New Memristor-Based Crossbar Array Architecture with 50-% Area Reduction and 48-% Power Saving for Matrix-Vector Multiplication of Analog Neuromorphic Computing

In this paper, we propose a new memristor-based crossbar array architecture, where a single memristor array and constant-term circuit are used to represent both plus-polarity and minus-polarity matrices. This is different from the previous crossbar array architecture which has two memristor arrays t...

Full description

Saved in:
Bibliographic Details
Published inJournal of semiconductor technology and science Vol. 14; no. 3; pp. 356 - 363
Main Authors Truong, Son Ngoc, Min, Kyeong-Sik
Format Journal Article
LanguageEnglish
Published 대한전자공학회 01.06.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, we propose a new memristor-based crossbar array architecture, where a single memristor array and constant-term circuit are used to represent both plus-polarity and minus-polarity matrices. This is different from the previous crossbar array architecture which has two memristor arrays to represent plus-polarity and minus-polarity connection matrices, respectively. The proposed crossbar architecture is tested and verified to have the same performance with the previous crossbar architecture for applications of character recognition. For areal density, however, the proposed crossbar architecture is twice better than the previous architecture, because only single memristor array is used instead of two crossbar arrays. Moreover, the power consumption of the proposed architecture can be smaller by 48% than the previous one because the number of memristors in the proposed crossbar architecture is reduced to half compared to the previous crossbar architecture. From the high areal density and high energy efficiency, we can know that this newly proposed crossbar array architecture is very suitable to various applications of analog neuromorphic computing that demand high areal density and low energy consumption. KCI Citation Count: 43
AbstractList In this paper, we propose a new memristor-based crossbar array architecture, where a single memristor array and constant-term circuit are used to represent both plus-polarity and minus-polarity matrices. This is different from the previous crossbar array architecture which has two memristor arrays to represent plus-polarity and minus-polarity connection matrices, respectively. The proposed crossbar architecture is tested and verified to have the same performance with the previous crossbar architecture for applications of character recognition. For areal density, however, the proposed crossbar architecture is twice better than the previous architecture, because only single memristor array is used instead of two crossbar arrays. Moreover, the power consumption of the proposed architecture can be smaller by 48% than the previous one because the number of memristors in the proposed crossbar architecture is reduced to half compared to the previous crossbar architecture. From the high areal density and high energy efficiency, we can know that this newly proposed crossbar array architecture is very suitable to various applications of analog neuromorphic computing that demand high areal density and low energy consumption. KCI Citation Count: 43
Author Son Ngoc Truong
Kyeong-Sik Min
Author_xml – sequence: 1
  givenname: Son Ngoc
  surname: Truong
  fullname: Truong, Son Ngoc
– sequence: 2
  givenname: Kyeong-Sik
  surname: Min
  fullname: Min, Kyeong-Sik
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART001887558$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNp9UU1vEzEQtVCRSAt_gJMvlbhs8OfaewyhhaI2RU3gajn-SEw368jrJfTf8FPxphWHHiqNZjSjeW9G752Cky52DoD3GE05F_Tjt-VqOSUIs2kJOqW8fgUmhFBaMVnXJ2CCeSMrXHPxBpz2_S-EaikaMQF_F-4Ab9wuhT7HVH3SvbNwnmLfr3WCs5T0Q8lmG7IzeUgOHkLeQo6q8zJ2Gt45O5gcYgd1ZyGTZf49HlyCS_07dBvoY4I3Oqfwp_pZGMZuaHPYt8HoIyx6OOt0Gzdw4YYUdzHtt8HAedzth1wY3oLXXre9e_dUz8CPy4vV_Gt1ffvlaj67rgzFKFfres2auvHccGK98cLRxjOLeM0tNw4RKwkSwtJGsDXWThJuJXOCWeOlEzU9Ax8eebvk1b0JKupwrJuo7pOa3a2uVJGSsnGVPK6aUafkvNqnsNPpQWGkRjvUaIca7VAlqCp2FJB8BjIhHyXISYf2Zej502tDueNs0P8PLm4_XyDCEcaS0X-RtqAx
CitedBy_id crossref_primary_10_1109_TCAD_2023_3274918
crossref_primary_10_1109_JETCAS_2018_2796379
crossref_primary_10_1088_1402_4896_ad2752
crossref_primary_10_1109_JEDS_2022_3230542
crossref_primary_10_1063_1_5124027
crossref_primary_10_1063_5_0047641
crossref_primary_10_1109_TCSII_2022_3174920
crossref_primary_10_1145_3576195
crossref_primary_10_1109_TC_2022_3224800
crossref_primary_10_1109_TFUZZ_2020_2995966
crossref_primary_10_1063_1_5143815
crossref_primary_10_1186_1556_276X_9_629
crossref_primary_10_3390_mi10100671
crossref_primary_10_1038_s41928_018_0092_2
crossref_primary_10_1002_aisy_202000040
crossref_primary_10_3390_s20216229
crossref_primary_10_1002_pssa_201700875
crossref_primary_10_1038_s41598_021_02176_4
crossref_primary_10_1109_TCAD_2021_3097299
crossref_primary_10_3389_fphy_2021_735021
crossref_primary_10_3390_jlpea11010009
crossref_primary_10_1109_TCSI_2017_2714101
crossref_primary_10_2174_1874129001812010132
crossref_primary_10_1016_j_memori_2023_100053
crossref_primary_10_1016_j_neucom_2021_04_061
crossref_primary_10_3390_electronics10192427
crossref_primary_10_1016_j_neunet_2020_07_035
crossref_primary_10_1109_JEDS_2023_3265875
crossref_primary_10_1109_TCSII_2023_3241663
crossref_primary_10_1007_s41939_024_00517_0
crossref_primary_10_1109_TC_2020_2998456
crossref_primary_10_1016_j_neucom_2019_04_031
crossref_primary_10_1109_TNNLS_2023_3244006
crossref_primary_10_1109_JSEN_2023_3341617
crossref_primary_10_1002_adfm_202100042
crossref_primary_10_3390_ma13010166
crossref_primary_10_1109_TCPMT_2021_3092740
crossref_primary_10_1109_TCYB_2019_2912205
crossref_primary_10_3390_electronics10091063
crossref_primary_10_1109_TCSI_2017_2729787
crossref_primary_10_1109_TETCI_2020_3005703
crossref_primary_10_2139_ssrn_4182150
crossref_primary_10_1109_TCSI_2022_3199453
crossref_primary_10_3103_S1060992X15020125
crossref_primary_10_3390_electronics10212600
crossref_primary_10_3390_ma12244097
crossref_primary_10_1007_s40747_021_00282_4
crossref_primary_10_1016_j_neucom_2022_02_043
crossref_primary_10_1002_aisy_202400211
crossref_primary_10_1109_TED_2017_2671433
crossref_primary_10_1109_ACCESS_2020_2986513
crossref_primary_10_1109_TCSI_2018_2866510
crossref_primary_10_1038_s41928_017_0002_z
crossref_primary_10_1063_5_0136403
crossref_primary_10_1088_1757_899X_894_1_012002
crossref_primary_10_3390_mi10040245
crossref_primary_10_1109_ACCESS_2020_3035638
crossref_primary_10_1109_TETCI_2022_3214582
crossref_primary_10_1109_TCSI_2023_3334267
crossref_primary_10_1109_ACCESS_2021_3072688
Cites_doi 10.1109/TNNLS.2012.2204770
10.1038/nature06932
10.1109/TCSI.2011.2161360
10.1109/5.58356
10.1016/j.neucom.2010.03.021
10.1016/j.sse.2009.09.034
10.1109/4.173117
10.1021/nl904092h
10.1109/72.774269
10.1109/TNANO.2013.2274529
10.1109/TNN.2007.891626
ContentType Journal Article
DBID DBRKI
TDB
AAYXX
CITATION
ACYCR
DOI 10.5573/JSTS.2014.14.3.356
DatabaseName DBPIA - 디비피아
Nurimedia DBPIA Journals
CrossRef
Korean Citation Index
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2233-4866
EndPage 363
ExternalDocumentID oai_kci_go_kr_ARTI_866346
10_5573_JSTS_2014_14_3_356
NODE02501184
GroupedDBID 9ZL
ADDVE
AENEX
ALMA_UNASSIGNED_HOLDINGS
C1A
DBRKI
FRP
GW5
HH5
JDI
KVFHK
MZR
OK1
TDB
TR2
ZZE
AAYXX
CITATION
ACYCR
ID FETCH-LOGICAL-c310t-b6b4969f5c52dfcf7e39f4d0565d5ce02d82077d3974b1ae825d84e74dcf8e763
ISSN 1598-1657
IngestDate Sun Mar 09 07:52:04 EDT 2025
Tue Jul 01 02:28:31 EDT 2025
Thu Apr 24 23:01:10 EDT 2025
Thu Mar 13 19:39:47 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 3
Keywords Memory array circuit
artificial neural network
character recognition
synaptic weight
memristor
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c310t-b6b4969f5c52dfcf7e39f4d0565d5ce02d82077d3974b1ae825d84e74dcf8e763
Notes G704-002163.2014.14.3.009
PageCount 8
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_866346
crossref_primary_10_5573_JSTS_2014_14_3_356
crossref_citationtrail_10_5573_JSTS_2014_14_3_356
nurimedia_primary_NODE02501184
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-06-01
PublicationDateYYYYMMDD 2014-06-01
PublicationDate_xml – month: 06
  year: 2014
  text: 2014-06-01
  day: 01
PublicationDecade 2010
PublicationTitle Journal of semiconductor technology and science
PublicationYear 2014
Publisher 대한전자공학회
Publisher_xml – name: 대한전자공학회
References (E1STAN_2014_v14n3_356_007) 2007; 18
(E1STAN_2014_v14n3_356_011) 2009; 53
(E1STAN_2014_v14n3_356_012) 2010; 10
(E1STAN_2014_v14n3_356_005) 2010; 74
(E1STAN_2014_v14n3_356_001) 1990; 78
(E1STAN_2014_v14n3_356_003) 1999; 10
(E1STAN_2014_v14n3_356_014) 1971; CT-18
(E1STAN_2014_v14n3_356_010) 1992; 27
(E1STAN_2014_v14n3_356_019) 2012; 23
(E1STAN_2014_v14n3_356_018) 2012; 59
(E1STAN_2014_v14n3_356_023) 2013; 12
(E1STAN_2014_v14n3_356_015) 2008; 453
References_xml – volume: 23
  start-page: 1426
  year: 2012
  ident: E1STAN_2014_v14n3_356_019
  publication-title: Trans. Neural Network and Learning System
  doi: 10.1109/TNNLS.2012.2204770
– volume: 453
  start-page: 80
  year: 2008
  ident: E1STAN_2014_v14n3_356_015
  publication-title: Nature
  doi: 10.1038/nature06932
– volume: 59
  start-page: 148
  year: 2012
  ident: E1STAN_2014_v14n3_356_018
  publication-title: IEEE Trans. Circuit and System
  doi: 10.1109/TCSI.2011.2161360
– volume: CT-18
  start-page: 507
  year: 1971
  ident: E1STAN_2014_v14n3_356_014
  publication-title: IEEE Trans. Circuit Theory
– volume: 78
  start-page: 1629
  year: 1990
  ident: E1STAN_2014_v14n3_356_001
  publication-title: Proceedings of the IEEE
  doi: 10.1109/5.58356
– volume: 74
  start-page: 239
  year: 2010
  ident: E1STAN_2014_v14n3_356_005
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2010.03.021
– volume: 53
  start-page: 1287
  year: 2009
  ident: E1STAN_2014_v14n3_356_011
  publication-title: Solid State Electron
  doi: 10.1016/j.sse.2009.09.034
– volume: 27
  start-page: 1868
  year: 1992
  ident: E1STAN_2014_v14n3_356_010
  publication-title: IEEE J. Solid-State Circuits
  doi: 10.1109/4.173117
– volume: 10
  start-page: 1297
  year: 2010
  ident: E1STAN_2014_v14n3_356_012
  publication-title: Nano Lett.
  doi: 10.1021/nl904092h
– volume: 10
  start-page: 951
  year: 1999
  ident: E1STAN_2014_v14n3_356_003
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.774269
– volume: 12
  start-page: 851
  year: 2013
  ident: E1STAN_2014_v14n3_356_023
  publication-title: IEEE Trans. Nanotechnology
  doi: 10.1109/TNANO.2013.2274529
– volume: 18
  start-page: 880
  year: 2007
  ident: E1STAN_2014_v14n3_356_007
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2007.891626
SSID ssj0068797
Score 2.2667694
Snippet In this paper, we propose a new memristor-based crossbar array architecture, where a single memristor array and constant-term circuit are used to represent...
SourceID nrf
crossref
nurimedia
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 356
SubjectTerms 전기공학
Title New Memristor-Based Crossbar Array Architecture with 50-% Area Reduction and 48-% Power Saving for Matrix-Vector Multiplication of Analog Neuromorphic Computing
URI https://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE02501184
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART001887558
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, 2014, 14(3), 57, pp.356-363
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLa68QA8IK5iXCYjkacoZUnsXB7TLqggtSC1Q3uLHNuZqrIEhRYxfg0_jZ_COU6apRvi9pKmsR1H-b76XHp8DiEvJc9dGQjliDDPHSZF4cQBQzeH4IHQfhtVOZ0FkxP29pSfDgY_elFLm3U-lN9-ua_kf1CFa4Ar7pL9B2S7m8IFOAd84QgIw_GvMMbgxKk-N-kBamcEAknZYxR7uajtpK7FhZ30_ygwTld-5FgehwYt4OWqTVsrvFQ2i0zLeyycZs_Fl22Q5RTT-H91PhgHvz1tQhBbX5_RZEv0ANkmz8d5BcAtpd1Ui9jKxeva72cMyq9KnB7jHDsHv3mQVix33h-YZnZWSXtRb6r2jigjLjR8c-bLlT1t84e37guXXYZZGcJZ6ciKxhjVkR5bMbfisZWOreTIihiexKkVQ1NijXxrxLd9YnOSwMD-yh2DORw02a6H2lwD1cd3WNSUdemWe9ajtd9bu30e9NQAv1l3r0oYzkPMdAGr5hzjAhlImqE_7IbuZO6evTtOUcUEG47tkRseGDIm9HTSGWhBFDblf7YP32zrwkleXZ9iR3XaK2s43iw3WAUClpKeVrS4S-60gNKk4eY9MtDlfXK7l-TyAfkOLKVXWEq3LKWGpbTPUoospchSihylHUcpUIMiR6lhKG0YSoGhdIehdJehtCpow1DaZyjtGPqQnLxOF-OJ09YFcSQYI2snD3IWB3HBJfdUIYtQ-3HBFKjyXHGpjzwFam0YKlC1We4KHXlcRUyHTMki0iBQH5H9sir1Y0K5jEJWaOFGSrDCM6mQXO1qUNSLwNfigLjbV57JNmk-1m75mIHxjDBlCFOGMIERnfkZwHRA7G7MpyZlzG97vwAks5VcZpjpHT_PqmxVZ2DPvsmAuz6DPocdzt0t--x68qcOT8mtyx_fM7K_rjf6OWjT6_zQEPIniozEXg
linkProvider ABC ChemistRy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=New+Memristor-Based+Crossbar+Array+Architecture+with+50-%25+Area+Reduction+and+48-%25+Power+Saving+for+Matrix-Vector+Multiplication+of+Analog+Neuromorphic+Computing&rft.jtitle=Journal+of+semiconductor+technology+and+science&rft.au=Son+Ngoc+Truong&rft.au=Kyeong-Sik+Min&rft.date=2014-06-01&rft.pub=%EB%8C%80%ED%95%9C%EC%A0%84%EC%9E%90%EA%B3%B5%ED%95%99%ED%9A%8C&rft.issn=1598-1657&rft.eissn=2233-4866&rft.volume=14&rft.issue=3&rft.spage=356&rft.epage=363&rft_id=info:doi/10.5573%2FJSTS.2014.14.3.356&rft.externalDocID=NODE02501184
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1598-1657&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1598-1657&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1598-1657&client=summon