Predicting breast cancer recurrence using deep learning

Breast cancer and its recurrence are significant health concerns, emphasizing the critical importance of early detection and personalized treatment strategies for improved outcomes. This study introduces the BCR-HDL (Breast Cancer Recurrence using Hybrid Deep Learning) framework, a novel approach de...

Full description

Saved in:
Bibliographic Details
Published inDiscover applied sciences Vol. 7; no. 2; pp. 113 - 33
Main Authors Kumari, Deepa, Naidu, Mutyala Venkata Sai Subhash, Panda, Subhrakanta, Christopher, Jabez
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 30.01.2025
Springer Nature B.V
Springer
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Breast cancer and its recurrence are significant health concerns, emphasizing the critical importance of early detection and personalized treatment strategies for improved outcomes. This study introduces the BCR-HDL (Breast Cancer Recurrence using Hybrid Deep Learning) framework, a novel approach designed to predict breast cancer recurrence with high accuracy and interpretability. Utilizing the Wisconsin Diagnostic Breast Cancer and Wisconsin Prognostic Breast Cancer datasets, the framework integrates multiple deep learning architectures- Multi layer Perceptron (MLP), Visual Geometry Group (VGG), Residual Network (ResNet), and Extreme Inception (Xception)-with traditional machine learning models such as Support Vector Machine (SVM), Decision Trees (DT), Random Forest (RF), and Logistic Regression (LR). This hybridization leads to the creation of 16 robust models that enhance interpretability, facilitate generalization, and effectively manage challenges related to small datasets, class imbalance, and data preprocessing. The BCR-HDL framework’s unique contributions include its ability to predict not only diagnostic outcomes but also prognostic and recurrence timing, offering a comprehensive solution for breast cancer management. Specifically, the Hybrid MLP+RF and Xception+RF models achieved an exceptional diagnostic accuracy of 97% on the WDBC dataset, while the Hybrid MLP+RF model reached 78% prognostic accuracy on the WPBC dataset. Moreover, the Hybrid ResNet+SVM and ResNet+RF models demonstrated impressive performance in multi-classifying recurrence into different time intervals, achieving 92% accuracy in predicting recurrence within 2 years, between 2 to 4 years, and beyond 4 years. The study also provides a detailed analysis of model performance through training versus validation accuracy graphs and a comparison with existing approaches, demonstrating the superiority of the proposed framework in terms of diagnostic, prognostic, and recurrence time predictions. The BCR-HDL framework offers practical recommendations for clinicians, including its potential for personalized treatment strategies and improved patient monitoring, making it a valuable tool for advancing breast cancer management. Highlights The BCR-HDL framework predicts breast cancer recurrence with high accuracy, enhancing early detection. It combines deep learning and traditional models to improve prediction of diagnostic, prognostic, and recurrence outcomes. Clinicians can use these insights to create personalized treatment plans and better monitor patient health.
AbstractList Abstract Breast cancer and its recurrence are significant health concerns, emphasizing the critical importance of early detection and personalized treatment strategies for improved outcomes. This study introduces the BCR-HDL (Breast Cancer Recurrence using Hybrid Deep Learning) framework, a novel approach designed to predict breast cancer recurrence with high accuracy and interpretability. Utilizing the Wisconsin Diagnostic Breast Cancer and Wisconsin Prognostic Breast Cancer datasets, the framework integrates multiple deep learning architectures- Multi layer Perceptron (MLP), Visual Geometry Group (VGG), Residual Network (ResNet), and Extreme Inception (Xception)-with traditional machine learning models such as Support Vector Machine (SVM), Decision Trees (DT), Random Forest (RF), and Logistic Regression (LR). This hybridization leads to the creation of 16 robust models that enhance interpretability, facilitate generalization, and effectively manage challenges related to small datasets, class imbalance, and data preprocessing. The BCR-HDL framework’s unique contributions include its ability to predict not only diagnostic outcomes but also prognostic and recurrence timing, offering a comprehensive solution for breast cancer management. Specifically, the Hybrid MLP+RF and Xception+RF models achieved an exceptional diagnostic accuracy of 97% on the WDBC dataset, while the Hybrid MLP+RF model reached 78% prognostic accuracy on the WPBC dataset. Moreover, the Hybrid ResNet+SVM and ResNet+RF models demonstrated impressive performance in multi-classifying recurrence into different time intervals, achieving 92% accuracy in predicting recurrence within 2 years, between 2 to 4 years, and beyond 4 years. The study also provides a detailed analysis of model performance through training versus validation accuracy graphs and a comparison with existing approaches, demonstrating the superiority of the proposed framework in terms of diagnostic, prognostic, and recurrence time predictions. The BCR-HDL framework offers practical recommendations for clinicians, including its potential for personalized treatment strategies and improved patient monitoring, making it a valuable tool for advancing breast cancer management.
Breast cancer and its recurrence are significant health concerns, emphasizing the critical importance of early detection and personalized treatment strategies for improved outcomes. This study introduces the BCR-HDL (Breast Cancer Recurrence using Hybrid Deep Learning) framework, a novel approach designed to predict breast cancer recurrence with high accuracy and interpretability. Utilizing the Wisconsin Diagnostic Breast Cancer and Wisconsin Prognostic Breast Cancer datasets, the framework integrates multiple deep learning architectures- Multi layer Perceptron (MLP), Visual Geometry Group (VGG), Residual Network (ResNet), and Extreme Inception (Xception)-with traditional machine learning models such as Support Vector Machine (SVM), Decision Trees (DT), Random Forest (RF), and Logistic Regression (LR). This hybridization leads to the creation of 16 robust models that enhance interpretability, facilitate generalization, and effectively manage challenges related to small datasets, class imbalance, and data preprocessing. The BCR-HDL framework’s unique contributions include its ability to predict not only diagnostic outcomes but also prognostic and recurrence timing, offering a comprehensive solution for breast cancer management. Specifically, the Hybrid MLP+RF and Xception+RF models achieved an exceptional diagnostic accuracy of 97% on the WDBC dataset, while the Hybrid MLP+RF model reached 78% prognostic accuracy on the WPBC dataset. Moreover, the Hybrid ResNet+SVM and ResNet+RF models demonstrated impressive performance in multi-classifying recurrence into different time intervals, achieving 92% accuracy in predicting recurrence within 2 years, between 2 to 4 years, and beyond 4 years. The study also provides a detailed analysis of model performance through training versus validation accuracy graphs and a comparison with existing approaches, demonstrating the superiority of the proposed framework in terms of diagnostic, prognostic, and recurrence time predictions. The BCR-HDL framework offers practical recommendations for clinicians, including its potential for personalized treatment strategies and improved patient monitoring, making it a valuable tool for advancing breast cancer management. HighlightsThe BCR-HDL framework predicts breast cancer recurrence with high accuracy, enhancing early detection.It combines deep learning and traditional models to improve prediction of diagnostic, prognostic, and recurrence outcomes.Clinicians can use these insights to create personalized treatment plans and better monitor patient health.
Breast cancer and its recurrence are significant health concerns, emphasizing the critical importance of early detection and personalized treatment strategies for improved outcomes. This study introduces the BCR-HDL (Breast Cancer Recurrence using Hybrid Deep Learning) framework, a novel approach designed to predict breast cancer recurrence with high accuracy and interpretability. Utilizing the Wisconsin Diagnostic Breast Cancer and Wisconsin Prognostic Breast Cancer datasets, the framework integrates multiple deep learning architectures- Multi layer Perceptron (MLP), Visual Geometry Group (VGG), Residual Network (ResNet), and Extreme Inception (Xception)-with traditional machine learning models such as Support Vector Machine (SVM), Decision Trees (DT), Random Forest (RF), and Logistic Regression (LR). This hybridization leads to the creation of 16 robust models that enhance interpretability, facilitate generalization, and effectively manage challenges related to small datasets, class imbalance, and data preprocessing. The BCR-HDL framework’s unique contributions include its ability to predict not only diagnostic outcomes but also prognostic and recurrence timing, offering a comprehensive solution for breast cancer management. Specifically, the Hybrid MLP+RF and Xception+RF models achieved an exceptional diagnostic accuracy of 97% on the WDBC dataset, while the Hybrid MLP+RF model reached 78% prognostic accuracy on the WPBC dataset. Moreover, the Hybrid ResNet+SVM and ResNet+RF models demonstrated impressive performance in multi-classifying recurrence into different time intervals, achieving 92% accuracy in predicting recurrence within 2 years, between 2 to 4 years, and beyond 4 years. The study also provides a detailed analysis of model performance through training versus validation accuracy graphs and a comparison with existing approaches, demonstrating the superiority of the proposed framework in terms of diagnostic, prognostic, and recurrence time predictions. The BCR-HDL framework offers practical recommendations for clinicians, including its potential for personalized treatment strategies and improved patient monitoring, making it a valuable tool for advancing breast cancer management. Highlights The BCR-HDL framework predicts breast cancer recurrence with high accuracy, enhancing early detection. It combines deep learning and traditional models to improve prediction of diagnostic, prognostic, and recurrence outcomes. Clinicians can use these insights to create personalized treatment plans and better monitor patient health.
Breast cancer and its recurrence are significant health concerns, emphasizing the critical importance of early detection and personalized treatment strategies for improved outcomes. This study introduces the BCR-HDL (Breast Cancer Recurrence using Hybrid Deep Learning) framework, a novel approach designed to predict breast cancer recurrence with high accuracy and interpretability. Utilizing the Wisconsin Diagnostic Breast Cancer and Wisconsin Prognostic Breast Cancer datasets, the framework integrates multiple deep learning architectures- Multi layer Perceptron (MLP), Visual Geometry Group (VGG), Residual Network (ResNet), and Extreme Inception (Xception)-with traditional machine learning models such as Support Vector Machine (SVM), Decision Trees (DT), Random Forest (RF), and Logistic Regression (LR). This hybridization leads to the creation of 16 robust models that enhance interpretability, facilitate generalization, and effectively manage challenges related to small datasets, class imbalance, and data preprocessing. The BCR-HDL framework’s unique contributions include its ability to predict not only diagnostic outcomes but also prognostic and recurrence timing, offering a comprehensive solution for breast cancer management. Specifically, the Hybrid MLP+RF and Xception+RF models achieved an exceptional diagnostic accuracy of 97% on the WDBC dataset, while the Hybrid MLP+RF model reached 78% prognostic accuracy on the WPBC dataset. Moreover, the Hybrid ResNet+SVM and ResNet+RF models demonstrated impressive performance in multi-classifying recurrence into different time intervals, achieving 92% accuracy in predicting recurrence within 2 years, between 2 to 4 years, and beyond 4 years. The study also provides a detailed analysis of model performance through training versus validation accuracy graphs and a comparison with existing approaches, demonstrating the superiority of the proposed framework in terms of diagnostic, prognostic, and recurrence time predictions. The BCR-HDL framework offers practical recommendations for clinicians, including its potential for personalized treatment strategies and improved patient monitoring, making it a valuable tool for advancing breast cancer management.
ArticleNumber 113
Author Kumari, Deepa
Panda, Subhrakanta
Naidu, Mutyala Venkata Sai Subhash
Christopher, Jabez
Author_xml – sequence: 1
  givenname: Deepa
  surname: Kumari
  fullname: Kumari, Deepa
  email: p20190020@hyderabad.bits-pilani.ac.in
  organization: CSIS Department, BITS Pilani, Hyderabad Campus
– sequence: 2
  givenname: Mutyala Venkata Sai Subhash
  surname: Naidu
  fullname: Naidu, Mutyala Venkata Sai Subhash
  organization: CSIS Department, BITS Pilani, Hyderabad Campus
– sequence: 3
  givenname: Subhrakanta
  surname: Panda
  fullname: Panda, Subhrakanta
  organization: CSIS Department, BITS Pilani, Hyderabad Campus
– sequence: 4
  givenname: Jabez
  surname: Christopher
  fullname: Christopher, Jabez
  organization: CSIS Department, BITS Pilani, Hyderabad Campus
BookMark eNp9UMlOwzAQtVCRKKU_wCkS58B4iR0fUcUmVYIDnC0vkypVSYqdHPh73AYBJ06zvfdm5p2TWdd3SMglhWsKoG6SYKJiJbCqBFlRVlYnZM4BRKmZpLM_-RlZprQFAM5BqUrPiXqJGFo_tN2mcBFtGgpvO4-xiOjHGDHnxZgO44C4L3ZoY5erC3La2F3C5XdckLf7u9fVY7l-fnha3a5LzykMpauDRVa7WjgqqRfWy5rVFbOucdyCCI6DVzrIOjSgKArKNRUoGg0h0EbxBXmadENvt2Yf23cbP01vW3Ns9HFjbBxav0PjBXdaUk1ROmFVY7VEbDzzKFj-2GWtq0lrH_uPEdNgtv0Yu3y-4fk6yQXVOqPYhPKxTyli87OVgjn4bSa_TfbbHP02VSbxiZQyuNtg_JX-h_UFHjeDhA
Cites_doi 10.1155/2019/5176705
10.3390/ijerph19063211
10.4103/0301-4738.37595
10.14569/IJACSA.2023.0140531
10.1016/j.patrec.2018.11.004
10.1080/00051144.2023.2293280
10.1145/3625287
10.1109/TCBB.2018.2806438
10.1109/CVPR.2016.90
10.1023/A:1010933404324
10.1007/s00354-023-00215-4
10.3390/healthcare10122395
10.3390/cancers11030328
10.1007/s11227-024-06198-3
10.1016/j.asoc.2024.112242
10.1111/j.2517-6161.1958.tb00292.x
10.3390/biomedinformatics2030022
10.1371/journal.pone.0283562
10.1038/s41523-023-00597-0
10.5815/ijigsp.2023.02.02
10.22214/ijraset.2022.40204
10.1007/s11764-023-01465-3
10.1038/s41598-023-40341-z
10.1109/ICECA49313.2020.9297479
10.1245/s10434-023-14134-7
10.1109/CIMCA.2018.8739696
10.3390/diagnostics13101753
10.3390/diagnostics13010161
10.1016/j.bspc.2023.105121
10.1080/08839514.2022.2031820
10.1007/s13278-022-00867-y
10.1007/s00432-023-04967-w
10.5220/0012298300003636
10.1109/ACCESS.2020.2993536
10.1016/j.ctarc.2022.100602
10.1007/BF00994018
10.1155/2022/5869529
10.18178/ijmlc.2019.9.3.794
10.1186/s12911-023-02377-z
10.1016/j.eswa.2023.122641
10.1109/EBBT.2019.8741990
10.1109/ICAI52203.2021.9445249
10.1109/C2I451079.2020.9368911
10.1007/s12032-023-02111-9
10.1109/ACCESS.2021.3055806
10.1200/CCI.23.00049
10.1109/CVPR.2017.195
10.1201/9780367631888-2
10.1055/a-0855-3532
10.1016/j.asoc.2023.110292
ContentType Journal Article
Copyright The Author(s) 2025
Copyright Springer Nature B.V. Feb 2025
Copyright_xml – notice: The Author(s) 2025
– notice: Copyright Springer Nature B.V. Feb 2025
DBID C6C
AAYXX
CITATION
3V.
7XB
88I
8FE
8FG
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
D1I
DWQXO
GNUQQ
HCIFZ
KB.
L6V
M2P
M7S
PATMY
PCBAR
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
Q9U
DOA
DOI 10.1007/s42452-025-06512-5
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One
ProQuest Materials Science Collection
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Materials Science Database (NC LIVE)
ProQuest Engineering Collection
Science Database (ProQuest)
Engineering Database
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
Materials Science Collection (ProQuest)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content (ProQuest)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
Environmental Science Collection (ProQuest)
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Engineering Collection
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Materials Science Database
ProQuest Central (New)
Engineering Collection
ProQuest Materials Science Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Environmental Science Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Environmental Science Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList
Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ : directory of open access journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 3004-9261
2523-3971
EndPage 33
ExternalDocumentID oai_doaj_org_article_c43b96191e6b4a7fa96eefc2ce42003b
10_1007_s42452_025_06512_5
GeographicLocations United States--US
Wisconsin
GeographicLocations_xml – name: Wisconsin
– name: United States--US
GrantInformation_xml – fundername: Birla Institute of Technology and Science, Pilani
GroupedDBID AAJSJ
ABEEZ
ADMLS
ALMA_UNASSIGNED_HOLDINGS
BGNMA
C6C
GROUPED_DOAJ
M4Y
NU0
RSV
SOJ
AASML
AAYXX
CITATION
M~E
0R~
3V.
7XB
88I
8FE
8FG
8FK
AAHNG
AAKKN
ABDZT
ABECU
ABFTV
ABHQN
ABJCF
ABKCH
ABMQK
ABTMW
ABUWG
ABXPI
ACACY
ACMLO
ACOKC
ACSTC
ACULB
ADKNI
ADURQ
ADYFF
AEJRE
AEUYN
AFGXO
AFKRA
AFQWF
AGDGC
AGJBK
AILAN
AITGF
AJZVZ
AMKLP
ATCPS
AXYYD
AZQEC
BAPOH
BENPR
BGLVJ
BHPHI
BKSAR
C24
CCPQU
D1I
DWQXO
EBLON
EBS
FNLPD
GNUQQ
GNWQR
HCIFZ
J-C
KB.
KOV
L6V
M2P
M7S
NQJWS
OK1
PATMY
PCBAR
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
Q9U
STPWE
TSG
UOJIU
UTJUX
VEKWB
VFIZW
ZMTXR
ID FETCH-LOGICAL-c310t-b8dae28b84b161c4ac682852abfb3a04db30c79d68df071e413914e4f90dd1f73
IEDL.DBID BENPR
ISSN 3004-9261
2523-3963
IngestDate Wed Aug 27 01:27:03 EDT 2025
Wed Aug 13 05:09:31 EDT 2025
Tue Jul 01 01:11:57 EDT 2025
Fri Feb 21 02:36:40 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Deep learning
Hybrid model
Breast cancer recurrence
Feature engineering
Machine learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c310t-b8dae28b84b161c4ac682852abfb3a04db30c79d68df071e413914e4f90dd1f73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/3161634199?pq-origsite=%requestingapplication%
PQID 3161634199
PQPubID 5758472
PageCount 33
ParticipantIDs doaj_primary_oai_doaj_org_article_c43b96191e6b4a7fa96eefc2ce42003b
proquest_journals_3161634199
crossref_primary_10_1007_s42452_025_06512_5
springer_journals_10_1007_s42452_025_06512_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-01-30
PublicationDateYYYYMMDD 2025-01-30
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-30
  day: 30
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: London
PublicationTitle Discover applied sciences
PublicationTitleAbbrev Discov Appl Sci
PublicationYear 2025
Publisher Springer International Publishing
Springer Nature B.V
Springer
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
– name: Springer
References 6512_CR30
D Sun (6512_CR52) 2018; 16
6512_CR32
M Hussein (6512_CR7) 2024; 240
BS Chhikara (6512_CR1) 2023; 10
Z Su (6512_CR56) 2023; 18
JR Quinlan (6512_CR31) 1986; 1
6512_CR35
H El Haji (6512_CR55) 2023; 7
6512_CR41
SR Gupta (6512_CR6) 2022; 32
6512_CR40
OJ Egwom (6512_CR39) 2022; 2
L Breiman (6512_CR33) 2001; 45
6512_CR45
6512_CR43
D Lu (6512_CR14) 2023; 149
AU Haq (6512_CR21) 2021; 9
P Ferroni (6512_CR54) 2019; 11
H Swaminathan (6512_CR8) 2023; 40
M Abdar (6512_CR48) 2020; 132
6512_CR5
M Mangukiya (6512_CR44) 2022; 10
6512_CR3
L Wu (6512_CR53) 2019; 51
6512_CR47
Z Guo (6512_CR58) 2022; 36
S Palmal (6512_CR9) 2023; 13
D Gupta (6512_CR24) 2012; 975
D Zuo (6512_CR23) 2023; 23
6512_CR50
Y Shi (6512_CR18) 2023; 9
M Nasser (6512_CR12) 2023; 13
S Bhise (6512_CR42) 2021; 10
6512_CR10
D Kumari (6512_CR36) 2023; 86
S Almutairi (6512_CR37) 2023; 142
M Zeid (6512_CR46) 2022; 100
CR Arathi (6512_CR15) 2024; 65
AA Bataineh (6512_CR49) 2019; 9
6512_CR16
D Singh (6512_CR2) 2024; 45
6512_CR13
6512_CR19
6512_CR17
B Rajita (6512_CR59) 2023; 41
J Zheng (6512_CR38) 2020; 8
R Hasan (6512_CR11) 2023; 13
M Al-Jabbar (6512_CR22) 2023; 13
6512_CR20
A Rasool (6512_CR51) 2022; 19
R Parikh (6512_CR57) 2008; 56
B Rajita (6512_CR60) 2022; 12
6512_CR27
A Zizaan (6512_CR4) 2023; 11
6512_CR26
6512_CR25
6512_CR29
6512_CR28
DR Cox (6512_CR34) 1958; 20
References_xml – ident: 6512_CR20
  doi: 10.1155/2019/5176705
– volume: 19
  start-page: 3211
  issue: 6
  year: 2022
  ident: 6512_CR51
  publication-title: International journal of environmental research and public health
  doi: 10.3390/ijerph19063211
– volume: 56
  start-page: 45
  issue: 1
  year: 2008
  ident: 6512_CR57
  publication-title: Indian journal of ophthalmology
  doi: 10.4103/0301-4738.37595
– ident: 6512_CR17
  doi: 10.14569/IJACSA.2023.0140531
– volume: 132
  start-page: 123
  year: 2020
  ident: 6512_CR48
  publication-title: Pattern Recognition Letters
  doi: 10.1016/j.patrec.2018.11.004
– volume: 65
  start-page: 343
  issue: 1
  year: 2024
  ident: 6512_CR15
  publication-title: Automatika
  doi: 10.1080/00051144.2023.2293280
– ident: 6512_CR40
  doi: 10.1145/3625287
– volume: 16
  start-page: 841
  issue: 3
  year: 2018
  ident: 6512_CR52
  publication-title: IEEE/ACM transactions on computational biology and bioinformatics
  doi: 10.1109/TCBB.2018.2806438
– ident: 6512_CR27
  doi: 10.1109/CVPR.2016.90
– volume: 45
  start-page: 5
  year: 2001
  ident: 6512_CR33
  publication-title: Random forests. Machine learning
  doi: 10.1023/A:1010933404324
– volume: 41
  start-page: 401
  issue: 2
  year: 2023
  ident: 6512_CR59
  publication-title: New Generation Computing
  doi: 10.1007/s00354-023-00215-4
– ident: 6512_CR16
  doi: 10.3390/healthcare10122395
– volume: 11
  start-page: 328
  issue: 3
  year: 2019
  ident: 6512_CR54
  publication-title: Cancers
  doi: 10.3390/cancers11030328
– ident: 6512_CR26
  doi: 10.1007/s11227-024-06198-3
– ident: 6512_CR32
  doi: 10.1016/j.asoc.2024.112242
– volume: 20
  start-page: 215
  issue: 2
  year: 1958
  ident: 6512_CR34
  publication-title: Journal of the Royal Statistical Society Series B: Statistical Methodology
  doi: 10.1111/j.2517-6161.1958.tb00292.x
– volume: 2
  start-page: 345
  issue: 3
  year: 2022
  ident: 6512_CR39
  publication-title: BioMedInformatics
  doi: 10.3390/biomedinformatics2030022
– volume: 18
  start-page: 0283562
  issue: 4
  year: 2023
  ident: 6512_CR56
  publication-title: Plos one
  doi: 10.1371/journal.pone.0283562
– volume: 9
  start-page: 92
  issue: 1
  year: 2023
  ident: 6512_CR18
  publication-title: NPJ Breast Cancer
  doi: 10.1038/s41523-023-00597-0
– volume: 1
  start-page: 81
  year: 1986
  ident: 6512_CR31
  publication-title: Induction of decision trees. Machine learning
– ident: 6512_CR13
– volume: 11
  start-page: 976
  issue: 3
  year: 2023
  ident: 6512_CR4
  publication-title: Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization
– volume: 13
  start-page: 13
  issue: 2
  year: 2023
  ident: 6512_CR11
  publication-title: International Journal of Image, Graphics and Signal Processing
  doi: 10.5815/ijigsp.2023.02.02
– volume: 10
  start-page: 141
  issue: 2
  year: 2022
  ident: 6512_CR44
  publication-title: International Journal for Research in Applied Science and Engineering Technology
  doi: 10.22214/ijraset.2022.40204
– volume: 45
  start-page: 2024
  issue: 2
  year: 2024
  ident: 6512_CR2
  publication-title: Tuijin Jishu/Journal of Propulsion Technology
– ident: 6512_CR3
  doi: 10.1007/s11764-023-01465-3
– volume: 10
  start-page: 2278
  issue: 7
  year: 2021
  ident: 6512_CR42
  publication-title: Int. J. Eng. Res. Technol
– volume: 13
  start-page: 14757
  issue: 1
  year: 2023
  ident: 6512_CR9
  publication-title: Scientific Reports
  doi: 10.1038/s41598-023-40341-z
– ident: 6512_CR10
  doi: 10.1109/ICECA49313.2020.9297479
– ident: 6512_CR19
  doi: 10.1245/s10434-023-14134-7
– ident: 6512_CR43
  doi: 10.1109/CIMCA.2018.8739696
– volume: 13
  start-page: 1753
  issue: 10
  year: 2023
  ident: 6512_CR22
  publication-title: Diagnostics
  doi: 10.3390/diagnostics13101753
– volume: 13
  start-page: 161
  issue: 1
  year: 2023
  ident: 6512_CR12
  publication-title: Diagnostics
  doi: 10.3390/diagnostics13010161
– volume: 86
  year: 2023
  ident: 6512_CR36
  publication-title: Biomedical Signal Processing and Control
  doi: 10.1016/j.bspc.2023.105121
– volume: 36
  start-page: 2031820
  issue: 1
  year: 2022
  ident: 6512_CR58
  publication-title: Applied Artificial Intelligence
  doi: 10.1080/08839514.2022.2031820
– volume: 12
  start-page: 38
  issue: 1
  year: 2022
  ident: 6512_CR60
  publication-title: Social Network Analysis and Mining
  doi: 10.1007/s13278-022-00867-y
– volume: 149
  start-page: 10659
  issue: 12
  year: 2023
  ident: 6512_CR14
  publication-title: Journal of Cancer Research and Clinical Oncology
  doi: 10.1007/s00432-023-04967-w
– ident: 6512_CR30
  doi: 10.5220/0012298300003636
– volume: 8
  start-page: 96946
  year: 2020
  ident: 6512_CR38
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2993536
– volume: 100
  start-page: 5165
  issue: 14
  year: 2022
  ident: 6512_CR46
  publication-title: J. Theor. Appl. Inf. Technol.
– volume: 32
  year: 2022
  ident: 6512_CR6
  publication-title: Cancer Treatment and Research Communications
  doi: 10.1016/j.ctarc.2022.100602
– ident: 6512_CR29
  doi: 10.1007/BF00994018
– volume: 10
  start-page: 451
  issue: 1
  year: 2023
  ident: 6512_CR1
  publication-title: Chemical Biology Letters
– volume: 975
  start-page: 8887
  year: 2012
  ident: 6512_CR24
  publication-title: International Journal of Computer Applications
– ident: 6512_CR41
  doi: 10.1155/2022/5869529
– volume: 9
  start-page: 248
  issue: 3
  year: 2019
  ident: 6512_CR49
  publication-title: International Journal of Machine Learning and Computing
  doi: 10.18178/ijmlc.2019.9.3.794
– volume: 23
  start-page: 276
  issue: 1
  year: 2023
  ident: 6512_CR23
  publication-title: BMC Medical Informatics and Decision Making
  doi: 10.1186/s12911-023-02377-z
– volume: 240
  year: 2024
  ident: 6512_CR7
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2023.122641
– ident: 6512_CR47
  doi: 10.1109/EBBT.2019.8741990
– ident: 6512_CR50
  doi: 10.1109/ICAI52203.2021.9445249
– ident: 6512_CR45
  doi: 10.1109/C2I451079.2020.9368911
– volume: 40
  start-page: 238
  issue: 8
  year: 2023
  ident: 6512_CR8
  publication-title: Medical Oncology
  doi: 10.1007/s12032-023-02111-9
– volume: 9
  start-page: 22090
  year: 2021
  ident: 6512_CR21
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3055806
– volume: 7
  start-page: 2300049
  year: 2023
  ident: 6512_CR55
  publication-title: JCO Clinical Cancer Informatics
  doi: 10.1200/CCI.23.00049
– ident: 6512_CR5
– ident: 6512_CR28
  doi: 10.1109/CVPR.2017.195
– ident: 6512_CR35
  doi: 10.1201/9780367631888-2
– volume: 51
  start-page: 522
  issue: 06
  year: 2019
  ident: 6512_CR53
  publication-title: Endoscopy
  doi: 10.1055/a-0855-3532
– volume: 142
  year: 2023
  ident: 6512_CR37
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2023.110292
– ident: 6512_CR25
SSID ssj0003307759
ssj0002793483
ssib051670015
Score 2.3018243
Snippet Breast cancer and its recurrence are significant health concerns, emphasizing the critical importance of early detection and personalized treatment strategies...
Abstract Breast cancer and its recurrence are significant health concerns, emphasizing the critical importance of early detection and personalized treatment...
SourceID doaj
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 113
SubjectTerms Accuracy
Applied and Technical Physics
Breast cancer
Breast cancer recurrence
Cancer therapies
Chemistry/Food Science
Customization
Datasets
Decision trees
Deep learning
Disease management
Earth Sciences
Eigenvalues
Eigenvectors
Engineering
Environment
Feature engineering
Feature selection
Hybrid model
Hybridization
Machine learning
Mammography
Materials Science
Medical research
Multilayer perceptrons
Neural networks
Patients
Predictions
Regression analysis
Standard deviation
Standardization
Support vector machines
Visual discrimination learning
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELVQJxYEAkSgIA9sEJHEjh2PgKgqJBADlbpZ_jh3K1UI_x-fk5aChFhYkwzOO9v3fHd-R8ilKmvrZOB57Sxg6CbkyjUil0VlbGldkEmJ6elZTGf8cV7Pt1p9YU1YLw_cA3fjOLMqsvwShOVGBqMEQHCVA451VRZ33-jztg5TuAfHU7qUtRpuyaS7cpjiq3Ls3hq9LjYA-OaJkmD_N5b5IzGa_M1kn-wNRJHe9gM8IDuwPCTypcXECpYqU4vl5B11aLaWthg3Tzf3KJayL6gHWNGhJ8TiiMwmD6_303xofZC7yLe63DbeQNXYhttIyRw3TqDUXMQvWGYK7i0rnFReND5EkgDRFamSAw-q8L4Mkh2T0fJtCSeEGm9qcFIya1AbBkwFXjII0dEHVhqTkas1DHrVK1zojZZxAk1H0HQCTdcZuUOkNl-iOnV6EG2mB5vpv2yWkfEaZz0smXfN4o8KVJdTGbleY__1-vchnf7HkM7IbpXmBkbjxmTUtR9wHulGZy_SzPoEC7HQvQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagLDAgniK8lIENIpLYseMRKqoKCcRApW6WH-dupUrD_8fnpoVWMLAmjpR8d9F9vsdnQm5kURkrPMsqawBTNz6TtuaZyEttCmO9iEpML698OGLP42rcyeTgLMxG_f5-jpW5MsNDV0OwRN3-bbJTFZSjB_d5f5VPCftyISrZzcX8_uha7IkS_Wu8cqMUGiPM4IDsd9QwfVjY8pBswfSI7P0QDDwm4q3Bwgq2KqcG28nb1KLZmrTBvHmc3EuxlX2SOoBZ2p0JMTkho8HTe3-YdUcfZDbwrTYztdNQ1qZmJlAyy7TlKDUX8POG6pw5Q3MrpOO184EkQAhFsmDAvMydK7ygp6Q3_ZjCGUm10xVYIajRqA0DugQnKPgQ6D0ttE7I7RIUNVsoXKiVlnGEUAUIVYRQVQl5RNxWK1GdOl4IRlOdsyvLqJFhZ1YAN0wLryUH8La0wLAXziTkcom66n6ZuaLhQzmqy8mE3C0t8X3771c6_9_yC7JbRp_AvNsl6bXNJ1wFYtGa6-hRX1OOxMM
  priority: 102
  providerName: Springer Nature
Title Predicting breast cancer recurrence using deep learning
URI https://link.springer.com/article/10.1007/s42452-025-06512-5
https://www.proquest.com/docview/3161634199
https://doaj.org/article/c43b96191e6b4a7fa96eefc2ce42003b
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEB6a5NIeSp90m3TxobdWdG3JlnUqzbLbUEgIpYHchB6jhR52N8722t-eGUVOmkJ7MfiBMZ_Gmvc3AO9N3fqgkxJt8MihmyRM6DuhZ43ztQ9JZyam07Pu5EJ9u2wvS8DtupRVjnti3qjjJnCM_JMk06Rj8jHzeXsleGoUZ1fLCI09OKAtuCfn6-B4cXb-fZSotuYulKLwfuY0m5Eqc3M25IEJSeJXOmlyPx2nARvBE15JM_OQgAfaKpP6P7BE_0qeZp20fAZPizFZfbld_efwCNcv4MkfFIMvQZ8PnIrh4ubKcwH6rgq80EM1cKQ99_pVXPy-qiLitipTJFav4GK5-DE_EWVYgghkoe2E76PDpve98oRUUC50TE5HiCcv3UxFL2dBm9j1MZFZgaS8TK1QJTOLsU5avob99WaNb6By0bUYtJbeMZsMugajlpjINEiydm4CH0ZQ7PaWE8PesR9nCC1BaDOEtp3AMeN29yTzWecLm2Fly-9hg5LekC9XY-eV08mZDjGFJqDi6jk_gaMRdVt-smt7LxIT-DiuxP3tf3_S2_-_7RAeN1kGODJ3BPu74Re-I9Nj56ew1y-_TouU0dm8m0-zG0_H09-LGyL91rM
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbhQxEC2FcAAOiFUZCOADnMBi2na32weE2IYJWcQhkXIzXsojcZgZOhNF_BTfiMvTnRAkuOXai2WVn13lWl4BPDdV7YNOitfBI7luEjehbbgeC-crH5IuTEz7B830SH05ro834NdQC0NplcOZWA7quAjkI38ts2nSEPmYebv8walrFEVXhxYaa1js4s-zfGU7ebPzMa_vCyEmnw4_THnfVYCHbMqsuG-jQ9H6Vvk8ZFAuNMTilqeWvHRjFb0cB21i08aU9S_mU95UClUy4xirpGUe9xpcV1Ia2lHt5POA37qimpdevX4vQT0jVWECFfm-x_MPsq_bKdV7FHQUnPrJZjuAWhJc0o2lhcAlu_evUG3RgJM7cLs3Xdm7NdbuwgbO78GtPwgN74P-2lHgh1Kpmad09xULBKuOdeTXL5WFjFLtZywiLlnfs2L2AI6uRIgPYXO-mOMWMBddjUFr6R1x16ATGLXElA2RJCvnRvByEIpdrhk47DnXchGhzSK0RYS2HsF7ktv5l8SeXR4supntN6MNSnqTb44VNl45nZxpEFMQARXl6vkRbA9St_2WPrEXABzBq2ElLl7_e0qP_j_aM7gxPdzfs3s7B7uP4aYoeCCf4DZsrrpTfJKNnpV_WpDG4NtVQ_s36nAOvQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NaxQxFH_ULYgexE9crZqDnjR0JslMJgcRa7u0VpdFLPQW87ngYXedroj_mn-dedlMawW99TozhPDml7zv3wN4rurGOhkFbZwNGLqJVLmupbJixtbWRZmZmD5O28MT8f60Od2CX0MvDJZVDndivqj90mGMfJcn06RF8jG1G0tZxGx_8mb1jeIEKcy0DuM0NhA5Dj9_JPft7PXRfvrXLxibHHx-d0jLhAHqklmzprbzJrDOdsKm5Z0wrkVGt7TNaLmphLe8clL5tvMx6eKQbnxViyCiqryvo-Rp3WuwLZNXVI1ge-9gOvs0oLmpsQOmKNuvOcWnuMi8oCx5f5Qn6JcuntzLhylIRnG6bLIKcEDBJU2ZBwpcsoL_StxmfTi5DbeKIUvebpB3B7bC4i7c_IPe8B7IWY9pICysJhaL39fEIch60mOUP_cZEiy8nxMfwoqUCRbz-3ByJWJ8AKPFchEeAjHeNMFJya1BJptgWPCSh5jMkshrY8bwchCKXm34OPQ583IWoU4i1FmEuhnDHsrt_Evk0s4Plv1cl6OpneBWJT-yDq0VRkaj2hCiYy4IrNyzY9gZpK7LAT_TF3Acw6vhT1y8_veWHv1_tWdwPcFafziaHj-GGyzDAQOEOzBa99_Dk2QBre3TAjUCX64a3b8BP3MUTw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+breast+cancer+recurrence+using+deep+learning&rft.jtitle=SN+applied+sciences&rft.date=2025-01-30&rft.pub=Springer+Nature+B.V&rft.issn=2523-3963&rft.eissn=2523-3971&rft.volume=7&rft.issue=2&rft.spage=113&rft_id=info:doi/10.1007%2Fs42452-025-06512-5&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=3004-9261&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=3004-9261&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=3004-9261&client=summon