Predicting breast cancer recurrence using deep learning
Breast cancer and its recurrence are significant health concerns, emphasizing the critical importance of early detection and personalized treatment strategies for improved outcomes. This study introduces the BCR-HDL (Breast Cancer Recurrence using Hybrid Deep Learning) framework, a novel approach de...
Saved in:
Published in | Discover applied sciences Vol. 7; no. 2; pp. 113 - 33 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
30.01.2025
Springer Nature B.V Springer |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Breast cancer and its recurrence are significant health concerns, emphasizing the critical importance of early detection and personalized treatment strategies for improved outcomes. This study introduces the BCR-HDL (Breast Cancer Recurrence using Hybrid Deep Learning) framework, a novel approach designed to predict breast cancer recurrence with high accuracy and interpretability. Utilizing the Wisconsin Diagnostic Breast Cancer and Wisconsin Prognostic Breast Cancer datasets, the framework integrates multiple deep learning architectures- Multi layer Perceptron (MLP), Visual Geometry Group (VGG), Residual Network (ResNet), and Extreme Inception (Xception)-with traditional machine learning models such as Support Vector Machine (SVM), Decision Trees (DT), Random Forest (RF), and Logistic Regression (LR). This hybridization leads to the creation of 16 robust models that enhance interpretability, facilitate generalization, and effectively manage challenges related to small datasets, class imbalance, and data preprocessing. The BCR-HDL framework’s unique contributions include its ability to predict not only diagnostic outcomes but also prognostic and recurrence timing, offering a comprehensive solution for breast cancer management. Specifically, the Hybrid MLP+RF and Xception+RF models achieved an exceptional diagnostic accuracy of 97% on the WDBC dataset, while the Hybrid MLP+RF model reached 78% prognostic accuracy on the WPBC dataset. Moreover, the Hybrid ResNet+SVM and ResNet+RF models demonstrated impressive performance in multi-classifying recurrence into different time intervals, achieving 92% accuracy in predicting recurrence within 2 years, between 2 to 4 years, and beyond 4 years. The study also provides a detailed analysis of model performance through training versus validation accuracy graphs and a comparison with existing approaches, demonstrating the superiority of the proposed framework in terms of diagnostic, prognostic, and recurrence time predictions. The BCR-HDL framework offers practical recommendations for clinicians, including its potential for personalized treatment strategies and improved patient monitoring, making it a valuable tool for advancing breast cancer management.
Highlights
The BCR-HDL framework predicts breast cancer recurrence with high accuracy, enhancing early detection.
It combines deep learning and traditional models to improve prediction of diagnostic, prognostic, and recurrence outcomes.
Clinicians can use these insights to create personalized treatment plans and better monitor patient health. |
---|---|
AbstractList | Abstract Breast cancer and its recurrence are significant health concerns, emphasizing the critical importance of early detection and personalized treatment strategies for improved outcomes. This study introduces the BCR-HDL (Breast Cancer Recurrence using Hybrid Deep Learning) framework, a novel approach designed to predict breast cancer recurrence with high accuracy and interpretability. Utilizing the Wisconsin Diagnostic Breast Cancer and Wisconsin Prognostic Breast Cancer datasets, the framework integrates multiple deep learning architectures- Multi layer Perceptron (MLP), Visual Geometry Group (VGG), Residual Network (ResNet), and Extreme Inception (Xception)-with traditional machine learning models such as Support Vector Machine (SVM), Decision Trees (DT), Random Forest (RF), and Logistic Regression (LR). This hybridization leads to the creation of 16 robust models that enhance interpretability, facilitate generalization, and effectively manage challenges related to small datasets, class imbalance, and data preprocessing. The BCR-HDL framework’s unique contributions include its ability to predict not only diagnostic outcomes but also prognostic and recurrence timing, offering a comprehensive solution for breast cancer management. Specifically, the Hybrid MLP+RF and Xception+RF models achieved an exceptional diagnostic accuracy of 97% on the WDBC dataset, while the Hybrid MLP+RF model reached 78% prognostic accuracy on the WPBC dataset. Moreover, the Hybrid ResNet+SVM and ResNet+RF models demonstrated impressive performance in multi-classifying recurrence into different time intervals, achieving 92% accuracy in predicting recurrence within 2 years, between 2 to 4 years, and beyond 4 years. The study also provides a detailed analysis of model performance through training versus validation accuracy graphs and a comparison with existing approaches, demonstrating the superiority of the proposed framework in terms of diagnostic, prognostic, and recurrence time predictions. The BCR-HDL framework offers practical recommendations for clinicians, including its potential for personalized treatment strategies and improved patient monitoring, making it a valuable tool for advancing breast cancer management. Breast cancer and its recurrence are significant health concerns, emphasizing the critical importance of early detection and personalized treatment strategies for improved outcomes. This study introduces the BCR-HDL (Breast Cancer Recurrence using Hybrid Deep Learning) framework, a novel approach designed to predict breast cancer recurrence with high accuracy and interpretability. Utilizing the Wisconsin Diagnostic Breast Cancer and Wisconsin Prognostic Breast Cancer datasets, the framework integrates multiple deep learning architectures- Multi layer Perceptron (MLP), Visual Geometry Group (VGG), Residual Network (ResNet), and Extreme Inception (Xception)-with traditional machine learning models such as Support Vector Machine (SVM), Decision Trees (DT), Random Forest (RF), and Logistic Regression (LR). This hybridization leads to the creation of 16 robust models that enhance interpretability, facilitate generalization, and effectively manage challenges related to small datasets, class imbalance, and data preprocessing. The BCR-HDL framework’s unique contributions include its ability to predict not only diagnostic outcomes but also prognostic and recurrence timing, offering a comprehensive solution for breast cancer management. Specifically, the Hybrid MLP+RF and Xception+RF models achieved an exceptional diagnostic accuracy of 97% on the WDBC dataset, while the Hybrid MLP+RF model reached 78% prognostic accuracy on the WPBC dataset. Moreover, the Hybrid ResNet+SVM and ResNet+RF models demonstrated impressive performance in multi-classifying recurrence into different time intervals, achieving 92% accuracy in predicting recurrence within 2 years, between 2 to 4 years, and beyond 4 years. The study also provides a detailed analysis of model performance through training versus validation accuracy graphs and a comparison with existing approaches, demonstrating the superiority of the proposed framework in terms of diagnostic, prognostic, and recurrence time predictions. The BCR-HDL framework offers practical recommendations for clinicians, including its potential for personalized treatment strategies and improved patient monitoring, making it a valuable tool for advancing breast cancer management. HighlightsThe BCR-HDL framework predicts breast cancer recurrence with high accuracy, enhancing early detection.It combines deep learning and traditional models to improve prediction of diagnostic, prognostic, and recurrence outcomes.Clinicians can use these insights to create personalized treatment plans and better monitor patient health. Breast cancer and its recurrence are significant health concerns, emphasizing the critical importance of early detection and personalized treatment strategies for improved outcomes. This study introduces the BCR-HDL (Breast Cancer Recurrence using Hybrid Deep Learning) framework, a novel approach designed to predict breast cancer recurrence with high accuracy and interpretability. Utilizing the Wisconsin Diagnostic Breast Cancer and Wisconsin Prognostic Breast Cancer datasets, the framework integrates multiple deep learning architectures- Multi layer Perceptron (MLP), Visual Geometry Group (VGG), Residual Network (ResNet), and Extreme Inception (Xception)-with traditional machine learning models such as Support Vector Machine (SVM), Decision Trees (DT), Random Forest (RF), and Logistic Regression (LR). This hybridization leads to the creation of 16 robust models that enhance interpretability, facilitate generalization, and effectively manage challenges related to small datasets, class imbalance, and data preprocessing. The BCR-HDL framework’s unique contributions include its ability to predict not only diagnostic outcomes but also prognostic and recurrence timing, offering a comprehensive solution for breast cancer management. Specifically, the Hybrid MLP+RF and Xception+RF models achieved an exceptional diagnostic accuracy of 97% on the WDBC dataset, while the Hybrid MLP+RF model reached 78% prognostic accuracy on the WPBC dataset. Moreover, the Hybrid ResNet+SVM and ResNet+RF models demonstrated impressive performance in multi-classifying recurrence into different time intervals, achieving 92% accuracy in predicting recurrence within 2 years, between 2 to 4 years, and beyond 4 years. The study also provides a detailed analysis of model performance through training versus validation accuracy graphs and a comparison with existing approaches, demonstrating the superiority of the proposed framework in terms of diagnostic, prognostic, and recurrence time predictions. The BCR-HDL framework offers practical recommendations for clinicians, including its potential for personalized treatment strategies and improved patient monitoring, making it a valuable tool for advancing breast cancer management. Highlights The BCR-HDL framework predicts breast cancer recurrence with high accuracy, enhancing early detection. It combines deep learning and traditional models to improve prediction of diagnostic, prognostic, and recurrence outcomes. Clinicians can use these insights to create personalized treatment plans and better monitor patient health. Breast cancer and its recurrence are significant health concerns, emphasizing the critical importance of early detection and personalized treatment strategies for improved outcomes. This study introduces the BCR-HDL (Breast Cancer Recurrence using Hybrid Deep Learning) framework, a novel approach designed to predict breast cancer recurrence with high accuracy and interpretability. Utilizing the Wisconsin Diagnostic Breast Cancer and Wisconsin Prognostic Breast Cancer datasets, the framework integrates multiple deep learning architectures- Multi layer Perceptron (MLP), Visual Geometry Group (VGG), Residual Network (ResNet), and Extreme Inception (Xception)-with traditional machine learning models such as Support Vector Machine (SVM), Decision Trees (DT), Random Forest (RF), and Logistic Regression (LR). This hybridization leads to the creation of 16 robust models that enhance interpretability, facilitate generalization, and effectively manage challenges related to small datasets, class imbalance, and data preprocessing. The BCR-HDL framework’s unique contributions include its ability to predict not only diagnostic outcomes but also prognostic and recurrence timing, offering a comprehensive solution for breast cancer management. Specifically, the Hybrid MLP+RF and Xception+RF models achieved an exceptional diagnostic accuracy of 97% on the WDBC dataset, while the Hybrid MLP+RF model reached 78% prognostic accuracy on the WPBC dataset. Moreover, the Hybrid ResNet+SVM and ResNet+RF models demonstrated impressive performance in multi-classifying recurrence into different time intervals, achieving 92% accuracy in predicting recurrence within 2 years, between 2 to 4 years, and beyond 4 years. The study also provides a detailed analysis of model performance through training versus validation accuracy graphs and a comparison with existing approaches, demonstrating the superiority of the proposed framework in terms of diagnostic, prognostic, and recurrence time predictions. The BCR-HDL framework offers practical recommendations for clinicians, including its potential for personalized treatment strategies and improved patient monitoring, making it a valuable tool for advancing breast cancer management. |
ArticleNumber | 113 |
Author | Kumari, Deepa Panda, Subhrakanta Naidu, Mutyala Venkata Sai Subhash Christopher, Jabez |
Author_xml | – sequence: 1 givenname: Deepa surname: Kumari fullname: Kumari, Deepa email: p20190020@hyderabad.bits-pilani.ac.in organization: CSIS Department, BITS Pilani, Hyderabad Campus – sequence: 2 givenname: Mutyala Venkata Sai Subhash surname: Naidu fullname: Naidu, Mutyala Venkata Sai Subhash organization: CSIS Department, BITS Pilani, Hyderabad Campus – sequence: 3 givenname: Subhrakanta surname: Panda fullname: Panda, Subhrakanta organization: CSIS Department, BITS Pilani, Hyderabad Campus – sequence: 4 givenname: Jabez surname: Christopher fullname: Christopher, Jabez organization: CSIS Department, BITS Pilani, Hyderabad Campus |
BookMark | eNp9UMlOwzAQtVCRKKU_wCkS58B4iR0fUcUmVYIDnC0vkypVSYqdHPh73AYBJ06zvfdm5p2TWdd3SMglhWsKoG6SYKJiJbCqBFlRVlYnZM4BRKmZpLM_-RlZprQFAM5BqUrPiXqJGFo_tN2mcBFtGgpvO4-xiOjHGDHnxZgO44C4L3ZoY5erC3La2F3C5XdckLf7u9fVY7l-fnha3a5LzykMpauDRVa7WjgqqRfWy5rVFbOucdyCCI6DVzrIOjSgKArKNRUoGg0h0EbxBXmadENvt2Yf23cbP01vW3Ns9HFjbBxav0PjBXdaUk1ROmFVY7VEbDzzKFj-2GWtq0lrH_uPEdNgtv0Yu3y-4fk6yQXVOqPYhPKxTyli87OVgjn4bSa_TfbbHP02VSbxiZQyuNtg_JX-h_UFHjeDhA |
Cites_doi | 10.1155/2019/5176705 10.3390/ijerph19063211 10.4103/0301-4738.37595 10.14569/IJACSA.2023.0140531 10.1016/j.patrec.2018.11.004 10.1080/00051144.2023.2293280 10.1145/3625287 10.1109/TCBB.2018.2806438 10.1109/CVPR.2016.90 10.1023/A:1010933404324 10.1007/s00354-023-00215-4 10.3390/healthcare10122395 10.3390/cancers11030328 10.1007/s11227-024-06198-3 10.1016/j.asoc.2024.112242 10.1111/j.2517-6161.1958.tb00292.x 10.3390/biomedinformatics2030022 10.1371/journal.pone.0283562 10.1038/s41523-023-00597-0 10.5815/ijigsp.2023.02.02 10.22214/ijraset.2022.40204 10.1007/s11764-023-01465-3 10.1038/s41598-023-40341-z 10.1109/ICECA49313.2020.9297479 10.1245/s10434-023-14134-7 10.1109/CIMCA.2018.8739696 10.3390/diagnostics13101753 10.3390/diagnostics13010161 10.1016/j.bspc.2023.105121 10.1080/08839514.2022.2031820 10.1007/s13278-022-00867-y 10.1007/s00432-023-04967-w 10.5220/0012298300003636 10.1109/ACCESS.2020.2993536 10.1016/j.ctarc.2022.100602 10.1007/BF00994018 10.1155/2022/5869529 10.18178/ijmlc.2019.9.3.794 10.1186/s12911-023-02377-z 10.1016/j.eswa.2023.122641 10.1109/EBBT.2019.8741990 10.1109/ICAI52203.2021.9445249 10.1109/C2I451079.2020.9368911 10.1007/s12032-023-02111-9 10.1109/ACCESS.2021.3055806 10.1200/CCI.23.00049 10.1109/CVPR.2017.195 10.1201/9780367631888-2 10.1055/a-0855-3532 10.1016/j.asoc.2023.110292 |
ContentType | Journal Article |
Copyright | The Author(s) 2025 Copyright Springer Nature B.V. Feb 2025 |
Copyright_xml | – notice: The Author(s) 2025 – notice: Copyright Springer Nature B.V. Feb 2025 |
DBID | C6C AAYXX CITATION 3V. 7XB 88I 8FE 8FG 8FK ABJCF ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BGLVJ BHPHI BKSAR CCPQU D1I DWQXO GNUQQ HCIFZ KB. L6V M2P M7S PATMY PCBAR PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY Q9U DOA |
DOI | 10.1007/s42452-025-06512-5 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One ProQuest Materials Science Collection ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Materials Science Database (NC LIVE) ProQuest Engineering Collection Science Database (ProQuest) Engineering Database Environmental Science Database Earth, Atmospheric & Aquatic Science Database Materials Science Collection (ProQuest) ProQuest Central Premium ProQuest One Academic Publicly Available Content (ProQuest) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering collection Environmental Science Collection (ProQuest) ProQuest Central Basic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Engineering Collection Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Materials Science Database ProQuest Central (New) Engineering Collection ProQuest Materials Science Collection Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Environmental Science Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection Environmental Science Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ : directory of open access journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 3004-9261 2523-3971 |
EndPage | 33 |
ExternalDocumentID | oai_doaj_org_article_c43b96191e6b4a7fa96eefc2ce42003b 10_1007_s42452_025_06512_5 |
GeographicLocations | United States--US Wisconsin |
GeographicLocations_xml | – name: Wisconsin – name: United States--US |
GrantInformation_xml | – fundername: Birla Institute of Technology and Science, Pilani |
GroupedDBID | AAJSJ ABEEZ ADMLS ALMA_UNASSIGNED_HOLDINGS BGNMA C6C GROUPED_DOAJ M4Y NU0 RSV SOJ AASML AAYXX CITATION M~E 0R~ 3V. 7XB 88I 8FE 8FG 8FK AAHNG AAKKN ABDZT ABECU ABFTV ABHQN ABJCF ABKCH ABMQK ABTMW ABUWG ABXPI ACACY ACMLO ACOKC ACSTC ACULB ADKNI ADURQ ADYFF AEJRE AEUYN AFGXO AFKRA AFQWF AGDGC AGJBK AILAN AITGF AJZVZ AMKLP ATCPS AXYYD AZQEC BAPOH BENPR BGLVJ BHPHI BKSAR C24 CCPQU D1I DWQXO EBLON EBS FNLPD GNUQQ GNWQR HCIFZ J-C KB. KOV L6V M2P M7S NQJWS OK1 PATMY PCBAR PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY Q9U STPWE TSG UOJIU UTJUX VEKWB VFIZW ZMTXR |
ID | FETCH-LOGICAL-c310t-b8dae28b84b161c4ac682852abfb3a04db30c79d68df071e413914e4f90dd1f73 |
IEDL.DBID | BENPR |
ISSN | 3004-9261 2523-3963 |
IngestDate | Wed Aug 27 01:27:03 EDT 2025 Wed Aug 13 05:09:31 EDT 2025 Tue Jul 01 01:11:57 EDT 2025 Fri Feb 21 02:36:40 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Deep learning Hybrid model Breast cancer recurrence Feature engineering Machine learning |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c310t-b8dae28b84b161c4ac682852abfb3a04db30c79d68df071e413914e4f90dd1f73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://www.proquest.com/docview/3161634199?pq-origsite=%requestingapplication% |
PQID | 3161634199 |
PQPubID | 5758472 |
PageCount | 33 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_c43b96191e6b4a7fa96eefc2ce42003b proquest_journals_3161634199 crossref_primary_10_1007_s42452_025_06512_5 springer_journals_10_1007_s42452_025_06512_5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-01-30 |
PublicationDateYYYYMMDD | 2025-01-30 |
PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-30 day: 30 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: London |
PublicationTitle | Discover applied sciences |
PublicationTitleAbbrev | Discov Appl Sci |
PublicationYear | 2025 |
Publisher | Springer International Publishing Springer Nature B.V Springer |
Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V – name: Springer |
References | 6512_CR30 D Sun (6512_CR52) 2018; 16 6512_CR32 M Hussein (6512_CR7) 2024; 240 BS Chhikara (6512_CR1) 2023; 10 Z Su (6512_CR56) 2023; 18 JR Quinlan (6512_CR31) 1986; 1 6512_CR35 H El Haji (6512_CR55) 2023; 7 6512_CR41 SR Gupta (6512_CR6) 2022; 32 6512_CR40 OJ Egwom (6512_CR39) 2022; 2 L Breiman (6512_CR33) 2001; 45 6512_CR45 6512_CR43 D Lu (6512_CR14) 2023; 149 AU Haq (6512_CR21) 2021; 9 P Ferroni (6512_CR54) 2019; 11 H Swaminathan (6512_CR8) 2023; 40 M Abdar (6512_CR48) 2020; 132 6512_CR5 M Mangukiya (6512_CR44) 2022; 10 6512_CR3 L Wu (6512_CR53) 2019; 51 6512_CR47 Z Guo (6512_CR58) 2022; 36 S Palmal (6512_CR9) 2023; 13 D Gupta (6512_CR24) 2012; 975 D Zuo (6512_CR23) 2023; 23 6512_CR50 Y Shi (6512_CR18) 2023; 9 M Nasser (6512_CR12) 2023; 13 S Bhise (6512_CR42) 2021; 10 6512_CR10 D Kumari (6512_CR36) 2023; 86 S Almutairi (6512_CR37) 2023; 142 M Zeid (6512_CR46) 2022; 100 CR Arathi (6512_CR15) 2024; 65 AA Bataineh (6512_CR49) 2019; 9 6512_CR16 D Singh (6512_CR2) 2024; 45 6512_CR13 6512_CR19 6512_CR17 B Rajita (6512_CR59) 2023; 41 J Zheng (6512_CR38) 2020; 8 R Hasan (6512_CR11) 2023; 13 M Al-Jabbar (6512_CR22) 2023; 13 6512_CR20 A Rasool (6512_CR51) 2022; 19 R Parikh (6512_CR57) 2008; 56 B Rajita (6512_CR60) 2022; 12 6512_CR27 A Zizaan (6512_CR4) 2023; 11 6512_CR26 6512_CR25 6512_CR29 6512_CR28 DR Cox (6512_CR34) 1958; 20 |
References_xml | – ident: 6512_CR20 doi: 10.1155/2019/5176705 – volume: 19 start-page: 3211 issue: 6 year: 2022 ident: 6512_CR51 publication-title: International journal of environmental research and public health doi: 10.3390/ijerph19063211 – volume: 56 start-page: 45 issue: 1 year: 2008 ident: 6512_CR57 publication-title: Indian journal of ophthalmology doi: 10.4103/0301-4738.37595 – ident: 6512_CR17 doi: 10.14569/IJACSA.2023.0140531 – volume: 132 start-page: 123 year: 2020 ident: 6512_CR48 publication-title: Pattern Recognition Letters doi: 10.1016/j.patrec.2018.11.004 – volume: 65 start-page: 343 issue: 1 year: 2024 ident: 6512_CR15 publication-title: Automatika doi: 10.1080/00051144.2023.2293280 – ident: 6512_CR40 doi: 10.1145/3625287 – volume: 16 start-page: 841 issue: 3 year: 2018 ident: 6512_CR52 publication-title: IEEE/ACM transactions on computational biology and bioinformatics doi: 10.1109/TCBB.2018.2806438 – ident: 6512_CR27 doi: 10.1109/CVPR.2016.90 – volume: 45 start-page: 5 year: 2001 ident: 6512_CR33 publication-title: Random forests. Machine learning doi: 10.1023/A:1010933404324 – volume: 41 start-page: 401 issue: 2 year: 2023 ident: 6512_CR59 publication-title: New Generation Computing doi: 10.1007/s00354-023-00215-4 – ident: 6512_CR16 doi: 10.3390/healthcare10122395 – volume: 11 start-page: 328 issue: 3 year: 2019 ident: 6512_CR54 publication-title: Cancers doi: 10.3390/cancers11030328 – ident: 6512_CR26 doi: 10.1007/s11227-024-06198-3 – ident: 6512_CR32 doi: 10.1016/j.asoc.2024.112242 – volume: 20 start-page: 215 issue: 2 year: 1958 ident: 6512_CR34 publication-title: Journal of the Royal Statistical Society Series B: Statistical Methodology doi: 10.1111/j.2517-6161.1958.tb00292.x – volume: 2 start-page: 345 issue: 3 year: 2022 ident: 6512_CR39 publication-title: BioMedInformatics doi: 10.3390/biomedinformatics2030022 – volume: 18 start-page: 0283562 issue: 4 year: 2023 ident: 6512_CR56 publication-title: Plos one doi: 10.1371/journal.pone.0283562 – volume: 9 start-page: 92 issue: 1 year: 2023 ident: 6512_CR18 publication-title: NPJ Breast Cancer doi: 10.1038/s41523-023-00597-0 – volume: 1 start-page: 81 year: 1986 ident: 6512_CR31 publication-title: Induction of decision trees. Machine learning – ident: 6512_CR13 – volume: 11 start-page: 976 issue: 3 year: 2023 ident: 6512_CR4 publication-title: Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization – volume: 13 start-page: 13 issue: 2 year: 2023 ident: 6512_CR11 publication-title: International Journal of Image, Graphics and Signal Processing doi: 10.5815/ijigsp.2023.02.02 – volume: 10 start-page: 141 issue: 2 year: 2022 ident: 6512_CR44 publication-title: International Journal for Research in Applied Science and Engineering Technology doi: 10.22214/ijraset.2022.40204 – volume: 45 start-page: 2024 issue: 2 year: 2024 ident: 6512_CR2 publication-title: Tuijin Jishu/Journal of Propulsion Technology – ident: 6512_CR3 doi: 10.1007/s11764-023-01465-3 – volume: 10 start-page: 2278 issue: 7 year: 2021 ident: 6512_CR42 publication-title: Int. J. Eng. Res. Technol – volume: 13 start-page: 14757 issue: 1 year: 2023 ident: 6512_CR9 publication-title: Scientific Reports doi: 10.1038/s41598-023-40341-z – ident: 6512_CR10 doi: 10.1109/ICECA49313.2020.9297479 – ident: 6512_CR19 doi: 10.1245/s10434-023-14134-7 – ident: 6512_CR43 doi: 10.1109/CIMCA.2018.8739696 – volume: 13 start-page: 1753 issue: 10 year: 2023 ident: 6512_CR22 publication-title: Diagnostics doi: 10.3390/diagnostics13101753 – volume: 13 start-page: 161 issue: 1 year: 2023 ident: 6512_CR12 publication-title: Diagnostics doi: 10.3390/diagnostics13010161 – volume: 86 year: 2023 ident: 6512_CR36 publication-title: Biomedical Signal Processing and Control doi: 10.1016/j.bspc.2023.105121 – volume: 36 start-page: 2031820 issue: 1 year: 2022 ident: 6512_CR58 publication-title: Applied Artificial Intelligence doi: 10.1080/08839514.2022.2031820 – volume: 12 start-page: 38 issue: 1 year: 2022 ident: 6512_CR60 publication-title: Social Network Analysis and Mining doi: 10.1007/s13278-022-00867-y – volume: 149 start-page: 10659 issue: 12 year: 2023 ident: 6512_CR14 publication-title: Journal of Cancer Research and Clinical Oncology doi: 10.1007/s00432-023-04967-w – ident: 6512_CR30 doi: 10.5220/0012298300003636 – volume: 8 start-page: 96946 year: 2020 ident: 6512_CR38 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2993536 – volume: 100 start-page: 5165 issue: 14 year: 2022 ident: 6512_CR46 publication-title: J. Theor. Appl. Inf. Technol. – volume: 32 year: 2022 ident: 6512_CR6 publication-title: Cancer Treatment and Research Communications doi: 10.1016/j.ctarc.2022.100602 – ident: 6512_CR29 doi: 10.1007/BF00994018 – volume: 10 start-page: 451 issue: 1 year: 2023 ident: 6512_CR1 publication-title: Chemical Biology Letters – volume: 975 start-page: 8887 year: 2012 ident: 6512_CR24 publication-title: International Journal of Computer Applications – ident: 6512_CR41 doi: 10.1155/2022/5869529 – volume: 9 start-page: 248 issue: 3 year: 2019 ident: 6512_CR49 publication-title: International Journal of Machine Learning and Computing doi: 10.18178/ijmlc.2019.9.3.794 – volume: 23 start-page: 276 issue: 1 year: 2023 ident: 6512_CR23 publication-title: BMC Medical Informatics and Decision Making doi: 10.1186/s12911-023-02377-z – volume: 240 year: 2024 ident: 6512_CR7 publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2023.122641 – ident: 6512_CR47 doi: 10.1109/EBBT.2019.8741990 – ident: 6512_CR50 doi: 10.1109/ICAI52203.2021.9445249 – ident: 6512_CR45 doi: 10.1109/C2I451079.2020.9368911 – volume: 40 start-page: 238 issue: 8 year: 2023 ident: 6512_CR8 publication-title: Medical Oncology doi: 10.1007/s12032-023-02111-9 – volume: 9 start-page: 22090 year: 2021 ident: 6512_CR21 publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3055806 – volume: 7 start-page: 2300049 year: 2023 ident: 6512_CR55 publication-title: JCO Clinical Cancer Informatics doi: 10.1200/CCI.23.00049 – ident: 6512_CR5 – ident: 6512_CR28 doi: 10.1109/CVPR.2017.195 – ident: 6512_CR35 doi: 10.1201/9780367631888-2 – volume: 51 start-page: 522 issue: 06 year: 2019 ident: 6512_CR53 publication-title: Endoscopy doi: 10.1055/a-0855-3532 – volume: 142 year: 2023 ident: 6512_CR37 publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2023.110292 – ident: 6512_CR25 |
SSID | ssj0003307759 ssj0002793483 ssib051670015 |
Score | 2.3018243 |
Snippet | Breast cancer and its recurrence are significant health concerns, emphasizing the critical importance of early detection and personalized treatment strategies... Abstract Breast cancer and its recurrence are significant health concerns, emphasizing the critical importance of early detection and personalized treatment... |
SourceID | doaj proquest crossref springer |
SourceType | Open Website Aggregation Database Index Database Publisher |
StartPage | 113 |
SubjectTerms | Accuracy Applied and Technical Physics Breast cancer Breast cancer recurrence Cancer therapies Chemistry/Food Science Customization Datasets Decision trees Deep learning Disease management Earth Sciences Eigenvalues Eigenvectors Engineering Environment Feature engineering Feature selection Hybrid model Hybridization Machine learning Mammography Materials Science Medical research Multilayer perceptrons Neural networks Patients Predictions Regression analysis Standard deviation Standardization Support vector machines Visual discrimination learning |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELVQJxYEAkSgIA9sEJHEjh2PgKgqJBADlbpZ_jh3K1UI_x-fk5aChFhYkwzOO9v3fHd-R8ilKmvrZOB57Sxg6CbkyjUil0VlbGldkEmJ6elZTGf8cV7Pt1p9YU1YLw_cA3fjOLMqsvwShOVGBqMEQHCVA451VRZ33-jztg5TuAfHU7qUtRpuyaS7cpjiq3Ls3hq9LjYA-OaJkmD_N5b5IzGa_M1kn-wNRJHe9gM8IDuwPCTypcXECpYqU4vl5B11aLaWthg3Tzf3KJayL6gHWNGhJ8TiiMwmD6_303xofZC7yLe63DbeQNXYhttIyRw3TqDUXMQvWGYK7i0rnFReND5EkgDRFamSAw-q8L4Mkh2T0fJtCSeEGm9qcFIya1AbBkwFXjII0dEHVhqTkas1DHrVK1zojZZxAk1H0HQCTdcZuUOkNl-iOnV6EG2mB5vpv2yWkfEaZz0smXfN4o8KVJdTGbleY__1-vchnf7HkM7IbpXmBkbjxmTUtR9wHulGZy_SzPoEC7HQvQ priority: 102 providerName: Directory of Open Access Journals – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagLDAgniK8lIENIpLYseMRKqoKCcRApW6WH-dupUrD_8fnpoVWMLAmjpR8d9F9vsdnQm5kURkrPMsqawBTNz6TtuaZyEttCmO9iEpML698OGLP42rcyeTgLMxG_f5-jpW5MsNDV0OwRN3-bbJTFZSjB_d5f5VPCftyISrZzcX8_uha7IkS_Wu8cqMUGiPM4IDsd9QwfVjY8pBswfSI7P0QDDwm4q3Bwgq2KqcG28nb1KLZmrTBvHmc3EuxlX2SOoBZ2p0JMTkho8HTe3-YdUcfZDbwrTYztdNQ1qZmJlAyy7TlKDUX8POG6pw5Q3MrpOO184EkQAhFsmDAvMydK7ygp6Q3_ZjCGUm10xVYIajRqA0DugQnKPgQ6D0ttE7I7RIUNVsoXKiVlnGEUAUIVYRQVQl5RNxWK1GdOl4IRlOdsyvLqJFhZ1YAN0wLryUH8La0wLAXziTkcom66n6ZuaLhQzmqy8mE3C0t8X3771c6_9_yC7JbRp_AvNsl6bXNJ1wFYtGa6-hRX1OOxMM priority: 102 providerName: Springer Nature |
Title | Predicting breast cancer recurrence using deep learning |
URI | https://link.springer.com/article/10.1007/s42452-025-06512-5 https://www.proquest.com/docview/3161634199 https://doaj.org/article/c43b96191e6b4a7fa96eefc2ce42003b |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEB6a5NIeSp90m3TxobdWdG3JlnUqzbLbUEgIpYHchB6jhR52N8722t-eGUVOmkJ7MfiBMZ_Gmvc3AO9N3fqgkxJt8MihmyRM6DuhZ43ztQ9JZyam07Pu5EJ9u2wvS8DtupRVjnti3qjjJnCM_JMk06Rj8jHzeXsleGoUZ1fLCI09OKAtuCfn6-B4cXb-fZSotuYulKLwfuY0m5Eqc3M25IEJSeJXOmlyPx2nARvBE15JM_OQgAfaKpP6P7BE_0qeZp20fAZPizFZfbld_efwCNcv4MkfFIMvQZ8PnIrh4ubKcwH6rgq80EM1cKQ99_pVXPy-qiLitipTJFav4GK5-DE_EWVYgghkoe2E76PDpve98oRUUC50TE5HiCcv3UxFL2dBm9j1MZFZgaS8TK1QJTOLsU5avob99WaNb6By0bUYtJbeMZsMugajlpjINEiydm4CH0ZQ7PaWE8PesR9nCC1BaDOEtp3AMeN29yTzWecLm2Fly-9hg5LekC9XY-eV08mZDjGFJqDi6jk_gaMRdVt-smt7LxIT-DiuxP3tf3_S2_-_7RAeN1kGODJ3BPu74Re-I9Nj56ew1y-_TouU0dm8m0-zG0_H09-LGyL91rM |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbhQxEC2FcAAOiFUZCOADnMBi2na32weE2IYJWcQhkXIzXsojcZgZOhNF_BTfiMvTnRAkuOXai2WVn13lWl4BPDdV7YNOitfBI7luEjehbbgeC-crH5IuTEz7B830SH05ro834NdQC0NplcOZWA7quAjkI38ts2nSEPmYebv8walrFEVXhxYaa1js4s-zfGU7ebPzMa_vCyEmnw4_THnfVYCHbMqsuG-jQ9H6Vvk8ZFAuNMTilqeWvHRjFb0cB21i08aU9S_mU95UClUy4xirpGUe9xpcV1Ia2lHt5POA37qimpdevX4vQT0jVWECFfm-x_MPsq_bKdV7FHQUnPrJZjuAWhJc0o2lhcAlu_evUG3RgJM7cLs3Xdm7NdbuwgbO78GtPwgN74P-2lHgh1Kpmad09xULBKuOdeTXL5WFjFLtZywiLlnfs2L2AI6uRIgPYXO-mOMWMBddjUFr6R1x16ATGLXElA2RJCvnRvByEIpdrhk47DnXchGhzSK0RYS2HsF7ktv5l8SeXR4supntN6MNSnqTb44VNl45nZxpEFMQARXl6vkRbA9St_2WPrEXABzBq2ElLl7_e0qP_j_aM7gxPdzfs3s7B7uP4aYoeCCf4DZsrrpTfJKNnpV_WpDG4NtVQ_s36nAOvQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NaxQxFH_ULYgexE9crZqDnjR0JslMJgcRa7u0VpdFLPQW87ngYXedroj_mn-dedlMawW99TozhPDml7zv3wN4rurGOhkFbZwNGLqJVLmupbJixtbWRZmZmD5O28MT8f60Od2CX0MvDJZVDndivqj90mGMfJcn06RF8jG1G0tZxGx_8mb1jeIEKcy0DuM0NhA5Dj9_JPft7PXRfvrXLxibHHx-d0jLhAHqklmzprbzJrDOdsKm5Z0wrkVGt7TNaLmphLe8clL5tvMx6eKQbnxViyCiqryvo-Rp3WuwLZNXVI1ge-9gOvs0oLmpsQOmKNuvOcWnuMi8oCx5f5Qn6JcuntzLhylIRnG6bLIKcEDBJU2ZBwpcsoL_StxmfTi5DbeKIUvebpB3B7bC4i7c_IPe8B7IWY9pICysJhaL39fEIch60mOUP_cZEiy8nxMfwoqUCRbz-3ByJWJ8AKPFchEeAjHeNMFJya1BJptgWPCSh5jMkshrY8bwchCKXm34OPQ583IWoU4i1FmEuhnDHsrt_Evk0s4Plv1cl6OpneBWJT-yDq0VRkaj2hCiYy4IrNyzY9gZpK7LAT_TF3Acw6vhT1y8_veWHv1_tWdwPcFafziaHj-GGyzDAQOEOzBa99_Dk2QBre3TAjUCX64a3b8BP3MUTw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+breast+cancer+recurrence+using+deep+learning&rft.jtitle=SN+applied+sciences&rft.date=2025-01-30&rft.pub=Springer+Nature+B.V&rft.issn=2523-3963&rft.eissn=2523-3971&rft.volume=7&rft.issue=2&rft.spage=113&rft_id=info:doi/10.1007%2Fs42452-025-06512-5&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=3004-9261&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=3004-9261&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=3004-9261&client=summon |