Forebrain-selective AMPA-receptor antagonism guided by TARP γ-8 as an antiepileptic mechanism
Selective pharmacological blockade of forebrain excitatory AMPA receptors that express the TARP γ-8 subunit enables antiepileptic therapy in rodent models of epilepsy without inducing motor impairments associated with currently used antiepileptic drugs. Pharmacological manipulation of specific neura...
Saved in:
Published in | Nature medicine Vol. 22; no. 12; pp. 1496 - 1501 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Nature Publishing Group US
01.12.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Selective pharmacological blockade of forebrain excitatory AMPA receptors that express the TARP γ-8 subunit enables antiepileptic therapy in rodent models of epilepsy without inducing motor impairments associated with currently used antiepileptic drugs.
Pharmacological manipulation of specific neural circuits to optimize therapeutic index is an unrealized goal in neurology and psychiatry. AMPA receptors are important for excitatory synaptic transmission
1
, and their antagonists are antiepileptic
2
. Although efficacious, AMPA-receptor antagonists, including perampanel (Fycompa), the only approved antagonist for epilepsy, induce dizziness and motor impairment
3
,
4
. We hypothesized that blockade of forebrain AMPA receptors without blocking cerebellar AMPA receptors would be antiepileptic and devoid of motor impairment. Taking advantage of an AMPA receptor auxiliary protein, TARP γ-8, which is selectively expressed in the forebrain and modulates the pharmacological properties of AMPA receptors
5
, we discovered that LY3130481 selectively antagonized recombinant and native AMPA receptors containing γ-8, but not γ-2 (cerebellum) or other TARP members. Two amino acid residues unique to γ-8 determined this selectivity. We also observed antagonism of AMPA receptors expressed in hippocampal, but not cerebellar, tissue from an patient with epilepsy. Corresponding to this selective activity, LY3130481 prevented multiple seizure types in rats and mice and without motor side effects. These findings demonstrate the first rationally discovered molecule targeting specific neural circuitries for therapeutic advantage. |
---|---|
AbstractList | Selective pharmacological blockade of forebrain excitatory AMPA receptors that express the TARP γ-8 subunit enables antiepileptic therapy in rodent models of epilepsy without inducing motor impairments associated with currently used antiepileptic drugs.
Pharmacological manipulation of specific neural circuits to optimize therapeutic index is an unrealized goal in neurology and psychiatry. AMPA receptors are important for excitatory synaptic transmission
1
, and their antagonists are antiepileptic
2
. Although efficacious, AMPA-receptor antagonists, including perampanel (Fycompa), the only approved antagonist for epilepsy, induce dizziness and motor impairment
3
,
4
. We hypothesized that blockade of forebrain AMPA receptors without blocking cerebellar AMPA receptors would be antiepileptic and devoid of motor impairment. Taking advantage of an AMPA receptor auxiliary protein, TARP γ-8, which is selectively expressed in the forebrain and modulates the pharmacological properties of AMPA receptors
5
, we discovered that LY3130481 selectively antagonized recombinant and native AMPA receptors containing γ-8, but not γ-2 (cerebellum) or other TARP members. Two amino acid residues unique to γ-8 determined this selectivity. We also observed antagonism of AMPA receptors expressed in hippocampal, but not cerebellar, tissue from an patient with epilepsy. Corresponding to this selective activity, LY3130481 prevented multiple seizure types in rats and mice and without motor side effects. These findings demonstrate the first rationally discovered molecule targeting specific neural circuitries for therapeutic advantage. Pharmacological manipulation of specific neural circuits to optimize therapeutic index is an unrealized goal in neurology and psychiatry. AMPA receptors are important for excitatory synaptic transmission, and their antagonists are antiepileptic. Although efficacious, AMPA-receptor antagonists, including perampanel (Fycompa), the only approved antagonist for epilepsy, induce dizziness and motor impairment. We hypothesized that blockade of forebrain AMPA receptors without blocking cerebellar AMPA receptors would be antiepileptic and devoid of motor impairment. Taking advantage of an AMPA receptor auxiliary protein, TARP γ-8, which is selectively expressed in the forebrain and modulates the pharmacological properties of AMPA receptors, we discovered that LY3130481 selectively antagonized recombinant and native AMPA receptors containing γ-8, but not γ-2 (cerebellum) or other TARP members. Two amino acid residues unique to γ-8 determined this selectivity. We also observed antagonism of AMPA receptors expressed in hippocampal, but not cerebellar, tissue from an patient with epilepsy. Corresponding to this selective activity, LY3130481 prevented multiple seizure types in rats and mice and without motor side effects. These findings demonstrate the first rationally discovered molecule targeting specific neural circuitries for therapeutic advantage. Pharmacological manipulation of specific neural circuits to optimize therapeutic index is an unrealized goal in neurology and psychiatry. AMPA receptors are important for excitatory synaptic transmission, and their antagonists are antiepileptic. Although efficacious, AMPA-receptor antagonists, including perampanel (Fycompa), the only approved antagonist for epilepsy, induce dizziness and motor impairment. We hypothesized that blockade of forebrain AMPA receptors without blocking cerebellar AMPA receptors would be antiepileptic and devoid of motor impairment. Taking advantage of an AMPA receptor auxiliary protein, TARP gamma -8, which is selectively expressed in the forebrain and modulates the pharmacological properties of AMPA receptors, we discovered that LY3130481 selectively antagonized recombinant and native AMPA receptors containing gamma -8, but not gamma -2 (cerebellum) or other TARP members. Two amino acid residues unique to gamma -8 determined this selectivity. We also observed antagonism of AMPA receptors expressed in hippocampal, but not cerebellar, tissue from an patient with epilepsy. Corresponding to this selective activity, LY3130481 prevented multiple seizure types in rats and mice and without motor side effects. These findings demonstrate the first rationally discovered molecule targeting specific neural circuitries for therapeutic advantage. Pharmacological manipulation of specific neural circuits to optimize therapeutic index is an unrealized goal in neurology and psychiatry. AMPA receptors are important for excitatory synaptic transmission, and their antagonists are antiepileptic. Although efficacious, AMPA-receptor antagonists, including perampanel (Fycompa), the only approved antagonist for epilepsy, induce dizziness and motor impairment. We hypothesized that blockade of forebrain AMPA receptors without blocking cerebellar AMPA receptors would be antiepileptic and devoid of motor impairment. Taking advantage of an AMPA receptor auxiliary protein, TARP γ-8, which is selectively expressed in the forebrain and modulates the pharmacological properties of AMPA receptors, we discovered that LY3130481 selectively antagonized recombinant and native AMPA receptors containing γ-8, but not γ-2 (cerebellum) or other TARP members. Two amino acid residues unique to γ-8 determined this selectivity. We also observed antagonism of AMPA receptors expressed in hippocampal, but not cerebellar, tissue from an patient with epilepsy. Corresponding to this selective activity, LY3130481 prevented multiple seizure types in rats and mice and without motor side effects. These findings demonstrate the first rationally discovered molecule targeting specific neural circuitries for therapeutic advantage.Pharmacological manipulation of specific neural circuits to optimize therapeutic index is an unrealized goal in neurology and psychiatry. AMPA receptors are important for excitatory synaptic transmission, and their antagonists are antiepileptic. Although efficacious, AMPA-receptor antagonists, including perampanel (Fycompa), the only approved antagonist for epilepsy, induce dizziness and motor impairment. We hypothesized that blockade of forebrain AMPA receptors without blocking cerebellar AMPA receptors would be antiepileptic and devoid of motor impairment. Taking advantage of an AMPA receptor auxiliary protein, TARP γ-8, which is selectively expressed in the forebrain and modulates the pharmacological properties of AMPA receptors, we discovered that LY3130481 selectively antagonized recombinant and native AMPA receptors containing γ-8, but not γ-2 (cerebellum) or other TARP members. Two amino acid residues unique to γ-8 determined this selectivity. We also observed antagonism of AMPA receptors expressed in hippocampal, but not cerebellar, tissue from an patient with epilepsy. Corresponding to this selective activity, LY3130481 prevented multiple seizure types in rats and mice and without motor side effects. These findings demonstrate the first rationally discovered molecule targeting specific neural circuitries for therapeutic advantage. |
Author | Pasqui, Francesca Wang, He Burris, Kevin D Nisenbaum, Eric S Porter, Warren J Ornstein, Paul L Schober, Douglas A Lee, Matthew R Witkin, Jeffrey M Heinz, Beverly A Qian, Yuewei Catlow, John T Sher, Emanuele Gernert, Douglas L Zwart, Ruud Ding, Chunjin Kato, Akihiko S Tu, Yuan Reel, Jon Fitzjohn, Stephen M Gardinier, Kevin M Rasmussen, Kurt Yu, Hong Bredt, David S Fitch, Thomas E Wafford, Keith A Isaac, John T R Gleason, Scott D |
Author_xml | – sequence: 1 givenname: Akihiko S surname: Kato fullname: Kato, Akihiko S email: katoak@lilly.com organization: Lilly Research Laboratory, Eli Lilly and Company – sequence: 2 givenname: Kevin D surname: Burris fullname: Burris, Kevin D organization: Lilly Research Laboratory, Eli Lilly and Company – sequence: 3 givenname: Kevin M surname: Gardinier fullname: Gardinier, Kevin M organization: Lilly Research Laboratory, Eli Lilly and Company – sequence: 4 givenname: Douglas L surname: Gernert fullname: Gernert, Douglas L organization: Lilly Research Laboratory, Eli Lilly and Company – sequence: 5 givenname: Warren J surname: Porter fullname: Porter, Warren J organization: Lilly Research Laboratory, Eli Lilly and Company – sequence: 6 givenname: Jon surname: Reel fullname: Reel, Jon organization: Lilly Research Laboratory, Eli Lilly and Company – sequence: 7 givenname: Chunjin surname: Ding fullname: Ding, Chunjin organization: Lilly Research Laboratory, Eli Lilly and Company – sequence: 8 givenname: Yuan surname: Tu fullname: Tu, Yuan organization: Lilly Research Laboratory, Eli Lilly and Company – sequence: 9 givenname: Douglas A surname: Schober fullname: Schober, Douglas A organization: Lilly Research Laboratory, Eli Lilly and Company – sequence: 10 givenname: Matthew R surname: Lee fullname: Lee, Matthew R organization: Applied Molecular Evolution, Eli Lilly and Company – sequence: 11 givenname: Beverly A surname: Heinz fullname: Heinz, Beverly A organization: Lilly Research Laboratory, Eli Lilly and Company – sequence: 12 givenname: Thomas E surname: Fitch fullname: Fitch, Thomas E organization: Lilly Research Laboratory, Eli Lilly and Company – sequence: 13 givenname: Scott D surname: Gleason fullname: Gleason, Scott D organization: Lilly Research Laboratory, Eli Lilly and Company – sequence: 14 givenname: John T surname: Catlow fullname: Catlow, John T organization: Lilly Research Laboratory, Eli Lilly and Company – sequence: 15 givenname: Hong surname: Yu fullname: Yu, Hong organization: Lilly Research Laboratory, Eli Lilly and Company, Present addresses: Janssen PRD, San Diego, California, USA (H.Y. and D.S.B.); School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK (S.M.F.); College of Pharmacy, Roosevelt University, Schaumburg, Illinois, USA (P.L.O.); Wellcome Trust, London, UK (J.T.R.I.) – sequence: 16 givenname: Stephen M surname: Fitzjohn fullname: Fitzjohn, Stephen M organization: Lilly UK, Eli Lilly and Company, Present addresses: Janssen PRD, San Diego, California, USA (H.Y. and D.S.B.); School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK (S.M.F.); College of Pharmacy, Roosevelt University, Schaumburg, Illinois, USA (P.L.O.); Wellcome Trust, London, UK (J.T.R.I.) – sequence: 17 givenname: Francesca surname: Pasqui fullname: Pasqui, Francesca organization: Lilly UK, Eli Lilly and Company – sequence: 18 givenname: He surname: Wang fullname: Wang, He organization: Lilly Research Laboratory, Eli Lilly and Company – sequence: 19 givenname: Yuewei surname: Qian fullname: Qian, Yuewei organization: Lilly Research Laboratory, Eli Lilly and Company – sequence: 20 givenname: Emanuele surname: Sher fullname: Sher, Emanuele organization: Lilly UK, Eli Lilly and Company – sequence: 21 givenname: Ruud surname: Zwart fullname: Zwart, Ruud organization: Lilly UK, Eli Lilly and Company – sequence: 22 givenname: Keith A surname: Wafford fullname: Wafford, Keith A organization: Lilly UK, Eli Lilly and Company – sequence: 23 givenname: Kurt surname: Rasmussen fullname: Rasmussen, Kurt organization: Lilly Research Laboratory, Eli Lilly and Company – sequence: 24 givenname: Paul L surname: Ornstein fullname: Ornstein, Paul L organization: Lilly Research Laboratory, Eli Lilly and Company, Present addresses: Janssen PRD, San Diego, California, USA (H.Y. and D.S.B.); School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK (S.M.F.); College of Pharmacy, Roosevelt University, Schaumburg, Illinois, USA (P.L.O.); Wellcome Trust, London, UK (J.T.R.I.) – sequence: 25 givenname: John T R surname: Isaac fullname: Isaac, John T R organization: Lilly UK, Eli Lilly and Company, Present addresses: Janssen PRD, San Diego, California, USA (H.Y. and D.S.B.); School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK (S.M.F.); College of Pharmacy, Roosevelt University, Schaumburg, Illinois, USA (P.L.O.); Wellcome Trust, London, UK (J.T.R.I.) – sequence: 26 givenname: Eric S surname: Nisenbaum fullname: Nisenbaum, Eric S organization: Lilly Research Laboratory, Eli Lilly and Company – sequence: 27 givenname: David S surname: Bredt fullname: Bredt, David S organization: Lilly Research Laboratory, Eli Lilly and Company, Present addresses: Janssen PRD, San Diego, California, USA (H.Y. and D.S.B.); School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK (S.M.F.); College of Pharmacy, Roosevelt University, Schaumburg, Illinois, USA (P.L.O.); Wellcome Trust, London, UK (J.T.R.I.) – sequence: 28 givenname: Jeffrey M surname: Witkin fullname: Witkin, Jeffrey M email: jwitkin@lilly.com organization: Lilly Research Laboratory, Eli Lilly and Company |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27820603$$D View this record in MEDLINE/PubMed |
BookMark | eNqN0UtKBDEQBuAgim-8gfRON9Gk049kOYgvGHEQBVeGdFI9RrqTMekWPJf38ExmcNzoxlXV4qui-GsHrTvvAKEDSk4oYfzU9SdFntM1tE3LosK0Jo_rqSc1x1yU1RbaifGFEMJIKTbRVl7znFSEbaOnCx-gCco6HKEDPdg3yCY3swkOoGEx-JApN6i5dzb22Xy0BkzWvGf3k7tZ9vmBeaZiEktkYWG7NGJ11oN-VsuJPbTRqi7C_qruooeL8_uzKzy9vbw-m0yxZpQM2IBQUDINTcsE1UoJzqGpuSFFbVgpjFDMtLlpuNZa5HVjgHKgpGoK0Sph2C46_t67CP51hDjI3kYNXacc-DFKysuS8CKn1T8oq0leMcETPVzRsenByEWwvQrv8ie-BPA30MHHGKCV2g5qsN4NKdJOUiKX75Gul8v3JH_0y_-s_CtXV8Yk3ByCfPFjcCnDP_QLYe6dXg |
CitedBy_id | crossref_primary_10_1016_j_bcp_2017_09_015 crossref_primary_10_1021_acs_jmedchem_2c00377 crossref_primary_10_1038_s41594_024_01328_0 crossref_primary_10_1016_j_brainres_2019_146356 crossref_primary_10_1111_acer_14639 crossref_primary_10_3389_fnsyn_2021_689518 crossref_primary_10_1038_s41573_024_00981_w crossref_primary_10_1016_j_ejmech_2024_116151 crossref_primary_10_1016_j_bcp_2024_116302 crossref_primary_10_62347_USWK7545 crossref_primary_10_1021_acsmedchemlett_8b00599 crossref_primary_10_1085_jgp_201912451 crossref_primary_10_1124_pharmrev_120_000131 crossref_primary_10_1016_j_conb_2017_02_001 crossref_primary_10_1113_JP278701 crossref_primary_10_1126_science_aav9011 crossref_primary_10_1016_j_bpsgos_2022_02_007 crossref_primary_10_3389_fncel_2021_669717 crossref_primary_10_1038_s41386_023_01651_y crossref_primary_10_1016_j_drudis_2018_10_015 crossref_primary_10_3389_fnins_2024_1446076 crossref_primary_10_1111_epi_17837 crossref_primary_10_1016_j_conb_2017_03_001 crossref_primary_10_3389_fnsyn_2020_567075 crossref_primary_10_3390_ph18030384 crossref_primary_10_1113_JP280877 crossref_primary_10_1016_j_conb_2022_102585 crossref_primary_10_2174_1570159X17666181127124803 crossref_primary_10_1016_j_neuron_2017_02_040 crossref_primary_10_1016_j_neuropharm_2017_07_028 crossref_primary_10_1167_iovs_63_6_19 crossref_primary_10_1085_jgp_201912542 crossref_primary_10_1113_JP276698 crossref_primary_10_1038_s41467_023_37259_5 crossref_primary_10_1523_JNEUROSCI_1590_18_2018 crossref_primary_10_3389_fcell_2023_1252953 crossref_primary_10_1016_j_cophys_2017_12_009 crossref_primary_10_1038_nrn_2018_16 crossref_primary_10_1016_j_celrep_2018_12_103 crossref_primary_10_1111_bph_15050 crossref_primary_10_1085_jgp_201812264 crossref_primary_10_1016_j_neuropharm_2021_108710 crossref_primary_10_1021_acsmedchemlett_8b00450 crossref_primary_10_1016_j_cell_2024_09_006 crossref_primary_10_4103_NRR_NRR_D_23_01444 crossref_primary_10_1016_j_celrep_2024_113694 crossref_primary_10_1021_acsmedchemlett_8b00215 crossref_primary_10_1016_j_coph_2021_03_011 crossref_primary_10_1038_s41467_022_28404_7 crossref_primary_10_7554_eLife_28680 crossref_primary_10_1016_j_phrs_2020_105128 crossref_primary_10_1111_febs_17287 crossref_primary_10_1016_j_neuropharm_2021_108709 crossref_primary_10_1021_acs_jmedchem_2c01975 crossref_primary_10_1016_j_neuron_2017_04_009 crossref_primary_10_1007_s13311_019_00773_w crossref_primary_10_1113_JP279029 crossref_primary_10_1038_s41467_023_42780_8 crossref_primary_10_1016_j_bcp_2018_01_018 crossref_primary_10_1124_jpet_118_250126 crossref_primary_10_1038_s41573_020_0086_4 crossref_primary_10_1016_j_neuropharm_2020_108443 crossref_primary_10_1124_molpharm_121_000473 crossref_primary_10_1016_j_sbi_2019_05_004 crossref_primary_10_1016_j_celrep_2020_107704 crossref_primary_10_1016_j_bbamem_2020_183401 crossref_primary_10_1016_j_pbb_2022_173354 crossref_primary_10_1016_j_pbb_2025_173967 crossref_primary_10_1074_jbc_RA120_014135 crossref_primary_10_1007_s00213_023_06365_z crossref_primary_10_1016_j_neuron_2017_10_001 crossref_primary_10_1113_JP274897 crossref_primary_10_1016_j_celrep_2022_111766 crossref_primary_10_1021_acschemneuro_7b00186 |
Cites_doi | 10.1523/JNEUROSCI.6271-10.2011 10.1212/WNL.0b013e3182635735 10.1523/JNEUROSCI.4185-06.2007 10.1016/j.neuropharm.2011.04.006 10.1016/j.neuron.2011.04.007 10.1021/acs.jmedchem.6b00125 10.1124/jpet.114.212779 10.1523/JNEUROSCI.5561-06.2007 10.1126/science.1167852 10.1016/j.neuron.2008.07.034 10.1016/0013-4694(72)90177-0 10.1016/0896-6273(95)90076-4 10.1038/nn1551 10.1016/j.neuropharm.2006.10.007 10.1124/jpet.116.234419 10.1021/jm301268u 10.1016/j.neuropharm.2015.03.014 10.1006/geno.2000.6440 10.1113/jphysiol.2011.221101 10.1073/pnas.1011706107 10.1016/j.pneurobio.2009.01.008 10.1007/978-1-59745-000-3_24 10.1016/0896-6273(93)90220-L 10.1016/S0031-9384(02)00810-7 10.1073/pnas.192445299 10.1523/JNEUROSCI.1108-05.2005 10.1016/j.neuron.2013.10.025 10.2174/1871527314666150429114818 10.1016/j.neuron.2010.11.026 10.1126/science.1699275 10.1124/jpet.115.231712 10.1016/0306-4522(94)00463-F 10.1016/j.neuropharm.2008.02.012 10.1038/nature03624 |
ContentType | Journal Article |
Copyright | Springer Nature America, Inc. 2016 |
Copyright_xml | – notice: Springer Nature America, Inc. 2016 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7T5 7TK H94 |
DOI | 10.1038/nm.4221 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Immunology Abstracts Neurosciences Abstracts AIDS and Cancer Research Abstracts |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AIDS and Cancer Research Abstracts Neurosciences Abstracts Immunology Abstracts |
DatabaseTitleList | MEDLINE AIDS and Cancer Research Abstracts MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology |
EISSN | 1546-170X |
EndPage | 1501 |
ExternalDocumentID | 27820603 10_1038_nm_4221 |
Genre | Journal Article |
GroupedDBID | --- .-4 .55 .GJ 0R~ 123 1CY 29M 2FS 36B 39C 3O- 3V. 4.4 53G 5BI 5M7 5RE 5S5 70F 7X7 85S 88A 88E 88I 8AO 8FE 8FH 8FI 8FJ 8G5 8R4 8R5 AAEEF AARCD AAYOK AAYZH AAZLF ABAWZ ABCQX ABDBF ABDPE ABEFU ABJNI ABLJU ABOCM ABUWG ACBWK ACGFO ACGFS ACGOD ACIWK ACMJI ACPRK ACUHS ADBBV ADFRT AENEX AEUYN AFBBN AFKRA AFRAH AFSHS AGAYW AGCDD AGHTU AHBCP AHMBA AHOSX AHSBF AIBTJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH ARMCB ASPBG AVWKF AXYYD AZFZN AZQEC B0M BBNVY BENPR BHPHI BKKNO BPHCQ BVXVI CCPQU CS3 DB5 DU5 DWQXO EAD EAP EBC EBD EBS EE. EJD EMB EMK EMOBN EPL ESX EXGXG F5P FEDTE FQGFK FSGXE FYUFA GNUQQ GUQSH GX1 HCIFZ HMCUK HVGLF HZ~ IAO IEA IH2 IHR IHW INH INR IOF IOV ISR ITC J5H L7B LGEZI LK8 LOTEE M0L M1P M2O M2P M7P MK0 N9A NADUK NNMJJ NXXTH O9- ODYON P2P PQQKQ PROAC PSQYO Q2X RIG RNS RNT RNTTT RVV SHXYY SIXXV SJN SNYQT SOJ SV3 TAE TAOOD TBHMF TDRGL TSG TUS UKHRP UQL X7M XJT YHZ ZGI ~8M AAYXX ABFSG ACMFV ACSTC AFANA ALPWD ATHPR CITATION PHGZM PHGZT AETEA AEZWR AFHIU AHWEU AIXLP CGR CUY CVF ECM EIF NFIDA NPM PJZUB PPXIY PQGLB 7X8 7T5 7TK H94 |
ID | FETCH-LOGICAL-c310t-de9ae53cebf391caa988eb78d047d359d9a3df2db8ccc927bde18e106b49fa9d3 |
ISSN | 1078-8956 1546-170X |
IngestDate | Thu Jul 10 17:31:59 EDT 2025 Tue Aug 05 10:54:47 EDT 2025 Mon Jul 21 05:55:45 EDT 2025 Tue Jul 01 03:53:38 EDT 2025 Thu Apr 24 22:52:13 EDT 2025 Fri Feb 21 02:37:46 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c310t-de9ae53cebf391caa988eb78d047d359d9a3df2db8ccc927bde18e106b49fa9d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://research-information.bris.ac.uk/en/publications/2a72c95c-feee-43b2-8322-d4ed72a55710 |
PMID | 27820603 |
PQID | 1837026398 |
PQPubID | 23479 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_1855084216 proquest_miscellaneous_1837026398 pubmed_primary_27820603 crossref_citationtrail_10_1038_nm_4221 crossref_primary_10_1038_nm_4221 springer_journals_10_1038_nm_4221 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-12-01 |
PublicationDateYYYYMMDD | 2016-12-01 |
PublicationDate_xml | – month: 12 year: 2016 text: 2016-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: United States |
PublicationTitle | Nature medicine |
PublicationTitleAbbrev | Nat Med |
PublicationTitleAlternate | Nat Med |
PublicationYear | 2016 |
Publisher | Nature Publishing Group US |
Publisher_xml | – name: Nature Publishing Group US |
References | Zwart (CR4) 2014; 351 Cokić, Stein (CR10) 2008; 54 Gardinier (CR9) 2016; 59 Kott, Werner, Körber, Hollmann (CR11) 2007; 27 Harkin, O'Donnell, Kelly (CR32) 2002; 77 Maher (CR20) 2016; 357 Twele, Bankstahl, Klein, Römermann, Löscher (CR18) 2015; 95 Witkin, Gardinier (CR21) 2016; 358 Rouach (CR25) 2005; 8 Tomita (CR8) 2005; 435 Gill (CR16) 2011; 31 Miledi, Palma, Eusebi (CR27) 2006; 322 Suzuki, Junier, Guilhem, Sørensen, Onteniente (CR31) 1995; 64 Partin, Patneau, Winters, Mayer, Buonanno (CR6) 1993; 11 Geiger (CR14) 1995; 15 Turetsky, Garringer, Patneau (CR7) 2005; 25 Eusebi, Palma, Amici, Miledi (CR28) 2009; 88 Huganir, Nicoll (CR1) 2013; 80 Tomita, Castillo (CR19) 2012; 590 Sommer (CR22) 1990; 249 Gleason (CR17) 2015; 14 Hibi (CR2) 2012; 55 Phillips (CR33) 2012; 62 Jackson, Nicoll (CR5) 2011; 70 Kaminski, Witkin, Shippenberg (CR30) 2007; 52 Kato (CR15) 2010; 68 Kato (CR29) 2007; 27 Racine (CR34) 1972; 32 French (CR3) 2012; 79 Miledi, Eusebi, Martínez-Torres, Palma, Trettel (CR26) 2002; 99 Schwenk (CR12) 2009; 323 Shi (CR13) 2010; 107 Kato, Siuda, Nisenbaum, Bredt (CR24) 2008; 59 Burgess, Gefrides, Foreman, Noebels (CR23) 2001; 71 R Miledi (BFnm4221_CR27) 2006; 322 R Zwart (BFnm4221_CR4) 2014; 351 S Kott (BFnm4221_CR11) 2007; 27 D Turetsky (BFnm4221_CR7) 2005; 25 KM Gardinier (BFnm4221_CR9) 2016; 59 AS Kato (BFnm4221_CR15) 2010; 68 N Rouach (BFnm4221_CR25) 2005; 8 A Harkin (BFnm4221_CR32) 2002; 77 S Tomita (BFnm4221_CR8) 2005; 435 JR Geiger (BFnm4221_CR14) 1995; 15 JA French (BFnm4221_CR3) 2012; 79 JM Witkin (BFnm4221_CR21) 2016; 358 MP Maher (BFnm4221_CR20) 2016; 357 MB Gill (BFnm4221_CR16) 2011; 31 AS Kato (BFnm4221_CR29) 2007; 27 B Cokić (BFnm4221_CR10) 2008; 54 KM Partin (BFnm4221_CR6) 1993; 11 J Schwenk (BFnm4221_CR12) 2009; 323 S Hibi (BFnm4221_CR2) 2012; 55 RM Kaminski (BFnm4221_CR30) 2007; 52 S Tomita (BFnm4221_CR19) 2012; 590 F Twele (BFnm4221_CR18) 2015; 95 AS Kato (BFnm4221_CR24) 2008; 59 RL Huganir (BFnm4221_CR1) 2013; 80 SD Gleason (BFnm4221_CR17) 2015; 14 B Sommer (BFnm4221_CR22) 1990; 249 RJ Racine (BFnm4221_CR34) 1972; 32 DL Burgess (BFnm4221_CR23) 2001; 71 Y Shi (BFnm4221_CR13) 2010; 107 R Miledi (BFnm4221_CR26) 2002; 99 KG Phillips (BFnm4221_CR33) 2012; 62 AC Jackson (BFnm4221_CR5) 2011; 70 F Eusebi (BFnm4221_CR28) 2009; 88 F Suzuki (BFnm4221_CR31) 1995; 64 16222232 - Nat Neurosci. 2005 Nov;8(11):1525-33 16093395 - J Neurosci. 2005 Aug 10;25(32):7438-48 4110397 - Electroencephalogr Clin Neurophysiol. 1972 Mar;32(3):281-94 21172611 - Neuron. 2010 Dec 22;68(6):1082-96 24183021 - Neuron. 2013 Oct 30;80(3):704-17 27067148 - J Med Chem. 2016 May 26;59(10):4753-68 12213503 - Physiol Behav. 2002 Sep;77(1):65-77 7715779 - Neuroscience. 1995 Feb;64(3):665-74 29225530 - Epilepsy Curr. 2017 Jul-Aug;17 (4):235-236 12237406 - Proc Natl Acad Sci U S A. 2002 Oct 1;99(20):13238-42 17409242 - J Neurosci. 2007 Apr 4;27(14):3780-9 25839899 - Neuropharmacology. 2015 Aug;95:234-42 1699275 - Science. 1990 Sep 28;249(4976):1580-5 21521608 - Neuron. 2011 Apr 28;70(2):178-99 17126860 - Neuropharmacology. 2007 Mar;52(3):895-903 11170751 - Genomics. 2001 Feb 1;71(3):339-50 22431337 - J Physiol. 2012 May 15;590(10):2217-23 26989142 - J Pharmacol Exp Ther. 2016 May;357(2):394-414 7619522 - Neuron. 1995 Jul;15(1):193-204 7506043 - Neuron. 1993 Dec;11(6):1069-82 20805473 - Proc Natl Acad Sci U S A. 2010 Sep 14;107(37):16315-9 25027316 - J Pharmacol Exp Ther. 2014 Oct;351(1):124-33 18378265 - Neuropharmacology. 2008 Jun;54(7):1062-70 17475805 - J Neurosci. 2007 May 2;27(18):4969-77 23181587 - J Med Chem. 2012 Dec 13;55(23):10584-600 22843280 - Neurology. 2012 Aug 7;79(6):589-96 21521646 - Neuropharmacology. 2012 Mar;62(3):1359-70 19265014 - Science. 2009 Mar 6;323(5919):1313-9 15858532 - Nature. 2005 Jun 23;435(7045):1052-8 16739735 - Methods Mol Biol. 2006;322:347-55 21543622 - J Neurosci. 2011 May 4;31(18):6928-38 18817736 - Neuron. 2008 Sep 25;59(6):986-96 19428960 - Prog Neurobiol. 2009 May;88(1):32-40 25921737 - CNS Neurol Disord Drug Targets. 2015;14(5):612-26 27528544 - J Pharmacol Exp Ther. 2016 Sep;358(3):502-3 |
References_xml | – volume: 31 start-page: 6928 year: 2011 end-page: 6938 ident: CR16 article-title: Cornichon-2 modulates AMPA receptor-transmembrane AMPA receptor regulatory protein assembly to dictate gating and pharmacology publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.6271-10.2011 – volume: 79 start-page: 589 year: 2012 end-page: 596 ident: CR3 article-title: Adjunctive perampanel for refractory partial-onset seizures: randomized phase III study 304 publication-title: Neurology doi: 10.1212/WNL.0b013e3182635735 – volume: 27 start-page: 3780 year: 2007 end-page: 3789 ident: CR11 article-title: Electrophysiological properties of AMPA receptors are differentially modulated depending on the associated member of the TARP family publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.4185-06.2007 – volume: 62 start-page: 1359 year: 2012 end-page: 1370 ident: CR33 article-title: Differential effects of NMDA antagonists on high frequency and gamma EEG oscillations in a neurodevelopmental model of schizophrenia publication-title: Neuropharmacology doi: 10.1016/j.neuropharm.2011.04.006 – volume: 70 start-page: 178 year: 2011 end-page: 199 ident: CR5 article-title: The expanding social network of ionotropic glutamate receptors: TARPs and other transmembrane auxiliary subunits publication-title: Neuron doi: 10.1016/j.neuron.2011.04.007 – volume: 59 start-page: 4753 year: 2016 end-page: 4768 ident: CR9 article-title: Discovery of the first α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor antagonist dependent upon transmembrane AMPA receptor regulatory protein (TARP) γ-8 publication-title: J. Med. Chem. doi: 10.1021/acs.jmedchem.6b00125 – volume: 351 start-page: 124 year: 2014 end-page: 133 ident: CR4 article-title: Perampanel, an antagonist of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors, for the treatment of epilepsy: studies in human epileptic brain and nonepileptic brain and in rodent models publication-title: J. Pharmacol. Exp. Ther. doi: 10.1124/jpet.114.212779 – volume: 27 start-page: 4969 year: 2007 end-page: 4977 ident: CR29 article-title: New transmembrane AMPA receptor regulatory protein isoform, gamma-7, differentially regulates AMPA receptors publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.5561-06.2007 – volume: 323 start-page: 1313 year: 2009 end-page: 1319 ident: CR12 article-title: Functional proteomics identify cornichon proteins as auxiliary subunits of AMPA receptors publication-title: Science doi: 10.1126/science.1167852 – volume: 59 start-page: 986 year: 2008 end-page: 996 ident: CR24 article-title: AMPA receptor subunit-specific regulation by a distinct family of type II TARPs publication-title: Neuron doi: 10.1016/j.neuron.2008.07.034 – volume: 32 start-page: 281 year: 1972 end-page: 294 ident: CR34 article-title: Modification of seizure activity by electrical stimulation. II. Motor seizure publication-title: Electroencephalogr. Clin. Neurophysiol. doi: 10.1016/0013-4694(72)90177-0 – volume: 15 start-page: 193 year: 1995 end-page: 204 ident: CR14 article-title: Relative abundance of subunit mRNAs determines gating and Ca permeability of AMPA receptors in principal neurons and interneurons in rat CNS publication-title: Neuron doi: 10.1016/0896-6273(95)90076-4 – volume: 8 start-page: 1525 year: 2005 end-page: 1533 ident: CR25 article-title: TARP gamma-8 controls hippocampal AMPA receptor number, distribution and synaptic plasticity publication-title: Nat. Neurosci. doi: 10.1038/nn1551 – volume: 52 start-page: 895 year: 2007 end-page: 903 ident: CR30 article-title: Pharmacological and genetic manipulation of kappa opioid receptors: effects on cocaine- and pentylenetetrazol-induced convulsions and seizure kindling publication-title: Neuropharmacology doi: 10.1016/j.neuropharm.2006.10.007 – volume: 358 start-page: 502 year: 2016 end-page: 503 ident: CR21 article-title: A comment on “Discovery and characterization of AMPA receptor modulators selective for TARP-γ8” publication-title: J. Pharmacol. Exp. Ther. doi: 10.1124/jpet.116.234419 – volume: 55 start-page: 10584 year: 2012 end-page: 10600 ident: CR2 article-title: Discovery of 2-(2-oxo-1-phenyl-5-pyridin-2-yl-1,2-dihydropyridin-3-yl)benzonitrile (perampanel): a novel, noncompetitive α-amino-3-hydroxy-5-methyl-4-isoxazolepropanoic acid (AMPA) receptor antagonist publication-title: J. Med. Chem. doi: 10.1021/jm301268u – volume: 95 start-page: 234 year: 2015 end-page: 242 ident: CR18 article-title: The AMPA receptor antagonist NBQX exerts anti-seizure but not antiepileptogenic effects in the intrahippocampal kainate mouse model of mesial temporal lobe epilepsy publication-title: Neuropharmacology doi: 10.1016/j.neuropharm.2015.03.014 – volume: 71 start-page: 339 year: 2001 end-page: 350 ident: CR23 article-title: A cluster of three novel Ca channel gamma subunit genes on chromosome 19q13.4: evolution and expression profile of the gamma subunit gene family publication-title: Genomics doi: 10.1006/geno.2000.6440 – volume: 590 start-page: 2217 year: 2012 end-page: 2223 ident: CR19 article-title: Neto1 and Neto2: auxiliary subunits that determine key properties of native kainate receptors publication-title: J. Physiol. (Lond.) doi: 10.1113/jphysiol.2011.221101 – volume: 107 start-page: 16315 year: 2010 end-page: 16319 ident: CR13 article-title: Functional comparison of the effects of TARPs and cornichons on AMPA receptor trafficking and gating publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1011706107 – volume: 88 start-page: 32 year: 2009 end-page: 40 ident: CR28 article-title: Microtransplantation of ligand-gated receptor-channels from fresh or frozen nervous tissue into oocytes: a potent tool for expanding functional information publication-title: Prog. Neurobiol. doi: 10.1016/j.pneurobio.2009.01.008 – volume: 322 start-page: 347 year: 2006 end-page: 355 ident: CR27 article-title: Microtransplantation of neurotransmitter receptors from cells to oocyte membranes: new procedure for ion channel studies publication-title: Methods Mol. Biol. doi: 10.1007/978-1-59745-000-3_24 – volume: 11 start-page: 1069 year: 1993 end-page: 1082 ident: CR6 article-title: Selective modulation of desensitization at AMPA versus kainate receptors by cyclothiazide and concanavalin A publication-title: Neuron doi: 10.1016/0896-6273(93)90220-L – volume: 77 start-page: 65 year: 2002 end-page: 77 ident: CR32 article-title: A study of VitalView for behavioural and physiological monitoring in laboratory rats publication-title: Physiol. Behav. doi: 10.1016/S0031-9384(02)00810-7 – volume: 99 start-page: 13238 year: 2002 end-page: 13242 ident: CR26 article-title: Expression of functional neurotransmitter receptors in oocytes after injection of human brain membranes publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.192445299 – volume: 25 start-page: 7438 year: 2005 end-page: 7448 ident: CR7 article-title: Stargazin modulates native AMPA receptor functional properties by two distinct mechanisms publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.1108-05.2005 – volume: 80 start-page: 704 year: 2013 end-page: 717 ident: CR1 article-title: AMPARs and synaptic plasticity: the last 25 years publication-title: Neuron doi: 10.1016/j.neuron.2013.10.025 – volume: 14 start-page: 612 year: 2015 end-page: 626 ident: CR17 article-title: Inquiries into the biological significance of transmembrane AMPA receptor regulatory protein (TARP) γ-8 through investigations of TARP γ-8 null mice publication-title: CNS Neurol. Disord. Drug Targets doi: 10.2174/1871527314666150429114818 – volume: 68 start-page: 1082 year: 2010 end-page: 1096 ident: CR15 article-title: Hippocampal AMPA receptor gating controlled by both TARP and cornichon proteins publication-title: Neuron doi: 10.1016/j.neuron.2010.11.026 – volume: 249 start-page: 1580 year: 1990 end-page: 1585 ident: CR22 article-title: Flip and flop: a cell-specific functional switch in glutamate-operated channels of the CNS publication-title: Science doi: 10.1126/science.1699275 – volume: 357 start-page: 394 year: 2016 end-page: 414 ident: CR20 article-title: Discovery and characterization of AMPA receptor modulators selective for TARP-γ8 publication-title: J. Pharmacol. Exp. Ther. doi: 10.1124/jpet.115.231712 – volume: 64 start-page: 665 year: 1995 end-page: 674 ident: CR31 article-title: Morphogenetic effect of kainate on adult hippocampal neurons associated with a prolonged expression of brain-derived neurotrophic factor publication-title: Neuroscience doi: 10.1016/0306-4522(94)00463-F – volume: 54 start-page: 1062 year: 2008 end-page: 1070 ident: CR10 article-title: Stargazin modulates AMPA receptor antagonism publication-title: Neuropharmacology doi: 10.1016/j.neuropharm.2008.02.012 – volume: 435 start-page: 1052 year: 2005 end-page: 1058 ident: CR8 article-title: Stargazin modulates AMPA receptor gating and trafficking by distinct domains publication-title: Nature doi: 10.1038/nature03624 – volume: 351 start-page: 124 year: 2014 ident: BFnm4221_CR4 publication-title: J. Pharmacol. Exp. Ther. doi: 10.1124/jpet.114.212779 – volume: 323 start-page: 1313 year: 2009 ident: BFnm4221_CR12 publication-title: Science doi: 10.1126/science.1167852 – volume: 99 start-page: 13238 year: 2002 ident: BFnm4221_CR26 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.192445299 – volume: 52 start-page: 895 year: 2007 ident: BFnm4221_CR30 publication-title: Neuropharmacology doi: 10.1016/j.neuropharm.2006.10.007 – volume: 590 start-page: 2217 year: 2012 ident: BFnm4221_CR19 publication-title: J. Physiol. (Lond.) doi: 10.1113/jphysiol.2011.221101 – volume: 59 start-page: 986 year: 2008 ident: BFnm4221_CR24 publication-title: Neuron doi: 10.1016/j.neuron.2008.07.034 – volume: 14 start-page: 612 year: 2015 ident: BFnm4221_CR17 publication-title: CNS Neurol. Disord. Drug Targets doi: 10.2174/1871527314666150429114818 – volume: 25 start-page: 7438 year: 2005 ident: BFnm4221_CR7 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.1108-05.2005 – volume: 68 start-page: 1082 year: 2010 ident: BFnm4221_CR15 publication-title: Neuron doi: 10.1016/j.neuron.2010.11.026 – volume: 31 start-page: 6928 year: 2011 ident: BFnm4221_CR16 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.6271-10.2011 – volume: 11 start-page: 1069 year: 1993 ident: BFnm4221_CR6 publication-title: Neuron doi: 10.1016/0896-6273(93)90220-L – volume: 435 start-page: 1052 year: 2005 ident: BFnm4221_CR8 publication-title: Nature doi: 10.1038/nature03624 – volume: 70 start-page: 178 year: 2011 ident: BFnm4221_CR5 publication-title: Neuron doi: 10.1016/j.neuron.2011.04.007 – volume: 107 start-page: 16315 year: 2010 ident: BFnm4221_CR13 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1011706107 – volume: 62 start-page: 1359 year: 2012 ident: BFnm4221_CR33 publication-title: Neuropharmacology doi: 10.1016/j.neuropharm.2011.04.006 – volume: 8 start-page: 1525 year: 2005 ident: BFnm4221_CR25 publication-title: Nat. Neurosci. doi: 10.1038/nn1551 – volume: 32 start-page: 281 year: 1972 ident: BFnm4221_CR34 publication-title: Electroencephalogr. Clin. Neurophysiol. doi: 10.1016/0013-4694(72)90177-0 – volume: 27 start-page: 4969 year: 2007 ident: BFnm4221_CR29 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.5561-06.2007 – volume: 357 start-page: 394 year: 2016 ident: BFnm4221_CR20 publication-title: J. Pharmacol. Exp. Ther. doi: 10.1124/jpet.115.231712 – volume: 249 start-page: 1580 year: 1990 ident: BFnm4221_CR22 publication-title: Science doi: 10.1126/science.1699275 – volume: 64 start-page: 665 year: 1995 ident: BFnm4221_CR31 publication-title: Neuroscience doi: 10.1016/0306-4522(94)00463-F – volume: 80 start-page: 704 year: 2013 ident: BFnm4221_CR1 publication-title: Neuron doi: 10.1016/j.neuron.2013.10.025 – volume: 54 start-page: 1062 year: 2008 ident: BFnm4221_CR10 publication-title: Neuropharmacology doi: 10.1016/j.neuropharm.2008.02.012 – volume: 55 start-page: 10584 year: 2012 ident: BFnm4221_CR2 publication-title: J. Med. Chem. doi: 10.1021/jm301268u – volume: 27 start-page: 3780 year: 2007 ident: BFnm4221_CR11 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.4185-06.2007 – volume: 15 start-page: 193 year: 1995 ident: BFnm4221_CR14 publication-title: Neuron doi: 10.1016/0896-6273(95)90076-4 – volume: 358 start-page: 502 year: 2016 ident: BFnm4221_CR21 publication-title: J. Pharmacol. Exp. Ther. doi: 10.1124/jpet.116.234419 – volume: 322 start-page: 347 year: 2006 ident: BFnm4221_CR27 publication-title: Methods Mol. Biol. doi: 10.1007/978-1-59745-000-3_24 – volume: 95 start-page: 234 year: 2015 ident: BFnm4221_CR18 publication-title: Neuropharmacology doi: 10.1016/j.neuropharm.2015.03.014 – volume: 59 start-page: 4753 year: 2016 ident: BFnm4221_CR9 publication-title: J. Med. Chem. doi: 10.1021/acs.jmedchem.6b00125 – volume: 88 start-page: 32 year: 2009 ident: BFnm4221_CR28 publication-title: Prog. Neurobiol. doi: 10.1016/j.pneurobio.2009.01.008 – volume: 79 start-page: 589 year: 2012 ident: BFnm4221_CR3 publication-title: Neurology doi: 10.1212/WNL.0b013e3182635735 – volume: 71 start-page: 339 year: 2001 ident: BFnm4221_CR23 publication-title: Genomics doi: 10.1006/geno.2000.6440 – volume: 77 start-page: 65 year: 2002 ident: BFnm4221_CR32 publication-title: Physiol. Behav. doi: 10.1016/S0031-9384(02)00810-7 – reference: 11170751 - Genomics. 2001 Feb 1;71(3):339-50 – reference: 12237406 - Proc Natl Acad Sci U S A. 2002 Oct 1;99(20):13238-42 – reference: 23181587 - J Med Chem. 2012 Dec 13;55(23):10584-600 – reference: 17126860 - Neuropharmacology. 2007 Mar;52(3):895-903 – reference: 25839899 - Neuropharmacology. 2015 Aug;95:234-42 – reference: 25027316 - J Pharmacol Exp Ther. 2014 Oct;351(1):124-33 – reference: 18817736 - Neuron. 2008 Sep 25;59(6):986-96 – reference: 4110397 - Electroencephalogr Clin Neurophysiol. 1972 Mar;32(3):281-94 – reference: 20805473 - Proc Natl Acad Sci U S A. 2010 Sep 14;107(37):16315-9 – reference: 12213503 - Physiol Behav. 2002 Sep;77(1):65-77 – reference: 18378265 - Neuropharmacology. 2008 Jun;54(7):1062-70 – reference: 7715779 - Neuroscience. 1995 Feb;64(3):665-74 – reference: 17409242 - J Neurosci. 2007 Apr 4;27(14):3780-9 – reference: 7619522 - Neuron. 1995 Jul;15(1):193-204 – reference: 29225530 - Epilepsy Curr. 2017 Jul-Aug;17 (4):235-236 – reference: 19265014 - Science. 2009 Mar 6;323(5919):1313-9 – reference: 25921737 - CNS Neurol Disord Drug Targets. 2015;14(5):612-26 – reference: 7506043 - Neuron. 1993 Dec;11(6):1069-82 – reference: 21543622 - J Neurosci. 2011 May 4;31(18):6928-38 – reference: 16222232 - Nat Neurosci. 2005 Nov;8(11):1525-33 – reference: 16093395 - J Neurosci. 2005 Aug 10;25(32):7438-48 – reference: 17475805 - J Neurosci. 2007 May 2;27(18):4969-77 – reference: 1699275 - Science. 1990 Sep 28;249(4976):1580-5 – reference: 26989142 - J Pharmacol Exp Ther. 2016 May;357(2):394-414 – reference: 21521646 - Neuropharmacology. 2012 Mar;62(3):1359-70 – reference: 22431337 - J Physiol. 2012 May 15;590(10):2217-23 – reference: 15858532 - Nature. 2005 Jun 23;435(7045):1052-8 – reference: 27528544 - J Pharmacol Exp Ther. 2016 Sep;358(3):502-3 – reference: 16739735 - Methods Mol Biol. 2006;322:347-55 – reference: 21521608 - Neuron. 2011 Apr 28;70(2):178-99 – reference: 27067148 - J Med Chem. 2016 May 26;59(10):4753-68 – reference: 21172611 - Neuron. 2010 Dec 22;68(6):1082-96 – reference: 24183021 - Neuron. 2013 Oct 30;80(3):704-17 – reference: 19428960 - Prog Neurobiol. 2009 May;88(1):32-40 – reference: 22843280 - Neurology. 2012 Aug 7;79(6):589-96 |
SSID | ssj0003059 |
Score | 2.487145 |
Snippet | Selective pharmacological blockade of forebrain excitatory AMPA receptors that express the TARP γ-8 subunit enables antiepileptic therapy in rodent models of... Pharmacological manipulation of specific neural circuits to optimize therapeutic index is an unrealized goal in neurology and psychiatry. AMPA receptors are... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1496 |
SubjectTerms | 692/617/375/178 Animals Anticonvulsants - adverse effects Anticonvulsants - pharmacology Benzothiazoles - pharmacology Biomedicine Calcium Channels - metabolism Cancer Research Cerebellum - drug effects Cerebellum - metabolism Convulsants - toxicity Disease Models, Animal Dizziness - chemically induced Epilepsy - chemically induced Epilepsy - drug therapy Infectious Diseases letter Metabolic Diseases Mice Molecular Medicine Neurosciences Pentylenetetrazole - toxicity Prosencephalon - drug effects Prosencephalon - metabolism Pyrazoles - pharmacology Pyridones - adverse effects Pyridones - pharmacology Rats Receptors, AMPA - antagonists & inhibitors Receptors, AMPA - metabolism Seizures - chemically induced Seizures - drug therapy |
Title | Forebrain-selective AMPA-receptor antagonism guided by TARP γ-8 as an antiepileptic mechanism |
URI | https://link.springer.com/article/10.1038/nm.4221 https://www.ncbi.nlm.nih.gov/pubmed/27820603 https://www.proquest.com/docview/1837026398 https://www.proquest.com/docview/1855084216 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZgE4gXBONWLpORGC8oo7FzsR_bqTAhtaqmTuoTke3YEI2m1Zoijb_F_-A34ZM4l9GCgJeocuw6yvf55Bz7XBB6FYVUGEmJxw1TXkCN9CRTwq740Df28xBFHOKdx5Po9Dz4MA87B-1ldEkhj9W3nXEl_4OqbbO4QpTsPyDb_KltsL8tvvZqEbbXv8IY6mpKqPHgrctyNuAFNBhPB54VY3pVlP6RcOqUQyWMT5ssrdTN2eBs-uboZHQ0pB6DQjMCPJKLTK-siFhBBteFhoDgOrug010nZQ7QrdN4qKpeSpiL7HN2sWz3Uoewu7iugn--ZnnrW_weWJlnzp2jvNfm6deXuQsjcrq9i4twOxN-1PHy0E6aBrYx7s-74paQLq1IR3haYy3aKdWrHO754jggVTh1B9vVogSXQN6_qE_bz1rjbFjfuon2ibUlQBjG88YqB4HHq2hqmOetmwWSRLtx1zWWLTNk6wi91Exm99BdZ1LgQcWP--iGzg_QrarI6NUBuj12gD1AH3cQBl8jDG4JgyvCYHmFgTD4x3ePYbG2PfA1suCGLA_R-bvR7OTUcwU2PGW1-sJLNRc6pEpLQ7mvhOCMaRmztB_EKQ15ygVNDUnt6lWKk1im2mfa70cy4EbwlD5Ce_ky108QDljf6FhSqY0IVCCEiRU1oVSpSZVgpIde1y8xUS77PBRB-ZKUXhCUJfkigRffQ7jpuKoSrmx3eVmjkFhhCCdcItfLzTrxIZUTsUo3-1Mfa5SzgPhRDz2uIGwmqiG3o2tME7fe178-xdPfjn6G7rTL4TnaKy43-oVVXQt5WFLvEO0PR5Pp2U8sG506 |
linkProvider | ProQuest |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Forebrain-selective+AMPA-receptor+antagonism+guided+by+TARP+%CE%B3-8+as+an+antiepileptic+mechanism&rft.jtitle=Nature+medicine&rft.au=Kato%2C+Akihiko+S&rft.au=Burris%2C+Kevin+D&rft.au=Gardinier%2C+Kevin+M&rft.au=Gernert%2C+Douglas+L&rft.date=2016-12-01&rft.eissn=1546-170X&rft.volume=22&rft.issue=12&rft.spage=1496&rft_id=info:doi/10.1038%2Fnm.4221&rft_id=info%3Apmid%2F27820603&rft.externalDocID=27820603 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1078-8956&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1078-8956&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1078-8956&client=summon |