Construction of Six Sigma-based control chart for interval-valued data

Construction of control charts is straightforward if the data are real-valued. However, there are situations where data are essentially interval-valued in which each observation is represented by minimum and maximum values. While there are only few attempts to develop control charts for interval-val...

Full description

Saved in:
Bibliographic Details
Published inCommunications in statistics. Simulation and computation Vol. 54; no. 6; pp. 2175 - 2192
Main Authors Ravichandran, J., Pranavi, K., Paramanathan, P.
Format Journal Article
LanguageEnglish
Published Taylor & Francis 03.06.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Construction of control charts is straightforward if the data are real-valued. However, there are situations where data are essentially interval-valued in which each observation is represented by minimum and maximum values. While there are only few attempts to develop control charts for interval-valued data, there have been no simple-to-use approaches developed to deal with such type of data. In this article, we propose to make use of the popular Taguchi orthogonal array experiment to first redefine the data for experimental setup and then use Six Sigma control limits to determine overall control limits for interval-valued data. The resulting multiple control limits have inner and outer control limits for simultaneously monitoring minimum and maximum values of the averages of interval-valued data. The proposed control chart is then illustrated using a data set, and conclusions are drawn based on the results. It is observed that the proposed Six Sigma-based control chart for interval-valued data is, in fact, easy-to-use, and it performs better in detecting the out-of-control situations. We have established this using average run length comparisons as well with the traditional charts.
AbstractList Construction of control charts is straightforward if the data are real-valued. However, there are situations where data are essentially interval-valued in which each observation is represented by minimum and maximum values. While there are only few attempts to develop control charts for interval-valued data, there have been no simple-to-use approaches developed to deal with such type of data. In this article, we propose to make use of the popular Taguchi orthogonal array experiment to first redefine the data for experimental setup and then use Six Sigma control limits to determine overall control limits for interval-valued data. The resulting multiple control limits have inner and outer control limits for simultaneously monitoring minimum and maximum values of the averages of interval-valued data. The proposed control chart is then illustrated using a data set, and conclusions are drawn based on the results. It is observed that the proposed Six Sigma-based control chart for interval-valued data is, in fact, easy-to-use, and it performs better in detecting the out-of-control situations. We have established this using average run length comparisons as well with the traditional charts.
Author Paramanathan, P.
Pranavi, K.
Ravichandran, J.
Author_xml – sequence: 1
  givenname: J.
  surname: Ravichandran
  fullname: Ravichandran, J.
  organization: Department of Mathematics, Amrita School of Physical Sciences, Amrita Vishwa Vidyapeetham
– sequence: 2
  givenname: K.
  surname: Pranavi
  fullname: Pranavi, K.
  organization: Department of Mathematics, Amrita School of Physical Sciences, Amrita Vishwa Vidyapeetham
– sequence: 3
  givenname: P.
  surname: Paramanathan
  fullname: Paramanathan, P.
  organization: Department of Mathematics, Amrita School of Physical Sciences, Amrita Vishwa Vidyapeetham
BookMark eNqFkM1KAzEUhYNUsK0-gjAvkJpMkukMbpTBqlBwoa7DnUyikWkiSar27c3QunGhi_sD95zD5ZuhifNOI3ROyYKSmlwQVlHS0HpRkpIvSkZZtRRHaEoFKzGnnE7QdNTgUXSCZjG-EUJYzespWrXexRS2KlnvCm-KR_uV62UDuIOo-0J5l4IfCvUKIRXGh8K6pMMHDDjXNit6SHCKjg0MUZ8d5hw9r26e2ju8fri9b6_XWDFKEu47zYD3tFGq1pA701BWxpCOEiZ6aLiCvOWFjVchlqziFdNN15lS14LN0eU-VwUfY9BGKptg_D0FsIOkRI5I5A8SOSKRByTZLX6534PdQNj967va-6zLADbw6cPQywS7wQcTwCkbJfs74hsPd3sX
CitedBy_id crossref_primary_10_6000_1929_6029_2024_13_19
crossref_primary_10_1142_S0218539324500426
Cites_doi 10.1080/00224065.2015.11918140
10.1515/EQC.2004.29
10.1080/10618600.2022.2066678
10.30855/AIS.2022.05.02.02
10.1016/j.csda.2006.01.015
10.1007/s00500-023-09027-6
10.1080/03610926.2018.1483510
10.7494/csci.2020.21.2.3421
10.1016/B978-0-12-812973-9.00002-3
10.1080/02664763.2021.1981257
10.1504/IJSSCA.2019.098725
10.6028/jres.096.034
10.1108/IJQRM-05-2015-0080
10.1109/ACCESS.2022.3207188
10.3233/JIFS-181767
10.5430/air.v2n3p90
10.29220/CSAM.2020.27.3.365
10.1080/00224065.2010.11917825
ContentType Journal Article
Copyright 2024 Taylor & Francis Group, LLC 2024
Copyright_xml – notice: 2024 Taylor & Francis Group, LLC 2024
DBID AAYXX
CITATION
DOI 10.1080/03610918.2024.2313675
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
Computer Science
EISSN 1532-4141
EndPage 2192
ExternalDocumentID 10_1080_03610918_2024_2313675
2313675
Genre Research Article
GroupedDBID -~X
.7F
.DC
.QJ
0BK
0R~
29F
2DF
30N
4.4
5GY
5VS
8VB
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABEHJ
ABFIM
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACIWK
ACTIO
ADCVX
ADXPE
ADYSH
AEISY
AEOZL
AEPSL
AEYOC
AFKVX
AFRVT
AGDLA
AGMYJ
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AMPGV
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DKSSO
EBS
E~A
E~B
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
KYCEM
LJTGL
M4Z
NA5
O9-
P2P
QWB
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TTHFI
TUROJ
TWF
UPT
UT5
UU3
WH7
ZGOLN
ZL0
~S~
AAYXX
CITATION
ID FETCH-LOGICAL-c310t-dbe3a4d19cc8ea9cc3ea26ff0b1035da94ca103da93a9cc55736463e9bbf2e853
ISSN 0361-0918
IngestDate Thu Jul 10 07:44:15 EDT 2025
Thu Apr 24 23:12:04 EDT 2025
Thu Jul 03 04:11:28 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c310t-dbe3a4d19cc8ea9cc3ea26ff0b1035da94ca103da93a9cc55736463e9bbf2e853
PageCount 18
ParticipantIDs informaworld_taylorfrancis_310_1080_03610918_2024_2313675
crossref_citationtrail_10_1080_03610918_2024_2313675
crossref_primary_10_1080_03610918_2024_2313675
PublicationCentury 2000
PublicationDate 2025-06-03
PublicationDateYYYYMMDD 2025-06-03
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-03
  day: 03
PublicationDecade 2020
PublicationTitle Communications in statistics. Simulation and computation
PublicationYear 2025
Publisher Taylor & Francis
Publisher_xml – name: Taylor & Francis
References Ravichandran J. (e_1_3_3_14_1) 2016; 10
Bertrand P. (e_1_3_3_4_1) 1999
Shewhart W. A. (e_1_3_3_21_1) 1931
e_1_3_3_18_1
e_1_3_3_17_1
e_1_3_3_13_1
Ross P. J. (e_1_3_3_19_1) 1989
e_1_3_3_16_1
e_1_3_3_15_1
e_1_3_3_12_1
e_1_3_3_11_1
Taguchi G. (e_1_3_3_22_1) 1986
e_1_3_3_7_1
e_1_3_3_6_1
e_1_3_3_9_1
e_1_3_3_8_1
Jaehn A. H. (e_1_3_3_10_1) 1989; 43
Billard L. (e_1_3_3_5_1) 2000
e_1_3_3_25_1
e_1_3_3_24_1
e_1_3_3_26_1
e_1_3_3_3_1
e_1_3_3_2_1
e_1_3_3_20_1
e_1_3_3_23_1
References_xml – ident: e_1_3_3_20_1
  doi: 10.1080/00224065.2015.11918140
– start-page: 103
  volume-title: Symbolic official data analysis, ed
  year: 1999
  ident: e_1_3_3_4_1
– ident: e_1_3_3_6_1
  doi: 10.1515/EQC.2004.29
– ident: e_1_3_3_25_1
  doi: 10.1080/10618600.2022.2066678
– ident: e_1_3_3_2_1
  doi: 10.30855/AIS.2022.05.02.02
– volume-title: Taguchi techniques for quality engineering
  year: 1989
  ident: e_1_3_3_19_1
– ident: e_1_3_3_7_1
  doi: 10.1016/j.csda.2006.01.015
– ident: e_1_3_3_9_1
  doi: 10.1007/s00500-023-09027-6
– volume-title: Orthogonal arrays and linear graphs
  year: 1986
  ident: e_1_3_3_22_1
– ident: e_1_3_3_17_1
  doi: 10.1080/03610926.2018.1483510
– ident: e_1_3_3_23_1
  doi: 10.7494/csci.2020.21.2.3421
– volume: 43
  start-page: 890
  year: 1989
  ident: e_1_3_3_10_1
  article-title: Zone control charts find new application
  publication-title: ASQC Quality Congress Transactions, Toronto, Ontario, Canada
– ident: e_1_3_3_13_1
  doi: 10.1016/B978-0-12-812973-9.00002-3
– ident: e_1_3_3_26_1
  doi: 10.1080/02664763.2021.1981257
– ident: e_1_3_3_16_1
  doi: 10.1504/IJSSCA.2019.098725
– ident: e_1_3_3_12_1
  doi: 10.6028/jres.096.034
– ident: e_1_3_3_15_1
  doi: 10.1108/IJQRM-05-2015-0080
– ident: e_1_3_3_24_1
  doi: 10.1109/ACCESS.2022.3207188
– ident: e_1_3_3_3_1
  doi: 10.3233/JIFS-181767
– start-page: 369
  volume-title: Regression analysis for interval-valued data. Data analysis, classification, and related methods
  year: 2000
  ident: e_1_3_3_5_1
– ident: e_1_3_3_8_1
  doi: 10.5430/air.v2n3p90
– volume-title: Economic control of quality of manufactured product
  year: 1931
  ident: e_1_3_3_21_1
– ident: e_1_3_3_11_1
  doi: 10.29220/CSAM.2020.27.3.365
– volume: 10
  start-page: 257
  issue: 2
  year: 2016
  ident: e_1_3_3_14_1
  article-title: Six Sigma-based X-bar control chart for continuous quality improvement
  publication-title: International Journal for Quality Research
– ident: e_1_3_3_18_1
  doi: 10.1080/00224065.2010.11917825
SSID ssj0003848
Score 2.383448
Snippet Construction of control charts is straightforward if the data are real-valued. However, there are situations where data are essentially interval-valued in...
SourceID crossref
informaworld
SourceType Enrichment Source
Index Database
Publisher
StartPage 2175
SubjectTerms Average run length
Control charts
Interval-valued data
Multiple control limits
Orthogonal array experiment
Six Sigma control limits
Title Construction of Six Sigma-based control chart for interval-valued data
URI https://www.tandfonline.com/doi/abs/10.1080/03610918.2024.2313675
Volume 54
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaWcikHHguI8pIPXB2tH0mTI0JUVSV6gFbqLXIcG1Vqt1VJEepv4Ecz49d6q1WhHNbyOuvZbObLeOKd-YaQD7ZtJddKMYUMhEo5xbTp4K0WVteyG5zzbJ-Hzf6xOjipT2az30XU0vU0VOZmY17J_2gVxkCvmCV7D81moTAAfdAvtKBhaP9Jx1htM_G_-uyT01_w-n6uGS5OY45Dx9SqyQcUnvoQR33GkOQbPhFT01ZkBWW-iA-VxYyjQOZcgezzWO0rpcNdXq__lf9V_8Q4_OV4FTZWD6pse2EEDnrDshrUVxrjZ3H_3vuzVbkLIWofLSULYyUbzsD3CLbUJmMqmOKB2CpZ20AZHVG1bjpDCZW4DIMlFRtNfIyJlMgTzzE4T6gKnFTZpOklpfatpS4HIPLEjBrF9Cimj2IekIcCHjqwHoZcHOZ1Xba-Flv-pSkfDJnaN53NmqezxoNbeDBHT8nj-OhBPwYcPSMzu5yTJ6msB41Wfk4efclUvj_mZPtbBsBzslcijl44CoijBeJoRBz1iKNwLvQW4igi7gU53vt89GmfxUoczID7P7FxsFKrkXfGtFZDK60WjXOLgS9kPepOGQ096Eg8Wte7slGNtN0wOGHBI3xJtpYXS_uKUHBIBweX0ghYCUbtWmX5QpnOcWfGum12iEpXrTeRph6rpZz1d-psh1R52mXgafnbhK5UST_5DTIXqtn08s65r-_7ZW_I9uqmeUu2QFH2HTiz0_DeY-wPzo2VUA
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT8IwFH5RPIgHUdSIP3vwWmRrN7ajMRJU4CIk3Jauaw0RwcSZGP9639sPAibqgcOWLttb1r7u9Wvz-n0AVyYIhKOk5JIYCKW0kisd4qVyjfJEGFubsX0O_O5IPoy98dJeGEqrpDm0zYkislhNPzctRpcpcdcYdYnPkjKzXNlEhCIQ9m7Clhf6bVIxEK3BIhqLIFPQIhNONuUunt9eszI-rbCXLo07nRro8ovzdJOX5kcaN_XXDzLH9aq0B7sFLGU3eT_ahw0zq0OtlHxgRQSow05_QfP6XocqQdWc6fkAOqT9WbLRsrllT5NPPJ5fFaehMmFFVjyjjV4pwxqzSZZwqaacKMfxCUpXPYRR52542-WFSgPXCA1TnsRGKJk4odaBUXgWRrm-ta3YaQkvUaHUCktYEHTX89rCl74wYRxb1yBaOILKbD4zx8AQrMQWHaZdjBKJsoE0OFvUoXWsTrzAb4AsfRPpgsKclDSmkVMynRbNGFEzRkUzNqC5MHvLOTz-MwiXHR-l2eKJzZVOIvGn7ckatpew3R32e1HvfvB4ClWXpIZpwUecQQX9Z84R_6TxRdbBvwEugfXi
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD7oBJkPTqfivObB1861SWv7KGrxOgQd-FaSNJHh3AarIP56z-llbIL6sIeWlPaUJic9-RK-fAfgxIQhd6UQjiAFQiGscKSO8FJ6Rvo8Utbmap_d4Lonbl_8ik04KWmVNIe2hVBEHqvp5x6ntmLEnWLQJTlLImZ5oo0AhSPqXYaVgMTDaRdHpzsNxjzME2iRiUM21Sae314zNzzNiZfODDtxA1T1wQXb5K39kam2_vqh5bhQjTZgvQSl7LzoRZuwZIZNaFQJH1j5_zdh7WEq8jppQp2AaqHzvAUxZf6stGjZyLKn_icer-_SoYEyZSUnntE2r4xhhVk_p1vKgUOC4_gEkVW3oRdfPV9cO2WOBkcjMMycVBkuRepGWodG4pkb6QXWdpTb4X4qI6EllrDA6a7vn_FABNxESlnPIFbYgdpwNDS7wBCqKIv-0h7GiFTaUBicK-rIulanfhi0QFSuSXQpYE55NAaJW-mcls2YUDMmZTO2oD01GxcKHv8ZRLN-T7J86cQWeU4S_qft3gK2x7D6eBkn9zfdu32oe5RnmFZ7-AHU0H3mEMFPpo7y7v0NIo30hg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Construction+of+Six+Sigma-based+control+chart+for+interval-valued+data&rft.jtitle=Communications+in+statistics.+Simulation+and+computation&rft.au=Ravichandran%2C+J.&rft.au=Pranavi%2C+K.&rft.au=Paramanathan%2C+P.&rft.date=2025-06-03&rft.issn=0361-0918&rft.eissn=1532-4141&rft.volume=54&rft.issue=6&rft.spage=2175&rft.epage=2192&rft_id=info:doi/10.1080%2F03610918.2024.2313675&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_03610918_2024_2313675
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0361-0918&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0361-0918&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0361-0918&client=summon