Preference-Based Multi-Robot Planning for Nuclear Power Plant Online Monitoring and Diagnostics
Current preventative maintenance paradigms in nuclear power plants carry several costly risks and challenges associated with component downtime and the need for human data collection. Preventative maintenance may be enabled by an online monitoring system that accurately assesses component condition...
Saved in:
Published in | Nuclear science and engineering Vol. 199; no. 8; pp. 1292 - 1309 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Taylor & Francis
03.08.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 0029-5639 1943-748X |
DOI | 10.1080/00295639.2023.2239635 |
Cover
Abstract | Current preventative maintenance paradigms in nuclear power plants carry several costly risks and challenges associated with component downtime and the need for human data collection. Preventative maintenance may be enabled by an online monitoring system that accurately assesses component condition and identifies potential faults. We present an approach for autonomous online monitoring and multiagent planning for robotic data collection. Under the occurrence of a fault, we utilize a machine learning model to form an initial guess of its nature, which we then refine by selectively measuring certain variables to gain additional information via a situation-aware variable selection model. To generate a multi-robot plan to conduct these measurements, we develop a preference-based planning framework within a linear temporal logic-based planning approach that prioritizes collecting data from the most important features. Finally, we demonstrate our approach on a case study using a simulated nuclear power plant circulating water system, showing fault diagnostic performance as well as simulated robot data collection. |
---|---|
AbstractList | Current preventative maintenance paradigms in nuclear power plants carry several costly risks and challenges associated with component downtime and the need for human data collection. Preventative maintenance may be enabled by an online monitoring system that accurately assesses component condition and identifies potential faults. We present an approach for autonomous online monitoring and multiagent planning for robotic data collection. Under the occurrence of a fault, we utilize a machine learning model to form an initial guess of its nature, which we then refine by selectively measuring certain variables to gain additional information via a situation-aware variable selection model. To generate a multi-robot plan to conduct these measurements, we develop a preference-based planning framework within a linear temporal logic-based planning approach that prioritizes collecting data from the most important features. Finally, we demonstrate our approach on a case study using a simulated nuclear power plant circulating water system, showing fault diagnostic performance as well as simulated robot data collection. |
Author | Hesu, Alan Kim, Sungmin Zhang, Fan |
Author_xml | – sequence: 1 givenname: Alan surname: Hesu fullname: Hesu, Alan organization: Georgia Institute of Technology – sequence: 2 givenname: Sungmin orcidid: 0009-0008-1468-0605 surname: Kim fullname: Kim, Sungmin organization: Georgia Institute of Technology – sequence: 3 givenname: Fan orcidid: 0000-0002-8094-2473 surname: Zhang fullname: Zhang, Fan email: fan@gatech.edu organization: Georgia Institute of Technology |
BookMark | eNqFkMtKAzEUhoNUsK0-gpAXmJrLJJ3gRq1XaG0RBXchzWRKJE0kSSl9e2ds3bjQ1eFw_u-H8w1AzwdvADjHaIRRhS4QIoJxKkYEEToihApO2RHoY1HSYlxW7z3Q7zJFFzoBg5Q-2pWXgvWBXETTmGi8NsWNSqaGs43LtngJy5DhwinvrV_BJkT4vNHOqAgXYWvi9ynDuXfWGzgL3uYQu6TyNby1auVDylanU3DcKJfM2WEOwdv93evksZjOH54m19NCU4xyUTOCmrrWhmKCiSEVQ9xwxhUqVV1WgirOCRaNKhHDXIyXY95oXlFSjgWvakaH4HLfq2NIqf1JaptVtsHnqKyTGMnOlfxxJTtX8uCqpdkv-jPatYq7f7mrPWd9a2ittiG6Wma1cyE2UXltk6R_V3wBHA6CQw |
CitedBy_id | crossref_primary_10_1016_j_ymssp_2023_111091 crossref_primary_10_3389_fenrg_2024_1356624 |
Cites_doi | 10.1016/j.pnucene.2022.104253 10.1177/0278364918774135 10.1177/0278364904045564 10.1109/CASE49439.2021.9551648 10.1109/CASE49997.2022.9926658 10.1109/IROS.2004.1389727 10.1177/0278364914546174 10.1109/SFCS.1977.32 10.1177/027836499000900204 10.1109/MRA.2018.2879755 10.1016/S0004-3702(97)00043-X 10.5120/169-295 10.1016/j.apenergy.2018.03.002 10.1145/582415.582418 10.3389/fenrg.2021.663296 10.1109/IROS.2018.8594404 10.1016/j.net.2021.02.023 10.1613/jair.4295 10.1007/978-3-319-73008-018 10.1609/aaai.v29i1.9670 10.36001/ijphm.2015.v6i3.2271 10.1016/j.asoc.2020.106874 10.1016/j.robot.2016.10.008 10.1145/2590748.2590755 10.3389/fenrg.2021.696785 10.1109/CARPI.2010.5624417 10.1016/0377-2217(84)90077-8 10.1109/IROS51168.2021.9636569 10.1177/1687814018781286 10.1145/1273496.1273513 10.1016/j.pnucene.2010.12.001 10.1016/j.asoc.2022.109792 10.1109/ICRA.2017.7989094 10.5772/57313 10.1007/BF00344251 10.1109/ICRA.2011.5979835 10.1109/CARPI.2012.6473373 10.12783/dtetr/ismii2017/16678 10.1109/ICRA40945.2020.9197066 10.1177/0278364913496484 10.1109/ROBOT.1994.351292 10.13182/NT92-A34635 10.1002/cem.1360 10.1007/s10732-006-7071-x 10.1145/3269206.3271784 10.1016/j.nucengdes.2010.03.001 10.1561/1500000016 |
ContentType | Journal Article |
Copyright | 2023 American Nuclear Society 2023 |
Copyright_xml | – notice: 2023 American Nuclear Society 2023 |
DBID | AAYXX CITATION |
DOI | 10.1080/00295639.2023.2239635 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1943-748X |
EndPage | 1309 |
ExternalDocumentID | 10_1080_00295639_2023_2239635 2239635 |
Genre | Research Article |
GrantInformation_xml | – fundername: Office of Nuclear Energy grantid: DE-NE0009306 |
GroupedDBID | -~X 0BK 123 30N 85S 8WZ A6W AAGDL AAHIA AAJMT AALDU AAMIU AAPUL AAQRR ABEFU ABJNI ABLIJ ABPAQ ABXUL ABXYU ACBEA ACNCT ACTIO ADGTB ADYSH AEISY AENEX AEYOC AFRVT AGDLA AHDZW AIJEM AIYEW AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AMPGV AQRUH AWYRJ BLEHA CCCUG EBS F5P H13 IPNFZ KYCEM LJTGL M4Z O9- RBQ RIG RNANH ROSJB RTWRZ TBQAZ TCY TDBHL TEN TEX TFL TFT TFW TTHFI TUROJ ZGOLN AAYXX CITATION DGEBU TASJS |
ID | FETCH-LOGICAL-c310t-d520fddce31212e28506e656a04ad4893a66219fa4051697b76fc683247968d53 |
ISSN | 0029-5639 |
IngestDate | Tue Jul 15 05:56:32 EDT 2025 Thu Apr 24 23:09:48 EDT 2025 Thu Jun 12 04:10:16 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c310t-d520fddce31212e28506e656a04ad4893a66219fa4051697b76fc683247968d53 |
ORCID | 0009-0008-1468-0605 0000-0002-8094-2473 |
PageCount | 18 |
ParticipantIDs | crossref_citationtrail_10_1080_00295639_2023_2239635 crossref_primary_10_1080_00295639_2023_2239635 informaworld_taylorfrancis_310_1080_00295639_2023_2239635 |
PublicationCentury | 2000 |
PublicationDate | 2025-08-03 |
PublicationDateYYYYMMDD | 2025-08-03 |
PublicationDate_xml | – month: 08 year: 2025 text: 2025-08-03 day: 03 |
PublicationDecade | 2020 |
PublicationTitle | Nuclear science and engineering |
PublicationYear | 2025 |
Publisher | Taylor & Francis |
Publisher_xml | – name: Taylor & Francis |
References | e_1_3_5_29_1 e_1_3_5_27_1 e_1_3_5_23_1 e_1_3_5_44_1 e_1_3_5_46_1 e_1_3_5_48_1 e_1_3_5_3_1 e_1_3_5_40_1 e_1_3_5_42_1 e_1_3_5_9_1 e_1_3_5_21_1 e_1_3_5_5_1 e_1_3_5_7_1 e_1_3_5_18_1 e_1_3_5_39_1 BREWKA G. (e_1_3_5_54_1) 2004 e_1_3_5_14_1 ZHANG F. (e_1_3_5_16_1) 2022 e_1_3_5_35_1 e_1_3_5_12_1 e_1_3_5_33_1 e_1_3_5_56_1 KRIZHEVSKY A. (e_1_3_5_25_1) 2012; 25 e_1_3_5_58_1 BAEZA-YATES R. (e_1_3_5_37_1) 1999 e_1_3_5_50_1 KIM Y. G. (e_1_3_5_28_1) 2019 e_1_3_5_52_1 e_1_3_5_10_1 e_1_3_5_31_1 e_1_3_5_26_1 e_1_3_5_24_1 e_1_3_5_22_1 e_1_3_5_45_1 e_1_3_5_47_1 e_1_3_5_49_1 e_1_3_5_2_1 e_1_3_5_41_1 e_1_3_5_43_1 e_1_3_5_8_1 e_1_3_5_20_1 e_1_3_5_4_1 e_1_3_5_6_1 e_1_3_5_17_1 e_1_3_5_38_1 e_1_3_5_15_1 e_1_3_5_13_1 e_1_3_5_36_1 e_1_3_5_11_1 e_1_3_5_34_1 e_1_3_5_55_1 e_1_3_5_57_1 QUIGLEY M. (e_1_3_5_60_1) 2009; 3 e_1_3_5_59_1 e_1_3_5_19_1 e_1_3_5_51_1 e_1_3_5_53_1 e_1_3_5_32_1 e_1_3_5_30_1 |
References_xml | – ident: e_1_3_5_22_1 doi: 10.1016/j.pnucene.2022.104253 – ident: e_1_3_5_43_1 doi: 10.1177/0278364918774135 – ident: e_1_3_5_18_1 doi: 10.1177/0278364904045564 – ident: e_1_3_5_55_1 doi: 10.1109/CASE49439.2021.9551648 – ident: e_1_3_5_48_1 doi: 10.1109/CASE49997.2022.9926658 – ident: e_1_3_5_59_1 doi: 10.1109/IROS.2004.1389727 – ident: e_1_3_5_49_1 doi: 10.1177/0278364914546174 – ident: e_1_3_5_57_1 doi: 10.1109/SFCS.1977.32 – ident: e_1_3_5_12_1 doi: 10.1177/027836499000900204 – ident: e_1_3_5_9_1 doi: 10.1109/MRA.2018.2879755 – ident: e_1_3_5_50_1 – volume-title: Transactions of Korean Nuclear Society year: 2019 ident: e_1_3_5_28_1 – ident: e_1_3_5_31_1 doi: 10.1016/S0004-3702(97)00043-X – ident: e_1_3_5_32_1 doi: 10.5120/169-295 – ident: e_1_3_5_3_1 doi: 10.1016/j.apenergy.2018.03.002 – ident: e_1_3_5_36_1 doi: 10.1145/582415.582418 – ident: e_1_3_5_7_1 doi: 10.3389/fenrg.2021.663296 – ident: e_1_3_5_47_1 doi: 10.1109/IROS.2018.8594404 – ident: e_1_3_5_2_1 doi: 10.1016/j.net.2021.02.023 – ident: e_1_3_5_39_1 doi: 10.1613/jair.4295 – ident: e_1_3_5_42_1 doi: 10.1007/978-3-319-73008-018 – ident: e_1_3_5_56_1 doi: 10.1609/aaai.v29i1.9670 – ident: e_1_3_5_4_1 doi: 10.36001/ijphm.2015.v6i3.2271 – ident: e_1_3_5_26_1 doi: 10.1016/j.asoc.2020.106874 – ident: e_1_3_5_51_1 doi: 10.1016/j.robot.2016.10.008 – ident: e_1_3_5_30_1 doi: 10.1145/2590748.2590755 – ident: e_1_3_5_52_1 – ident: e_1_3_5_23_1 doi: 10.3389/fenrg.2021.696785 – ident: e_1_3_5_58_1 – ident: e_1_3_5_11_1 doi: 10.1109/CARPI.2010.5624417 – ident: e_1_3_5_44_1 doi: 10.1016/0377-2217(84)90077-8 – ident: e_1_3_5_41_1 doi: 10.1109/IROS51168.2021.9636569 – volume-title: Trans. Am. Nucl. Soc. year: 2022 ident: e_1_3_5_16_1 – ident: e_1_3_5_15_1 doi: 10.1177/1687814018781286 – ident: e_1_3_5_35_1 doi: 10.1145/1273496.1273513 – ident: e_1_3_5_20_1 doi: 10.1016/j.pnucene.2010.12.001 – ident: e_1_3_5_27_1 doi: 10.1016/j.asoc.2022.109792 – ident: e_1_3_5_45_1 doi: 10.1109/ICRA.2017.7989094 – ident: e_1_3_5_17_1 doi: 10.5772/57313 – ident: e_1_3_5_24_1 doi: 10.1007/BF00344251 – ident: e_1_3_5_5_1 – ident: e_1_3_5_13_1 doi: 10.1109/ICRA.2011.5979835 – ident: e_1_3_5_10_1 doi: 10.1109/CARPI.2012.6473373 – ident: e_1_3_5_8_1 doi: 10.12783/dtetr/ismii2017/16678 – ident: e_1_3_5_34_1 – ident: e_1_3_5_46_1 doi: 10.1109/ICRA40945.2020.9197066 – ident: e_1_3_5_19_1 doi: 10.1177/0278364913496484 – ident: e_1_3_5_14_1 doi: 10.1109/ROBOT.1994.351292 – ident: e_1_3_5_40_1 – volume: 3 start-page: 5 volume-title: Proc. ICRA Workshop Open Source Software year: 2009 ident: e_1_3_5_60_1 – ident: e_1_3_5_21_1 doi: 10.13182/NT92-A34635 – volume: 25 start-page: 3113 year: 2012 ident: e_1_3_5_25_1 article-title: Imagenet Classification with Deep Convolutional Neural Networks publication-title: Adv. Neural Inf. Process Syst. – ident: e_1_3_5_29_1 doi: 10.1002/cem.1360 – ident: e_1_3_5_53_1 doi: 10.1007/s10732-006-7071-x – volume-title: Modern Information Retrieval year: 1999 ident: e_1_3_5_37_1 – ident: e_1_3_5_38_1 doi: 10.1145/3269206.3271784 – ident: e_1_3_5_6_1 doi: 10.1016/j.nucengdes.2010.03.001 – ident: e_1_3_5_33_1 doi: 10.1561/1500000016 – start-page: 303 volume-title: Proc. 16th European Conf. Artificial Intelligence year: 2004 ident: e_1_3_5_54_1 |
SSID | ssj0026495 |
Score | 2.403822 |
Snippet | Current preventative maintenance paradigms in nuclear power plants carry several costly risks and challenges associated with component downtime and the need... |
SourceID | crossref informaworld |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 1292 |
SubjectTerms | fault diagnosis linear temporal logic Multi-robot task planning nuclear power plant operation online monitoring |
Title | Preference-Based Multi-Robot Planning for Nuclear Power Plant Online Monitoring and Diagnostics |
URI | https://www.tandfonline.com/doi/abs/10.1080/00295639.2023.2239635 |
Volume | 199 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBbbhEIvpU-aNik69LbI7MqSbB3TpGEpNISyoUsvRpLl0pLshkR7ya_PyJJlb7r0eTHGsmTQfJ4ZSTPfIPSOs8YoWOWQgtWUgMXnRIKbQWqtRTNRkkntT3Q_nYrZOfu44IvR6GoQtbR2OjO3W_NK_kWq8Azk6rNk_0KyaVB4APcgX7iChOH6RzI-S0VCyHuwRvW4Tacln1d65VI5ojaQ8NTTFqvr8ZkvitY2uXFgGY1_dUpWPA6xd66Lgv_R5eeGAbo0IP-q7bkM-y3Vm3XIm1GD4_3LEP-z_Hb5PT1NO9Un8c249UB5G_iWJ7DMf6oCMtS0VBIuAlFRZoNylSz33KWLDe0b6iNFmJUDXQqeCB3YZTC2cqvO74IkqfTfy3w9-AycHtAsvDdyKfQwtjxAu7Qo_MH-7uHs-OuXtEgXTPIuLMiP12V9eT72bZ_Y8Gc22G4Hfsr8CXocFxj4MKDlKRrZ5TP0sA30NTfPUXUfM3iAGdxhBsP4OIoct5hpmxwOmME9ZjAAAQ8w8wKdn3yYH81ILLJBDHj2jtScTpq6NjafghdjqWcwtODkqwlTtWcmUkKAVWsUePZTIQtdiMYIsAOskKKsef4S7SxXS_sKYWOVtuCQKlXmrOSlzm1eTISiDc21MmoPsW6qKhMZ6H0hlItqmohqwwxXfoarOMN7KEvdrgIFy-86yKEcKtfitAkQrfJf9n39H33foEf9X7KPdtz12h6Ay-r024iyO35fjn0 |
linkProvider | Library Specific Holdings |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELWgCMGFHVFWH7i6SuMlyZGtKtBWFWql3iLbcS6gFpX0wtczEzdViwQcOEcTeZnMPDsz7xFyLUVuNZxyWCSykEHGlywBmMEyY1Qe6EQkBv_odnuqPRRPIzla6oXBsko8Q-eeKKKM1fhx42V0VRKHLdwA68s-k5A3IMGBF8l1siEBu6OX86C3OHQpkciqzANtqi6en16zkp9W2EuX8k5rl9hqxL7c5LUxK0zDfn4jc_zflPbIzhyW0hvvR_tkzY0PyGZZHmo_DknaX8iRsFvIexktG3fZy8RMCloJH1GYBe0hQbKe0j7Kr5WPCur5TKmPH3iRSGGg9N5X-SFP9BEZth4Gd202l2ZgFvBgwTIZBnmWWcebkPtciLx3DqChDoTOkM9GKwWxMNeAB5sqiUykcqsgeogoUXEm-TGpjSdjd0Koddo4gDFax1zEMjbc8ShQOsxDbrTVdSKqDUntnLcc5TPe0uaC3tSvXYprl87Xrk4aC7N3T9zxl0GyvNtpUd6Y5F7eJOW_2p7-w_aKbLUH3U7aeew9n5HtEPWFsSSFn5NaMZ25CwA9hbksvfoLTfPxFg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELWgCMSFHVFWH7i6SmPHSY5AqcoWVYhK3CKvF1BbtemFr2ccJ1WLBBx6jibyMpl5dt68Qeg6YlYJOOWQmOmQQMaPSAowg2gpuQ1EylLp_ui-ZLw3YI_vUc0mnFa0SneGtl4ooozV7uMea1sz4lwFN6D6sswkpC3Ib-BE0Tra4ABPHKuPBtn8zMVZGtUsD2dTF_H89pql9LQkXrqQdrq7SNYD9myTj9askC319UPLcaUZ7aGdCpTiG-9F-2jNDA_QZkkOVdNDlPfnzUjILWQ9jcuyXfI6kqMC122PMEwCZ04eWUxw3zVfKx8V2KuZYh893DUihnHijuf4OZXoIzTo3r_d9UjVmIEoQIMF0VEYWK2VoW3IfCZ0qncGgKEImNBOzUZwDpHQCkCDbZ7GMuZWcYgdLE55oiN6jBrD0dCcIKyMkAZAjBAJZUmUSGpoHHAR2pBKoUQTsXo_clWplrvmGZ95ey5u6tcud2uXV2vXRK252djLdvxnkC5udl6U9yXWNzfJ6Z-2pyvYXqGtfqebPz9kT2doO3TNhR0fhZ6jRjGZmQtAPIW8LH36G1H977o |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Preference-Based+Multi-Robot+Planning+for+Nuclear+Power+Plant+Online+Monitoring+and+Diagnostics&rft.jtitle=Nuclear+science+and+engineering&rft.au=Hesu%2C+Alan&rft.au=Kim%2C+Sungmin&rft.au=Zhang%2C+Fan&rft.date=2025-08-03&rft.pub=Taylor+%26+Francis&rft.issn=0029-5639&rft.eissn=1943-748X&rft.volume=199&rft.issue=8&rft.spage=1292&rft.epage=1309&rft_id=info:doi/10.1080%2F00295639.2023.2239635&rft.externalDocID=2239635 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-5639&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-5639&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-5639&client=summon |