Mechanical interaction between a hydrogel and an embedded cell in biomicrofluidic applications
Thanks to their softness, biocompatibility, porosity, and ready availability, hydrogels are commonly used in microfluidic assays and organ-on-chip devices as a matrix for cells. They not only provide a supporting scaffold for the differentiating cells and the developing organoids, but also serve as...
Saved in:
Published in | Biomicrofluidics Vol. 19; no. 2; pp. 024104 - 24119 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Institute of Physics
01.03.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Thanks to their softness, biocompatibility, porosity, and ready availability, hydrogels are commonly used in microfluidic assays and organ-on-chip devices as a matrix for cells. They not only provide a supporting scaffold for the differentiating cells and the developing organoids, but also serve as the medium for transmitting oxygen, nutrients, various chemical factors, and mechanical stimuli to the cells. From a bioengineering viewpoint, the transmission of forces from fluid perfusion to the cells through the hydrogel is critical to the proper function and development of the cell colony. In this paper, we develop a poroelastic model to represent the fluid flow through a hydrogel containing a biological cell modeled as a hyperelastic inclusion. In geometries representing shear and normal flows that occur frequently in microfluidic experiments, we use finite-element simulations to examine how the perfusion engenders interstitial flow in the gel and displaces and deforms the embedded cell. The results show that pressure is the most important stress component in moving and deforming the cell, and the model predicts the velocity in the gel and stress transmitted to the cell that is comparable to in vitro and in vivo data. This work provides a computational tool to design the geometry and flow conditions to achieve optimal flow and stress fields inside the hydrogels and around the cell. |
---|---|
AbstractList | Thanks to their softness, biocompatibility, porosity, and ready availability, hydrogels are commonly used in microfluidic assays and organ-on-chip devices as a matrix for cells. They not only provide a supporting scaffold for the differentiating cells and the developing organoids, but also serve as the medium for transmitting oxygen, nutrients, various chemical factors, and mechanical stimuli to the cells. From a bioengineering viewpoint, the transmission of forces from fluid perfusion to the cells through the hydrogel is critical to the proper function and development of the cell colony. In this paper, we develop a poroelastic model to represent the fluid flow through a hydrogel containing a biological cell modeled as a hyperelastic inclusion. In geometries representing shear and normal flows that occur frequently in microfluidic experiments, we use finite-element simulations to examine how the perfusion engenders interstitial flow in the gel and displaces and deforms the embedded cell. The results show that pressure is the most important stress component in moving and deforming the cell, and the model predicts the velocity in the gel and stress transmitted to the cell that is comparable to in vitro and in vivo data. This work provides a computational tool to design the geometry and flow conditions to achieve optimal flow and stress fields inside the hydrogels and around the cell. Thanks to their softness, biocompatibility, porosity, and ready availability, hydrogels are commonly used in microfluidic assays and organ-on-chip devices as a matrix for cells. They not only provide a supporting scaffold for the differentiating cells and the developing organoids, but also serve as the medium for transmitting oxygen, nutrients, various chemical factors, and mechanical stimuli to the cells. From a bioengineering viewpoint, the transmission of forces from fluid perfusion to the cells through the hydrogel is critical to the proper function and development of the cell colony. In this paper, we develop a poroelastic model to represent the fluid flow through a hydrogel containing a biological cell modeled as a hyperelastic inclusion. In geometries representing shear and normal flows that occur frequently in microfluidic experiments, we use finite-element simulations to examine how the perfusion engenders interstitial flow in the gel and displaces and deforms the embedded cell. The results show that pressure is the most important stress component in moving and deforming the cell, and the model predicts the velocity in the gel and stress transmitted to the cell that is comparable to and data. This work provides a computational tool to design the geometry and flow conditions to achieve optimal flow and stress fields inside the hydrogels and around the cell. Thanks to their softness, biocompatibility, porosity, and ready availability, hydrogels are commonly used in microfluidic assays and organ-on-chip devices as a matrix for cells. They not only provide a supporting scaffold for the differentiating cells and the developing organoids, but also serve as the medium for transmitting oxygen, nutrients, various chemical factors, and mechanical stimuli to the cells. From a bioengineering viewpoint, the transmission of forces from fluid perfusion to the cells through the hydrogel is critical to the proper function and development of the cell colony. In this paper, we develop a poroelastic model to represent the fluid flow through a hydrogel containing a biological cell modeled as a hyperelastic inclusion. In geometries representing shear and normal flows that occur frequently in microfluidic experiments, we use finite-element simulations to examine how the perfusion engenders interstitial flow in the gel and displaces and deforms the embedded cell. The results show that pressure is the most important stress component in moving and deforming the cell, and the model predicts the velocity in the gel and stress transmitted to the cell that is comparable to in vitro and in vivo data. This work provides a computational tool to design the geometry and flow conditions to achieve optimal flow and stress fields inside the hydrogels and around the cell.Thanks to their softness, biocompatibility, porosity, and ready availability, hydrogels are commonly used in microfluidic assays and organ-on-chip devices as a matrix for cells. They not only provide a supporting scaffold for the differentiating cells and the developing organoids, but also serve as the medium for transmitting oxygen, nutrients, various chemical factors, and mechanical stimuli to the cells. From a bioengineering viewpoint, the transmission of forces from fluid perfusion to the cells through the hydrogel is critical to the proper function and development of the cell colony. In this paper, we develop a poroelastic model to represent the fluid flow through a hydrogel containing a biological cell modeled as a hyperelastic inclusion. In geometries representing shear and normal flows that occur frequently in microfluidic experiments, we use finite-element simulations to examine how the perfusion engenders interstitial flow in the gel and displaces and deforms the embedded cell. The results show that pressure is the most important stress component in moving and deforming the cell, and the model predicts the velocity in the gel and stress transmitted to the cell that is comparable to in vitro and in vivo data. This work provides a computational tool to design the geometry and flow conditions to achieve optimal flow and stress fields inside the hydrogels and around the cell. |
Author | Zhang, Jiaqi Feng, James J. Yue, Pengtao Li, Lei |
Author_xml | – sequence: 1 givenname: Lei surname: Li fullname: Li, Lei organization: Department of Chemical and Biological Engineering, University of British Columbia – sequence: 2 givenname: Jiaqi surname: Zhang fullname: Zhang, Jiaqi organization: 5Department of Mathematics, University of British Columbia, Vancouver, British Columbia V6T 1Z2, Canada – sequence: 3 givenname: Pengtao surname: Yue fullname: Yue, Pengtao organization: Department of Mathematics – sequence: 4 givenname: James J. surname: Feng fullname: Feng, James J. organization: 5Department of Mathematics, University of British Columbia, Vancouver, British Columbia V6T 1Z2, Canada |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40190650$$D View this record in MEDLINE/PubMed |
BookMark | eNp90ctKxDAUBuAginPRhS8gATcqdEzSNm2XMniDETe6teRy6mRok7FpkXl7U2cUceEiJIQvPyfnTNC-dRYQOqFkRgmPr9IZYTyOk2QPjWkRs4iSNN__dR6hifcrQlKaMXaIRgmhBeEpGaPXR1BLYY0SNTa2g1aozjiLJXQfABYLvNzo1r1BjYXVYWFoJGgNGiuohzdYGtcY1bqq7o02Cov1ug55Q4w_QgeVqD0c7_Yperm9eZ7fR4unu4f59SJSMSVdpEKiyLlKCgGgOQedJ4mEcM0yKmUKXDKSKSKyKo8LXhWJ0KmiLBxUxqoqnqLzbe66de89-K5sjB8KFBZc78uY5hmjlPM00LM_dOX61obqBsUTyjihQZ3uVC8b0OW6NY1oN-V35wK42ILwc-9bqH4IJeUwlTItd1MJ9nJrvTLdV2P-wZ-A8ovu |
CODEN | BIOMGB |
Cites_doi | 10.1039/D4SM00476K 10.1039/c0sm00434k 10.1515/jnma-2023-0089 10.1002/bit.22361 10.1021/acsbiomaterials.0c00457 10.1016/j.jbiomech.2004.11.006 10.1002/bit.27119 10.1016/S0894-9166(12)60039-1 10.1103/PhysRevFluids.7.093301 10.1007/s00018-024-05272-6 10.1242/jcs.260985 10.1021/acsomega.7b00602 10.1016/j.jhepr.2023.100905 10.1016/0301-9322(83)90018-6 10.1038/s41598-022-22439-y 10.1016/j.jmps.2021.104771 10.1073/pnas.1417115112 10.1016/j.jss.2011.07.007 10.3390/polym10090997 10.1063/1.5027054 10.1002/advs.202300670 10.1002/app.34778 10.3389/fcell.2022.947430 10.1039/c3lc41393d 10.1146/annurev.bioeng.9.060906.151927 10.1039/C7BM00261K 10.1039/C6LC01374K 10.1039/D4SM00424H 10.1016/j.jbiomech.2021.110898 10.1111/febs.16938 10.1007/s10517-016-3430-2 10.1016/j.jcp.2021.110851 10.1002/adma.202110267 10.1002/adma.201902042 10.3390/molecules27092902 10.1016/j.cocis.2020.02.001 10.1073/pnas.1103581108 10.1063/1.3576932 10.1146/annurev.bioeng.9.060906.151850 10.1016/j.bbagen.2016.06.010 10.1103/PhysRevFluids.4.063601 10.1038/s41378-018-0037-y 10.3390/cells13010096 10.1016/j.ces.2023.118959 10.1016/j.biomaterials.2019.119521 10.1089/ten.teb.2009.0639 10.1186/s12915-022-01266-7 10.1017/S0022112000002160 10.1038/s44222-023-00063-3 10.1016/j.jmps.2012.07.010 10.1038/s41598-021-85786-2 10.1016/j.biomaterials.2011.04.066 10.1038/nrc1456 10.1039/D4SM00678J 10.1073/pnas.1922364117 10.1073/pnas.0712353105 10.1016/j.jmps.2007.11.010 10.1186/s13287-022-03070-0 10.1101/cshperspect.a005058 10.3233/SPR-2012-0355 10.1103/PhysRevFluids.5.124304 10.3390/ijms222212200 10.3390/mi10070451 10.1016/j.copbio.2015.05.002 10.3390/pharmaceutics11080407 10.1038/s41378-020-00201-6 10.4061/2011/620247 10.1016/j.ejpb.2020.05.020 10.1063/1.4991738 10.1103/PhysRevApplied.6.064010 |
ContentType | Journal Article |
Copyright | Author(s) 2025 Author(s). 2025 Author(s). Published under an exclusive license by AIP Publishing. |
Copyright_xml | – notice: Author(s) – notice: 2025 Author(s). – notice: 2025 Author(s). Published under an exclusive license by AIP Publishing. |
DBID | AAYXX CITATION NPM 8FD H8D L7M 7X8 |
DOI | 10.1063/5.0263344 |
DatabaseName | CrossRef PubMed Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitleList | CrossRef PubMed MEDLINE - Academic Technology Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1932-1058 |
ExternalDocumentID | 40190650 10_1063_5_0263344 bmf |
Genre | Journal Article |
GrantInformation_xml | – fundername: Natural Sciences and Engineering Research Council of Canada grantid: 2019-04162 funderid: 10.13039/501100000038 – fundername: Guangdong Provincial Key Laboratory of IRADS grantid: 2022B1212010006 – fundername: Division of Mathematical Sciences grantid: 2309732 funderid: 10.13039/100000121 – fundername: Natural Sciences and Engineering Research Council of Canada grantid: 2024-03982 funderid: 10.13039/501100000038 – fundername: Division of Mathematical Sciences grantid: 2012480 funderid: 10.13039/100000121 – fundername: Guangdong Basic and Applied Basic Research Foundation grantid: 2023A1515110861 – fundername: Natural Science Foundation of China grantid: 12401511 – fundername: Natural Sciences and Engineering Research Council of Canada grantid: 586462-23 funderid: 10.13039/501100000038 |
GroupedDBID | 1UP 2-P 23N 2WC 4.4 53G 5GY 5VS 6J9 AAAAW AABDS AAKDD AAPUP AAYIH ABFTF ABJGX ABJNI ACBRY ACGFO ACGFS ACZLF ADBBV ADCTM ADMLS AEGXH AEJMO AENEX AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AIAGR AJJCW ALEPV ALMA_UNASSIGNED_HOLDINGS AOIJS AQWKA ATXIE AWQPM BAWUL BPZLN C1A CS3 DU5 E3Z EBS EJD F5P FDOHQ FFFMQ GX1 HYE M71 OK1 P2P RIP RNS RPM RQS TR2 AAGWI AAYXX CITATION OVT NPM 8FD H8D L7M 7X8 |
ID | FETCH-LOGICAL-c310t-cedda86c49aeed66ed844beced271bb5e6b207c0a7f8396f94ad5c12f94c72ff3 |
ISSN | 1932-1058 |
IngestDate | Wed Jul 02 05:16:23 EDT 2025 Wed Aug 13 03:49:20 EDT 2025 Thu Jul 10 06:33:05 EDT 2025 Tue Jul 01 05:14:38 EDT 2025 Sat Apr 05 04:00:20 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | Published under an exclusive license by AIP Publishing. 2025 Author(s). |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c310t-cedda86c49aeed66ed844beced271bb5e6b207c0a7f8396f94ad5c12f94c72ff3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-8343-846X 0000-0002-7141-5823 |
PMID | 40190650 |
PQID | 3186412601 |
PQPubID | 2050670 |
PageCount | 16 |
ParticipantIDs | pubmed_primary_40190650 scitation_primary_10_1063_5_0263344 proquest_journals_3186412601 crossref_primary_10_1063_5_0263344 proquest_miscellaneous_3187211665 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20250300 2025-03-01 2025-Mar 20250301 |
PublicationDateYYYYMMDD | 2025-03-01 |
PublicationDate_xml | – month: 03 year: 2025 text: 20250300 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Melville |
PublicationTitle | Biomicrofluidics |
PublicationTitleAlternate | Biomicrofluidics |
PublicationYear | 2025 |
Publisher | American Institute of Physics |
Publisher_xml | – name: American Institute of Physics |
References | Alasaadi, Mayor (c66) 2024 Haber, Mauri (c54) 1983 Xu, Yue, Feng (c73) 2024 Trickeya, Baaijens, Laursen, Alexopoulos, Guilak (c72) 2006 Li, Wu, Hu, Zhou, Shu, Zhang, Zhang, Wu, Du, Lü, Lü, Li, Long (c53) 2023 Jeon, Bersini, Gilardi, Dubini, Charest, Moretti, Kamm (c3) 2015 Rahman, Xiao, Zhao, Qu, Chang, Wei, Ho (c59) 2018 Shou, Teo, Wu, Bai, Kumar, Low, Le, Tay (c17) 2023 Li, Zhang, Xu, Young, Feng, Yue (c35) 2022 Sornkamnerd, Okajima, Kaneko (c76) 2017 Celora, Hennessy, Münch, Wagner, Waters (c34) 2022 Chaudhuri (c20) 2017 Lu, Takai, Weaver, Werb (c64) 2011 Clancy, Chen, Bruns, Nadella, Stealey, Zhang, Timperman, Zustiak (c8) 2022 Heroux, Willenbring (c48) 2012 Zhang, Zhang, Wang (c57) 2022 Du, Li, Yang, Luo, Gong, Tong, Gao, Lü, Long (c52) 2017 Janmey, McCulloch (c63) 2007 Cuccia, Pothineni, Wu, Méndez Harper, Burton (c69) 2020 Tibbitt, Anseth (c2) 2009 Caccavo, Lamberti, Barba (c32) 2020 Hong, Zhao, Zhou, Suo (c29) 2008 Xu, Yue, Feng (c40) 2024 Mierke (c18) 2024 Agha, Ogawa, Pietramaggiori, Orgill (c67) 2011 Franchi, Piperigkou, Mastronikolis, Karamanos (c65) 2024 Löwa, Feng, Hedtrich (c14) 2023 Semenova, Petrov, Gerasimenko, Aleksandrova, Burmistrova, Khutornenko, Osipyants, Poloznikov, Sakharov (c51) 2016 Xu, Zhang, Young, Yue, Feng (c39) 2022 Habanjar, Diab-Assaf, Caldefie-Chezet, Delort (c7) 2021 Polacheck, Li, Uzel, Kamm (c37) 2013 Liu, Wang, Cui, Guo, Zhang, Qin (c5) 2019 Lucantonio, Nardinocchi, Teresi (c30) 2013 Akbari, Spychalski, Rangharajan, Prakash, Song (c23) 2019 Luo, Kuang, Zhang, Song (c43) 2016 Delon, Guo, Oszmiana, Chien, Gibson, Prestidge, Thierry (c24) 2019 Brindley, Moorthy, Lee, Mason, Kim, Wall (c26) 2011 Feng, Young (c38) 2020 Swartz, Fleury (c16) 2007 Hu, Suo (c31) 2012 Chiu, Cheng, Engel, Kao, Larson, Gupta, Brey (c74) 2011 Bachmann, Spitz, Rothbauer, Jordan, Purtscher, Zirath, Schuller, Eilenberger, Ali, Mühleder, Priglinger, Harasek, Redl, Holnthoner, Ertl (c42) 2018 De Piano, Caccavo, Barba, Lamberti (c28) 2023 James, Davis (c77) 2001 Ho, Chang, Chan, Chung, Shu, Chuang, Duh, Yang, Tyan (c1) 2022 van Duinen, Trietsch, Joore, Vulto, Hankemeier (c4) 2015 Dadgar, Gonzalez-Suarez, Fattahi, Hou, Weroha, Gaspar-Maia, Stybayeva, Revzin (c6) 2020 Fattahi, Rahimian, Slama, Gwon, Gonzalez-Suarez, Wolf, Baskaran, Duffy, Stybayeva, Peterson (c13) 2021 Arndt, Bangerth, Bergbauer, Feder, Fehling, Heinz, Heister, Heltai, Kronbichler, Maier, Munch, Pelteret, Turcksin, Wells, Zampini (c45) 2023 Salerno, Borzacchiello, Netti (c75) 2011 Heldin, Rubin, Pietras, Östman (c15) 2004 Young, Mori, Miksis (c71) 2019 Dreiss (c11) 2020 Trombino, Servidio, Curcio, Cassano (c10) 2019 Zhang, Habibovic (c62) 2022 Polacheck, Charest, Kamm (c41) 2011 Novak, Horst, Taylor, Liu, Mehta (c22) 2019 Chang, Chang, Lee, Lee, Yeh, Yeh, Cheng, Chien, Chiu (c19) 2008 Annabi, Nichol, Zhong, Ji, Koshy, Khademhosseini, Dehghani (c68) 2010 Hope, Dombroski, Pereles, Lopez-Cavestany, Greenlee, Schwager, Reinhart-King, King (c25) 2022 Bertrand, Peixinho, Mukhopadhyay, MacMinn (c33) 2016 Xu, Yue, Feng (c36) 2024 Chan, Simmonds, Fraser, Igarashi, Ki, Murashige, Joseph, Fraser, Tansley, Watanabe (c60) 2022 Park, White, Walker, Kuo, Cha, Meyerhoff, Takayama (c56) 2011 Kang, Lee, Huh, Takayama (c12) 2020 Friedland, Babu, Springer, Konrad, Herfs, Gerlach, Gehlen, Krause, De Laporte, Merkel, Noetzel (c27) 2022 Mina, Huang, Murray, Mahler (c21) 2017 Espina, Cordeiro, Milivojevic, Pajić-Lijaković, Barriga (c58) 2023 Yoon, Cai, Suo, Hayward (c70) 2010 Dafni, Israely, Bhujwalla, Benjamin, Neeman (c61) 2002 Choe, Park, Park, Lee (c9) 2018 (2025040414261232700_c66) 2024; 81 (2025040414261232700_c8) 2022; 12 (2025040414261232700_c18) 2024; 13 (2025040414261232700_c29) 2008; 56 (2025040414261232700_c52) 2017; 17 (2025040414261232700_c24) 2019; 225 (2025040414261232700_c11) 2020; 48 (2025040414261232700_c58) 2023; 136 (2025040414261232700_c62) 2022; 34 (2025040414261232700_c57) 2022; 13 (2025040414261232700_c10) 2019; 11 (2025040414261232700_c70) 2010; 6 (2025040414261232700_c56) 2011; 5 (2025040414261232700_c71) 2019; 4 (2025040414261232700_c15) 2004; 4 (2025040414261232700_c51) 2016; 161 (2025040414261232700_c27) 2022; 10 (2025040414261232700_c74) 2011; 32 (2025040414261232700_c35) 2022; 451 (2025040414261232700_c76) 2017; 2 (2025040414261232700_c9) 2018; 10 (2025040414261232700_c55) 2004 (2025040414261232700_c69) 2020; 117 (2025040414261232700_c75) 2011; 122 (2025040414261232700_c38) 2020; 5 (2025040414261232700_c48) 2012; 20 (2025040414261232700_c54) 1983; 9 (2025040414261232700_c21) 2017; 11 (2025040414261232700_c41) 2011; 108 (2025040414261232700_c2) 2009; 103 (2025040414261232700_c16) 2007; 9 (2025040414261232700_c32) 2020; 152 (2025040414261232700_c1) 2022; 27 2025040414261232700_c50 (2025040414261232700_c45) 2023; 31 (2025040414261232700_c3) 2015; 112 (2025040414261232700_c40) 2024; 20 (2025040414261232700_c28) 2023; 279 (2025040414261232700_c4) 2015; 35 (2025040414261232700_c36) 2024; 20 (2025040414261232700_c42) 2018; 12 (2025040414261232700_c63) 2007; 9 (2025040414261232700_c20) 2017; 5 (2025040414261232700_c33) 2016; 6 2025040414261232700_c49 (2025040414261232700_c53) 2023; 5 (2025040414261232700_c64) 2011; 3 (2025040414261232700_c61) 2002; 62 (2025040414261232700_c43) 2016; 1860 (2025040414261232700_c72) 2006; 39 (2025040414261232700_c25) 2022; 20 2025040414261232700_c44 (2025040414261232700_c22) 2019; 116 (2025040414261232700_c23) 2019; 10 (2025040414261232700_c17) 2023; 10 (2025040414261232700_c19) 2008; 105 2025040414261232700_c47 (2025040414261232700_c13) 2021; 11 2025040414261232700_c46 (2025040414261232700_c68) 2010; 16 (2025040414261232700_c34) 2022; 160 (2025040414261232700_c5) 2019; 31 (2025040414261232700_c77) 2001; 426 (2025040414261232700_c37) 2013; 13 (2025040414261232700_c31) 2012; 25 (2025040414261232700_c26) 2011; 2011 (2025040414261232700_c73) 2024; 20 (2025040414261232700_c6) 2020; 6 (2025040414261232700_c60) 2022; 130 (2025040414261232700_c12) 2020; 7 (2025040414261232700_c59) 2018; 4 (2025040414261232700_c67) 2011; 171 (2025040414261232700_c7) 2021; 22 (2025040414261232700_c30) 2013; 61 (2025040414261232700_c65) 2024; 291 (2025040414261232700_c39) 2022; 7 (2025040414261232700_c14) 2023; 1 |
References_xml | – start-page: 39 year: 2018 ident: c59 article-title: Demarcating the membrane damage for the extraction of functional mitochondria publication-title: Microsyst. Nanoeng. – start-page: 371 year: 2010 ident: c68 article-title: Controlling the porosity and microarchitecture of hydrogels for tissue engineering publication-title: Tissue Eng., Part B – start-page: 12200 year: 2021 ident: c7 article-title: 3D cell culture systems: Tumor application, advantages, and disadvantages publication-title: Int. J. Mol. Sci. – start-page: 104771 year: 2022 ident: c34 article-title: A kinetic model of a polyelectrolyte gel undergoing phase separation publication-title: J. Mech. Phys. Solids – start-page: 229 year: 2007 ident: c16 article-title: Interstitial flow and its effects in soft tissues publication-title: Annu. Rev. Biomed. Eng. – start-page: 7357 year: 2024 ident: c40 article-title: Estimating the interfacial permeability for flow into a poroelastic medium publication-title: Soft Matter – start-page: 11247 year: 2020 ident: c69 article-title: Pore-size dependence and slow relaxation of hydrogel friction on smooth surfaces publication-title: Proc. Natl. Acad. Sci. U.S.A. – start-page: 61 year: 2022 ident: c25 article-title: Fluid shear stress enhances T cell activation through Piezo1 publication-title: BMC Biol. – start-page: 806 year: 2004 ident: c15 article-title: High interstitial fluid pressure—An obstacle in cancer therapy publication-title: Nat. Rev. Cancer – start-page: 2110267 year: 2022 ident: c62 article-title: Delivering mechanical stimulation to cells: State of the art in materials and devices design publication-title: Adv. Mater. – start-page: 214 year: 2015 ident: c3 article-title: Human 3D vascularized organotypic microfluidic assays to study breast cancer cell extravasation publication-title: Proc. Natl. Acad. Sci. U.S.A. – start-page: 044104 year: 2017 ident: c21 article-title: The role of shear stress and altered tissue properties on endothelial to mesenchymal transformation and tumor-endothelial cell interaction publication-title: Biomicrofluidics – start-page: 451 year: 2019 ident: c23 article-title: Competing fluid forces control endothelial sprouting in a 3-D microfluidic vessel bifurcation model publication-title: Micromachines – start-page: 299 year: 2020 ident: c32 article-title: Mechanics and drug release from poroviscoelastic hydrogels: Experiments and modeling publication-title: Eur. J. Pharm. Biopharm. – start-page: 093301 year: 2022 ident: c39 article-title: A comparison of four boundary conditions for the fluid-hydrogel interface publication-title: Phys. Rev. Fluids – start-page: 1 year: 2020 ident: c11 article-title: Hydrogel design strategies for drug delivery publication-title: Curr. Opin. Colloid Interface Sci. – start-page: 110898 year: 2022 ident: c60 article-title: Discrete responses of erythrocytes, platelets, and von Willebrand factor to shear publication-title: J. Biomech. – start-page: 17781 year: 2022 ident: c8 article-title: Hydrogel-based microfluidic device with multiplexed 3D in vitro cell culture publication-title: Sci. Rep. – start-page: 124304 year: 2020 ident: c38 article-title: Boundary conditions at a gel-fluid interface publication-title: Phys. Rev. Fluids – start-page: 782 year: 2017 ident: c52 article-title: Mimicking liver sinusoidal structures and functions using a 3d-configured microfluidic chip publication-title: Lab Chip – start-page: 231 year: 2023 ident: c45 article-title: The deal.II library, version 9.5 publication-title: J. Numer. Math. – start-page: 3927 year: 2008 ident: c19 article-title: Tumor cell cycle arrest induced by shear stress: Roles of integrins and Smad publication-title: Proc. Natl. Acad. Sci. U.S.A. – start-page: 96 year: 2024 ident: c18 article-title: Extracellular matrix cues regulate mechanosensing and mechanotransduction of cancer cells publication-title: Cells – start-page: 3651 year: 2011 ident: c75 article-title: Pore structure and swelling behavior of porous hydrogels prepared via a thermal reverse-casting technique publication-title: J. Appl. Polym. Sci. – start-page: a005058 year: 2011 ident: c64 article-title: Extracellular matrix degradation and remodeling in development and disease publication-title: Cold Spring Harb. Perspect. Biol. – start-page: 3084 year: 2019 ident: c22 article-title: Fluid shear stress stimulates breast cancer cells to display invasive and chemoresistant phenotypes while upregulating PLAU in a 3D bioreactor publication-title: Biotechnol. Bioeng. – start-page: 064010 year: 2016 ident: c33 article-title: Dynamics of swelling and drying in a spherical gel publication-title: Phys. Rev. Appl. – start-page: 93 year: 2020 ident: c6 article-title: A microfluidic platform for cultivating ovarian cancer spheroids and testing their responses to chemotherapies publication-title: Microsyst. Nanoeng. – start-page: 2252 year: 2013 ident: c37 article-title: Microfluidic platforms for mechanobiology publication-title: Lab Chip – start-page: 2902 year: 2022 ident: c1 article-title: Hydrogels: Properties and applications in biomedicine publication-title: Molecules – start-page: 110851 year: 2022 ident: c35 article-title: An arbitrary Lagrangian–Eulerian method for simulating interfacial dynamics between a hydrogel and a fluid publication-title: J. Comput. Phys. – start-page: 100905 year: 2023 ident: c53 article-title: Direct mechanical exposure initiates hepatocyte proliferation publication-title: JHEP Rep. – start-page: 997 year: 2018 ident: c9 article-title: Hydrogel biomaterials for stem cell microencapsulation publication-title: Polymers – start-page: 1902042 year: 2019 ident: c5 article-title: Advances in hydrogels in organoids and organs-on-a-chip publication-title: Adv. Mater. – start-page: 242 year: 2024 ident: c66 article-title: Mechanically guided cell fate determination in early development publication-title: Cell. Mol. Life Sci. – start-page: 6731 year: 2002 ident: c61 article-title: Overexpression of vascular endothelial growth factor 165 drives peritumor interstitial convection and induces lymphatic drain: Magnetic resonance imaging, confocal microscopy, and histological tracking of triple-labeled albumin publication-title: Cancer Res. – start-page: 441 year: 2012 ident: c31 article-title: Viscoelasticity and poroelasticity in elastomeric gels publication-title: Acta Mech. Sol. Sin. – start-page: 6004 year: 2010 ident: c70 article-title: Poroelastic swelling kinetics of thin hydrogel layers: Comparison of theory and experiment publication-title: Soft Matter – start-page: 415 year: 2022 ident: c57 article-title: How the mechanical microenvironment of stem cell growth affects their differentiation: A review publication-title: Stem Cell Res. Ther. – start-page: 118 year: 2015 ident: c4 article-title: Microfluidic 3D cell culture: From tools to tissue models publication-title: Curr. Opin. Biotechnol. – start-page: 700 year: 2011 ident: c67 article-title: A review of the role of mechanical forces in cutaneous wound healing publication-title: J. Surg. Res. – start-page: 118959 year: 2023 ident: c28 article-title: Polyelectrolyte hydrogels in biological systems: Modeling of swelling and deswelling behavior publication-title: Chem. Eng. Sci. – start-page: 1953 year: 2016 ident: c43 article-title: Cell stiffness determined by atomic force microscopy and its correlation with cell motility publication-title: Biochim. Biophys. Acta, Gen. Subj. – start-page: 83 year: 2012 ident: c48 article-title: A new overview of the Trilinos project publication-title: Sci. Program. – start-page: 407 year: 2019 ident: c10 article-title: Strategies for hyaluronic acid-based hydrogel design in drug delivery publication-title: Pharmaceutics – start-page: 7177 year: 2021 ident: c13 article-title: Core–shell hydrogel microcapsules enable formation of human pluripotent stem cell spheroids and their cultivation in a stirred bioreactor publication-title: Sci. Rep. – start-page: 425 year: 2016 ident: c51 article-title: Effect of circulation parameters on functional status of HepaRG spheroids cultured in microbioreactor publication-title: Bull. Exp. Biol. Med. – start-page: 5389 year: 2024 ident: c36 article-title: A theory of hydrogel mechanics that couples swelling and external flow publication-title: Soft Matter – start-page: jcs260985 year: 2023 ident: c58 article-title: Response of cells and tissues to shear stress publication-title: J. Cell Sci. – start-page: 78 year: 2006 ident: c72 article-title: Determination of the Poisson’s ratio of the cell: Recovery properties of chondrocytes after release from complete micropipette aspiration publication-title: J. Biomech. – start-page: 655 year: 2009 ident: c2 article-title: Hydrogels as extracellular matrix mimics for 3D cell culture publication-title: Biotechnol. Bioeng. – start-page: 022211 year: 2011 ident: c56 article-title: Responses of endothelial cells to extremely slow flows publication-title: Biomicrofluidics – start-page: 119521 year: 2019 ident: c24 article-title: A systematic investigation of the effect of the fluid shear stress on Caco-2 cells towards the optimization of epithelial organ-on-chip models publication-title: Biomaterials – start-page: 205 year: 2013 ident: c30 article-title: Transient analysis of swelling-induced large deformations in polymer gels publication-title: J. Mech. Phys. Solids – start-page: 620247 year: 2011 ident: c26 article-title: Bioprocess forces and their impact on cell behavior: Implications for bone regeneration therapy publication-title: J. Tissue Eng. – start-page: 5304 year: 2017 ident: c76 article-title: Tough and porous hydrogels prepared by simple lyophilization of LC gels publication-title: ACS Omega – start-page: 47 year: 2001 ident: c77 article-title: Flow at the interface of a model fibrous porous medium publication-title: J. Fluid Mech. – start-page: 2864 year: 2020 ident: c12 article-title: Alginate microencapsulation for three-dimensional in vitro cell culture publication-title: ACS Biomater. Sci. Eng. – start-page: 11115 year: 2011 ident: c41 article-title: Interstitial flow influences direction of tumor cell migration through competing mechanisms publication-title: Proc. Natl. Acad. Sci. U.S.A. – start-page: 430 year: 2024 ident: c65 article-title: Extracellular matrix biomechanical roles and adaptation in health and disease publication-title: FEBS J. – start-page: 561 year: 1983 ident: c54 article-title: Boundary conditions for Darcy’s flow through porous media publication-title: Int. J. Multiphase Flow – start-page: 6940 year: 2024 ident: c73 article-title: Hystereses in flow-induced compression of a poroelastic hydrogel publication-title: Soft Matter – start-page: 1779 year: 2008 ident: c29 article-title: A theory of coupled diffusion and large deformation in polymeric gels publication-title: J. Mech. Phys. Solids – start-page: 063601 year: 2019 ident: c71 article-title: Slightly deformable Darcy drop in linear flows publication-title: Phys. Rev. Fluids – start-page: 2300670 year: 2023 ident: c17 article-title: Dynamic stimulations with bioengineered extracellular matrix-mimicking hydrogels for mechano cell reprogramming and therapy publication-title: Adv. Sci. – start-page: 1 year: 2007 ident: c63 article-title: Cell mechanics: Integrating cell responses to mechanical stimuli publication-title: Annu. Rev. Biomed. Eng. – start-page: 1480 year: 2017 ident: c20 article-title: Viscoelastic hydrogels for 3D cell culture publication-title: Biomater. Sci. – start-page: 042216 year: 2018 ident: c42 article-title: Engineering of three-dimensional pre-vascular networks within fibrin hydrogel constructs by microfluidic control over reciprocal cell signaling publication-title: Biomicrofluidics – start-page: 6045 year: 2011 ident: c74 article-title: The role of pore size on vascularization and tissue remodeling in PEG hydrogels publication-title: Biomaterials – start-page: 545 year: 2023 ident: c14 article-title: Human disease models in drug development publication-title: Nat. Rev. Bioeng. – start-page: 947430 year: 2022 ident: c27 article-title: ECM-transmitted shear stress induces apoptotic cell extrusion in early breast gland development publication-title: Front. Cell Dev. Biol. – volume: 20 start-page: 7357 year: 2024 ident: 2025040414261232700_c40 article-title: Estimating the interfacial permeability for flow into a poroelastic medium publication-title: Soft Matter doi: 10.1039/D4SM00476K – volume: 6 start-page: 6004 issue: 23 year: 2010 ident: 2025040414261232700_c70 article-title: Poroelastic swelling kinetics of thin hydrogel layers: Comparison of theory and experiment publication-title: Soft Matter doi: 10.1039/c0sm00434k – volume: 31 start-page: 231 issue: 3 year: 2023 ident: 2025040414261232700_c45 article-title: The deal.II library, version 9.5 publication-title: J. Numer. Math. doi: 10.1515/jnma-2023-0089 – volume: 103 start-page: 655 issue: 4 year: 2009 ident: 2025040414261232700_c2 article-title: Hydrogels as extracellular matrix mimics for 3D cell culture publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.22361 – volume: 7 start-page: 2864 issue: 7 year: 2020 ident: 2025040414261232700_c12 article-title: Alginate microencapsulation for three-dimensional in vitro cell culture publication-title: ACS Biomater. Sci. Eng. doi: 10.1021/acsbiomaterials.0c00457 – volume: 39 start-page: 78 year: 2006 ident: 2025040414261232700_c72 article-title: Determination of the Poisson’s ratio of the cell: Recovery properties of chondrocytes after release from complete micropipette aspiration publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2004.11.006 – volume: 116 start-page: 3084 issue: 11 year: 2019 ident: 2025040414261232700_c22 article-title: Fluid shear stress stimulates breast cancer cells to display invasive and chemoresistant phenotypes while upregulating PLAU in a 3D bioreactor publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.27119 – volume: 25 start-page: 441 issue: 5 year: 2012 ident: 2025040414261232700_c31 article-title: Viscoelasticity and poroelasticity in elastomeric gels publication-title: Acta Mech. Sol. Sin. doi: 10.1016/S0894-9166(12)60039-1 – volume: 7 start-page: 093301 year: 2022 ident: 2025040414261232700_c39 article-title: A comparison of four boundary conditions for the fluid-hydrogel interface publication-title: Phys. Rev. Fluids doi: 10.1103/PhysRevFluids.7.093301 – volume: 81 start-page: 242 year: 2024 ident: 2025040414261232700_c66 article-title: Mechanically guided cell fate determination in early development publication-title: Cell. Mol. Life Sci. doi: 10.1007/s00018-024-05272-6 – volume: 136 start-page: jcs260985 issue: 18 year: 2023 ident: 2025040414261232700_c58 article-title: Response of cells and tissues to shear stress publication-title: J. Cell Sci. doi: 10.1242/jcs.260985 – volume: 2 start-page: 5304 issue: 8 year: 2017 ident: 2025040414261232700_c76 article-title: Tough and porous hydrogels prepared by simple lyophilization of LC gels publication-title: ACS Omega doi: 10.1021/acsomega.7b00602 – volume: 5 start-page: 100905 year: 2023 ident: 2025040414261232700_c53 article-title: Direct mechanical exposure initiates hepatocyte proliferation publication-title: JHEP Rep. doi: 10.1016/j.jhepr.2023.100905 – volume: 9 start-page: 561 year: 1983 ident: 2025040414261232700_c54 article-title: Boundary conditions for Darcy’s flow through porous media publication-title: Int. J. Multiphase Flow doi: 10.1016/0301-9322(83)90018-6 – volume: 12 start-page: 17781 issue: 1 year: 2022 ident: 2025040414261232700_c8 article-title: Hydrogel-based microfluidic device with multiplexed 3D in vitro cell culture publication-title: Sci. Rep. doi: 10.1038/s41598-022-22439-y – volume: 160 start-page: 104771 year: 2022 ident: 2025040414261232700_c34 article-title: A kinetic model of a polyelectrolyte gel undergoing phase separation publication-title: J. Mech. Phys. Solids doi: 10.1016/j.jmps.2021.104771 – volume: 112 start-page: 214 issue: 1 year: 2015 ident: 2025040414261232700_c3 article-title: Human 3D vascularized organotypic microfluidic assays to study breast cancer cell extravasation publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1417115112 – volume: 171 start-page: 700 issue: 2 year: 2011 ident: 2025040414261232700_c67 article-title: A review of the role of mechanical forces in cutaneous wound healing publication-title: J. Surg. Res. doi: 10.1016/j.jss.2011.07.007 – volume: 10 start-page: 997 issue: 9 year: 2018 ident: 2025040414261232700_c9 article-title: Hydrogel biomaterials for stem cell microencapsulation publication-title: Polymers doi: 10.3390/polym10090997 – volume: 12 start-page: 042216 issue: 4 year: 2018 ident: 2025040414261232700_c42 article-title: Engineering of three-dimensional pre-vascular networks within fibrin hydrogel constructs by microfluidic control over reciprocal cell signaling publication-title: Biomicrofluidics doi: 10.1063/1.5027054 – ident: 2025040414261232700_c46 – volume: 10 start-page: 2300670 issue: 21 year: 2023 ident: 2025040414261232700_c17 article-title: Dynamic stimulations with bioengineered extracellular matrix-mimicking hydrogels for mechano cell reprogramming and therapy publication-title: Adv. Sci. doi: 10.1002/advs.202300670 – volume: 62 start-page: 6731 year: 2002 ident: 2025040414261232700_c61 article-title: Overexpression of vascular endothelial growth factor 165 drives peritumor interstitial convection and induces lymphatic drain: Magnetic resonance imaging, confocal microscopy, and histological tracking of triple-labeled albumin publication-title: Cancer Res. – volume: 122 start-page: 3651 year: 2011 ident: 2025040414261232700_c75 article-title: Pore structure and swelling behavior of porous hydrogels prepared via a thermal reverse-casting technique publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.34778 – volume: 10 start-page: 947430 year: 2022 ident: 2025040414261232700_c27 article-title: ECM-transmitted shear stress induces apoptotic cell extrusion in early breast gland development publication-title: Front. Cell Dev. Biol. doi: 10.3389/fcell.2022.947430 – volume: 13 start-page: 2252 year: 2013 ident: 2025040414261232700_c37 article-title: Microfluidic platforms for mechanobiology publication-title: Lab Chip doi: 10.1039/c3lc41393d – volume: 9 start-page: 1 year: 2007 ident: 2025040414261232700_c63 article-title: Cell mechanics: Integrating cell responses to mechanical stimuli publication-title: Annu. Rev. Biomed. Eng. doi: 10.1146/annurev.bioeng.9.060906.151927 – volume: 5 start-page: 1480 issue: 8 year: 2017 ident: 2025040414261232700_c20 article-title: Viscoelastic hydrogels for 3D cell culture publication-title: Biomater. Sci. doi: 10.1039/C7BM00261K – volume: 17 start-page: 782 year: 2017 ident: 2025040414261232700_c52 article-title: Mimicking liver sinusoidal structures and functions using a 3d-configured microfluidic chip publication-title: Lab Chip doi: 10.1039/C6LC01374K – volume: 20 start-page: 5389 year: 2024 ident: 2025040414261232700_c36 article-title: A theory of hydrogel mechanics that couples swelling and external flow publication-title: Soft Matter doi: 10.1039/D4SM00424H – volume: 130 start-page: 110898 year: 2022 ident: 2025040414261232700_c60 article-title: Discrete responses of erythrocytes, platelets, and von Willebrand factor to shear publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2021.110898 – volume: 291 start-page: 430 issue: 3 year: 2024 ident: 2025040414261232700_c65 article-title: Extracellular matrix biomechanical roles and adaptation in health and disease publication-title: FEBS J. doi: 10.1111/febs.16938 – volume: 161 start-page: 425 year: 2016 ident: 2025040414261232700_c51 article-title: Effect of circulation parameters on functional status of HepaRG spheroids cultured in microbioreactor publication-title: Bull. Exp. Biol. Med. doi: 10.1007/s10517-016-3430-2 – volume: 451 start-page: 110851 year: 2022 ident: 2025040414261232700_c35 article-title: An arbitrary Lagrangian–Eulerian method for simulating interfacial dynamics between a hydrogel and a fluid publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2021.110851 – ident: 2025040414261232700_c47 – volume: 34 start-page: 2110267 issue: 32 year: 2022 ident: 2025040414261232700_c62 article-title: Delivering mechanical stimulation to cells: State of the art in materials and devices design publication-title: Adv. Mater. doi: 10.1002/adma.202110267 – volume: 31 start-page: 1902042 issue: 50 year: 2019 ident: 2025040414261232700_c5 article-title: Advances in hydrogels in organoids and organs-on-a-chip publication-title: Adv. Mater. doi: 10.1002/adma.201902042 – volume: 27 start-page: 2902 issue: 9 year: 2022 ident: 2025040414261232700_c1 article-title: Hydrogels: Properties and applications in biomedicine publication-title: Molecules doi: 10.3390/molecules27092902 – volume: 48 start-page: 1 year: 2020 ident: 2025040414261232700_c11 article-title: Hydrogel design strategies for drug delivery publication-title: Curr. Opin. Colloid Interface Sci. doi: 10.1016/j.cocis.2020.02.001 – volume: 108 start-page: 11115 issue: 27 year: 2011 ident: 2025040414261232700_c41 article-title: Interstitial flow influences direction of tumor cell migration through competing mechanisms publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1103581108 – volume: 5 start-page: 022211 issue: 2 year: 2011 ident: 2025040414261232700_c56 article-title: Responses of endothelial cells to extremely slow flows publication-title: Biomicrofluidics doi: 10.1063/1.3576932 – volume: 9 start-page: 229 year: 2007 ident: 2025040414261232700_c16 article-title: Interstitial flow and its effects in soft tissues publication-title: Annu. Rev. Biomed. Eng. doi: 10.1146/annurev.bioeng.9.060906.151850 – volume: 1860 start-page: 1953 issue: 9 year: 2016 ident: 2025040414261232700_c43 article-title: Cell stiffness determined by atomic force microscopy and its correlation with cell motility publication-title: Biochim. Biophys. Acta, Gen. Subj. doi: 10.1016/j.bbagen.2016.06.010 – volume: 4 start-page: 063601 year: 2019 ident: 2025040414261232700_c71 article-title: Slightly deformable Darcy drop in linear flows publication-title: Phys. Rev. Fluids doi: 10.1103/PhysRevFluids.4.063601 – volume: 4 start-page: 39 year: 2018 ident: 2025040414261232700_c59 article-title: Demarcating the membrane damage for the extraction of functional mitochondria publication-title: Microsyst. Nanoeng. doi: 10.1038/s41378-018-0037-y – volume: 13 start-page: 96 year: 2024 ident: 2025040414261232700_c18 article-title: Extracellular matrix cues regulate mechanosensing and mechanotransduction of cancer cells publication-title: Cells doi: 10.3390/cells13010096 – volume: 279 start-page: 118959 year: 2023 ident: 2025040414261232700_c28 article-title: Polyelectrolyte hydrogels in biological systems: Modeling of swelling and deswelling behavior publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2023.118959 – volume: 225 start-page: 119521 year: 2019 ident: 2025040414261232700_c24 article-title: A systematic investigation of the effect of the fluid shear stress on Caco-2 cells towards the optimization of epithelial organ-on-chip models publication-title: Biomaterials doi: 10.1016/j.biomaterials.2019.119521 – ident: 2025040414261232700_c50 – volume: 16 start-page: 371 issue: 4 year: 2010 ident: 2025040414261232700_c68 article-title: Controlling the porosity and microarchitecture of hydrogels for tissue engineering publication-title: Tissue Eng., Part B doi: 10.1089/ten.teb.2009.0639 – volume: 20 start-page: 61 issue: 1 year: 2022 ident: 2025040414261232700_c25 article-title: Fluid shear stress enhances T cell activation through Piezo1 publication-title: BMC Biol. doi: 10.1186/s12915-022-01266-7 – volume: 426 start-page: 47 year: 2001 ident: 2025040414261232700_c77 article-title: Flow at the interface of a model fibrous porous medium publication-title: J. Fluid Mech. doi: 10.1017/S0022112000002160 – volume: 1 start-page: 545 year: 2023 ident: 2025040414261232700_c14 article-title: Human disease models in drug development publication-title: Nat. Rev. Bioeng. doi: 10.1038/s44222-023-00063-3 – volume: 61 start-page: 205 issue: 1 year: 2013 ident: 2025040414261232700_c30 article-title: Transient analysis of swelling-induced large deformations in polymer gels publication-title: J. Mech. Phys. Solids doi: 10.1016/j.jmps.2012.07.010 – ident: 2025040414261232700_c44 – volume: 11 start-page: 7177 issue: 1 year: 2021 ident: 2025040414261232700_c13 article-title: Core–shell hydrogel microcapsules enable formation of human pluripotent stem cell spheroids and their cultivation in a stirred bioreactor publication-title: Sci. Rep. doi: 10.1038/s41598-021-85786-2 – volume: 32 start-page: 6045 issue: 26 year: 2011 ident: 2025040414261232700_c74 article-title: The role of pore size on vascularization and tissue remodeling in PEG hydrogels publication-title: Biomaterials doi: 10.1016/j.biomaterials.2011.04.066 – volume: 4 start-page: 806 issue: 10 year: 2004 ident: 2025040414261232700_c15 article-title: High interstitial fluid pressure—An obstacle in cancer therapy publication-title: Nat. Rev. Cancer doi: 10.1038/nrc1456 – volume: 20 start-page: 6940 year: 2024 ident: 2025040414261232700_c73 article-title: Hystereses in flow-induced compression of a poroelastic hydrogel publication-title: Soft Matter doi: 10.1039/D4SM00678J – volume: 117 start-page: 11247 issue: 21 year: 2020 ident: 2025040414261232700_c69 article-title: Pore-size dependence and slow relaxation of hydrogel friction on smooth surfaces publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1922364117 – volume: 105 start-page: 3927 issue: 10 year: 2008 ident: 2025040414261232700_c19 article-title: Tumor cell cycle arrest induced by shear stress: Roles of integrins and Smad publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0712353105 – volume: 56 start-page: 1779 issue: 5 year: 2008 ident: 2025040414261232700_c29 article-title: A theory of coupled diffusion and large deformation in polymeric gels publication-title: J. Mech. Phys. Solids doi: 10.1016/j.jmps.2007.11.010 – volume: 13 start-page: 415 year: 2022 ident: 2025040414261232700_c57 article-title: How the mechanical microenvironment of stem cell growth affects their differentiation: A review publication-title: Stem Cell Res. Ther. doi: 10.1186/s13287-022-03070-0 – volume: 3 start-page: a005058 issue: 12 year: 2011 ident: 2025040414261232700_c64 article-title: Extracellular matrix degradation and remodeling in development and disease publication-title: Cold Spring Harb. Perspect. Biol. doi: 10.1101/cshperspect.a005058 – volume: 20 start-page: 83 issue: 2 year: 2012 ident: 2025040414261232700_c48 article-title: A new overview of the Trilinos project publication-title: Sci. Program. doi: 10.3233/SPR-2012-0355 – volume: 5 start-page: 124304 issue: 12 year: 2020 ident: 2025040414261232700_c38 article-title: Boundary conditions at a gel-fluid interface publication-title: Phys. Rev. Fluids doi: 10.1103/PhysRevFluids.5.124304 – volume: 22 start-page: 12200 issue: 22 year: 2021 ident: 2025040414261232700_c7 article-title: 3D cell culture systems: Tumor application, advantages, and disadvantages publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms222212200 – volume: 10 start-page: 451 issue: 7 year: 2019 ident: 2025040414261232700_c23 article-title: Competing fluid forces control endothelial sprouting in a 3-D microfluidic vessel bifurcation model publication-title: Micromachines doi: 10.3390/mi10070451 – volume: 35 start-page: 118 year: 2015 ident: 2025040414261232700_c4 article-title: Microfluidic 3D cell culture: From tools to tissue models publication-title: Curr. Opin. Biotechnol. doi: 10.1016/j.copbio.2015.05.002 – ident: 2025040414261232700_c49 – volume: 11 start-page: 407 issue: 8 year: 2019 ident: 2025040414261232700_c10 article-title: Strategies for hyaluronic acid-based hydrogel design in drug delivery publication-title: Pharmaceutics doi: 10.3390/pharmaceutics11080407 – volume-title: Poromechanics year: 2004 ident: 2025040414261232700_c55 – volume: 6 start-page: 93 issue: 1 year: 2020 ident: 2025040414261232700_c6 article-title: A microfluidic platform for cultivating ovarian cancer spheroids and testing their responses to chemotherapies publication-title: Microsyst. Nanoeng. doi: 10.1038/s41378-020-00201-6 – volume: 2011 start-page: 620247 year: 2011 ident: 2025040414261232700_c26 article-title: Bioprocess forces and their impact on cell behavior: Implications for bone regeneration therapy publication-title: J. Tissue Eng. doi: 10.4061/2011/620247 – volume: 152 start-page: 299 year: 2020 ident: 2025040414261232700_c32 article-title: Mechanics and drug release from poroviscoelastic hydrogels: Experiments and modeling publication-title: Eur. J. Pharm. Biopharm. doi: 10.1016/j.ejpb.2020.05.020 – volume: 11 start-page: 044104 issue: 4 year: 2017 ident: 2025040414261232700_c21 article-title: The role of shear stress and altered tissue properties on endothelial to mesenchymal transformation and tumor-endothelial cell interaction publication-title: Biomicrofluidics doi: 10.1063/1.4991738 – volume: 6 start-page: 064010 year: 2016 ident: 2025040414261232700_c33 article-title: Dynamics of swelling and drying in a spherical gel publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.6.064010 |
SSID | ssj0051722 |
Score | 2.3624103 |
Snippet | Thanks to their softness, biocompatibility, porosity, and ready availability, hydrogels are commonly used in microfluidic assays and organ-on-chip devices as a... |
SourceID | proquest pubmed crossref scitation |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 024104 |
SubjectTerms | Biocompatibility Bioengineering Deformation Fluid flow Hydrogels Microfluidics Nutrients Softness Software Stress distribution |
Title | Mechanical interaction between a hydrogel and an embedded cell in biomicrofluidic applications |
URI | http://dx.doi.org/10.1063/5.0263344 https://www.ncbi.nlm.nih.gov/pubmed/40190650 https://www.proquest.com/docview/3186412601 https://www.proquest.com/docview/3187211665 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD6C8QB7QNwJDGQub1XG6lvaR4Q2JtQNHlqpT0S244xJI0UlfYBfz-fcmsBAwEOiyE2c9HzO8WfnnM9EL9ELKZ3kLjZ6bGLJeRbbqZCxskLwSY5eNguJwien-ngh3y3VcrvaW5VdUtp99_3SvJL_QRVlwDVkyf4Dsl2lKMAx8MUeCGP_Vxif-JC3W5k5yD6sm3W_29grM_r0LVuvzvxFI8k68p-th6fJRmG-Pkx1hOz7EJKXX2zOsyDd2vuePfjeOzyvI-KzOrnan3feY-NHH3xxVppVf0KBq21EVS-G3xTDaIUqHrWp3deuEswPTrwWXu986bTXZvilLhqcCHZV-xj8CVFrPw5lsE_fp0eL2SydHy7nV-kaB_8PS1O8XXaxOwqsi7cyUVq86iobkotfRgy7dB28og5x6LGI-S262dB_9rrG8jZd8cUd2u2JQt6lj1tUWQ9V1qDKDGtRZUAVG2tRZQFVXMN-QpX1Ub1Hi6PD-ZvjuFkFI3ag3mXsUIOZaCenBnxGa59NpMSb5zOejK1VXlt-kLgDk-QguzqfSpMpN-Y4cAnPc3GfdopV4R8SswLFPFegeFI6k2As6TX4L-de4S4uouet-dIvtdhJWgUpaJGqtLFxRHutYdPmXfiaomfQchzk6SJ61v0MTxX-uCn8alOdE6YbtFYRPagB6e4ig6QBBgsRvegQ-v0jPPrzIzymG9t2vUc75Xrjn4A6lvZp1Yx-AG5gdJE |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanical+interaction+between+a+hydrogel+and+an+embedded+cell+in+biomicrofluidic+applications&rft.jtitle=Biomicrofluidics&rft.au=Li%2C+Lei&rft.au=Yue+Pengtao&rft.date=2025-03-01&rft.pub=American+Institute+of+Physics&rft.eissn=1932-1058&rft.volume=19&rft.issue=2&rft_id=info:doi/10.1063%2F5.0263344&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-1058&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-1058&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-1058&client=summon |