New Memristor-Based Crossbar Array Architecture with 50-% Area Reduction and 48-% Power Saving for Matrix-Vector Multiplication of Analog Neuromorphic Computing
In this paper, we propose a new memristor-based crossbar array architecture, where a single memristor array and constant-term circuit are used to represent both plus-polarity and minus-polarity matrices. This is different from the previous crossbar array architecture which has two memristor arrays t...
Saved in:
Published in | Journal of semiconductor technology and science Vol. 14; no. 3; pp. 356 - 363 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
대한전자공학회
01.06.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper, we propose a new memristor-based crossbar array architecture, where a single memristor array and constant-term circuit are used to represent both plus-polarity and minus-polarity matrices. This is different from the previous crossbar array architecture which has two memristor arrays to represent plus-polarity and minus-polarity connection matrices, respectively. The proposed crossbar architecture is tested and verified to have the same performance with the previous crossbar architecture for applications of character recognition. For areal density, however, the proposed crossbar architecture is twice better than the previous architecture, because only single memristor array is used instead of two crossbar arrays. Moreover, the power consumption of the proposed architecture can be smaller by 48% than the previous one because the number of memristors in the proposed crossbar architecture is reduced to half compared to the previous crossbar architecture. From the high areal density and high energy efficiency, we can know that this newly proposed crossbar array architecture is very suitable to various applications of analog neuromorphic computing that demand high areal density and low energy consumption. KCI Citation Count: 43 |
---|---|
AbstractList | In this paper, we propose a new memristor-based crossbar array architecture, where a single memristor array and constant-term circuit are used to represent both plus-polarity and minus-polarity matrices. This is different from the previous crossbar array architecture which has two memristor arrays to represent plus-polarity and minus-polarity connection matrices, respectively. The proposed crossbar architecture is tested and verified to have the same performance with the previous crossbar architecture for applications of character recognition. For areal density, however, the proposed crossbar architecture is twice better than the previous architecture, because only single memristor array is used instead of two crossbar arrays. Moreover, the power consumption of the proposed architecture can be smaller by 48% than the previous one because the number of memristors in the proposed crossbar architecture is reduced to half compared to the previous crossbar architecture. From the high areal density and high energy efficiency, we can know that this newly proposed crossbar array architecture is very suitable to various applications of analog neuromorphic computing that demand high areal density and low energy consumption. KCI Citation Count: 43 |
Author | Son Ngoc Truong Kyeong-Sik Min |
Author_xml | – sequence: 1 givenname: Son Ngoc surname: Truong fullname: Truong, Son Ngoc – sequence: 2 givenname: Kyeong-Sik surname: Min fullname: Min, Kyeong-Sik |
BackLink | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART001887558$$DAccess content in National Research Foundation of Korea (NRF) |
BookMark | eNp9UU1vEzEQtVCRSAt_gJMvlbhs8OfaewyhhaI2RU3gajn-SEw368jrJfTf8FPxphWHHiqNZjSjeW9G752Cky52DoD3GE05F_Tjt-VqOSUIs2kJOqW8fgUmhFBaMVnXJ2CCeSMrXHPxBpz2_S-EaikaMQF_F-4Ab9wuhT7HVH3SvbNwnmLfr3WCs5T0Q8lmG7IzeUgOHkLeQo6q8zJ2Gt45O5gcYgd1ZyGTZf49HlyCS_07dBvoY4I3Oqfwp_pZGMZuaHPYt8HoIyx6OOt0Gzdw4YYUdzHtt8HAedzth1wY3oLXXre9e_dUz8CPy4vV_Gt1ffvlaj67rgzFKFfres2auvHccGK98cLRxjOLeM0tNw4RKwkSwtJGsDXWThJuJXOCWeOlEzU9Ax8eebvk1b0JKupwrJuo7pOa3a2uVJGSsnGVPK6aUafkvNqnsNPpQWGkRjvUaIca7VAlqCp2FJB8BjIhHyXISYf2Zej502tDueNs0P8PLm4_XyDCEcaS0X-RtqAx |
CitedBy_id | crossref_primary_10_1109_TCAD_2023_3274918 crossref_primary_10_1109_JETCAS_2018_2796379 crossref_primary_10_1088_1402_4896_ad2752 crossref_primary_10_1109_JEDS_2022_3230542 crossref_primary_10_1063_1_5124027 crossref_primary_10_1063_5_0047641 crossref_primary_10_1109_TCSII_2022_3174920 crossref_primary_10_1145_3576195 crossref_primary_10_1109_TC_2022_3224800 crossref_primary_10_1109_TFUZZ_2020_2995966 crossref_primary_10_1063_1_5143815 crossref_primary_10_1186_1556_276X_9_629 crossref_primary_10_3390_mi10100671 crossref_primary_10_1038_s41928_018_0092_2 crossref_primary_10_1002_aisy_202000040 crossref_primary_10_3390_s20216229 crossref_primary_10_1002_pssa_201700875 crossref_primary_10_1038_s41598_021_02176_4 crossref_primary_10_1109_TCAD_2021_3097299 crossref_primary_10_3389_fphy_2021_735021 crossref_primary_10_3390_jlpea11010009 crossref_primary_10_1109_TCSI_2017_2714101 crossref_primary_10_2174_1874129001812010132 crossref_primary_10_1016_j_memori_2023_100053 crossref_primary_10_1016_j_neucom_2021_04_061 crossref_primary_10_3390_electronics10192427 crossref_primary_10_1016_j_neunet_2020_07_035 crossref_primary_10_1109_JEDS_2023_3265875 crossref_primary_10_1109_TCSII_2023_3241663 crossref_primary_10_1007_s41939_024_00517_0 crossref_primary_10_1109_TC_2020_2998456 crossref_primary_10_1016_j_neucom_2019_04_031 crossref_primary_10_1109_TNNLS_2023_3244006 crossref_primary_10_1109_JSEN_2023_3341617 crossref_primary_10_1002_adfm_202100042 crossref_primary_10_3390_ma13010166 crossref_primary_10_1109_TCPMT_2021_3092740 crossref_primary_10_1109_TCYB_2019_2912205 crossref_primary_10_3390_electronics10091063 crossref_primary_10_1109_TCSI_2017_2729787 crossref_primary_10_1109_TETCI_2020_3005703 crossref_primary_10_2139_ssrn_4182150 crossref_primary_10_1109_TCSI_2022_3199453 crossref_primary_10_3103_S1060992X15020125 crossref_primary_10_3390_electronics10212600 crossref_primary_10_3390_ma12244097 crossref_primary_10_1007_s40747_021_00282_4 crossref_primary_10_1016_j_neucom_2022_02_043 crossref_primary_10_1002_aisy_202400211 crossref_primary_10_1109_TED_2017_2671433 crossref_primary_10_1109_ACCESS_2020_2986513 crossref_primary_10_1109_TCSI_2018_2866510 crossref_primary_10_1038_s41928_017_0002_z crossref_primary_10_1063_5_0136403 crossref_primary_10_1088_1757_899X_894_1_012002 crossref_primary_10_3390_mi10040245 crossref_primary_10_1109_ACCESS_2020_3035638 crossref_primary_10_1109_TETCI_2022_3214582 crossref_primary_10_1109_TCSI_2023_3334267 crossref_primary_10_1109_ACCESS_2021_3072688 |
Cites_doi | 10.1109/TNNLS.2012.2204770 10.1038/nature06932 10.1109/TCSI.2011.2161360 10.1109/5.58356 10.1016/j.neucom.2010.03.021 10.1016/j.sse.2009.09.034 10.1109/4.173117 10.1021/nl904092h 10.1109/72.774269 10.1109/TNANO.2013.2274529 10.1109/TNN.2007.891626 |
ContentType | Journal Article |
DBID | DBRKI TDB AAYXX CITATION ACYCR |
DOI | 10.5573/JSTS.2014.14.3.356 |
DatabaseName | DBPIA - 디비피아 Nurimedia DBPIA Journals CrossRef Korean Citation Index |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2233-4866 |
EndPage | 363 |
ExternalDocumentID | oai_kci_go_kr_ARTI_866346 10_5573_JSTS_2014_14_3_356 NODE02501184 |
GroupedDBID | 9ZL ADDVE AENEX ALMA_UNASSIGNED_HOLDINGS C1A DBRKI FRP GW5 HH5 JDI KVFHK MZR OK1 TDB TR2 ZZE AAYXX CITATION ACYCR |
ID | FETCH-LOGICAL-c310t-b6b4969f5c52dfcf7e39f4d0565d5ce02d82077d3974b1ae825d84e74dcf8e763 |
ISSN | 1598-1657 |
IngestDate | Sun Mar 09 07:52:04 EDT 2025 Tue Jul 01 02:28:31 EDT 2025 Thu Apr 24 23:01:10 EDT 2025 Thu Mar 13 19:39:47 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 3 |
Keywords | Memory array circuit artificial neural network character recognition synaptic weight memristor |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c310t-b6b4969f5c52dfcf7e39f4d0565d5ce02d82077d3974b1ae825d84e74dcf8e763 |
Notes | G704-002163.2014.14.3.009 |
PageCount | 8 |
ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_866346 crossref_primary_10_5573_JSTS_2014_14_3_356 crossref_citationtrail_10_5573_JSTS_2014_14_3_356 nurimedia_primary_NODE02501184 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-06-01 |
PublicationDateYYYYMMDD | 2014-06-01 |
PublicationDate_xml | – month: 06 year: 2014 text: 2014-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Journal of semiconductor technology and science |
PublicationYear | 2014 |
Publisher | 대한전자공학회 |
Publisher_xml | – name: 대한전자공학회 |
References | (E1STAN_2014_v14n3_356_007) 2007; 18 (E1STAN_2014_v14n3_356_011) 2009; 53 (E1STAN_2014_v14n3_356_012) 2010; 10 (E1STAN_2014_v14n3_356_005) 2010; 74 (E1STAN_2014_v14n3_356_001) 1990; 78 (E1STAN_2014_v14n3_356_003) 1999; 10 (E1STAN_2014_v14n3_356_014) 1971; CT-18 (E1STAN_2014_v14n3_356_010) 1992; 27 (E1STAN_2014_v14n3_356_019) 2012; 23 (E1STAN_2014_v14n3_356_018) 2012; 59 (E1STAN_2014_v14n3_356_023) 2013; 12 (E1STAN_2014_v14n3_356_015) 2008; 453 |
References_xml | – volume: 23 start-page: 1426 year: 2012 ident: E1STAN_2014_v14n3_356_019 publication-title: Trans. Neural Network and Learning System doi: 10.1109/TNNLS.2012.2204770 – volume: 453 start-page: 80 year: 2008 ident: E1STAN_2014_v14n3_356_015 publication-title: Nature doi: 10.1038/nature06932 – volume: 59 start-page: 148 year: 2012 ident: E1STAN_2014_v14n3_356_018 publication-title: IEEE Trans. Circuit and System doi: 10.1109/TCSI.2011.2161360 – volume: CT-18 start-page: 507 year: 1971 ident: E1STAN_2014_v14n3_356_014 publication-title: IEEE Trans. Circuit Theory – volume: 78 start-page: 1629 year: 1990 ident: E1STAN_2014_v14n3_356_001 publication-title: Proceedings of the IEEE doi: 10.1109/5.58356 – volume: 74 start-page: 239 year: 2010 ident: E1STAN_2014_v14n3_356_005 publication-title: Neurocomputing doi: 10.1016/j.neucom.2010.03.021 – volume: 53 start-page: 1287 year: 2009 ident: E1STAN_2014_v14n3_356_011 publication-title: Solid State Electron doi: 10.1016/j.sse.2009.09.034 – volume: 27 start-page: 1868 year: 1992 ident: E1STAN_2014_v14n3_356_010 publication-title: IEEE J. Solid-State Circuits doi: 10.1109/4.173117 – volume: 10 start-page: 1297 year: 2010 ident: E1STAN_2014_v14n3_356_012 publication-title: Nano Lett. doi: 10.1021/nl904092h – volume: 10 start-page: 951 year: 1999 ident: E1STAN_2014_v14n3_356_003 publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.774269 – volume: 12 start-page: 851 year: 2013 ident: E1STAN_2014_v14n3_356_023 publication-title: IEEE Trans. Nanotechnology doi: 10.1109/TNANO.2013.2274529 – volume: 18 start-page: 880 year: 2007 ident: E1STAN_2014_v14n3_356_007 publication-title: IEEE Trans. Neural Netw. doi: 10.1109/TNN.2007.891626 |
SSID | ssj0068797 |
Score | 2.2667694 |
Snippet | In this paper, we propose a new memristor-based crossbar array architecture, where a single memristor array and constant-term circuit are used to represent... |
SourceID | nrf crossref nurimedia |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 356 |
SubjectTerms | 전기공학 |
Title | New Memristor-Based Crossbar Array Architecture with 50-% Area Reduction and 48-% Power Saving for Matrix-Vector Multiplication of Analog Neuromorphic Computing |
URI | https://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE02501184 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART001887558 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, 2014, 14(3), 57, pp.356-363 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLa68QA8IK5iXCYjkacoZUnsXB7TLqggtSC1Q3uLHNuZqrIEhRYxfg0_jZ_COU6apRvi9pKmsR1H-b76XHp8DiEvJc9dGQjliDDPHSZF4cQBQzeH4IHQfhtVOZ0FkxP29pSfDgY_elFLm3U-lN9-ua_kf1CFa4Ar7pL9B2S7m8IFOAd84QgIw_GvMMbgxKk-N-kBamcEAknZYxR7uajtpK7FhZ30_ygwTld-5FgehwYt4OWqTVsrvFQ2i0zLeyycZs_Fl22Q5RTT-H91PhgHvz1tQhBbX5_RZEv0ANkmz8d5BcAtpd1Ui9jKxeva72cMyq9KnB7jHDsHv3mQVix33h-YZnZWSXtRb6r2jigjLjR8c-bLlT1t84e37guXXYZZGcJZ6ciKxhjVkR5bMbfisZWOreTIihiexKkVQ1NijXxrxLd9YnOSwMD-yh2DORw02a6H2lwD1cd3WNSUdemWe9ajtd9bu30e9NQAv1l3r0oYzkPMdAGr5hzjAhlImqE_7IbuZO6evTtOUcUEG47tkRseGDIm9HTSGWhBFDblf7YP32zrwkleXZ9iR3XaK2s43iw3WAUClpKeVrS4S-60gNKk4eY9MtDlfXK7l-TyAfkOLKVXWEq3LKWGpbTPUoospchSihylHUcpUIMiR6lhKG0YSoGhdIehdJehtCpow1DaZyjtGPqQnLxOF-OJ09YFcSQYI2snD3IWB3HBJfdUIYtQ-3HBFKjyXHGpjzwFam0YKlC1We4KHXlcRUyHTMki0iBQH5H9sir1Y0K5jEJWaOFGSrDCM6mQXO1qUNSLwNfigLjbV57JNmk-1m75mIHxjDBlCFOGMIERnfkZwHRA7G7MpyZlzG97vwAks5VcZpjpHT_PqmxVZ2DPvsmAuz6DPocdzt0t--x68qcOT8mtyx_fM7K_rjf6OWjT6_zQEPIniozEXg |
linkProvider | ABC ChemistRy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=New+Memristor-Based+Crossbar+Array+Architecture+with+50-%25+Area+Reduction+and+48-%25+Power+Saving+for+Matrix-Vector+Multiplication+of+Analog+Neuromorphic+Computing&rft.jtitle=Journal+of+semiconductor+technology+and+science&rft.au=Son+Ngoc+Truong&rft.au=Kyeong-Sik+Min&rft.date=2014-06-01&rft.pub=%EB%8C%80%ED%95%9C%EC%A0%84%EC%9E%90%EA%B3%B5%ED%95%99%ED%9A%8C&rft.issn=1598-1657&rft.eissn=2233-4866&rft.volume=14&rft.issue=3&rft.spage=356&rft.epage=363&rft_id=info:doi/10.5573%2FJSTS.2014.14.3.356&rft.externalDocID=NODE02501184 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1598-1657&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1598-1657&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1598-1657&client=summon |