Hysteresis in Neuron Models with Adapting Feedback Synapses

Despite its significance, hysteresis remains underrepresented in mainstream models of plasticity. In this work, we propose a novel framework that explicitly models hysteresis in simple one- and two-neuron models. Our models capture key feedback-dependent phenomena such as bistability, multistability...

Full description

Saved in:
Bibliographic Details
Published inAppliedMath Vol. 5; no. 2; p. 70
Main Authors Lynch, Sebastian Thomas, Lynch, Stephen
Format Journal Article
LanguageEnglish
Published MDPI AG 13.06.2025
Subjects
Online AccessGet full text
ISSN2673-9909
2673-9909
DOI10.3390/appliedmath5020070

Cover

Abstract Despite its significance, hysteresis remains underrepresented in mainstream models of plasticity. In this work, we propose a novel framework that explicitly models hysteresis in simple one- and two-neuron models. Our models capture key feedback-dependent phenomena such as bistability, multistability, periodicity, quasi-periodicity, and chaos, offering a more accurate and general representation of neural adaptation. This opens the door to new insights in computational neuroscience and neuromorphic system design. Synaptic weights change in several contexts or mechanisms including, Bienenstock–Cooper–Munro (BCM) synaptic modification, where synaptic changes depend on the level of post-synaptic activity; homeostatic plasticity, where all of a neuron synapses simultaneously scale up or down to maintain stability; metaplasticity, or plasticity of plasticity; neuromodulation, where neurotransmitters influence synaptic weights; developmental processes, where synaptic connections are actively formed, pruned and refined; disease or injury; for example, neurological conditions can induce maladaptive synaptic changes; spike-time dependent plasticity (STDP), where changes depend on the precise timing of pre- and postsynaptic spikes; and structural plasticity, where changes in dendritic spines and axonal boutons can alter synaptic strength. The ability of synapses and neurons to change in response to activity is fundamental to learning, memory formation, and cognitive adaptation. This paper presents simple continuous and discrete neuro-modules with adapting feedback synapses which in turn are subject to feedback. The dynamics of continuous periodically driven Hopfield neural networks with adapting synapses have been investigated since the 1990s in terms of periodicity and chaotic behaviors. For the first time, one- and two-neuron models are considered as parameters are varied using a feedback mechanism which more accurately represents real-world simulation, as explained earlier. It is shown that these models are history dependent. A simple discrete two-neuron model with adapting feedback synapses is analyzed in terms of stability and bifurcation diagrams are plotted as parameters are increased and decreased. This work has the potential to improve learning algorithms, increase understanding of neural memory formation, and inform neuromorphic engineering research.
AbstractList Despite its significance, hysteresis remains underrepresented in mainstream models of plasticity. In this work, we propose a novel framework that explicitly models hysteresis in simple one- and two-neuron models. Our models capture key feedback-dependent phenomena such as bistability, multistability, periodicity, quasi-periodicity, and chaos, offering a more accurate and general representation of neural adaptation. This opens the door to new insights in computational neuroscience and neuromorphic system design. Synaptic weights change in several contexts or mechanisms including, Bienenstock–Cooper–Munro (BCM) synaptic modification, where synaptic changes depend on the level of post-synaptic activity; homeostatic plasticity, where all of a neuron synapses simultaneously scale up or down to maintain stability; metaplasticity, or plasticity of plasticity; neuromodulation, where neurotransmitters influence synaptic weights; developmental processes, where synaptic connections are actively formed, pruned and refined; disease or injury; for example, neurological conditions can induce maladaptive synaptic changes; spike-time dependent plasticity (STDP), where changes depend on the precise timing of pre- and postsynaptic spikes; and structural plasticity, where changes in dendritic spines and axonal boutons can alter synaptic strength. The ability of synapses and neurons to change in response to activity is fundamental to learning, memory formation, and cognitive adaptation. This paper presents simple continuous and discrete neuro-modules with adapting feedback synapses which in turn are subject to feedback. The dynamics of continuous periodically driven Hopfield neural networks with adapting synapses have been investigated since the 1990s in terms of periodicity and chaotic behaviors. For the first time, one- and two-neuron models are considered as parameters are varied using a feedback mechanism which more accurately represents real-world simulation, as explained earlier. It is shown that these models are history dependent. A simple discrete two-neuron model with adapting feedback synapses is analyzed in terms of stability and bifurcation diagrams are plotted as parameters are increased and decreased. This work has the potential to improve learning algorithms, increase understanding of neural memory formation, and inform neuromorphic engineering research.
Author Lynch, Sebastian Thomas
Lynch, Stephen
Author_xml – sequence: 1
  givenname: Sebastian Thomas
  surname: Lynch
  fullname: Lynch, Sebastian Thomas
– sequence: 2
  givenname: Stephen
  orcidid: 0000-0002-4183-5122
  surname: Lynch
  fullname: Lynch, Stephen
BookMark eNplkM1Kw0AUhQepYK19AVd5geidO8kkwVUp1haqLtR1uJm5aaemSZiJSN_e-oMIrs7hwPkW37kYtV3LQlxKuFKqgGvq-8ax3dOwTQEBMjgRY9SZiosCitGffiamIewAAPM0U1k-FjfLQxjYc3Ahcm30wG--a6P7znITonc3bKOZpX5w7SZaMNuKzGv0dGipDxwuxGlNTeDpT07Ey-L2eb6M1493q_lsHRslYYipQGBja4YcK6krIluDRdBKmjxlxhRqSHVmlZGKNKKWhWJ7PBhTJTpRE7H65tqOdmXv3Z78oezIlV9D5zcl-cGZhkvFOVtGzBRXSY4pybqq0FJCrGuJ-ZGF3yzjuxA81788CeWnzfK_TfUBbqNtZA
Cites_doi 10.1007/s11571-024-10178-x
10.1136/jmg-2024-110224
10.1523/JNEUROSCI.1200-21.2021
10.1038/81453
10.1016/j.brainres.2003.10.030
10.1007/s10827-022-00824-w
10.1098/rstb.2016.0155
10.1007/978-3-319-61485-4
10.3390/ma18102293
10.1201/9781003285816
10.1007/978-3-319-78145-7
10.1007/978-3-642-38218-5
10.3390/e27030257
10.1038/s41598-025-00444-1
10.1088/2634-4386/add9c0
10.1039/D4TC04069D
10.1007/s11431-020-1730-0
10.1016/j.brainres.2004.11.017
10.1016/S0960-0779(04)00379-0
10.1088/0954-898X_3_3_002
10.1088/1402-4896/acf24f
10.1007/978-0-8176-4605-9
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.3390/appliedmath5020070
DatabaseName CrossRef
Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
EISSN 2673-9909
ExternalDocumentID oai_doaj_org_article_3e8ede2273eb4825a1fbb2da4ae6f128
10_3390_appliedmath5020070
GroupedDBID AAYXX
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARCSS
CITATION
GROUPED_DOAJ
MODMG
M~E
OK1
ID FETCH-LOGICAL-c310t-a920ecdfe082b16baadf0d20631c85ee250f0567d3c13a6226193eddfeccb4643
IEDL.DBID DOA
ISSN 2673-9909
IngestDate Wed Aug 27 01:24:57 EDT 2025
Thu Jul 03 08:38:29 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c310t-a920ecdfe082b16baadf0d20631c85ee250f0567d3c13a6226193eddfeccb4643
ORCID 0000-0002-4183-5122
OpenAccessLink https://doaj.org/article/3e8ede2273eb4825a1fbb2da4ae6f128
ParticipantIDs doaj_primary_oai_doaj_org_article_3e8ede2273eb4825a1fbb2da4ae6f128
crossref_primary_10_3390_appliedmath5020070
PublicationCentury 2000
PublicationDate 2025-06-13
PublicationDateYYYYMMDD 2025-06-13
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-13
  day: 13
PublicationDecade 2020
PublicationTitle AppliedMath
PublicationYear 2025
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Dong (ref_1) 1992; 3
Briones (ref_14) 2004; 997
Tresca (ref_3) 1872; 20
ref_11
ref_10
ref_17
ref_16
Danchin (ref_12) 2025; 62
Wen (ref_9) 2021; 41
Li (ref_25) 2005; 23
Ewing (ref_4) 1885; 176
Seralan (ref_19) 2024; 18
Bao (ref_18) 2021; 64
ref_24
ref_23
ref_22
Froc (ref_7) 2022; 50
ref_21
Ma (ref_20) 2023; 98
Liu (ref_15) 2025; 5
Abbott (ref_2) 2000; 3
Briones (ref_13) 2005; 1033
ref_5
Hu (ref_8) 2025; 13
ref_6
References_xml – volume: 18
  start-page: 4071
  year: 2024
  ident: ref_19
  article-title: Collective behavior of an adapting synapse-based neuronal network with memristive effect and randomness
  publication-title: Cogn. Neurodyn.
  doi: 10.1007/s11571-024-10178-x
– volume: 62
  start-page: 303
  year: 2025
  ident: ref_12
  article-title: Limitations of genomics to predict and treat autism: A disorder born in the womb
  publication-title: J. Med. Genet.
  doi: 10.1136/jmg-2024-110224
– volume: 41
  start-page: 9891
  year: 2021
  ident: ref_9
  article-title: Developmental Regulation of Homeostatic Plasticity in Mouse Primary Visual Cortex
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.1200-21.2021
– volume: 3
  start-page: 1178
  year: 2000
  ident: ref_2
  article-title: Synaptic plasticity: Taming the beast
  publication-title: Nat. Neurosci.
  doi: 10.1038/81453
– volume: 997
  start-page: 137
  year: 2004
  ident: ref_14
  article-title: Behaviorally-induced ultrastructural plasticity in the hippocampal region after cerebral ischemia
  publication-title: Brain Res.
  doi: 10.1016/j.brainres.2003.10.030
– volume: 50
  start-page: 431
  year: 2022
  ident: ref_7
  article-title: Weight dependence in BCM leads to adjustable synaptic competition
  publication-title: J. Comput. Neurosci.
  doi: 10.1007/s10827-022-00824-w
– ident: ref_10
  doi: 10.1098/rstb.2016.0155
– ident: ref_22
  doi: 10.1007/978-3-319-61485-4
– ident: ref_16
  doi: 10.3390/ma18102293
– ident: ref_5
  doi: 10.1201/9781003285816
– ident: ref_24
  doi: 10.1007/978-3-319-78145-7
– ident: ref_6
  doi: 10.1007/978-3-642-38218-5
– ident: ref_23
– ident: ref_17
  doi: 10.3390/e27030257
– ident: ref_11
  doi: 10.1038/s41598-025-00444-1
– volume: 5
  start-page: 024013
  year: 2025
  ident: ref_15
  article-title: Variation-resilient spike-timing-dependent plasticity in memristors using bursting neuron circuit
  publication-title: Neuromorphic Comput. Eng.
  doi: 10.1088/2634-4386/add9c0
– volume: 13
  start-page: 3311
  year: 2025
  ident: ref_8
  article-title: Enlarging the frequency threshold range of Bienenstock-Cooper-Munro rules in WOx-based memristive synapses by Al doping
  publication-title: J. Mater. Chem. C
  doi: 10.1039/D4TC04069D
– volume: 64
  start-page: 1107
  year: 2021
  ident: ref_18
  article-title: Memristive neuron model with an adapting synapse and its hardware implementations
  publication-title: Sci. China Technol. Sci.
  doi: 10.1007/s11431-020-1730-0
– volume: 20
  start-page: 75
  year: 1872
  ident: ref_3
  article-title: Mémoire sur l’écoulement des corps solides
  publication-title: Mémoire Présentés par Divers Savants Acad. Sci. Paris
– volume: 1033
  start-page: 51
  year: 2005
  ident: ref_13
  article-title: Changes in number of synapses and mitochondria in pre-synaptic terminals in the dentate gyrus following cerebral ischemia and rehabilitation training
  publication-title: Brain Res.
  doi: 10.1016/j.brainres.2004.11.017
– volume: 23
  start-page: 1599
  year: 2005
  ident: ref_25
  article-title: Coexisting chaotic attractors in a single neuron model with adapting feedback synapse
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/S0960-0779(04)00379-0
– volume: 3
  start-page: 267
  year: 1992
  ident: ref_1
  article-title: Dynamic properties of neural networks with adapting synapses
  publication-title: Netw. Comput. Neural Syst.
  doi: 10.1088/0954-898X_3_3_002
– volume: 98
  start-page: 105202
  year: 2023
  ident: ref_20
  article-title: Hidden dynamics of memristor-coupled neurons with multi-stability and multi-transient hyperchaotic behavior
  publication-title: Phys. Scr.
  doi: 10.1088/1402-4896/acf24f
– ident: ref_21
  doi: 10.1007/978-0-8176-4605-9
– volume: 176
  start-page: 523640
  year: 1885
  ident: ref_4
  article-title: Experimental researches in magnetism
  publication-title: Trans. R. Soc. Lond.
SSID ssj0002857378
Score 2.294524
Snippet Despite its significance, hysteresis remains underrepresented in mainstream models of plasticity. In this work, we propose a novel framework that explicitly...
SourceID doaj
crossref
SourceType Open Website
Index Database
StartPage 70
SubjectTerms adaptive synapse
bifurcation diagram
bistable
chaotic system
feedback
hysteresis
Title Hysteresis in Neuron Models with Adapting Feedback Synapses
URI https://doaj.org/article/3e8ede2273eb4825a1fbb2da4ae6f128
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LSsNAFB2kKzeiqFhfzMKdDM4jT1xVaSlC3WihuzCPO1iVWExduPHbvTepUnHhxk0WIQnJvTDnnMnMOYydOfKUk8GL3KdeIOJbYRV4ESjWQUWTJY72Dk9us_E0uZmls7WoL1oT1tkDd4W7MFBAAI0oCy5BOWNVdE4Hm1jIIg6uNPrKUq6Jqcd2yijNTV50u2QM6vrufzAEpIEPqaQJOvkDidYM-1tkGW2zrRUl5IPuVXbYBtS77HJMFsuohecNn9e89dCoOSWXPTecJk_5INgFrVnmIwQgZ_0Tv3uv7aKBZo9NR8P767FYBR0Ij-xqKWypJfgQAfHYqcxZG6IMGtmD8kUKgDQlIlHJg_HK2EyT6jEQ8AbvXYKcYp_16pcaDhiHxOrcm5A5VErGOlcqE4pYgkmL3JSxz86_PrpadH4WFeoAKlH1u0R9dkV1-b6SvKjbE9ihatWh6q8OHf7HQ47YpqbkXUoNMsest3x9gxOkA0t32nYej5OP4Sf9aLe5
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hysteresis+in+Neuron+Models+with+Adapting+Feedback+Synapses&rft.jtitle=AppliedMath&rft.au=Sebastian+Thomas+Lynch&rft.au=Stephen+Lynch&rft.date=2025-06-13&rft.pub=MDPI+AG&rft.eissn=2673-9909&rft.volume=5&rft.issue=2&rft.spage=70&rft_id=info:doi/10.3390%2Fappliedmath5020070&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_3e8ede2273eb4825a1fbb2da4ae6f128
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2673-9909&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2673-9909&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2673-9909&client=summon