Preference-Based Multi-Robot Planning for Nuclear Power Plant Online Monitoring and Diagnostics

Current preventative maintenance paradigms in nuclear power plants carry several costly risks and challenges associated with component downtime and the need for human data collection. Preventative maintenance may be enabled by an online monitoring system that accurately assesses component condition...

Full description

Saved in:
Bibliographic Details
Published inNuclear science and engineering Vol. 199; no. 8; pp. 1292 - 1309
Main Authors Hesu, Alan, Kim, Sungmin, Zhang, Fan
Format Journal Article
LanguageEnglish
Published Taylor & Francis 03.08.2025
Subjects
Online AccessGet full text
ISSN0029-5639
1943-748X
DOI10.1080/00295639.2023.2239635

Cover

Abstract Current preventative maintenance paradigms in nuclear power plants carry several costly risks and challenges associated with component downtime and the need for human data collection. Preventative maintenance may be enabled by an online monitoring system that accurately assesses component condition and identifies potential faults. We present an approach for autonomous online monitoring and multiagent planning for robotic data collection. Under the occurrence of a fault, we utilize a machine learning model to form an initial guess of its nature, which we then refine by selectively measuring certain variables to gain additional information via a situation-aware variable selection model. To generate a multi-robot plan to conduct these measurements, we develop a preference-based planning framework within a linear temporal logic-based planning approach that prioritizes collecting data from the most important features. Finally, we demonstrate our approach on a case study using a simulated nuclear power plant circulating water system, showing fault diagnostic performance as well as simulated robot data collection.
AbstractList Current preventative maintenance paradigms in nuclear power plants carry several costly risks and challenges associated with component downtime and the need for human data collection. Preventative maintenance may be enabled by an online monitoring system that accurately assesses component condition and identifies potential faults. We present an approach for autonomous online monitoring and multiagent planning for robotic data collection. Under the occurrence of a fault, we utilize a machine learning model to form an initial guess of its nature, which we then refine by selectively measuring certain variables to gain additional information via a situation-aware variable selection model. To generate a multi-robot plan to conduct these measurements, we develop a preference-based planning framework within a linear temporal logic-based planning approach that prioritizes collecting data from the most important features. Finally, we demonstrate our approach on a case study using a simulated nuclear power plant circulating water system, showing fault diagnostic performance as well as simulated robot data collection.
Author Hesu, Alan
Kim, Sungmin
Zhang, Fan
Author_xml – sequence: 1
  givenname: Alan
  surname: Hesu
  fullname: Hesu, Alan
  organization: Georgia Institute of Technology
– sequence: 2
  givenname: Sungmin
  orcidid: 0009-0008-1468-0605
  surname: Kim
  fullname: Kim, Sungmin
  organization: Georgia Institute of Technology
– sequence: 3
  givenname: Fan
  orcidid: 0000-0002-8094-2473
  surname: Zhang
  fullname: Zhang, Fan
  email: fan@gatech.edu
  organization: Georgia Institute of Technology
BookMark eNqFkMtKAzEUhoNUsK0-gpAXmJrLJJ3gRq1XaG0RBXchzWRKJE0kSSl9e2ds3bjQ1eFw_u-H8w1AzwdvADjHaIRRhS4QIoJxKkYEEToihApO2RHoY1HSYlxW7z3Q7zJFFzoBg5Q-2pWXgvWBXETTmGi8NsWNSqaGs43LtngJy5DhwinvrV_BJkT4vNHOqAgXYWvi9ynDuXfWGzgL3uYQu6TyNby1auVDylanU3DcKJfM2WEOwdv93evksZjOH54m19NCU4xyUTOCmrrWhmKCiSEVQ9xwxhUqVV1WgirOCRaNKhHDXIyXY95oXlFSjgWvakaH4HLfq2NIqf1JaptVtsHnqKyTGMnOlfxxJTtX8uCqpdkv-jPatYq7f7mrPWd9a2ittiG6Wma1cyE2UXltk6R_V3wBHA6CQw
CitedBy_id crossref_primary_10_1016_j_ymssp_2023_111091
crossref_primary_10_3389_fenrg_2024_1356624
Cites_doi 10.1016/j.pnucene.2022.104253
10.1177/0278364918774135
10.1177/0278364904045564
10.1109/CASE49439.2021.9551648
10.1109/CASE49997.2022.9926658
10.1109/IROS.2004.1389727
10.1177/0278364914546174
10.1109/SFCS.1977.32
10.1177/027836499000900204
10.1109/MRA.2018.2879755
10.1016/S0004-3702(97)00043-X
10.5120/169-295
10.1016/j.apenergy.2018.03.002
10.1145/582415.582418
10.3389/fenrg.2021.663296
10.1109/IROS.2018.8594404
10.1016/j.net.2021.02.023
10.1613/jair.4295
10.1007/978-3-319-73008-018
10.1609/aaai.v29i1.9670
10.36001/ijphm.2015.v6i3.2271
10.1016/j.asoc.2020.106874
10.1016/j.robot.2016.10.008
10.1145/2590748.2590755
10.3389/fenrg.2021.696785
10.1109/CARPI.2010.5624417
10.1016/0377-2217(84)90077-8
10.1109/IROS51168.2021.9636569
10.1177/1687814018781286
10.1145/1273496.1273513
10.1016/j.pnucene.2010.12.001
10.1016/j.asoc.2022.109792
10.1109/ICRA.2017.7989094
10.5772/57313
10.1007/BF00344251
10.1109/ICRA.2011.5979835
10.1109/CARPI.2012.6473373
10.12783/dtetr/ismii2017/16678
10.1109/ICRA40945.2020.9197066
10.1177/0278364913496484
10.1109/ROBOT.1994.351292
10.13182/NT92-A34635
10.1002/cem.1360
10.1007/s10732-006-7071-x
10.1145/3269206.3271784
10.1016/j.nucengdes.2010.03.001
10.1561/1500000016
ContentType Journal Article
Copyright 2023 American Nuclear Society 2023
Copyright_xml – notice: 2023 American Nuclear Society 2023
DBID AAYXX
CITATION
DOI 10.1080/00295639.2023.2239635
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1943-748X
EndPage 1309
ExternalDocumentID 10_1080_00295639_2023_2239635
2239635
Genre Research Article
GrantInformation_xml – fundername: Office of Nuclear Energy
  grantid: DE-NE0009306
GroupedDBID -~X
0BK
123
30N
85S
8WZ
A6W
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABEFU
ABJNI
ABLIJ
ABPAQ
ABXUL
ABXYU
ACBEA
ACNCT
ACTIO
ADGTB
ADYSH
AEISY
AENEX
AEYOC
AFRVT
AGDLA
AHDZW
AIJEM
AIYEW
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AMPGV
AQRUH
AWYRJ
BLEHA
CCCUG
EBS
F5P
H13
IPNFZ
KYCEM
LJTGL
M4Z
O9-
RBQ
RIG
RNANH
ROSJB
RTWRZ
TBQAZ
TCY
TDBHL
TEN
TEX
TFL
TFT
TFW
TTHFI
TUROJ
ZGOLN
AAYXX
CITATION
DGEBU
TASJS
ID FETCH-LOGICAL-c310t-d520fddce31212e28506e656a04ad4893a66219fa4051697b76fc683247968d53
ISSN 0029-5639
IngestDate Tue Jul 15 05:56:32 EDT 2025
Thu Apr 24 23:09:48 EDT 2025
Thu Jun 12 04:10:16 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c310t-d520fddce31212e28506e656a04ad4893a66219fa4051697b76fc683247968d53
ORCID 0009-0008-1468-0605
0000-0002-8094-2473
PageCount 18
ParticipantIDs crossref_citationtrail_10_1080_00295639_2023_2239635
crossref_primary_10_1080_00295639_2023_2239635
informaworld_taylorfrancis_310_1080_00295639_2023_2239635
PublicationCentury 2000
PublicationDate 2025-08-03
PublicationDateYYYYMMDD 2025-08-03
PublicationDate_xml – month: 08
  year: 2025
  text: 2025-08-03
  day: 03
PublicationDecade 2020
PublicationTitle Nuclear science and engineering
PublicationYear 2025
Publisher Taylor & Francis
Publisher_xml – name: Taylor & Francis
References e_1_3_5_29_1
e_1_3_5_27_1
e_1_3_5_23_1
e_1_3_5_44_1
e_1_3_5_46_1
e_1_3_5_48_1
e_1_3_5_3_1
e_1_3_5_40_1
e_1_3_5_42_1
e_1_3_5_9_1
e_1_3_5_21_1
e_1_3_5_5_1
e_1_3_5_7_1
e_1_3_5_18_1
e_1_3_5_39_1
BREWKA G. (e_1_3_5_54_1) 2004
e_1_3_5_14_1
ZHANG F. (e_1_3_5_16_1) 2022
e_1_3_5_35_1
e_1_3_5_12_1
e_1_3_5_33_1
e_1_3_5_56_1
KRIZHEVSKY A. (e_1_3_5_25_1) 2012; 25
e_1_3_5_58_1
BAEZA-YATES R. (e_1_3_5_37_1) 1999
e_1_3_5_50_1
KIM Y. G. (e_1_3_5_28_1) 2019
e_1_3_5_52_1
e_1_3_5_10_1
e_1_3_5_31_1
e_1_3_5_26_1
e_1_3_5_24_1
e_1_3_5_22_1
e_1_3_5_45_1
e_1_3_5_47_1
e_1_3_5_49_1
e_1_3_5_2_1
e_1_3_5_41_1
e_1_3_5_43_1
e_1_3_5_8_1
e_1_3_5_20_1
e_1_3_5_4_1
e_1_3_5_6_1
e_1_3_5_17_1
e_1_3_5_38_1
e_1_3_5_15_1
e_1_3_5_13_1
e_1_3_5_36_1
e_1_3_5_11_1
e_1_3_5_34_1
e_1_3_5_55_1
e_1_3_5_57_1
QUIGLEY M. (e_1_3_5_60_1) 2009; 3
e_1_3_5_59_1
e_1_3_5_19_1
e_1_3_5_51_1
e_1_3_5_53_1
e_1_3_5_32_1
e_1_3_5_30_1
References_xml – ident: e_1_3_5_22_1
  doi: 10.1016/j.pnucene.2022.104253
– ident: e_1_3_5_43_1
  doi: 10.1177/0278364918774135
– ident: e_1_3_5_18_1
  doi: 10.1177/0278364904045564
– ident: e_1_3_5_55_1
  doi: 10.1109/CASE49439.2021.9551648
– ident: e_1_3_5_48_1
  doi: 10.1109/CASE49997.2022.9926658
– ident: e_1_3_5_59_1
  doi: 10.1109/IROS.2004.1389727
– ident: e_1_3_5_49_1
  doi: 10.1177/0278364914546174
– ident: e_1_3_5_57_1
  doi: 10.1109/SFCS.1977.32
– ident: e_1_3_5_12_1
  doi: 10.1177/027836499000900204
– ident: e_1_3_5_9_1
  doi: 10.1109/MRA.2018.2879755
– ident: e_1_3_5_50_1
– volume-title: Transactions of Korean Nuclear Society
  year: 2019
  ident: e_1_3_5_28_1
– ident: e_1_3_5_31_1
  doi: 10.1016/S0004-3702(97)00043-X
– ident: e_1_3_5_32_1
  doi: 10.5120/169-295
– ident: e_1_3_5_3_1
  doi: 10.1016/j.apenergy.2018.03.002
– ident: e_1_3_5_36_1
  doi: 10.1145/582415.582418
– ident: e_1_3_5_7_1
  doi: 10.3389/fenrg.2021.663296
– ident: e_1_3_5_47_1
  doi: 10.1109/IROS.2018.8594404
– ident: e_1_3_5_2_1
  doi: 10.1016/j.net.2021.02.023
– ident: e_1_3_5_39_1
  doi: 10.1613/jair.4295
– ident: e_1_3_5_42_1
  doi: 10.1007/978-3-319-73008-018
– ident: e_1_3_5_56_1
  doi: 10.1609/aaai.v29i1.9670
– ident: e_1_3_5_4_1
  doi: 10.36001/ijphm.2015.v6i3.2271
– ident: e_1_3_5_26_1
  doi: 10.1016/j.asoc.2020.106874
– ident: e_1_3_5_51_1
  doi: 10.1016/j.robot.2016.10.008
– ident: e_1_3_5_30_1
  doi: 10.1145/2590748.2590755
– ident: e_1_3_5_52_1
– ident: e_1_3_5_23_1
  doi: 10.3389/fenrg.2021.696785
– ident: e_1_3_5_58_1
– ident: e_1_3_5_11_1
  doi: 10.1109/CARPI.2010.5624417
– ident: e_1_3_5_44_1
  doi: 10.1016/0377-2217(84)90077-8
– ident: e_1_3_5_41_1
  doi: 10.1109/IROS51168.2021.9636569
– volume-title: Trans. Am. Nucl. Soc.
  year: 2022
  ident: e_1_3_5_16_1
– ident: e_1_3_5_15_1
  doi: 10.1177/1687814018781286
– ident: e_1_3_5_35_1
  doi: 10.1145/1273496.1273513
– ident: e_1_3_5_20_1
  doi: 10.1016/j.pnucene.2010.12.001
– ident: e_1_3_5_27_1
  doi: 10.1016/j.asoc.2022.109792
– ident: e_1_3_5_45_1
  doi: 10.1109/ICRA.2017.7989094
– ident: e_1_3_5_17_1
  doi: 10.5772/57313
– ident: e_1_3_5_24_1
  doi: 10.1007/BF00344251
– ident: e_1_3_5_5_1
– ident: e_1_3_5_13_1
  doi: 10.1109/ICRA.2011.5979835
– ident: e_1_3_5_10_1
  doi: 10.1109/CARPI.2012.6473373
– ident: e_1_3_5_8_1
  doi: 10.12783/dtetr/ismii2017/16678
– ident: e_1_3_5_34_1
– ident: e_1_3_5_46_1
  doi: 10.1109/ICRA40945.2020.9197066
– ident: e_1_3_5_19_1
  doi: 10.1177/0278364913496484
– ident: e_1_3_5_14_1
  doi: 10.1109/ROBOT.1994.351292
– ident: e_1_3_5_40_1
– volume: 3
  start-page: 5
  volume-title: Proc. ICRA Workshop Open Source Software
  year: 2009
  ident: e_1_3_5_60_1
– ident: e_1_3_5_21_1
  doi: 10.13182/NT92-A34635
– volume: 25
  start-page: 3113
  year: 2012
  ident: e_1_3_5_25_1
  article-title: Imagenet Classification with Deep Convolutional Neural Networks
  publication-title: Adv. Neural Inf. Process Syst.
– ident: e_1_3_5_29_1
  doi: 10.1002/cem.1360
– ident: e_1_3_5_53_1
  doi: 10.1007/s10732-006-7071-x
– volume-title: Modern Information Retrieval
  year: 1999
  ident: e_1_3_5_37_1
– ident: e_1_3_5_38_1
  doi: 10.1145/3269206.3271784
– ident: e_1_3_5_6_1
  doi: 10.1016/j.nucengdes.2010.03.001
– ident: e_1_3_5_33_1
  doi: 10.1561/1500000016
– start-page: 303
  volume-title: Proc. 16th European Conf. Artificial Intelligence
  year: 2004
  ident: e_1_3_5_54_1
SSID ssj0026495
Score 2.403822
Snippet Current preventative maintenance paradigms in nuclear power plants carry several costly risks and challenges associated with component downtime and the need...
SourceID crossref
informaworld
SourceType Enrichment Source
Index Database
Publisher
StartPage 1292
SubjectTerms fault diagnosis
linear temporal logic
Multi-robot task planning
nuclear power plant operation
online monitoring
Title Preference-Based Multi-Robot Planning for Nuclear Power Plant Online Monitoring and Diagnostics
URI https://www.tandfonline.com/doi/abs/10.1080/00295639.2023.2239635
Volume 199
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBbbhEIvpU-aNik69LbI7MqSbB3TpGEpNISyoUsvRpLl0pLshkR7ya_PyJJlb7r0eTHGsmTQfJ4ZSTPfIPSOs8YoWOWQgtWUgMXnRIKbQWqtRTNRkkntT3Q_nYrZOfu44IvR6GoQtbR2OjO3W_NK_kWq8Azk6rNk_0KyaVB4APcgX7iChOH6RzI-S0VCyHuwRvW4Tacln1d65VI5ojaQ8NTTFqvr8ZkvitY2uXFgGY1_dUpWPA6xd66Lgv_R5eeGAbo0IP-q7bkM-y3Vm3XIm1GD4_3LEP-z_Hb5PT1NO9Un8c249UB5G_iWJ7DMf6oCMtS0VBIuAlFRZoNylSz33KWLDe0b6iNFmJUDXQqeCB3YZTC2cqvO74IkqfTfy3w9-AycHtAsvDdyKfQwtjxAu7Qo_MH-7uHs-OuXtEgXTPIuLMiP12V9eT72bZ_Y8Gc22G4Hfsr8CXocFxj4MKDlKRrZ5TP0sA30NTfPUXUfM3iAGdxhBsP4OIoct5hpmxwOmME9ZjAAAQ8w8wKdn3yYH81ILLJBDHj2jtScTpq6NjafghdjqWcwtODkqwlTtWcmUkKAVWsUePZTIQtdiMYIsAOskKKsef4S7SxXS_sKYWOVtuCQKlXmrOSlzm1eTISiDc21MmoPsW6qKhMZ6H0hlItqmohqwwxXfoarOMN7KEvdrgIFy-86yKEcKtfitAkQrfJf9n39H33foEf9X7KPdtz12h6Ay-r024iyO35fjn0
linkProvider Library Specific Holdings
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELWgCMGFHVFWH7i6SuMlyZGtKtBWFWql3iLbcS6gFpX0wtczEzdViwQcOEcTeZnMPDsz7xFyLUVuNZxyWCSykEHGlywBmMEyY1Qe6EQkBv_odnuqPRRPIzla6oXBsko8Q-eeKKKM1fhx42V0VRKHLdwA68s-k5A3IMGBF8l1siEBu6OX86C3OHQpkciqzANtqi6en16zkp9W2EuX8k5rl9hqxL7c5LUxK0zDfn4jc_zflPbIzhyW0hvvR_tkzY0PyGZZHmo_DknaX8iRsFvIexktG3fZy8RMCloJH1GYBe0hQbKe0j7Kr5WPCur5TKmPH3iRSGGg9N5X-SFP9BEZth4Gd202l2ZgFvBgwTIZBnmWWcebkPtciLx3DqChDoTOkM9GKwWxMNeAB5sqiUykcqsgeogoUXEm-TGpjSdjd0Koddo4gDFax1zEMjbc8ShQOsxDbrTVdSKqDUntnLcc5TPe0uaC3tSvXYprl87Xrk4aC7N3T9zxl0GyvNtpUd6Y5F7eJOW_2p7-w_aKbLUH3U7aeew9n5HtEPWFsSSFn5NaMZ25CwA9hbksvfoLTfPxFg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELWgCMSFHVFWH7i6SmPHSY5AqcoWVYhK3CKvF1BbtemFr2ccJ1WLBBx6jibyMpl5dt68Qeg6YlYJOOWQmOmQQMaPSAowg2gpuQ1EylLp_ui-ZLw3YI_vUc0mnFa0SneGtl4ooozV7uMea1sz4lwFN6D6sswkpC3Ib-BE0Tra4ABPHKuPBtn8zMVZGtUsD2dTF_H89pql9LQkXrqQdrq7SNYD9myTj9askC319UPLcaUZ7aGdCpTiG-9F-2jNDA_QZkkOVdNDlPfnzUjILWQ9jcuyXfI6kqMC122PMEwCZ04eWUxw3zVfKx8V2KuZYh893DUihnHijuf4OZXoIzTo3r_d9UjVmIEoQIMF0VEYWK2VoW3IfCZ0qncGgKEImNBOzUZwDpHQCkCDbZ7GMuZWcYgdLE55oiN6jBrD0dCcIKyMkAZAjBAJZUmUSGpoHHAR2pBKoUQTsXo_clWplrvmGZ95ey5u6tcud2uXV2vXRK252djLdvxnkC5udl6U9yXWNzfJ6Z-2pyvYXqGtfqebPz9kT2doO3TNhR0fhZ6jRjGZmQtAPIW8LH36G1H977o
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Preference-Based+Multi-Robot+Planning+for+Nuclear+Power+Plant+Online+Monitoring+and+Diagnostics&rft.jtitle=Nuclear+science+and+engineering&rft.au=Hesu%2C+Alan&rft.au=Kim%2C+Sungmin&rft.au=Zhang%2C+Fan&rft.date=2025-08-03&rft.pub=Taylor+%26+Francis&rft.issn=0029-5639&rft.eissn=1943-748X&rft.volume=199&rft.issue=8&rft.spage=1292&rft.epage=1309&rft_id=info:doi/10.1080%2F00295639.2023.2239635&rft.externalDocID=2239635
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-5639&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-5639&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-5639&client=summon