairments associated with currently used antiepileptic drugs. Pharmacological manipulation of specific neural circuits to optimize therapeutic index is an unrealized goal in neurology and psychiatry. AMPA receptors are important for excitatory synaptic transmission 1 , and their antagonists are antiepileptic 2 . Although efficacious, AMPA-receptor antagonists, including perampanel (Fycompa), the only approved antagonist for epilepsy, induce dizziness and motor impairment 3 , 4 . We hypothesized that blockade of forebrain AMPA receptors without blocking cerebellar AMPA receptors would be antiepileptic and devoid of motor impairment. Taking advantage of an AMPA receptor auxiliary protein, TARP γ-8, which is selectively expressed in the forebrain and modulates the pharmacological properties of AMPA receptors 5 , we discovered that LY3130481 selectively antagonized recombinant and native AMPA receptors containing γ-8, but not γ-2 (cerebellum) or other TARP members. Two amino acid residues unique to γ-8 determined this selectivity. We also observed antagonism of AMPA receptors expressed in hippocampal, but not cerebellar, tissue from an patient with epilepsy. Corresponding to this selective activity, LY3130481 prevented multiple seizure types in rats and mice and without motor side effects. These findings demonstrate the first rationally discovered molecule targeting specific neural circuitries for therapeutic advantage.
Pharmacological manipulation of specific neural circuits to optimize therapeutic index is an unrealized goal in neurology and psychiatry. AMPA receptors are important for excitatory synaptic transmission, and their antagonists are antiepileptic. Although efficacious, AMPA-receptor antagonists, including perampanel (Fycompa), the only approved antagonist for epilepsy, induce dizziness and motor impairment. We hypothesized that blockade of forebrain AMPA receptors without blocking cerebellar AMPA receptors would be antiepileptic and devoid of motor impairment. Taking advantage of an AMPA receptor auxiliary protein, TARP γ-8, which is selectively expressed in the forebrain and modulates the pharmacological properties of AMPA receptors, we discovered that LY3130481 selectively antagonized recombinant and native AMPA receptors containing γ-8, but not γ-2 (cerebellum) or other TARP members. Two amino acid residues unique to γ-8 determined this selectivity. We also observed antagonism of AMPA receptors expressed in hippocampal, but not cerebellar, tissue from an patient with epilepsy. Corresponding to this selective activity, LY3130481 prevented multiple seizure types in rats and mice and without motor side effects. These findings demonstrate the first rationally discovered molecule targeting specific neural circuitries for therapeutic advantage.
Pharmacological manipulation of specific neural circuits to optimize therapeutic index is an unrealized goal in neurology and psychiatry. AMPA receptors are important for excitatory synaptic transmission, and their antagonists are antiepileptic. Although efficacious, AMPA-receptor antagonists, including perampanel (Fycompa), the only approved antagonist for epilepsy, induce dizziness and motor impairment. We hypothesized that blockade of forebrain AMPA receptors without blocking cerebellar AMPA receptors would be antiepileptic and devoid of motor impairment. Taking advantage of an AMPA receptor auxiliary protein, TARP gamma -8, which is selectively expressed in the forebrain and modulates the pharmacological properties of AMPA receptors, we discovered that LY3130481 selectively antagonized recombinant and native AMPA receptors containing gamma -8, but not gamma -2 (cerebellum) or other TARP members. Two amino acid residues unique to gamma -8 determined this selectivity. We also observed antagonism of AMPA receptors expressed in hippocampal, but not cerebellar, tissue from an patient with epilepsy. Corresponding to this selective activity, LY3130481 prevented multiple seizure types in rats and mice and without motor side effects. These findings demonstrate the first rationally discovered molecule targeting specific neural circuitries for therapeutic advantage.
Pharmacological manipulation of specific neural circuits to optimize therapeutic index is an unrealized goal in neurology and psychiatry. AMPA receptors are important for excitatory synaptic transmission, and their antagonists are antiepileptic. Although efficacious, AMPA-receptor antagonists, including perampanel (Fycompa), the only approved antagonist for epilepsy, induce dizziness and motor impairment. We hypothesized that blockade of forebrain AMPA receptors without blocking cerebellar AMPA receptors would be antiepileptic and devoid of motor impairment. Taking advantage of an AMPA receptor auxiliary protein, TARP γ-8, which is selectively expressed in the forebrain and modulates the pharmacological properties of AMPA receptors, we discovered that LY3130481 selectively antagonized recombinant and native AMPA receptors containing γ-8, but not γ-2 (cerebellum) or other TARP members. Two amino acid residues unique to γ-8 determined this selectivity. We also observed antagonism of AMPA receptors expressed in hippocampal, but not cerebellar, tissue from an patient with epilepsy. Corresponding to this selective activity, LY3130481 prevented multiple seizure types in rats and mice and without motor side effects. These findings demonstrate the first rationally discovered molecule targeting specific neural circuitries for therapeutic advantage.Pharmacological manipulation of specific neural circuits to optimize therapeutic index is an unrealized goal in neurology and psychiatry. AMPA receptors are important for excitatory synaptic transmission, and their antagonists are antiepileptic. Although efficacious, AMPA-receptor antagonists, including perampanel (Fycompa), the only approved antagonist for epilepsy, induce dizziness and motor impairment. We hypothesized that blockade of forebrain AMPA receptors without blocking cerebellar AMPA receptors would be antiepileptic and devoid of motor impairment. Taking advantage of an AMPA receptor auxiliary protein, TARP γ-8, which is selectively expressed in the forebrain and modulates the pharmacological properties of AMPA receptors, we discovered that LY3130481 selectively antagonized recombinant and native AMPA receptors containing γ-8, but not γ-2 (cerebellum) or other TARP members. Two amino acid residues unique to γ-8 determined this selectivity. We also observed antagonism of AMPA receptors expressed in hippocampal, but not cerebellar, tissue from an patient with epilepsy. Corresponding to this selective activity, LY3130481 prevented multiple seizure types in rats and mice and without motor side effects. These findings demonstrate the first rationally discovered molecule targeting specific neural circuitries for therapeutic advantage.
Author Pasqui, Francesca
Wang, He
Burris, Kevin D
Nisenbaum, Eric S
Porter, Warren J
Ornstein, Paul L
Schober, Douglas A
Lee, Matthew R
Witkin, Jeffrey M
Heinz, Beverly A
Qian, Yuewei
Catlow, John T
Sher, Emanuele
Gernert, Douglas L
Zwart, Ruud
Ding, Chunjin
Kato, Akihiko S
Tu, Yuan
Reel, Jon
Fitzjohn, Stephen M
Gardinier, Kevin M
Rasmussen, Kurt
Yu, Hong
Bredt, David S
Fitch, Thomas E
Wafford, Keith A
Isaac, John T R
Gleason, Scott D
Author_xml – sequence: 1
  givenname: Akihiko S
  surname: Kato
  fullname: Kato, Akihiko S
  email: katoak@lilly.com
  organization: Lilly Research Laboratory, Eli Lilly and Company
– sequence: 2
  givenname: Kevin D
  surname: Burris
  fullname: Burris, Kevin D
  organization: Lilly Research Laboratory, Eli Lilly and Company
– sequence: 3
  givenname: Kevin M
  surname: Gardinier
  fullname: Gardinier, Kevin M
  organization: Lilly Research Laboratory, Eli Lilly and Company
– sequence: 4
  givenname: Douglas L
  surname: Gernert
  fullname: Gernert, Douglas L
  organization: Lilly Research Laboratory, Eli Lilly and Company
– sequence: 5
  givenname: Warren J
  surname: Porter
  fullname: Porter, Warren J
  organization: Lilly Research Laboratory, Eli Lilly and Company
– sequence: 6
  givenname: Jon
  surname: Reel
  fullname: Reel, Jon
  organization: Lilly Research Laboratory, Eli Lilly and Company
– sequence: 7
  givenname: Chunjin
  surname: Ding
  fullname: Ding, Chunjin
  organization: Lilly Research Laboratory, Eli Lilly and Company
– sequence: 8
  givenname: Yuan
  surname: Tu
  fullname: Tu, Yuan
  organization: Lilly Research Laboratory, Eli Lilly and Company
– sequence: 9
  givenname: Douglas A
  surname: Schober
  fullname: Schober, Douglas A
  organization: Lilly Research Laboratory, Eli Lilly and Company
– sequence: 10
  givenname: Matthew R
  surname: Lee
  fullname: Lee, Matthew R
  organization: Applied Molecular Evolution, Eli Lilly and Company
– sequence: 11
  givenname: Beverly A
  surname: Heinz
  fullname: Heinz, Beverly A
  organization: Lilly Research Laboratory, Eli Lilly and Company
– sequence: 12
  givenname: Thomas E
  surname: Fitch
  fullname: Fitch, Thomas E
  organization: Lilly Research Laboratory, Eli Lilly and Company
– sequence: 13
  givenname: Scott D
  surname: Gleason
  fullname: Gleason, Scott D
  organization: Lilly Research Laboratory, Eli Lilly and Company
– sequence: 14
  givenname: John T
  surname: Catlow
  fullname: Catlow, John T
  organization: Lilly Research Laboratory, Eli Lilly and Company
– sequence: 15
  givenname: Hong
  surname: Yu
  fullname: Yu, Hong
  organization: Lilly Research Laboratory, Eli Lilly and Company, Present addresses: Janssen PRD, San Diego, California, USA (H.Y. and D.S.B.); School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK (S.M.F.); College of Pharmacy, Roosevelt University, Schaumburg, Illinois, USA (P.L.O.); Wellcome Trust, London, UK (J.T.R.I.)
– sequence: 16
  givenname: Stephen M
  surname: Fitzjohn
  fullname: Fitzjohn, Stephen M
  organization: Lilly UK, Eli Lilly and Company, Present addresses: Janssen PRD, San Diego, California, USA (H.Y. and D.S.B.); School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK (S.M.F.); College of Pharmacy, Roosevelt University, Schaumburg, Illinois, USA (P.L.O.); Wellcome Trust, London, UK (J.T.R.I.)
– sequence: 17
  givenname: Francesca
  surname: Pasqui
  fullname: Pasqui, Francesca
  organization: Lilly UK, Eli Lilly and Company
– sequence: 18
  givenname: He
  surname: Wang
  fullname: Wang, He
  organization: Lilly Research Laboratory, Eli Lilly and Company
– sequence: 19
  givenname: Yuewei
  surname: Qian
  fullname: Qian, Yuewei
  organization: Lilly Research Laboratory, Eli Lilly and Company
– sequence: 20
  givenname: Emanuele
  surname: Sher
  fullname: Sher, Emanuele
  organization: Lilly UK, Eli Lilly and Company
– sequence: 21
  givenname: Ruud
  surname: Zwart
  fullname: Zwart, Ruud
  organization: Lilly UK, Eli Lilly and Company
– sequence: 22
  givenname: Keith A
  surname: Wafford
  fullname: Wafford, Keith A
  organization: Lilly UK, Eli Lilly and Company
– sequence: 23
  givenname: Kurt
  surname: Rasmussen
  fullname: Rasmussen, Kurt
  organization: Lilly Research Laboratory, Eli Lilly and Company
– sequence: 24
  givenname: Paul L
  surname: Ornstein
  fullname: Ornstein, Paul L
  organization: Lilly Research Laboratory, Eli Lilly and Company, Present addresses: Janssen PRD, San Diego, California, USA (H.Y. and D.S.B.); School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK (S.M.F.); College of Pharmacy, Roosevelt University, Schaumburg, Illinois, USA (P.L.O.); Wellcome Trust, London, UK (J.T.R.I.)
– sequence: 25
  givenname: John T R
  surname: Isaac
  fullname: Isaac, John T R
  organization: Lilly UK, Eli Lilly and Company, Present addresses: Janssen PRD, San Diego, California, USA (H.Y. and D.S.B.); School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK (S.M.F.); College of Pharmacy, Roosevelt University, Schaumburg, Illinois, USA (P.L.O.); Wellcome Trust, London, UK (J.T.R.I.)
– sequence: 26
  givenname: Eric S
  surname: Nisenbaum
  fullname: Nisenbaum, Eric S
  organization: Lilly Research Laboratory, Eli Lilly and Company
– sequence: 27
  givenname: David S
  surname: Bredt
  fullname: Bredt, David S
  organization: Lilly Research Laboratory, Eli Lilly and Company, Present addresses: Janssen PRD, San Diego, California, USA (H.Y. and D.S.B.); School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK (S.M.F.); College of Pharmacy, Roosevelt University, Schaumburg, Illinois, USA (P.L.O.); Wellcome Trust, London, UK (J.T.R.I.)
– sequence: 28
  givenname: Jeffrey M
  surname: Witkin
  fullname: Witkin, Jeffrey M
  email: jwitkin@lilly.com
  organization: Lilly Research Laboratory, Eli Lilly and Company
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27820603$$D View this record in MEDLINE/PubMed
BookMark eNqN0UtKBDEQBuAgim-8gfRON9Gk049kOYgvGHEQBVeGdFI9RrqTMekWPJf38ExmcNzoxlXV4qui-GsHrTvvAKEDSk4oYfzU9SdFntM1tE3LosK0Jo_rqSc1x1yU1RbaifGFEMJIKTbRVl7znFSEbaOnCx-gCco6HKEDPdg3yCY3swkOoGEx-JApN6i5dzb22Xy0BkzWvGf3k7tZ9vmBeaZiEktkYWG7NGJ11oN-VsuJPbTRqi7C_qruooeL8_uzKzy9vbw-m0yxZpQM2IBQUDINTcsE1UoJzqGpuSFFbVgpjFDMtLlpuNZa5HVjgHKgpGoK0Sph2C46_t67CP51hDjI3kYNXacc-DFKysuS8CKn1T8oq0leMcETPVzRsenByEWwvQrv8ie-BPA30MHHGKCV2g5qsN4NKdJOUiKX75Gul8v3JH_0y_-s_CtXV8Yk3ByCfPFjcCnDP_QLYe6dXg
CitedBy_id crossref_primary_10_1016_j_bcp_2017_09_015
crossref_primary_10_1021_acs_jmedchem_2c00377
crossref_primary_10_1038_s41594_024_01328_0
crossref_primary_10_1016_j_brainres_2019_146356
crossref_primary_10_1111_acer_14639
crossref_primary_10_3389_fnsyn_2021_689518
crossref_primary_10_1038_s41573_024_00981_w
crossref_primary_10_1016_j_ejmech_2024_116151
crossref_primary_10_1016_j_bcp_2024_116302
crossref_primary_10_62347_USWK7545
crossref_primary_10_1021_acsmedchemlett_8b00599
crossref_primary_10_1085_jgp_201912451
crossref_primary_10_1124_pharmrev_120_000131
crossref_primary_10_1016_j_conb_2017_02_001
crossref_primary_10_1113_JP278701
crossref_primary_10_1126_science_aav9011
crossref_primary_10_1016_j_bpsgos_2022_02_007
crossref_primary_10_3389_fncel_2021_669717
crossref_primary_10_1038_s41386_023_01651_y
crossref_primary_10_1016_j_drudis_2018_10_015
crossref_primary_10_3389_fnins_2024_1446076
crossref_primary_10_1111_epi_17837
crossref_primary_10_1016_j_conb_2017_03_001
crossref_primary_10_3389_fnsyn_2020_567075
crossref_primary_10_3390_ph18030384
crossref_primary_10_1113_JP280877
crossref_primary_10_1016_j_conb_2022_102585
crossref_primary_10_2174_1570159X17666181127124803
crossref_primary_10_1016_j_neuron_2017_02_040
crossref_primary_10_1016_j_neuropharm_2017_07_028
crossref_primary_10_1167_iovs_63_6_19
crossref_primary_10_1085_jgp_201912542
crossref_primary_10_1113_JP276698
crossref_primary_10_1038_s41467_023_37259_5
crossref_primary_10_1523_JNEUROSCI_1590_18_2018
crossref_primary_10_3389_fcell_2023_1252953
crossref_primary_10_1016_j_cophys_2017_12_009
crossref_primary_10_1038_nrn_2018_16
crossref_primary_10_1016_j_celrep_2018_12_103
crossref_primary_10_1111_bph_15050
crossref_primary_10_1085_jgp_201812264
crossref_primary_10_1016_j_neuropharm_2021_108710
crossref_primary_10_1021_acsmedchemlett_8b00450
crossref_primary_10_1016_j_cell_2024_09_006
crossref_primary_10_4103_NRR_NRR_D_23_01444
crossref_primary_10_1016_j_celrep_2024_113694
crossref_primary_10_1021_acsmedchemlett_8b00215
crossref_primary_10_1016_j_coph_2021_03_011
crossref_primary_10_1038_s41467_022_28404_7
crossref_primary_10_7554_eLife_28680
crossref_primary_10_1016_j_phrs_2020_105128
crossref_primary_10_1111_febs_17287
crossref_primary_10_1016_j_neuropharm_2021_108709
crossref_primary_10_1021_acs_jmedchem_2c01975
crossref_primary_10_1016_j_neuron_2017_04_009
crossref_primary_10_1007_s13311_019_00773_w
crossref_primary_10_1113_JP279029
crossref_primary_10_1038_s41467_023_42780_8
crossref_primary_10_1016_j_bcp_2018_01_018
crossref_primary_10_1124_jpet_118_250126
crossref_primary_10_1038_s41573_020_0086_4
crossref_primary_10_1016_j_neuropharm_2020_108443
crossref_primary_10_1124_molpharm_121_000473
crossref_primary_10_1016_j_sbi_2019_05_004
crossref_primary_10_1016_j_celrep_2020_107704
crossref_primary_10_1016_j_bbamem_2020_183401
crossref_primary_10_1016_j_pbb_2022_173354
crossref_primary_10_1016_j_pbb_2025_173967
crossref_primary_10_1074_jbc_RA120_014135
crossref_primary_10_1007_s00213_023_06365_z
crossref_primary_10_1016_j_neuron_2017_10_001
crossref_primary_10_1113_JP274897
crossref_primary_10_1016_j_celrep_2022_111766
crossref_primary_10_1021_acschemneuro_7b00186
Cites_doi 10.1523/JNEUROSCI.6271-10.2011
10.1212/WNL.0b013e3182635735
10.1523/JNEUROSCI.4185-06.2007
10.1016/j.neuropharm.2011.04.006
10.1016/j.neuron.2011.04.007
10.1021/acs.jmedchem.6b00125
10.1124/jpet.114.212779
10.1523/JNEUROSCI.5561-06.2007
10.1126/science.1167852
10.1016/j.neuron.2008.07.034
10.1016/0013-4694(72)90177-0
10.1016/0896-6273(95)90076-4
10.1038/nn1551
10.1016/j.neuropharm.2006.10.007
10.1124/jpet.116.234419
10.1021/jm301268u
10.1016/j.neuropharm.2015.03.014
10.1006/geno.2000.6440
10.1113/jphysiol.2011.221101
10.1073/pnas.1011706107
10.1016/j.pneurobio.2009.01.008
10.1007/978-1-59745-000-3_24
10.1016/0896-6273(93)90220-L
10.1016/S0031-9384(02)00810-7
10.1073/pnas.192445299
10.1523/JNEUROSCI.1108-05.2005
10.1016/j.neuron.2013.10.025
10.2174/1871527314666150429114818
10.1016/j.neuron.2010.11.026
10.1126/science.1699275
10.1124/jpet.115.231712
10.1016/0306-4522(94)00463-F
10.1016/j.neuropharm.2008.02.012
10.1038/nature03624
ContentType Journal Article
Copyright Springer Nature America, Inc. 2016
Copyright_xml – notice: Springer Nature America, Inc. 2016
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7T5
7TK
H94
DOI 10.1038/nm.4221
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Immunology Abstracts
Neurosciences Abstracts
AIDS and Cancer Research Abstracts
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AIDS and Cancer Research Abstracts
Neurosciences Abstracts
Immunology Abstracts
DatabaseTitleList
MEDLINE
AIDS and Cancer Research Abstracts
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1546-170X
EndPage 1501
ExternalDocumentID 27820603
10_1038_nm_4221
Genre Journal Article
GroupedDBID ---
.-4
.55
.GJ
0R~
123
1CY
29M
2FS
36B
39C
3O-
3V.
4.4
53G
5BI
5M7
5RE
5S5
70F
7X7
85S
88A
88E
88I
8AO
8FE
8FH
8FI
8FJ
8G5
8R4
8R5
AAEEF
AARCD
AAYOK
AAYZH
AAZLF
ABAWZ
ABCQX
ABDBF
ABDPE
ABEFU
ABJNI
ABLJU
ABOCM
ABUWG
ACBWK
ACGFO
ACGFS
ACGOD
ACIWK
ACMJI
ACPRK
ACUHS
ADBBV
ADFRT
AENEX
AEUYN
AFBBN
AFKRA
AFRAH
AFSHS
AGAYW
AGCDD
AGHTU
AHBCP
AHMBA
AHOSX
AHSBF
AIBTJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
B0M
BBNVY
BENPR
BHPHI
BKKNO
BPHCQ
BVXVI
CCPQU
CS3
DB5
DU5
DWQXO
EAD
EAP
EBC
EBD
EBS
EE.
EJD
EMB
EMK
EMOBN
EPL
ESX
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
GNUQQ
GUQSH
GX1
HCIFZ
HMCUK
HVGLF
HZ~
IAO
IEA
IH2
IHR
IHW
INH
INR
IOF
IOV
ISR
ITC
J5H
L7B
LGEZI
LK8
LOTEE
M0L
M1P
M2O
M2P
M7P
MK0
N9A
NADUK
NNMJJ
NXXTH
O9-
ODYON
P2P
PQQKQ
PROAC
PSQYO
Q2X
RIG
RNS
RNT
RNTTT
RVV
SHXYY
SIXXV
SJN
SNYQT
SOJ
SV3
TAE
TAOOD
TBHMF
TDRGL
TSG
TUS
UKHRP
UQL
X7M
XJT
YHZ
ZGI
~8M
AAYXX
ABFSG
ACMFV
ACSTC
AFANA
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
AETEA
AEZWR
AFHIU
AHWEU
AIXLP
CGR
CUY
CVF
ECM
EIF
NFIDA
NPM
PJZUB
PPXIY
PQGLB
7X8
7T5
7TK
H94
ID FETCH-LOGICAL-c310t-de9ae53cebf391caa988eb78d047d359d9a3df2db8ccc927bde18e106b49fa9d3
ISSN 1078-8956
1546-170X
IngestDate Thu Jul 10 17:31:59 EDT 2025
Tue Aug 05 10:54:47 EDT 2025
Mon Jul 21 05:55:45 EDT 2025
Tue Jul 01 03:53:38 EDT 2025
Thu Apr 24 22:52:13 EDT 2025
Fri Feb 21 02:37:46 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c310t-de9ae53cebf391caa988eb78d047d359d9a3df2db8ccc927bde18e106b49fa9d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://research-information.bris.ac.uk/en/publications/2a72c95c-feee-43b2-8322-d4ed72a55710
PMID 27820603
PQID 1837026398
PQPubID 23479
PageCount 6
ParticipantIDs proquest_miscellaneous_1855084216
proquest_miscellaneous_1837026398
pubmed_primary_27820603
crossref_citationtrail_10_1038_nm_4221
crossref_primary_10_1038_nm_4221
springer_journals_10_1038_nm_4221
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-12-01
PublicationDateYYYYMMDD 2016-12-01
PublicationDate_xml – month: 12
  year: 2016
  text: 2016-12-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationTitle Nature medicine
PublicationTitleAbbrev Nat Med
PublicationTitleAlternate Nat Med
PublicationYear 2016
Publisher Nature Publishing Group US
Publisher_xml – name: Nature Publishing Group US
References Zwart (CR4) 2014; 351
Cokić, Stein (CR10) 2008; 54
Gardinier (CR9) 2016; 59
Kott, Werner, Körber, Hollmann (CR11) 2007; 27
Harkin, O'Donnell, Kelly (CR32) 2002; 77
Maher (CR20) 2016; 357
Twele, Bankstahl, Klein, Römermann, Löscher (CR18) 2015; 95
Witkin, Gardinier (CR21) 2016; 358
Rouach (CR25) 2005; 8
Tomita (CR8) 2005; 435
Gill (CR16) 2011; 31
Miledi, Palma, Eusebi (CR27) 2006; 322
Suzuki, Junier, Guilhem, Sørensen, Onteniente (CR31) 1995; 64
Partin, Patneau, Winters, Mayer, Buonanno (CR6) 1993; 11
Geiger (CR14) 1995; 15
Turetsky, Garringer, Patneau (CR7) 2005; 25
Eusebi, Palma, Amici, Miledi (CR28) 2009; 88
Huganir, Nicoll (CR1) 2013; 80
Tomita, Castillo (CR19) 2012; 590
Sommer (CR22) 1990; 249
Gleason (CR17) 2015; 14
Hibi (CR2) 2012; 55
Phillips (CR33) 2012; 62
Jackson, Nicoll (CR5) 2011; 70
Kaminski, Witkin, Shippenberg (CR30) 2007; 52
Kato (CR15) 2010; 68
Kato (CR29) 2007; 27
Racine (CR34) 1972; 32
French (CR3) 2012; 79
Miledi, Eusebi, Martínez-Torres, Palma, Trettel (CR26) 2002; 99
Schwenk (CR12) 2009; 323
Shi (CR13) 2010; 107
Kato, Siuda, Nisenbaum, Bredt (CR24) 2008; 59
Burgess, Gefrides, Foreman, Noebels (CR23) 2001; 71
R Miledi (BFnm4221_CR27) 2006; 322
R Zwart (BFnm4221_CR4) 2014; 351
S Kott (BFnm4221_CR11) 2007; 27
D Turetsky (BFnm4221_CR7) 2005; 25
KM Gardinier (BFnm4221_CR9) 2016; 59
AS Kato (BFnm4221_CR15) 2010; 68
N Rouach (BFnm4221_CR25) 2005; 8
A Harkin (BFnm4221_CR32) 2002; 77
S Tomita (BFnm4221_CR8) 2005; 435
JR Geiger (BFnm4221_CR14) 1995; 15
JA French (BFnm4221_CR3) 2012; 79
JM Witkin (BFnm4221_CR21) 2016; 358
MP Maher (BFnm4221_CR20) 2016; 357
MB Gill (BFnm4221_CR16) 2011; 31
AS Kato (BFnm4221_CR29) 2007; 27
B Cokić (BFnm4221_CR10) 2008; 54
KM Partin (BFnm4221_CR6) 1993; 11
J Schwenk (BFnm4221_CR12) 2009; 323
S Hibi (BFnm4221_CR2) 2012; 55
RM Kaminski (BFnm4221_CR30) 2007; 52
S Tomita (BFnm4221_CR19) 2012; 590
F Twele (BFnm4221_CR18) 2015; 95
AS Kato (BFnm4221_CR24) 2008; 59
RL Huganir (BFnm4221_CR1) 2013; 80
SD Gleason (BFnm4221_CR17) 2015; 14
B Sommer (BFnm4221_CR22) 1990; 249
RJ Racine (BFnm4221_CR34) 1972; 32
DL Burgess (BFnm4221_CR23) 2001; 71
Y Shi (BFnm4221_CR13) 2010; 107
R Miledi (BFnm4221_CR26) 2002; 99
KG Phillips (BFnm4221_CR33) 2012; 62
AC Jackson (BFnm4221_CR5) 2011; 70
F Eusebi (BFnm4221_CR28) 2009; 88
F Suzuki (BFnm4221_CR31) 1995; 64
16222232 - Nat Neurosci. 2005 Nov;8(11):1525-33
16093395 - J Neurosci. 2005 Aug 10;25(32):7438-48
4110397 - Electroencephalogr Clin Neurophysiol. 1972 Mar;32(3):281-94
21172611 - Neuron. 2010 Dec 22;68(6):1082-96
24183021 - Neuron. 2013 Oct 30;80(3):704-17
27067148 - J Med Chem. 2016 May 26;59(10):4753-68
12213503 - Physiol Behav. 2002 Sep;77(1):65-77
7715779 - Neuroscience. 1995 Feb;64(3):665-74
29225530 - Epilepsy Curr. 2017 Jul-Aug;17 (4):235-236
12237406 - Proc Natl Acad Sci U S A. 2002 Oct 1;99(20):13238-42
17409242 - J Neurosci. 2007 Apr 4;27(14):3780-9
25839899 - Neuropharmacology. 2015 Aug;95:234-42
1699275 - Science. 1990 Sep 28;249(4976):1580-5
21521608 - Neuron. 2011 Apr 28;70(2):178-99
17126860 - Neuropharmacology. 2007 Mar;52(3):895-903
11170751 - Genomics. 2001 Feb 1;71(3):339-50
22431337 - J Physiol. 2012 May 15;590(10):2217-23
26989142 - J Pharmacol Exp Ther. 2016 May;357(2):394-414
7619522 - Neuron. 1995 Jul;15(1):193-204
7506043 - Neuron. 1993 Dec;11(6):1069-82
20805473 - Proc Natl Acad Sci U S A. 2010 Sep 14;107(37):16315-9
25027316 - J Pharmacol Exp Ther. 2014 Oct;351(1):124-33
18378265 - Neuropharmacology. 2008 Jun;54(7):1062-70
17475805 - J Neurosci. 2007 May 2;27(18):4969-77
23181587 - J Med Chem. 2012 Dec 13;55(23):10584-600
22843280 - Neurology. 2012 Aug 7;79(6):589-96
21521646 - Neuropharmacology. 2012 Mar;62(3):1359-70
19265014 - Science. 2009 Mar 6;323(5919):1313-9
15858532 - Nature. 2005 Jun 23;435(7045):1052-8
16739735 - Methods Mol Biol. 2006;322:347-55
21543622 - J Neurosci. 2011 May 4;31(18):6928-38
18817736 - Neuron. 2008 Sep 25;59(6):986-96
19428960 - Prog Neurobiol. 2009 May;88(1):32-40
25921737 - CNS Neurol Disord Drug Targets. 2015;14(5):612-26
27528544 - J Pharmacol Exp Ther. 2016 Sep;358(3):502-3
References_xml – volume: 31
  start-page: 6928
  year: 2011
  end-page: 6938
  ident: CR16
  article-title: Cornichon-2 modulates AMPA receptor-transmembrane AMPA receptor regulatory protein assembly to dictate gating and pharmacology
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.6271-10.2011
– volume: 79
  start-page: 589
  year: 2012
  end-page: 596
  ident: CR3
  article-title: Adjunctive perampanel for refractory partial-onset seizures: randomized phase III study 304
  publication-title: Neurology
  doi: 10.1212/WNL.0b013e3182635735
– volume: 27
  start-page: 3780
  year: 2007
  end-page: 3789
  ident: CR11
  article-title: Electrophysiological properties of AMPA receptors are differentially modulated depending on the associated member of the TARP family
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.4185-06.2007
– volume: 62
  start-page: 1359
  year: 2012
  end-page: 1370
  ident: CR33
  article-title: Differential effects of NMDA antagonists on high frequency and gamma EEG oscillations in a neurodevelopmental model of schizophrenia
  publication-title: Neuropharmacology
  doi: 10.1016/j.neuropharm.2011.04.006
– volume: 70
  start-page: 178
  year: 2011
  end-page: 199
  ident: CR5
  article-title: The expanding social network of ionotropic glutamate receptors: TARPs and other transmembrane auxiliary subunits
  publication-title: Neuron
  doi: 10.1016/j.neuron.2011.04.007
– volume: 59
  start-page: 4753
  year: 2016
  end-page: 4768
  ident: CR9
  article-title: Discovery of the first α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor antagonist dependent upon transmembrane AMPA receptor regulatory protein (TARP) γ-8
  publication-title: J. Med. Chem.
  doi: 10.1021/acs.jmedchem.6b00125
– volume: 351
  start-page: 124
  year: 2014
  end-page: 133
  ident: CR4
  article-title: Perampanel, an antagonist of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors, for the treatment of epilepsy: studies in human epileptic brain and nonepileptic brain and in rodent models
  publication-title: J. Pharmacol. Exp. Ther.
  doi: 10.1124/jpet.114.212779
– volume: 27
  start-page: 4969
  year: 2007
  end-page: 4977
  ident: CR29
  article-title: New transmembrane AMPA receptor regulatory protein isoform, gamma-7, differentially regulates AMPA receptors
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.5561-06.2007
– volume: 323
  start-page: 1313
  year: 2009
  end-page: 1319
  ident: CR12
  article-title: Functional proteomics identify cornichon proteins as auxiliary subunits of AMPA receptors
  publication-title: Science
  doi: 10.1126/science.1167852
– volume: 59
  start-page: 986
  year: 2008
  end-page: 996
  ident: CR24
  article-title: AMPA receptor subunit-specific regulation by a distinct family of type II TARPs
  publication-title: Neuron
  doi: 10.1016/j.neuron.2008.07.034
– volume: 32
  start-page: 281
  year: 1972
  end-page: 294
  ident: CR34
  article-title: Modification of seizure activity by electrical stimulation. II. Motor seizure
  publication-title: Electroencephalogr. Clin. Neurophysiol.
  doi: 10.1016/0013-4694(72)90177-0
– volume: 15
  start-page: 193
  year: 1995
  end-page: 204
  ident: CR14
  article-title: Relative abundance of subunit mRNAs determines gating and Ca permeability of AMPA receptors in principal neurons and interneurons in rat CNS
  publication-title: Neuron
  doi: 10.1016/0896-6273(95)90076-4
– volume: 8
  start-page: 1525
  year: 2005
  end-page: 1533
  ident: CR25
  article-title: TARP gamma-8 controls hippocampal AMPA receptor number, distribution and synaptic plasticity
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn1551
– volume: 52
  start-page: 895
  year: 2007
  end-page: 903
  ident: CR30
  article-title: Pharmacological and genetic manipulation of kappa opioid receptors: effects on cocaine- and pentylenetetrazol-induced convulsions and seizure kindling
  publication-title: Neuropharmacology
  doi: 10.1016/j.neuropharm.2006.10.007
– volume: 358
  start-page: 502
  year: 2016
  end-page: 503
  ident: CR21
  article-title: A comment on “Discovery and characterization of AMPA receptor modulators selective for TARP-γ8”
  publication-title: J. Pharmacol. Exp. Ther.
  doi: 10.1124/jpet.116.234419
– volume: 55
  start-page: 10584
  year: 2012
  end-page: 10600
  ident: CR2
  article-title: Discovery of 2-(2-oxo-1-phenyl-5-pyridin-2-yl-1,2-dihydropyridin-3-yl)benzonitrile (perampanel): a novel, noncompetitive α-amino-3-hydroxy-5-methyl-4-isoxazolepropanoic acid (AMPA) receptor antagonist
  publication-title: J. Med. Chem.
  doi: 10.1021/jm301268u
– volume: 95
  start-page: 234
  year: 2015
  end-page: 242
  ident: CR18
  article-title: The AMPA receptor antagonist NBQX exerts anti-seizure but not antiepileptogenic effects in the intrahippocampal kainate mouse model of mesial temporal lobe epilepsy
  publication-title: Neuropharmacology
  doi: 10.1016/j.neuropharm.2015.03.014
– volume: 71
  start-page: 339
  year: 2001
  end-page: 350
  ident: CR23
  article-title: A cluster of three novel Ca channel gamma subunit genes on chromosome 19q13.4: evolution and expression profile of the gamma subunit gene family
  publication-title: Genomics
  doi: 10.1006/geno.2000.6440
– volume: 590
  start-page: 2217
  year: 2012
  end-page: 2223
  ident: CR19
  article-title: Neto1 and Neto2: auxiliary subunits that determine key properties of native kainate receptors
  publication-title: J. Physiol. (Lond.)
  doi: 10.1113/jphysiol.2011.221101
– volume: 107
  start-page: 16315
  year: 2010
  end-page: 16319
  ident: CR13
  article-title: Functional comparison of the effects of TARPs and cornichons on AMPA receptor trafficking and gating
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1011706107
– volume: 88
  start-page: 32
  year: 2009
  end-page: 40
  ident: CR28
  article-title: Microtransplantation of ligand-gated receptor-channels from fresh or frozen nervous tissue into oocytes: a potent tool for expanding functional information
  publication-title: Prog. Neurobiol.
  doi: 10.1016/j.pneurobio.2009.01.008
– volume: 322
  start-page: 347
  year: 2006
  end-page: 355
  ident: CR27
  article-title: Microtransplantation of neurotransmitter receptors from cells to oocyte membranes: new procedure for ion channel studies
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-59745-000-3_24
– volume: 11
  start-page: 1069
  year: 1993
  end-page: 1082
  ident: CR6
  article-title: Selective modulation of desensitization at AMPA versus kainate receptors by cyclothiazide and concanavalin A
  publication-title: Neuron
  doi: 10.1016/0896-6273(93)90220-L
– volume: 77
  start-page: 65
  year: 2002
  end-page: 77
  ident: CR32
  article-title: A study of VitalView for behavioural and physiological monitoring in laboratory rats
  publication-title: Physiol. Behav.
  doi: 10.1016/S0031-9384(02)00810-7
– volume: 99
  start-page: 13238
  year: 2002
  end-page: 13242
  ident: CR26
  article-title: Expression of functional neurotransmitter receptors in oocytes after injection of human brain membranes
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.192445299
– volume: 25
  start-page: 7438
  year: 2005
  end-page: 7448
  ident: CR7
  article-title: Stargazin modulates native AMPA receptor functional properties by two distinct mechanisms
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.1108-05.2005
– volume: 80
  start-page: 704
  year: 2013
  end-page: 717
  ident: CR1
  article-title: AMPARs and synaptic plasticity: the last 25 years
  publication-title: Neuron
  doi: 10.1016/j.neuron.2013.10.025
– volume: 14
  start-page: 612
  year: 2015
  end-page: 626
  ident: CR17
  article-title: Inquiries into the biological significance of transmembrane AMPA receptor regulatory protein (TARP) γ-8 through investigations of TARP γ-8 null mice
  publication-title: CNS Neurol. Disord. Drug Targets
  doi: 10.2174/1871527314666150429114818
– volume: 68
  start-page: 1082
  year: 2010
  end-page: 1096
  ident: CR15
  article-title: Hippocampal AMPA receptor gating controlled by both TARP and cornichon proteins
  publication-title: Neuron
  doi: 10.1016/j.neuron.2010.11.026
– volume: 249
  start-page: 1580
  year: 1990
  end-page: 1585
  ident: CR22
  article-title: Flip and flop: a cell-specific functional switch in glutamate-operated channels of the CNS
  publication-title: Science
  doi: 10.1126/science.1699275
– volume: 357
  start-page: 394
  year: 2016
  end-page: 414
  ident: CR20
  article-title: Discovery and characterization of AMPA receptor modulators selective for TARP-γ8
  publication-title: J. Pharmacol. Exp. Ther.
  doi: 10.1124/jpet.115.231712
– volume: 64
  start-page: 665
  year: 1995
  end-page: 674
  ident: CR31
  article-title: Morphogenetic effect of kainate on adult hippocampal neurons associated with a prolonged expression of brain-derived neurotrophic factor
  publication-title: Neuroscience
  doi: 10.1016/0306-4522(94)00463-F
– volume: 54
  start-page: 1062
  year: 2008
  end-page: 1070
  ident: CR10
  article-title: Stargazin modulates AMPA receptor antagonism
  publication-title: Neuropharmacology
  doi: 10.1016/j.neuropharm.2008.02.012
– volume: 435
  start-page: 1052
  year: 2005
  end-page: 1058
  ident: CR8
  article-title: Stargazin modulates AMPA receptor gating and trafficking by distinct domains
  publication-title: Nature
  doi: 10.1038/nature03624
– volume: 351
  start-page: 124
  year: 2014
  ident: BFnm4221_CR4
  publication-title: J. Pharmacol. Exp. Ther.
  doi: 10.1124/jpet.114.212779
– volume: 323
  start-page: 1313
  year: 2009
  ident: BFnm4221_CR12
  publication-title: Science
  doi: 10.1126/science.1167852
– volume: 99
  start-page: 13238
  year: 2002
  ident: BFnm4221_CR26
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.192445299
– volume: 52
  start-page: 895
  year: 2007
  ident: BFnm4221_CR30
  publication-title: Neuropharmacology
  doi: 10.1016/j.neuropharm.2006.10.007
– volume: 590
  start-page: 2217
  year: 2012
  ident: BFnm4221_CR19
  publication-title: J. Physiol. (Lond.)
  doi: 10.1113/jphysiol.2011.221101
– volume: 59
  start-page: 986
  year: 2008
  ident: BFnm4221_CR24
  publication-title: Neuron
  doi: 10.1016/j.neuron.2008.07.034
– volume: 14
  start-page: 612
  year: 2015
  ident: BFnm4221_CR17
  publication-title: CNS Neurol. Disord. Drug Targets
  doi: 10.2174/1871527314666150429114818
– volume: 25
  start-page: 7438
  year: 2005
  ident: BFnm4221_CR7
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.1108-05.2005
– volume: 68
  start-page: 1082
  year: 2010
  ident: BFnm4221_CR15
  publication-title: Neuron
  doi: 10.1016/j.neuron.2010.11.026
– volume: 31
  start-page: 6928
  year: 2011
  ident: BFnm4221_CR16
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.6271-10.2011
– volume: 11
  start-page: 1069
  year: 1993
  ident: BFnm4221_CR6
  publication-title: Neuron
  doi: 10.1016/0896-6273(93)90220-L
– volume: 435
  start-page: 1052
  year: 2005
  ident: BFnm4221_CR8
  publication-title: Nature
  doi: 10.1038/nature03624
– volume: 70
  start-page: 178
  year: 2011
  ident: BFnm4221_CR5
  publication-title: Neuron
  doi: 10.1016/j.neuron.2011.04.007
– volume: 107
  start-page: 16315
  year: 2010
  ident: BFnm4221_CR13
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1011706107
– volume: 62
  start-page: 1359
  year: 2012
  ident: BFnm4221_CR33
  publication-title: Neuropharmacology
  doi: 10.1016/j.neuropharm.2011.04.006
– volume: 8
  start-page: 1525
  year: 2005
  ident: BFnm4221_CR25
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn1551
– volume: 32
  start-page: 281
  year: 1972
  ident: BFnm4221_CR34
  publication-title: Electroencephalogr. Clin. Neurophysiol.
  doi: 10.1016/0013-4694(72)90177-0
– volume: 27
  start-page: 4969
  year: 2007
  ident: BFnm4221_CR29
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.5561-06.2007
– volume: 357
  start-page: 394
  year: 2016
  ident: BFnm4221_CR20
  publication-title: J. Pharmacol. Exp. Ther.
  doi: 10.1124/jpet.115.231712
– volume: 249
  start-page: 1580
  year: 1990
  ident: BFnm4221_CR22
  publication-title: Science
  doi: 10.1126/science.1699275
– volume: 64
  start-page: 665
  year: 1995
  ident: BFnm4221_CR31
  publication-title: Neuroscience
  doi: 10.1016/0306-4522(94)00463-F
– volume: 80
  start-page: 704
  year: 2013
  ident: BFnm4221_CR1
  publication-title: Neuron
  doi: 10.1016/j.neuron.2013.10.025
– volume: 54
  start-page: 1062
  year: 2008
  ident: BFnm4221_CR10
  publication-title: Neuropharmacology
  doi: 10.1016/j.neuropharm.2008.02.012
– volume: 55
  start-page: 10584
  year: 2012
  ident: BFnm4221_CR2
  publication-title: J. Med. Chem.
  doi: 10.1021/jm301268u
– volume: 27
  start-page: 3780
  year: 2007
  ident: BFnm4221_CR11
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.4185-06.2007
– volume: 15
  start-page: 193
  year: 1995
  ident: BFnm4221_CR14
  publication-title: Neuron
  doi: 10.1016/0896-6273(95)90076-4
– volume: 358
  start-page: 502
  year: 2016
  ident: BFnm4221_CR21
  publication-title: J. Pharmacol. Exp. Ther.
  doi: 10.1124/jpet.116.234419
– volume: 322
  start-page: 347
  year: 2006
  ident: BFnm4221_CR27
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-59745-000-3_24
– volume: 95
  start-page: 234
  year: 2015
  ident: BFnm4221_CR18
  publication-title: Neuropharmacology
  doi: 10.1016/j.neuropharm.2015.03.014
– volume: 59
  start-page: 4753
  year: 2016
  ident: BFnm4221_CR9
  publication-title: J. Med. Chem.
  doi: 10.1021/acs.jmedchem.6b00125
– volume: 88
  start-page: 32
  year: 2009
  ident: BFnm4221_CR28
  publication-title: Prog. Neurobiol.
  doi: 10.1016/j.pneurobio.2009.01.008
– volume: 79
  start-page: 589
  year: 2012
  ident: BFnm4221_CR3
  publication-title: Neurology
  doi: 10.1212/WNL.0b013e3182635735
– volume: 71
  start-page: 339
  year: 2001
  ident: BFnm4221_CR23
  publication-title: Genomics
  doi: 10.1006/geno.2000.6440
– volume: 77
  start-page: 65
  year: 2002
  ident: BFnm4221_CR32
  publication-title: Physiol. Behav.
  doi: 10.1016/S0031-9384(02)00810-7
– reference: 11170751 - Genomics. 2001 Feb 1;71(3):339-50
– reference: 12237406 - Proc Natl Acad Sci U S A. 2002 Oct 1;99(20):13238-42
– reference: 23181587 - J Med Chem. 2012 Dec 13;55(23):10584-600
– reference: 17126860 - Neuropharmacology. 2007 Mar;52(3):895-903
– reference: 25839899 - Neuropharmacology. 2015 Aug;95:234-42
– reference: 25027316 - J Pharmacol Exp Ther. 2014 Oct;351(1):124-33
– reference: 18817736 - Neuron. 2008 Sep 25;59(6):986-96
– reference: 4110397 - Electroencephalogr Clin Neurophysiol. 1972 Mar;32(3):281-94
– reference: 20805473 - Proc Natl Acad Sci U S A. 2010 Sep 14;107(37):16315-9
– reference: 12213503 - Physiol Behav. 2002 Sep;77(1):65-77
– reference: 18378265 - Neuropharmacology. 2008 Jun;54(7):1062-70
– reference: 7715779 - Neuroscience. 1995 Feb;64(3):665-74
– reference: 17409242 - J Neurosci. 2007 Apr 4;27(14):3780-9
– reference: 7619522 - Neuron. 1995 Jul;15(1):193-204
– reference: 29225530 - Epilepsy Curr. 2017 Jul-Aug;17 (4):235-236
– reference: 19265014 - Science. 2009 Mar 6;323(5919):1313-9
– reference: 25921737 - CNS Neurol Disord Drug Targets. 2015;14(5):612-26
– reference: 7506043 - Neuron. 1993 Dec;11(6):1069-82
– reference: 21543622 - J Neurosci. 2011 May 4;31(18):6928-38
– reference: 16222232 - Nat Neurosci. 2005 Nov;8(11):1525-33
– reference: 16093395 - J Neurosci. 2005 Aug 10;25(32):7438-48
– reference: 17475805 - J Neurosci. 2007 May 2;27(18):4969-77
– reference: 1699275 - Science. 1990 Sep 28;249(4976):1580-5
– reference: 26989142 - J Pharmacol Exp Ther. 2016 May;357(2):394-414
– reference: 21521646 - Neuropharmacology. 2012 Mar;62(3):1359-70
– reference: 22431337 - J Physiol. 2012 May 15;590(10):2217-23
– reference: 15858532 - Nature. 2005 Jun 23;435(7045):1052-8
– reference: 27528544 - J Pharmacol Exp Ther. 2016 Sep;358(3):502-3
– reference: 16739735 - Methods Mol Biol. 2006;322:347-55
– reference: 21521608 - Neuron. 2011 Apr 28;70(2):178-99
– reference: 27067148 - J Med Chem. 2016 May 26;59(10):4753-68
– reference: 21172611 - Neuron. 2010 Dec 22;68(6):1082-96
– reference: 24183021 - Neuron. 2013 Oct 30;80(3):704-17
– reference: 19428960 - Prog Neurobiol. 2009 May;88(1):32-40
– reference: 22843280 - Neurology. 2012 Aug 7;79(6):589-96
SSID ssj0003059
Score 2.487145
Snippet Selective pharmacological blockade of forebrain excitatory AMPA receptors that express the TARP γ-8 subunit enables antiepileptic therapy in rodent models of...
Pharmacological manipulation of specific neural circuits to optimize therapeutic index is an unrealized goal in neurology and psychiatry. AMPA receptors are...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1496
SubjectTerms 692/617/375/178
Animals
Anticonvulsants - adverse effects
Anticonvulsants - pharmacology
Benzothiazoles - pharmacology
Biomedicine
Calcium Channels - metabolism
Cancer Research
Cerebellum - drug effects
Cerebellum - metabolism
Convulsants - toxicity
Disease Models, Animal
Dizziness - chemically induced
Epilepsy - chemically induced
Epilepsy - drug therapy
Infectious Diseases
letter
Metabolic Diseases
Mice
Molecular Medicine
Neurosciences
Pentylenetetrazole - toxicity
Prosencephalon - drug effects
Prosencephalon - metabolism
Pyrazoles - pharmacology
Pyridones - adverse effects
Pyridones - pharmacology
Rats
Receptors, AMPA - antagonists & inhibitors
Receptors, AMPA - metabolism
Seizures - chemically induced
Seizures - drug therapy
Title Forebrain-selective AMPA-receptor antagonism guided by TARP γ-8 as an antiepileptic mechanism
URI https://link.springer.com/article/10.1038/nm.4221
https://www.ncbi.nlm.nih.gov/pubmed/27820603
https://www.proquest.com/docview/1837026398
https://www.proquest.com/docview/1855084216
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZgE4gXBONWLpORGC8oo7FzsR_bqTAhtaqmTuoTke3YEI2m1Zoijb_F_-A34ZM4l9GCgJeocuw6yvf55Bz7XBB6FYVUGEmJxw1TXkCN9CRTwq740Df28xBFHOKdx5Po9Dz4MA87B-1ldEkhj9W3nXEl_4OqbbO4QpTsPyDb_KltsL8tvvZqEbbXv8IY6mpKqPHgrctyNuAFNBhPB54VY3pVlP6RcOqUQyWMT5ssrdTN2eBs-uboZHQ0pB6DQjMCPJKLTK-siFhBBteFhoDgOrug010nZQ7QrdN4qKpeSpiL7HN2sWz3Uoewu7iugn--ZnnrW_weWJlnzp2jvNfm6deXuQsjcrq9i4twOxN-1PHy0E6aBrYx7s-74paQLq1IR3haYy3aKdWrHO754jggVTh1B9vVogSXQN6_qE_bz1rjbFjfuon2ibUlQBjG88YqB4HHq2hqmOetmwWSRLtx1zWWLTNk6wi91Exm99BdZ1LgQcWP--iGzg_QrarI6NUBuj12gD1AH3cQBl8jDG4JgyvCYHmFgTD4x3ePYbG2PfA1suCGLA_R-bvR7OTUcwU2PGW1-sJLNRc6pEpLQ7mvhOCMaRmztB_EKQ15ygVNDUnt6lWKk1im2mfa70cy4EbwlD5Ce_ky108QDljf6FhSqY0IVCCEiRU1oVSpSZVgpIde1y8xUS77PBRB-ZKUXhCUJfkigRffQ7jpuKoSrmx3eVmjkFhhCCdcItfLzTrxIZUTsUo3-1Mfa5SzgPhRDz2uIGwmqiG3o2tME7fe178-xdPfjn6G7rTL4TnaKy43-oVVXQt5WFLvEO0PR5Pp2U8sG506
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Forebrain-selective+AMPA-receptor+antagonism+guided+by+TARP+%CE%B3-8+as+an+antiepileptic+mechanism&rft.jtitle=Nature+medicine&rft.au=Kato%2C+Akihiko+S&rft.au=Burris%2C+Kevin+D&rft.au=Gardinier%2C+Kevin+M&rft.au=Gernert%2C+Douglas+L&rft.date=2016-12-01&rft.eissn=1546-170X&rft.volume=22&rft.issue=12&rft.spage=1496&rft_id=info:doi/10.1038%2Fnm.4221&rft_id=info%3Apmid%2F27820603&rft.externalDocID=27820603
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1078-8956&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1078-8956&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1078-8956&client=summon