Mechanical interaction between a hydrogel and an embedded cell in biomicrofluidic applications

Thanks to their softness, biocompatibility, porosity, and ready availability, hydrogels are commonly used in microfluidic assays and organ-on-chip devices as a matrix for cells. They not only provide a supporting scaffold for the differentiating cells and the developing organoids, but also serve as...

Full description

Saved in:
Bibliographic Details
Published inBiomicrofluidics Vol. 19; no. 2; pp. 024104 - 24119
Main Authors Li, Lei, Zhang, Jiaqi, Yue, Pengtao, Feng, James J.
Format Journal Article
LanguageEnglish
Published United States American Institute of Physics 01.03.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Thanks to their softness, biocompatibility, porosity, and ready availability, hydrogels are commonly used in microfluidic assays and organ-on-chip devices as a matrix for cells. They not only provide a supporting scaffold for the differentiating cells and the developing organoids, but also serve as the medium for transmitting oxygen, nutrients, various chemical factors, and mechanical stimuli to the cells. From a bioengineering viewpoint, the transmission of forces from fluid perfusion to the cells through the hydrogel is critical to the proper function and development of the cell colony. In this paper, we develop a poroelastic model to represent the fluid flow through a hydrogel containing a biological cell modeled as a hyperelastic inclusion. In geometries representing shear and normal flows that occur frequently in microfluidic experiments, we use finite-element simulations to examine how the perfusion engenders interstitial flow in the gel and displaces and deforms the embedded cell. The results show that pressure is the most important stress component in moving and deforming the cell, and the model predicts the velocity in the gel and stress transmitted to the cell that is comparable to in vitro and in vivo data. This work provides a computational tool to design the geometry and flow conditions to achieve optimal flow and stress fields inside the hydrogels and around the cell.
AbstractList Thanks to their softness, biocompatibility, porosity, and ready availability, hydrogels are commonly used in microfluidic assays and organ-on-chip devices as a matrix for cells. They not only provide a supporting scaffold for the differentiating cells and the developing organoids, but also serve as the medium for transmitting oxygen, nutrients, various chemical factors, and mechanical stimuli to the cells. From a bioengineering viewpoint, the transmission of forces from fluid perfusion to the cells through the hydrogel is critical to the proper function and development of the cell colony. In this paper, we develop a poroelastic model to represent the fluid flow through a hydrogel containing a biological cell modeled as a hyperelastic inclusion. In geometries representing shear and normal flows that occur frequently in microfluidic experiments, we use finite-element simulations to examine how the perfusion engenders interstitial flow in the gel and displaces and deforms the embedded cell. The results show that pressure is the most important stress component in moving and deforming the cell, and the model predicts the velocity in the gel and stress transmitted to the cell that is comparable to in vitro and in vivo data. This work provides a computational tool to design the geometry and flow conditions to achieve optimal flow and stress fields inside the hydrogels and around the cell.
Thanks to their softness, biocompatibility, porosity, and ready availability, hydrogels are commonly used in microfluidic assays and organ-on-chip devices as a matrix for cells. They not only provide a supporting scaffold for the differentiating cells and the developing organoids, but also serve as the medium for transmitting oxygen, nutrients, various chemical factors, and mechanical stimuli to the cells. From a bioengineering viewpoint, the transmission of forces from fluid perfusion to the cells through the hydrogel is critical to the proper function and development of the cell colony. In this paper, we develop a poroelastic model to represent the fluid flow through a hydrogel containing a biological cell modeled as a hyperelastic inclusion. In geometries representing shear and normal flows that occur frequently in microfluidic experiments, we use finite-element simulations to examine how the perfusion engenders interstitial flow in the gel and displaces and deforms the embedded cell. The results show that pressure is the most important stress component in moving and deforming the cell, and the model predicts the velocity in the gel and stress transmitted to the cell that is comparable to and data. This work provides a computational tool to design the geometry and flow conditions to achieve optimal flow and stress fields inside the hydrogels and around the cell.
Thanks to their softness, biocompatibility, porosity, and ready availability, hydrogels are commonly used in microfluidic assays and organ-on-chip devices as a matrix for cells. They not only provide a supporting scaffold for the differentiating cells and the developing organoids, but also serve as the medium for transmitting oxygen, nutrients, various chemical factors, and mechanical stimuli to the cells. From a bioengineering viewpoint, the transmission of forces from fluid perfusion to the cells through the hydrogel is critical to the proper function and development of the cell colony. In this paper, we develop a poroelastic model to represent the fluid flow through a hydrogel containing a biological cell modeled as a hyperelastic inclusion. In geometries representing shear and normal flows that occur frequently in microfluidic experiments, we use finite-element simulations to examine how the perfusion engenders interstitial flow in the gel and displaces and deforms the embedded cell. The results show that pressure is the most important stress component in moving and deforming the cell, and the model predicts the velocity in the gel and stress transmitted to the cell that is comparable to in vitro and in vivo data. This work provides a computational tool to design the geometry and flow conditions to achieve optimal flow and stress fields inside the hydrogels and around the cell.Thanks to their softness, biocompatibility, porosity, and ready availability, hydrogels are commonly used in microfluidic assays and organ-on-chip devices as a matrix for cells. They not only provide a supporting scaffold for the differentiating cells and the developing organoids, but also serve as the medium for transmitting oxygen, nutrients, various chemical factors, and mechanical stimuli to the cells. From a bioengineering viewpoint, the transmission of forces from fluid perfusion to the cells through the hydrogel is critical to the proper function and development of the cell colony. In this paper, we develop a poroelastic model to represent the fluid flow through a hydrogel containing a biological cell modeled as a hyperelastic inclusion. In geometries representing shear and normal flows that occur frequently in microfluidic experiments, we use finite-element simulations to examine how the perfusion engenders interstitial flow in the gel and displaces and deforms the embedded cell. The results show that pressure is the most important stress component in moving and deforming the cell, and the model predicts the velocity in the gel and stress transmitted to the cell that is comparable to in vitro and in vivo data. This work provides a computational tool to design the geometry and flow conditions to achieve optimal flow and stress fields inside the hydrogels and around the cell.
Author Zhang, Jiaqi
Feng, James J.
Yue, Pengtao
Li, Lei
Author_xml – sequence: 1
  givenname: Lei
  surname: Li
  fullname: Li, Lei
  organization: Department of Chemical and Biological Engineering, University of British Columbia
– sequence: 2
  givenname: Jiaqi
  surname: Zhang
  fullname: Zhang, Jiaqi
  organization: 5Department of Mathematics, University of British Columbia, Vancouver, British Columbia V6T 1Z2, Canada
– sequence: 3
  givenname: Pengtao
  surname: Yue
  fullname: Yue, Pengtao
  organization: Department of Mathematics
– sequence: 4
  givenname: James J.
  surname: Feng
  fullname: Feng, James J.
  organization: 5Department of Mathematics, University of British Columbia, Vancouver, British Columbia V6T 1Z2, Canada
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40190650$$D View this record in MEDLINE/PubMed
BookMark eNp90ctKxDAUBuAginPRhS8gATcqdEzSNm2XMniDETe6teRy6mRok7FpkXl7U2cUceEiJIQvPyfnTNC-dRYQOqFkRgmPr9IZYTyOk2QPjWkRs4iSNN__dR6hifcrQlKaMXaIRgmhBeEpGaPXR1BLYY0SNTa2g1aozjiLJXQfABYLvNzo1r1BjYXVYWFoJGgNGiuohzdYGtcY1bqq7o02Cov1ug55Q4w_QgeVqD0c7_Yperm9eZ7fR4unu4f59SJSMSVdpEKiyLlKCgGgOQedJ4mEcM0yKmUKXDKSKSKyKo8LXhWJ0KmiLBxUxqoqnqLzbe66de89-K5sjB8KFBZc78uY5hmjlPM00LM_dOX61obqBsUTyjihQZ3uVC8b0OW6NY1oN-V35wK42ILwc-9bqH4IJeUwlTItd1MJ9nJrvTLdV2P-wZ-A8ovu
CODEN BIOMGB
Cites_doi 10.1039/D4SM00476K
10.1039/c0sm00434k
10.1515/jnma-2023-0089
10.1002/bit.22361
10.1021/acsbiomaterials.0c00457
10.1016/j.jbiomech.2004.11.006
10.1002/bit.27119
10.1016/S0894-9166(12)60039-1
10.1103/PhysRevFluids.7.093301
10.1007/s00018-024-05272-6
10.1242/jcs.260985
10.1021/acsomega.7b00602
10.1016/j.jhepr.2023.100905
10.1016/0301-9322(83)90018-6
10.1038/s41598-022-22439-y
10.1016/j.jmps.2021.104771
10.1073/pnas.1417115112
10.1016/j.jss.2011.07.007
10.3390/polym10090997
10.1063/1.5027054
10.1002/advs.202300670
10.1002/app.34778
10.3389/fcell.2022.947430
10.1039/c3lc41393d
10.1146/annurev.bioeng.9.060906.151927
10.1039/C7BM00261K
10.1039/C6LC01374K
10.1039/D4SM00424H
10.1016/j.jbiomech.2021.110898
10.1111/febs.16938
10.1007/s10517-016-3430-2
10.1016/j.jcp.2021.110851
10.1002/adma.202110267
10.1002/adma.201902042
10.3390/molecules27092902
10.1016/j.cocis.2020.02.001
10.1073/pnas.1103581108
10.1063/1.3576932
10.1146/annurev.bioeng.9.060906.151850
10.1016/j.bbagen.2016.06.010
10.1103/PhysRevFluids.4.063601
10.1038/s41378-018-0037-y
10.3390/cells13010096
10.1016/j.ces.2023.118959
10.1016/j.biomaterials.2019.119521
10.1089/ten.teb.2009.0639
10.1186/s12915-022-01266-7
10.1017/S0022112000002160
10.1038/s44222-023-00063-3
10.1016/j.jmps.2012.07.010
10.1038/s41598-021-85786-2
10.1016/j.biomaterials.2011.04.066
10.1038/nrc1456
10.1039/D4SM00678J
10.1073/pnas.1922364117
10.1073/pnas.0712353105
10.1016/j.jmps.2007.11.010
10.1186/s13287-022-03070-0
10.1101/cshperspect.a005058
10.3233/SPR-2012-0355
10.1103/PhysRevFluids.5.124304
10.3390/ijms222212200
10.3390/mi10070451
10.1016/j.copbio.2015.05.002
10.3390/pharmaceutics11080407
10.1038/s41378-020-00201-6
10.4061/2011/620247
10.1016/j.ejpb.2020.05.020
10.1063/1.4991738
10.1103/PhysRevApplied.6.064010
ContentType Journal Article
Copyright Author(s)
2025 Author(s).
2025 Author(s). Published under an exclusive license by AIP Publishing.
Copyright_xml – notice: Author(s)
– notice: 2025 Author(s).
– notice: 2025 Author(s). Published under an exclusive license by AIP Publishing.
DBID AAYXX
CITATION
NPM
8FD
H8D
L7M
7X8
DOI 10.1063/5.0263344
DatabaseName CrossRef
PubMed
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitleList CrossRef
PubMed

MEDLINE - Academic
Technology Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1932-1058
ExternalDocumentID 40190650
10_1063_5_0263344
bmf
Genre Journal Article
GrantInformation_xml – fundername: Natural Sciences and Engineering Research Council of Canada
  grantid: 2019-04162
  funderid: 10.13039/501100000038
– fundername: Guangdong Provincial Key Laboratory of IRADS
  grantid: 2022B1212010006
– fundername: Division of Mathematical Sciences
  grantid: 2309732
  funderid: 10.13039/100000121
– fundername: Natural Sciences and Engineering Research Council of Canada
  grantid: 2024-03982
  funderid: 10.13039/501100000038
– fundername: Division of Mathematical Sciences
  grantid: 2012480
  funderid: 10.13039/100000121
– fundername: Guangdong Basic and Applied Basic Research Foundation
  grantid: 2023A1515110861
– fundername: Natural Science Foundation of China
  grantid: 12401511
– fundername: Natural Sciences and Engineering Research Council of Canada
  grantid: 586462-23
  funderid: 10.13039/501100000038
GroupedDBID 1UP
2-P
23N
2WC
4.4
53G
5GY
5VS
6J9
AAAAW
AABDS
AAKDD
AAPUP
AAYIH
ABFTF
ABJGX
ABJNI
ACBRY
ACGFO
ACGFS
ACZLF
ADBBV
ADCTM
ADMLS
AEGXH
AEJMO
AENEX
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AIAGR
AJJCW
ALEPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AQWKA
ATXIE
AWQPM
BAWUL
BPZLN
C1A
CS3
DU5
E3Z
EBS
EJD
F5P
FDOHQ
FFFMQ
GX1
HYE
M71
OK1
P2P
RIP
RNS
RPM
RQS
TR2
AAGWI
AAYXX
CITATION
OVT
NPM
8FD
H8D
L7M
7X8
ID FETCH-LOGICAL-c310t-cedda86c49aeed66ed844beced271bb5e6b207c0a7f8396f94ad5c12f94c72ff3
ISSN 1932-1058
IngestDate Wed Jul 02 05:16:23 EDT 2025
Wed Aug 13 03:49:20 EDT 2025
Thu Jul 10 06:33:05 EDT 2025
Tue Jul 01 05:14:38 EDT 2025
Sat Apr 05 04:00:20 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License Published under an exclusive license by AIP Publishing.
2025 Author(s).
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c310t-cedda86c49aeed66ed844beced271bb5e6b207c0a7f8396f94ad5c12f94c72ff3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8343-846X
0000-0002-7141-5823
PMID 40190650
PQID 3186412601
PQPubID 2050670
PageCount 16
ParticipantIDs pubmed_primary_40190650
scitation_primary_10_1063_5_0263344
proquest_journals_3186412601
crossref_primary_10_1063_5_0263344
proquest_miscellaneous_3187211665
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20250300
2025-03-01
2025-Mar
20250301
PublicationDateYYYYMMDD 2025-03-01
PublicationDate_xml – month: 03
  year: 2025
  text: 20250300
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Melville
PublicationTitle Biomicrofluidics
PublicationTitleAlternate Biomicrofluidics
PublicationYear 2025
Publisher American Institute of Physics
Publisher_xml – name: American Institute of Physics
References Alasaadi, Mayor (c66) 2024
Haber, Mauri (c54) 1983
Xu, Yue, Feng (c73) 2024
Trickeya, Baaijens, Laursen, Alexopoulos, Guilak (c72) 2006
Li, Wu, Hu, Zhou, Shu, Zhang, Zhang, Wu, Du, Lü, Lü, Li, Long (c53) 2023
Jeon, Bersini, Gilardi, Dubini, Charest, Moretti, Kamm (c3) 2015
Rahman, Xiao, Zhao, Qu, Chang, Wei, Ho (c59) 2018
Shou, Teo, Wu, Bai, Kumar, Low, Le, Tay (c17) 2023
Li, Zhang, Xu, Young, Feng, Yue (c35) 2022
Sornkamnerd, Okajima, Kaneko (c76) 2017
Celora, Hennessy, Münch, Wagner, Waters (c34) 2022
Chaudhuri (c20) 2017
Lu, Takai, Weaver, Werb (c64) 2011
Clancy, Chen, Bruns, Nadella, Stealey, Zhang, Timperman, Zustiak (c8) 2022
Heroux, Willenbring (c48) 2012
Zhang, Zhang, Wang (c57) 2022
Du, Li, Yang, Luo, Gong, Tong, Gao, Lü, Long (c52) 2017
Janmey, McCulloch (c63) 2007
Cuccia, Pothineni, Wu, Méndez Harper, Burton (c69) 2020
Tibbitt, Anseth (c2) 2009
Caccavo, Lamberti, Barba (c32) 2020
Hong, Zhao, Zhou, Suo (c29) 2008
Xu, Yue, Feng (c40) 2024
Mierke (c18) 2024
Agha, Ogawa, Pietramaggiori, Orgill (c67) 2011
Franchi, Piperigkou, Mastronikolis, Karamanos (c65) 2024
Löwa, Feng, Hedtrich (c14) 2023
Semenova, Petrov, Gerasimenko, Aleksandrova, Burmistrova, Khutornenko, Osipyants, Poloznikov, Sakharov (c51) 2016
Xu, Zhang, Young, Yue, Feng (c39) 2022
Habanjar, Diab-Assaf, Caldefie-Chezet, Delort (c7) 2021
Polacheck, Li, Uzel, Kamm (c37) 2013
Liu, Wang, Cui, Guo, Zhang, Qin (c5) 2019
Lucantonio, Nardinocchi, Teresi (c30) 2013
Akbari, Spychalski, Rangharajan, Prakash, Song (c23) 2019
Luo, Kuang, Zhang, Song (c43) 2016
Delon, Guo, Oszmiana, Chien, Gibson, Prestidge, Thierry (c24) 2019
Brindley, Moorthy, Lee, Mason, Kim, Wall (c26) 2011
Feng, Young (c38) 2020
Swartz, Fleury (c16) 2007
Hu, Suo (c31) 2012
Chiu, Cheng, Engel, Kao, Larson, Gupta, Brey (c74) 2011
Bachmann, Spitz, Rothbauer, Jordan, Purtscher, Zirath, Schuller, Eilenberger, Ali, Mühleder, Priglinger, Harasek, Redl, Holnthoner, Ertl (c42) 2018
De Piano, Caccavo, Barba, Lamberti (c28) 2023
James, Davis (c77) 2001
Ho, Chang, Chan, Chung, Shu, Chuang, Duh, Yang, Tyan (c1) 2022
van Duinen, Trietsch, Joore, Vulto, Hankemeier (c4) 2015
Dadgar, Gonzalez-Suarez, Fattahi, Hou, Weroha, Gaspar-Maia, Stybayeva, Revzin (c6) 2020
Fattahi, Rahimian, Slama, Gwon, Gonzalez-Suarez, Wolf, Baskaran, Duffy, Stybayeva, Peterson (c13) 2021
Arndt, Bangerth, Bergbauer, Feder, Fehling, Heinz, Heister, Heltai, Kronbichler, Maier, Munch, Pelteret, Turcksin, Wells, Zampini (c45) 2023
Salerno, Borzacchiello, Netti (c75) 2011
Heldin, Rubin, Pietras, Östman (c15) 2004
Young, Mori, Miksis (c71) 2019
Dreiss (c11) 2020
Trombino, Servidio, Curcio, Cassano (c10) 2019
Zhang, Habibovic (c62) 2022
Polacheck, Charest, Kamm (c41) 2011
Novak, Horst, Taylor, Liu, Mehta (c22) 2019
Chang, Chang, Lee, Lee, Yeh, Yeh, Cheng, Chien, Chiu (c19) 2008
Annabi, Nichol, Zhong, Ji, Koshy, Khademhosseini, Dehghani (c68) 2010
Hope, Dombroski, Pereles, Lopez-Cavestany, Greenlee, Schwager, Reinhart-King, King (c25) 2022
Bertrand, Peixinho, Mukhopadhyay, MacMinn (c33) 2016
Xu, Yue, Feng (c36) 2024
Chan, Simmonds, Fraser, Igarashi, Ki, Murashige, Joseph, Fraser, Tansley, Watanabe (c60) 2022
Park, White, Walker, Kuo, Cha, Meyerhoff, Takayama (c56) 2011
Kang, Lee, Huh, Takayama (c12) 2020
Friedland, Babu, Springer, Konrad, Herfs, Gerlach, Gehlen, Krause, De Laporte, Merkel, Noetzel (c27) 2022
Mina, Huang, Murray, Mahler (c21) 2017
Espina, Cordeiro, Milivojevic, Pajić-Lijaković, Barriga (c58) 2023
Yoon, Cai, Suo, Hayward (c70) 2010
Dafni, Israely, Bhujwalla, Benjamin, Neeman (c61) 2002
Choe, Park, Park, Lee (c9) 2018
(2025040414261232700_c66) 2024; 81
(2025040414261232700_c8) 2022; 12
(2025040414261232700_c18) 2024; 13
(2025040414261232700_c29) 2008; 56
(2025040414261232700_c52) 2017; 17
(2025040414261232700_c24) 2019; 225
(2025040414261232700_c11) 2020; 48
(2025040414261232700_c58) 2023; 136
(2025040414261232700_c62) 2022; 34
(2025040414261232700_c57) 2022; 13
(2025040414261232700_c10) 2019; 11
(2025040414261232700_c70) 2010; 6
(2025040414261232700_c56) 2011; 5
(2025040414261232700_c71) 2019; 4
(2025040414261232700_c15) 2004; 4
(2025040414261232700_c51) 2016; 161
(2025040414261232700_c27) 2022; 10
(2025040414261232700_c74) 2011; 32
(2025040414261232700_c35) 2022; 451
(2025040414261232700_c76) 2017; 2
(2025040414261232700_c9) 2018; 10
(2025040414261232700_c55) 2004
(2025040414261232700_c69) 2020; 117
(2025040414261232700_c75) 2011; 122
(2025040414261232700_c38) 2020; 5
(2025040414261232700_c48) 2012; 20
(2025040414261232700_c54) 1983; 9
(2025040414261232700_c21) 2017; 11
(2025040414261232700_c41) 2011; 108
(2025040414261232700_c2) 2009; 103
(2025040414261232700_c16) 2007; 9
(2025040414261232700_c32) 2020; 152
(2025040414261232700_c1) 2022; 27
2025040414261232700_c50
(2025040414261232700_c45) 2023; 31
(2025040414261232700_c3) 2015; 112
(2025040414261232700_c40) 2024; 20
(2025040414261232700_c28) 2023; 279
(2025040414261232700_c4) 2015; 35
(2025040414261232700_c36) 2024; 20
(2025040414261232700_c42) 2018; 12
(2025040414261232700_c63) 2007; 9
(2025040414261232700_c20) 2017; 5
(2025040414261232700_c33) 2016; 6
2025040414261232700_c49
(2025040414261232700_c53) 2023; 5
(2025040414261232700_c64) 2011; 3
(2025040414261232700_c61) 2002; 62
(2025040414261232700_c43) 2016; 1860
(2025040414261232700_c72) 2006; 39
(2025040414261232700_c25) 2022; 20
2025040414261232700_c44
(2025040414261232700_c22) 2019; 116
(2025040414261232700_c23) 2019; 10
(2025040414261232700_c17) 2023; 10
(2025040414261232700_c19) 2008; 105
2025040414261232700_c47
(2025040414261232700_c13) 2021; 11
2025040414261232700_c46
(2025040414261232700_c68) 2010; 16
(2025040414261232700_c34) 2022; 160
(2025040414261232700_c5) 2019; 31
(2025040414261232700_c77) 2001; 426
(2025040414261232700_c37) 2013; 13
(2025040414261232700_c31) 2012; 25
(2025040414261232700_c26) 2011; 2011
(2025040414261232700_c73) 2024; 20
(2025040414261232700_c6) 2020; 6
(2025040414261232700_c60) 2022; 130
(2025040414261232700_c12) 2020; 7
(2025040414261232700_c59) 2018; 4
(2025040414261232700_c67) 2011; 171
(2025040414261232700_c7) 2021; 22
(2025040414261232700_c30) 2013; 61
(2025040414261232700_c65) 2024; 291
(2025040414261232700_c39) 2022; 7
(2025040414261232700_c14) 2023; 1
References_xml – start-page: 39
  year: 2018
  ident: c59
  article-title: Demarcating the membrane damage for the extraction of functional mitochondria
  publication-title: Microsyst. Nanoeng.
– start-page: 371
  year: 2010
  ident: c68
  article-title: Controlling the porosity and microarchitecture of hydrogels for tissue engineering
  publication-title: Tissue Eng., Part B
– start-page: 12200
  year: 2021
  ident: c7
  article-title: 3D cell culture systems: Tumor application, advantages, and disadvantages
  publication-title: Int. J. Mol. Sci.
– start-page: 104771
  year: 2022
  ident: c34
  article-title: A kinetic model of a polyelectrolyte gel undergoing phase separation
  publication-title: J. Mech. Phys. Solids
– start-page: 229
  year: 2007
  ident: c16
  article-title: Interstitial flow and its effects in soft tissues
  publication-title: Annu. Rev. Biomed. Eng.
– start-page: 7357
  year: 2024
  ident: c40
  article-title: Estimating the interfacial permeability for flow into a poroelastic medium
  publication-title: Soft Matter
– start-page: 11247
  year: 2020
  ident: c69
  article-title: Pore-size dependence and slow relaxation of hydrogel friction on smooth surfaces
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– start-page: 61
  year: 2022
  ident: c25
  article-title: Fluid shear stress enhances T cell activation through Piezo1
  publication-title: BMC Biol.
– start-page: 806
  year: 2004
  ident: c15
  article-title: High interstitial fluid pressure—An obstacle in cancer therapy
  publication-title: Nat. Rev. Cancer
– start-page: 2110267
  year: 2022
  ident: c62
  article-title: Delivering mechanical stimulation to cells: State of the art in materials and devices design
  publication-title: Adv. Mater.
– start-page: 214
  year: 2015
  ident: c3
  article-title: Human 3D vascularized organotypic microfluidic assays to study breast cancer cell extravasation
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– start-page: 044104
  year: 2017
  ident: c21
  article-title: The role of shear stress and altered tissue properties on endothelial to mesenchymal transformation and tumor-endothelial cell interaction
  publication-title: Biomicrofluidics
– start-page: 451
  year: 2019
  ident: c23
  article-title: Competing fluid forces control endothelial sprouting in a 3-D microfluidic vessel bifurcation model
  publication-title: Micromachines
– start-page: 299
  year: 2020
  ident: c32
  article-title: Mechanics and drug release from poroviscoelastic hydrogels: Experiments and modeling
  publication-title: Eur. J. Pharm. Biopharm.
– start-page: 093301
  year: 2022
  ident: c39
  article-title: A comparison of four boundary conditions for the fluid-hydrogel interface
  publication-title: Phys. Rev. Fluids
– start-page: 1
  year: 2020
  ident: c11
  article-title: Hydrogel design strategies for drug delivery
  publication-title: Curr. Opin. Colloid Interface Sci.
– start-page: 110898
  year: 2022
  ident: c60
  article-title: Discrete responses of erythrocytes, platelets, and von Willebrand factor to shear
  publication-title: J. Biomech.
– start-page: 17781
  year: 2022
  ident: c8
  article-title: Hydrogel-based microfluidic device with multiplexed 3D in vitro cell culture
  publication-title: Sci. Rep.
– start-page: 124304
  year: 2020
  ident: c38
  article-title: Boundary conditions at a gel-fluid interface
  publication-title: Phys. Rev. Fluids
– start-page: 782
  year: 2017
  ident: c52
  article-title: Mimicking liver sinusoidal structures and functions using a 3d-configured microfluidic chip
  publication-title: Lab Chip
– start-page: 231
  year: 2023
  ident: c45
  article-title: The deal.II library, version 9.5
  publication-title: J. Numer. Math.
– start-page: 3927
  year: 2008
  ident: c19
  article-title: Tumor cell cycle arrest induced by shear stress: Roles of integrins and Smad
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– start-page: 96
  year: 2024
  ident: c18
  article-title: Extracellular matrix cues regulate mechanosensing and mechanotransduction of cancer cells
  publication-title: Cells
– start-page: 3651
  year: 2011
  ident: c75
  article-title: Pore structure and swelling behavior of porous hydrogels prepared via a thermal reverse-casting technique
  publication-title: J. Appl. Polym. Sci.
– start-page: a005058
  year: 2011
  ident: c64
  article-title: Extracellular matrix degradation and remodeling in development and disease
  publication-title: Cold Spring Harb. Perspect. Biol.
– start-page: 3084
  year: 2019
  ident: c22
  article-title: Fluid shear stress stimulates breast cancer cells to display invasive and chemoresistant phenotypes while upregulating PLAU in a 3D bioreactor
  publication-title: Biotechnol. Bioeng.
– start-page: 064010
  year: 2016
  ident: c33
  article-title: Dynamics of swelling and drying in a spherical gel
  publication-title: Phys. Rev. Appl.
– start-page: 93
  year: 2020
  ident: c6
  article-title: A microfluidic platform for cultivating ovarian cancer spheroids and testing their responses to chemotherapies
  publication-title: Microsyst. Nanoeng.
– start-page: 2252
  year: 2013
  ident: c37
  article-title: Microfluidic platforms for mechanobiology
  publication-title: Lab Chip
– start-page: 2902
  year: 2022
  ident: c1
  article-title: Hydrogels: Properties and applications in biomedicine
  publication-title: Molecules
– start-page: 110851
  year: 2022
  ident: c35
  article-title: An arbitrary Lagrangian–Eulerian method for simulating interfacial dynamics between a hydrogel and a fluid
  publication-title: J. Comput. Phys.
– start-page: 100905
  year: 2023
  ident: c53
  article-title: Direct mechanical exposure initiates hepatocyte proliferation
  publication-title: JHEP Rep.
– start-page: 997
  year: 2018
  ident: c9
  article-title: Hydrogel biomaterials for stem cell microencapsulation
  publication-title: Polymers
– start-page: 1902042
  year: 2019
  ident: c5
  article-title: Advances in hydrogels in organoids and organs-on-a-chip
  publication-title: Adv. Mater.
– start-page: 242
  year: 2024
  ident: c66
  article-title: Mechanically guided cell fate determination in early development
  publication-title: Cell. Mol. Life Sci.
– start-page: 6731
  year: 2002
  ident: c61
  article-title: Overexpression of vascular endothelial growth factor 165 drives peritumor interstitial convection and induces lymphatic drain: Magnetic resonance imaging, confocal microscopy, and histological tracking of triple-labeled albumin
  publication-title: Cancer Res.
– start-page: 441
  year: 2012
  ident: c31
  article-title: Viscoelasticity and poroelasticity in elastomeric gels
  publication-title: Acta Mech. Sol. Sin.
– start-page: 6004
  year: 2010
  ident: c70
  article-title: Poroelastic swelling kinetics of thin hydrogel layers: Comparison of theory and experiment
  publication-title: Soft Matter
– start-page: 415
  year: 2022
  ident: c57
  article-title: How the mechanical microenvironment of stem cell growth affects their differentiation: A review
  publication-title: Stem Cell Res. Ther.
– start-page: 118
  year: 2015
  ident: c4
  article-title: Microfluidic 3D cell culture: From tools to tissue models
  publication-title: Curr. Opin. Biotechnol.
– start-page: 700
  year: 2011
  ident: c67
  article-title: A review of the role of mechanical forces in cutaneous wound healing
  publication-title: J. Surg. Res.
– start-page: 118959
  year: 2023
  ident: c28
  article-title: Polyelectrolyte hydrogels in biological systems: Modeling of swelling and deswelling behavior
  publication-title: Chem. Eng. Sci.
– start-page: 1953
  year: 2016
  ident: c43
  article-title: Cell stiffness determined by atomic force microscopy and its correlation with cell motility
  publication-title: Biochim. Biophys. Acta, Gen. Subj.
– start-page: 83
  year: 2012
  ident: c48
  article-title: A new overview of the Trilinos project
  publication-title: Sci. Program.
– start-page: 407
  year: 2019
  ident: c10
  article-title: Strategies for hyaluronic acid-based hydrogel design in drug delivery
  publication-title: Pharmaceutics
– start-page: 7177
  year: 2021
  ident: c13
  article-title: Core–shell hydrogel microcapsules enable formation of human pluripotent stem cell spheroids and their cultivation in a stirred bioreactor
  publication-title: Sci. Rep.
– start-page: 425
  year: 2016
  ident: c51
  article-title: Effect of circulation parameters on functional status of HepaRG spheroids cultured in microbioreactor
  publication-title: Bull. Exp. Biol. Med.
– start-page: 5389
  year: 2024
  ident: c36
  article-title: A theory of hydrogel mechanics that couples swelling and external flow
  publication-title: Soft Matter
– start-page: jcs260985
  year: 2023
  ident: c58
  article-title: Response of cells and tissues to shear stress
  publication-title: J. Cell Sci.
– start-page: 78
  year: 2006
  ident: c72
  article-title: Determination of the Poisson’s ratio of the cell: Recovery properties of chondrocytes after release from complete micropipette aspiration
  publication-title: J. Biomech.
– start-page: 655
  year: 2009
  ident: c2
  article-title: Hydrogels as extracellular matrix mimics for 3D cell culture
  publication-title: Biotechnol. Bioeng.
– start-page: 022211
  year: 2011
  ident: c56
  article-title: Responses of endothelial cells to extremely slow flows
  publication-title: Biomicrofluidics
– start-page: 119521
  year: 2019
  ident: c24
  article-title: A systematic investigation of the effect of the fluid shear stress on Caco-2 cells towards the optimization of epithelial organ-on-chip models
  publication-title: Biomaterials
– start-page: 205
  year: 2013
  ident: c30
  article-title: Transient analysis of swelling-induced large deformations in polymer gels
  publication-title: J. Mech. Phys. Solids
– start-page: 620247
  year: 2011
  ident: c26
  article-title: Bioprocess forces and their impact on cell behavior: Implications for bone regeneration therapy
  publication-title: J. Tissue Eng.
– start-page: 5304
  year: 2017
  ident: c76
  article-title: Tough and porous hydrogels prepared by simple lyophilization of LC gels
  publication-title: ACS Omega
– start-page: 47
  year: 2001
  ident: c77
  article-title: Flow at the interface of a model fibrous porous medium
  publication-title: J. Fluid Mech.
– start-page: 2864
  year: 2020
  ident: c12
  article-title: Alginate microencapsulation for three-dimensional in vitro cell culture
  publication-title: ACS Biomater. Sci. Eng.
– start-page: 11115
  year: 2011
  ident: c41
  article-title: Interstitial flow influences direction of tumor cell migration through competing mechanisms
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– start-page: 430
  year: 2024
  ident: c65
  article-title: Extracellular matrix biomechanical roles and adaptation in health and disease
  publication-title: FEBS J.
– start-page: 561
  year: 1983
  ident: c54
  article-title: Boundary conditions for Darcy’s flow through porous media
  publication-title: Int. J. Multiphase Flow
– start-page: 6940
  year: 2024
  ident: c73
  article-title: Hystereses in flow-induced compression of a poroelastic hydrogel
  publication-title: Soft Matter
– start-page: 1779
  year: 2008
  ident: c29
  article-title: A theory of coupled diffusion and large deformation in polymeric gels
  publication-title: J. Mech. Phys. Solids
– start-page: 063601
  year: 2019
  ident: c71
  article-title: Slightly deformable Darcy drop in linear flows
  publication-title: Phys. Rev. Fluids
– start-page: 2300670
  year: 2023
  ident: c17
  article-title: Dynamic stimulations with bioengineered extracellular matrix-mimicking hydrogels for mechano cell reprogramming and therapy
  publication-title: Adv. Sci.
– start-page: 1
  year: 2007
  ident: c63
  article-title: Cell mechanics: Integrating cell responses to mechanical stimuli
  publication-title: Annu. Rev. Biomed. Eng.
– start-page: 1480
  year: 2017
  ident: c20
  article-title: Viscoelastic hydrogels for 3D cell culture
  publication-title: Biomater. Sci.
– start-page: 042216
  year: 2018
  ident: c42
  article-title: Engineering of three-dimensional pre-vascular networks within fibrin hydrogel constructs by microfluidic control over reciprocal cell signaling
  publication-title: Biomicrofluidics
– start-page: 6045
  year: 2011
  ident: c74
  article-title: The role of pore size on vascularization and tissue remodeling in PEG hydrogels
  publication-title: Biomaterials
– start-page: 545
  year: 2023
  ident: c14
  article-title: Human disease models in drug development
  publication-title: Nat. Rev. Bioeng.
– start-page: 947430
  year: 2022
  ident: c27
  article-title: ECM-transmitted shear stress induces apoptotic cell extrusion in early breast gland development
  publication-title: Front. Cell Dev. Biol.
– volume: 20
  start-page: 7357
  year: 2024
  ident: 2025040414261232700_c40
  article-title: Estimating the interfacial permeability for flow into a poroelastic medium
  publication-title: Soft Matter
  doi: 10.1039/D4SM00476K
– volume: 6
  start-page: 6004
  issue: 23
  year: 2010
  ident: 2025040414261232700_c70
  article-title: Poroelastic swelling kinetics of thin hydrogel layers: Comparison of theory and experiment
  publication-title: Soft Matter
  doi: 10.1039/c0sm00434k
– volume: 31
  start-page: 231
  issue: 3
  year: 2023
  ident: 2025040414261232700_c45
  article-title: The deal.II library, version 9.5
  publication-title: J. Numer. Math.
  doi: 10.1515/jnma-2023-0089
– volume: 103
  start-page: 655
  issue: 4
  year: 2009
  ident: 2025040414261232700_c2
  article-title: Hydrogels as extracellular matrix mimics for 3D cell culture
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.22361
– volume: 7
  start-page: 2864
  issue: 7
  year: 2020
  ident: 2025040414261232700_c12
  article-title: Alginate microencapsulation for three-dimensional in vitro cell culture
  publication-title: ACS Biomater. Sci. Eng.
  doi: 10.1021/acsbiomaterials.0c00457
– volume: 39
  start-page: 78
  year: 2006
  ident: 2025040414261232700_c72
  article-title: Determination of the Poisson’s ratio of the cell: Recovery properties of chondrocytes after release from complete micropipette aspiration
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2004.11.006
– volume: 116
  start-page: 3084
  issue: 11
  year: 2019
  ident: 2025040414261232700_c22
  article-title: Fluid shear stress stimulates breast cancer cells to display invasive and chemoresistant phenotypes while upregulating PLAU in a 3D bioreactor
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.27119
– volume: 25
  start-page: 441
  issue: 5
  year: 2012
  ident: 2025040414261232700_c31
  article-title: Viscoelasticity and poroelasticity in elastomeric gels
  publication-title: Acta Mech. Sol. Sin.
  doi: 10.1016/S0894-9166(12)60039-1
– volume: 7
  start-page: 093301
  year: 2022
  ident: 2025040414261232700_c39
  article-title: A comparison of four boundary conditions for the fluid-hydrogel interface
  publication-title: Phys. Rev. Fluids
  doi: 10.1103/PhysRevFluids.7.093301
– volume: 81
  start-page: 242
  year: 2024
  ident: 2025040414261232700_c66
  article-title: Mechanically guided cell fate determination in early development
  publication-title: Cell. Mol. Life Sci.
  doi: 10.1007/s00018-024-05272-6
– volume: 136
  start-page: jcs260985
  issue: 18
  year: 2023
  ident: 2025040414261232700_c58
  article-title: Response of cells and tissues to shear stress
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.260985
– volume: 2
  start-page: 5304
  issue: 8
  year: 2017
  ident: 2025040414261232700_c76
  article-title: Tough and porous hydrogels prepared by simple lyophilization of LC gels
  publication-title: ACS Omega
  doi: 10.1021/acsomega.7b00602
– volume: 5
  start-page: 100905
  year: 2023
  ident: 2025040414261232700_c53
  article-title: Direct mechanical exposure initiates hepatocyte proliferation
  publication-title: JHEP Rep.
  doi: 10.1016/j.jhepr.2023.100905
– volume: 9
  start-page: 561
  year: 1983
  ident: 2025040414261232700_c54
  article-title: Boundary conditions for Darcy’s flow through porous media
  publication-title: Int. J. Multiphase Flow
  doi: 10.1016/0301-9322(83)90018-6
– volume: 12
  start-page: 17781
  issue: 1
  year: 2022
  ident: 2025040414261232700_c8
  article-title: Hydrogel-based microfluidic device with multiplexed 3D in vitro cell culture
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-22439-y
– volume: 160
  start-page: 104771
  year: 2022
  ident: 2025040414261232700_c34
  article-title: A kinetic model of a polyelectrolyte gel undergoing phase separation
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/j.jmps.2021.104771
– volume: 112
  start-page: 214
  issue: 1
  year: 2015
  ident: 2025040414261232700_c3
  article-title: Human 3D vascularized organotypic microfluidic assays to study breast cancer cell extravasation
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1417115112
– volume: 171
  start-page: 700
  issue: 2
  year: 2011
  ident: 2025040414261232700_c67
  article-title: A review of the role of mechanical forces in cutaneous wound healing
  publication-title: J. Surg. Res.
  doi: 10.1016/j.jss.2011.07.007
– volume: 10
  start-page: 997
  issue: 9
  year: 2018
  ident: 2025040414261232700_c9
  article-title: Hydrogel biomaterials for stem cell microencapsulation
  publication-title: Polymers
  doi: 10.3390/polym10090997
– volume: 12
  start-page: 042216
  issue: 4
  year: 2018
  ident: 2025040414261232700_c42
  article-title: Engineering of three-dimensional pre-vascular networks within fibrin hydrogel constructs by microfluidic control over reciprocal cell signaling
  publication-title: Biomicrofluidics
  doi: 10.1063/1.5027054
– ident: 2025040414261232700_c46
– volume: 10
  start-page: 2300670
  issue: 21
  year: 2023
  ident: 2025040414261232700_c17
  article-title: Dynamic stimulations with bioengineered extracellular matrix-mimicking hydrogels for mechano cell reprogramming and therapy
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202300670
– volume: 62
  start-page: 6731
  year: 2002
  ident: 2025040414261232700_c61
  article-title: Overexpression of vascular endothelial growth factor 165 drives peritumor interstitial convection and induces lymphatic drain: Magnetic resonance imaging, confocal microscopy, and histological tracking of triple-labeled albumin
  publication-title: Cancer Res.
– volume: 122
  start-page: 3651
  year: 2011
  ident: 2025040414261232700_c75
  article-title: Pore structure and swelling behavior of porous hydrogels prepared via a thermal reverse-casting technique
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.34778
– volume: 10
  start-page: 947430
  year: 2022
  ident: 2025040414261232700_c27
  article-title: ECM-transmitted shear stress induces apoptotic cell extrusion in early breast gland development
  publication-title: Front. Cell Dev. Biol.
  doi: 10.3389/fcell.2022.947430
– volume: 13
  start-page: 2252
  year: 2013
  ident: 2025040414261232700_c37
  article-title: Microfluidic platforms for mechanobiology
  publication-title: Lab Chip
  doi: 10.1039/c3lc41393d
– volume: 9
  start-page: 1
  year: 2007
  ident: 2025040414261232700_c63
  article-title: Cell mechanics: Integrating cell responses to mechanical stimuli
  publication-title: Annu. Rev. Biomed. Eng.
  doi: 10.1146/annurev.bioeng.9.060906.151927
– volume: 5
  start-page: 1480
  issue: 8
  year: 2017
  ident: 2025040414261232700_c20
  article-title: Viscoelastic hydrogels for 3D cell culture
  publication-title: Biomater. Sci.
  doi: 10.1039/C7BM00261K
– volume: 17
  start-page: 782
  year: 2017
  ident: 2025040414261232700_c52
  article-title: Mimicking liver sinusoidal structures and functions using a 3d-configured microfluidic chip
  publication-title: Lab Chip
  doi: 10.1039/C6LC01374K
– volume: 20
  start-page: 5389
  year: 2024
  ident: 2025040414261232700_c36
  article-title: A theory of hydrogel mechanics that couples swelling and external flow
  publication-title: Soft Matter
  doi: 10.1039/D4SM00424H
– volume: 130
  start-page: 110898
  year: 2022
  ident: 2025040414261232700_c60
  article-title: Discrete responses of erythrocytes, platelets, and von Willebrand factor to shear
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2021.110898
– volume: 291
  start-page: 430
  issue: 3
  year: 2024
  ident: 2025040414261232700_c65
  article-title: Extracellular matrix biomechanical roles and adaptation in health and disease
  publication-title: FEBS J.
  doi: 10.1111/febs.16938
– volume: 161
  start-page: 425
  year: 2016
  ident: 2025040414261232700_c51
  article-title: Effect of circulation parameters on functional status of HepaRG spheroids cultured in microbioreactor
  publication-title: Bull. Exp. Biol. Med.
  doi: 10.1007/s10517-016-3430-2
– volume: 451
  start-page: 110851
  year: 2022
  ident: 2025040414261232700_c35
  article-title: An arbitrary Lagrangian–Eulerian method for simulating interfacial dynamics between a hydrogel and a fluid
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2021.110851
– ident: 2025040414261232700_c47
– volume: 34
  start-page: 2110267
  issue: 32
  year: 2022
  ident: 2025040414261232700_c62
  article-title: Delivering mechanical stimulation to cells: State of the art in materials and devices design
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202110267
– volume: 31
  start-page: 1902042
  issue: 50
  year: 2019
  ident: 2025040414261232700_c5
  article-title: Advances in hydrogels in organoids and organs-on-a-chip
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201902042
– volume: 27
  start-page: 2902
  issue: 9
  year: 2022
  ident: 2025040414261232700_c1
  article-title: Hydrogels: Properties and applications in biomedicine
  publication-title: Molecules
  doi: 10.3390/molecules27092902
– volume: 48
  start-page: 1
  year: 2020
  ident: 2025040414261232700_c11
  article-title: Hydrogel design strategies for drug delivery
  publication-title: Curr. Opin. Colloid Interface Sci.
  doi: 10.1016/j.cocis.2020.02.001
– volume: 108
  start-page: 11115
  issue: 27
  year: 2011
  ident: 2025040414261232700_c41
  article-title: Interstitial flow influences direction of tumor cell migration through competing mechanisms
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1103581108
– volume: 5
  start-page: 022211
  issue: 2
  year: 2011
  ident: 2025040414261232700_c56
  article-title: Responses of endothelial cells to extremely slow flows
  publication-title: Biomicrofluidics
  doi: 10.1063/1.3576932
– volume: 9
  start-page: 229
  year: 2007
  ident: 2025040414261232700_c16
  article-title: Interstitial flow and its effects in soft tissues
  publication-title: Annu. Rev. Biomed. Eng.
  doi: 10.1146/annurev.bioeng.9.060906.151850
– volume: 1860
  start-page: 1953
  issue: 9
  year: 2016
  ident: 2025040414261232700_c43
  article-title: Cell stiffness determined by atomic force microscopy and its correlation with cell motility
  publication-title: Biochim. Biophys. Acta, Gen. Subj.
  doi: 10.1016/j.bbagen.2016.06.010
– volume: 4
  start-page: 063601
  year: 2019
  ident: 2025040414261232700_c71
  article-title: Slightly deformable Darcy drop in linear flows
  publication-title: Phys. Rev. Fluids
  doi: 10.1103/PhysRevFluids.4.063601
– volume: 4
  start-page: 39
  year: 2018
  ident: 2025040414261232700_c59
  article-title: Demarcating the membrane damage for the extraction of functional mitochondria
  publication-title: Microsyst. Nanoeng.
  doi: 10.1038/s41378-018-0037-y
– volume: 13
  start-page: 96
  year: 2024
  ident: 2025040414261232700_c18
  article-title: Extracellular matrix cues regulate mechanosensing and mechanotransduction of cancer cells
  publication-title: Cells
  doi: 10.3390/cells13010096
– volume: 279
  start-page: 118959
  year: 2023
  ident: 2025040414261232700_c28
  article-title: Polyelectrolyte hydrogels in biological systems: Modeling of swelling and deswelling behavior
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2023.118959
– volume: 225
  start-page: 119521
  year: 2019
  ident: 2025040414261232700_c24
  article-title: A systematic investigation of the effect of the fluid shear stress on Caco-2 cells towards the optimization of epithelial organ-on-chip models
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2019.119521
– ident: 2025040414261232700_c50
– volume: 16
  start-page: 371
  issue: 4
  year: 2010
  ident: 2025040414261232700_c68
  article-title: Controlling the porosity and microarchitecture of hydrogels for tissue engineering
  publication-title: Tissue Eng., Part B
  doi: 10.1089/ten.teb.2009.0639
– volume: 20
  start-page: 61
  issue: 1
  year: 2022
  ident: 2025040414261232700_c25
  article-title: Fluid shear stress enhances T cell activation through Piezo1
  publication-title: BMC Biol.
  doi: 10.1186/s12915-022-01266-7
– volume: 426
  start-page: 47
  year: 2001
  ident: 2025040414261232700_c77
  article-title: Flow at the interface of a model fibrous porous medium
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112000002160
– volume: 1
  start-page: 545
  year: 2023
  ident: 2025040414261232700_c14
  article-title: Human disease models in drug development
  publication-title: Nat. Rev. Bioeng.
  doi: 10.1038/s44222-023-00063-3
– volume: 61
  start-page: 205
  issue: 1
  year: 2013
  ident: 2025040414261232700_c30
  article-title: Transient analysis of swelling-induced large deformations in polymer gels
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/j.jmps.2012.07.010
– ident: 2025040414261232700_c44
– volume: 11
  start-page: 7177
  issue: 1
  year: 2021
  ident: 2025040414261232700_c13
  article-title: Core–shell hydrogel microcapsules enable formation of human pluripotent stem cell spheroids and their cultivation in a stirred bioreactor
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-85786-2
– volume: 32
  start-page: 6045
  issue: 26
  year: 2011
  ident: 2025040414261232700_c74
  article-title: The role of pore size on vascularization and tissue remodeling in PEG hydrogels
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2011.04.066
– volume: 4
  start-page: 806
  issue: 10
  year: 2004
  ident: 2025040414261232700_c15
  article-title: High interstitial fluid pressure—An obstacle in cancer therapy
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc1456
– volume: 20
  start-page: 6940
  year: 2024
  ident: 2025040414261232700_c73
  article-title: Hystereses in flow-induced compression of a poroelastic hydrogel
  publication-title: Soft Matter
  doi: 10.1039/D4SM00678J
– volume: 117
  start-page: 11247
  issue: 21
  year: 2020
  ident: 2025040414261232700_c69
  article-title: Pore-size dependence and slow relaxation of hydrogel friction on smooth surfaces
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1922364117
– volume: 105
  start-page: 3927
  issue: 10
  year: 2008
  ident: 2025040414261232700_c19
  article-title: Tumor cell cycle arrest induced by shear stress: Roles of integrins and Smad
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0712353105
– volume: 56
  start-page: 1779
  issue: 5
  year: 2008
  ident: 2025040414261232700_c29
  article-title: A theory of coupled diffusion and large deformation in polymeric gels
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/j.jmps.2007.11.010
– volume: 13
  start-page: 415
  year: 2022
  ident: 2025040414261232700_c57
  article-title: How the mechanical microenvironment of stem cell growth affects their differentiation: A review
  publication-title: Stem Cell Res. Ther.
  doi: 10.1186/s13287-022-03070-0
– volume: 3
  start-page: a005058
  issue: 12
  year: 2011
  ident: 2025040414261232700_c64
  article-title: Extracellular matrix degradation and remodeling in development and disease
  publication-title: Cold Spring Harb. Perspect. Biol.
  doi: 10.1101/cshperspect.a005058
– volume: 20
  start-page: 83
  issue: 2
  year: 2012
  ident: 2025040414261232700_c48
  article-title: A new overview of the Trilinos project
  publication-title: Sci. Program.
  doi: 10.3233/SPR-2012-0355
– volume: 5
  start-page: 124304
  issue: 12
  year: 2020
  ident: 2025040414261232700_c38
  article-title: Boundary conditions at a gel-fluid interface
  publication-title: Phys. Rev. Fluids
  doi: 10.1103/PhysRevFluids.5.124304
– volume: 22
  start-page: 12200
  issue: 22
  year: 2021
  ident: 2025040414261232700_c7
  article-title: 3D cell culture systems: Tumor application, advantages, and disadvantages
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms222212200
– volume: 10
  start-page: 451
  issue: 7
  year: 2019
  ident: 2025040414261232700_c23
  article-title: Competing fluid forces control endothelial sprouting in a 3-D microfluidic vessel bifurcation model
  publication-title: Micromachines
  doi: 10.3390/mi10070451
– volume: 35
  start-page: 118
  year: 2015
  ident: 2025040414261232700_c4
  article-title: Microfluidic 3D cell culture: From tools to tissue models
  publication-title: Curr. Opin. Biotechnol.
  doi: 10.1016/j.copbio.2015.05.002
– ident: 2025040414261232700_c49
– volume: 11
  start-page: 407
  issue: 8
  year: 2019
  ident: 2025040414261232700_c10
  article-title: Strategies for hyaluronic acid-based hydrogel design in drug delivery
  publication-title: Pharmaceutics
  doi: 10.3390/pharmaceutics11080407
– volume-title: Poromechanics
  year: 2004
  ident: 2025040414261232700_c55
– volume: 6
  start-page: 93
  issue: 1
  year: 2020
  ident: 2025040414261232700_c6
  article-title: A microfluidic platform for cultivating ovarian cancer spheroids and testing their responses to chemotherapies
  publication-title: Microsyst. Nanoeng.
  doi: 10.1038/s41378-020-00201-6
– volume: 2011
  start-page: 620247
  year: 2011
  ident: 2025040414261232700_c26
  article-title: Bioprocess forces and their impact on cell behavior: Implications for bone regeneration therapy
  publication-title: J. Tissue Eng.
  doi: 10.4061/2011/620247
– volume: 152
  start-page: 299
  year: 2020
  ident: 2025040414261232700_c32
  article-title: Mechanics and drug release from poroviscoelastic hydrogels: Experiments and modeling
  publication-title: Eur. J. Pharm. Biopharm.
  doi: 10.1016/j.ejpb.2020.05.020
– volume: 11
  start-page: 044104
  issue: 4
  year: 2017
  ident: 2025040414261232700_c21
  article-title: The role of shear stress and altered tissue properties on endothelial to mesenchymal transformation and tumor-endothelial cell interaction
  publication-title: Biomicrofluidics
  doi: 10.1063/1.4991738
– volume: 6
  start-page: 064010
  year: 2016
  ident: 2025040414261232700_c33
  article-title: Dynamics of swelling and drying in a spherical gel
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/PhysRevApplied.6.064010
SSID ssj0051722
Score 2.3624103
Snippet Thanks to their softness, biocompatibility, porosity, and ready availability, hydrogels are commonly used in microfluidic assays and organ-on-chip devices as a...
SourceID proquest
pubmed
crossref
scitation
SourceType Aggregation Database
Index Database
Publisher
StartPage 024104
SubjectTerms Biocompatibility
Bioengineering
Deformation
Fluid flow
Hydrogels
Microfluidics
Nutrients
Softness
Software
Stress distribution
Title Mechanical interaction between a hydrogel and an embedded cell in biomicrofluidic applications
URI http://dx.doi.org/10.1063/5.0263344
https://www.ncbi.nlm.nih.gov/pubmed/40190650
https://www.proquest.com/docview/3186412601
https://www.proquest.com/docview/3187211665
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD6C8QB7QNwJDGQub1XG6lvaR4Q2JtQNHlqpT0S244xJI0UlfYBfz-fcmsBAwEOiyE2c9HzO8WfnnM9EL9ELKZ3kLjZ6bGLJeRbbqZCxskLwSY5eNguJwien-ngh3y3VcrvaW5VdUtp99_3SvJL_QRVlwDVkyf4Dsl2lKMAx8MUeCGP_Vxif-JC3W5k5yD6sm3W_29grM_r0LVuvzvxFI8k68p-th6fJRmG-Pkx1hOz7EJKXX2zOsyDd2vuePfjeOzyvI-KzOrnan3feY-NHH3xxVppVf0KBq21EVS-G3xTDaIUqHrWp3deuEswPTrwWXu986bTXZvilLhqcCHZV-xj8CVFrPw5lsE_fp0eL2SydHy7nV-kaB_8PS1O8XXaxOwqsi7cyUVq86iobkotfRgy7dB28og5x6LGI-S262dB_9rrG8jZd8cUd2u2JQt6lj1tUWQ9V1qDKDGtRZUAVG2tRZQFVXMN-QpX1Ub1Hi6PD-ZvjuFkFI3ag3mXsUIOZaCenBnxGa59NpMSb5zOejK1VXlt-kLgDk-QguzqfSpMpN-Y4cAnPc3GfdopV4R8SswLFPFegeFI6k2As6TX4L-de4S4uouet-dIvtdhJWgUpaJGqtLFxRHutYdPmXfiaomfQchzk6SJ61v0MTxX-uCn8alOdE6YbtFYRPagB6e4ig6QBBgsRvegQ-v0jPPrzIzymG9t2vUc75Xrjn4A6lvZp1Yx-AG5gdJE
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanical+interaction+between+a+hydrogel+and+an+embedded+cell+in+biomicrofluidic+applications&rft.jtitle=Biomicrofluidics&rft.au=Li%2C+Lei&rft.au=Yue+Pengtao&rft.date=2025-03-01&rft.pub=American+Institute+of+Physics&rft.eissn=1932-1058&rft.volume=19&rft.issue=2&rft_id=info:doi/10.1063%2F5.0263344&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-1058&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-1058&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-1058&client=summon