Hysteresis in Neuron Models with Adapting Feedback Synapses
Despite its significance, hysteresis remains underrepresented in mainstream models of plasticity. In this work, we propose a novel framework that explicitly models hysteresis in simple one- and two-neuron models. Our models capture key feedback-dependent phenomena such as bistability, multistability...
Saved in:
Published in | AppliedMath Vol. 5; no. 2; p. 70 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
MDPI AG
13.06.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 2673-9909 2673-9909 |
DOI | 10.3390/appliedmath5020070 |
Cover
Abstract | Despite its significance, hysteresis remains underrepresented in mainstream models of plasticity. In this work, we propose a novel framework that explicitly models hysteresis in simple one- and two-neuron models. Our models capture key feedback-dependent phenomena such as bistability, multistability, periodicity, quasi-periodicity, and chaos, offering a more accurate and general representation of neural adaptation. This opens the door to new insights in computational neuroscience and neuromorphic system design. Synaptic weights change in several contexts or mechanisms including, Bienenstock–Cooper–Munro (BCM) synaptic modification, where synaptic changes depend on the level of post-synaptic activity; homeostatic plasticity, where all of a neuron synapses simultaneously scale up or down to maintain stability; metaplasticity, or plasticity of plasticity; neuromodulation, where neurotransmitters influence synaptic weights; developmental processes, where synaptic connections are actively formed, pruned and refined; disease or injury; for example, neurological conditions can induce maladaptive synaptic changes; spike-time dependent plasticity (STDP), where changes depend on the precise timing of pre- and postsynaptic spikes; and structural plasticity, where changes in dendritic spines and axonal boutons can alter synaptic strength. The ability of synapses and neurons to change in response to activity is fundamental to learning, memory formation, and cognitive adaptation. This paper presents simple continuous and discrete neuro-modules with adapting feedback synapses which in turn are subject to feedback. The dynamics of continuous periodically driven Hopfield neural networks with adapting synapses have been investigated since the 1990s in terms of periodicity and chaotic behaviors. For the first time, one- and two-neuron models are considered as parameters are varied using a feedback mechanism which more accurately represents real-world simulation, as explained earlier. It is shown that these models are history dependent. A simple discrete two-neuron model with adapting feedback synapses is analyzed in terms of stability and bifurcation diagrams are plotted as parameters are increased and decreased. This work has the potential to improve learning algorithms, increase understanding of neural memory formation, and inform neuromorphic engineering research. |
---|---|
AbstractList | Despite its significance, hysteresis remains underrepresented in mainstream models of plasticity. In this work, we propose a novel framework that explicitly models hysteresis in simple one- and two-neuron models. Our models capture key feedback-dependent phenomena such as bistability, multistability, periodicity, quasi-periodicity, and chaos, offering a more accurate and general representation of neural adaptation. This opens the door to new insights in computational neuroscience and neuromorphic system design. Synaptic weights change in several contexts or mechanisms including, Bienenstock–Cooper–Munro (BCM) synaptic modification, where synaptic changes depend on the level of post-synaptic activity; homeostatic plasticity, where all of a neuron synapses simultaneously scale up or down to maintain stability; metaplasticity, or plasticity of plasticity; neuromodulation, where neurotransmitters influence synaptic weights; developmental processes, where synaptic connections are actively formed, pruned and refined; disease or injury; for example, neurological conditions can induce maladaptive synaptic changes; spike-time dependent plasticity (STDP), where changes depend on the precise timing of pre- and postsynaptic spikes; and structural plasticity, where changes in dendritic spines and axonal boutons can alter synaptic strength. The ability of synapses and neurons to change in response to activity is fundamental to learning, memory formation, and cognitive adaptation. This paper presents simple continuous and discrete neuro-modules with adapting feedback synapses which in turn are subject to feedback. The dynamics of continuous periodically driven Hopfield neural networks with adapting synapses have been investigated since the 1990s in terms of periodicity and chaotic behaviors. For the first time, one- and two-neuron models are considered as parameters are varied using a feedback mechanism which more accurately represents real-world simulation, as explained earlier. It is shown that these models are history dependent. A simple discrete two-neuron model with adapting feedback synapses is analyzed in terms of stability and bifurcation diagrams are plotted as parameters are increased and decreased. This work has the potential to improve learning algorithms, increase understanding of neural memory formation, and inform neuromorphic engineering research. |
Author | Lynch, Sebastian Thomas Lynch, Stephen |
Author_xml | – sequence: 1 givenname: Sebastian Thomas surname: Lynch fullname: Lynch, Sebastian Thomas – sequence: 2 givenname: Stephen orcidid: 0000-0002-4183-5122 surname: Lynch fullname: Lynch, Stephen |
BookMark | eNplkM1Kw0AUhQepYK19AVd5geidO8kkwVUp1haqLtR1uJm5aaemSZiJSN_e-oMIrs7hwPkW37kYtV3LQlxKuFKqgGvq-8ax3dOwTQEBMjgRY9SZiosCitGffiamIewAAPM0U1k-FjfLQxjYc3Ahcm30wG--a6P7znITonc3bKOZpX5w7SZaMNuKzGv0dGipDxwuxGlNTeDpT07Ey-L2eb6M1493q_lsHRslYYipQGBja4YcK6krIluDRdBKmjxlxhRqSHVmlZGKNKKWhWJ7PBhTJTpRE7H65tqOdmXv3Z78oezIlV9D5zcl-cGZhkvFOVtGzBRXSY4pybqq0FJCrGuJ-ZGF3yzjuxA81788CeWnzfK_TfUBbqNtZA |
Cites_doi | 10.1007/s11571-024-10178-x 10.1136/jmg-2024-110224 10.1523/JNEUROSCI.1200-21.2021 10.1038/81453 10.1016/j.brainres.2003.10.030 10.1007/s10827-022-00824-w 10.1098/rstb.2016.0155 10.1007/978-3-319-61485-4 10.3390/ma18102293 10.1201/9781003285816 10.1007/978-3-319-78145-7 10.1007/978-3-642-38218-5 10.3390/e27030257 10.1038/s41598-025-00444-1 10.1088/2634-4386/add9c0 10.1039/D4TC04069D 10.1007/s11431-020-1730-0 10.1016/j.brainres.2004.11.017 10.1016/S0960-0779(04)00379-0 10.1088/0954-898X_3_3_002 10.1088/1402-4896/acf24f 10.1007/978-0-8176-4605-9 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.3390/appliedmath5020070 |
DatabaseName | CrossRef Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2673-9909 |
ExternalDocumentID | oai_doaj_org_article_3e8ede2273eb4825a1fbb2da4ae6f128 10_3390_appliedmath5020070 |
GroupedDBID | AAYXX AFZYC ALMA_UNASSIGNED_HOLDINGS AMVHM ARCSS CITATION GROUPED_DOAJ MODMG M~E OK1 |
ID | FETCH-LOGICAL-c310t-a920ecdfe082b16baadf0d20631c85ee250f0567d3c13a6226193eddfeccb4643 |
IEDL.DBID | DOA |
ISSN | 2673-9909 |
IngestDate | Wed Aug 27 01:24:57 EDT 2025 Thu Jul 03 08:38:29 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c310t-a920ecdfe082b16baadf0d20631c85ee250f0567d3c13a6226193eddfeccb4643 |
ORCID | 0000-0002-4183-5122 |
OpenAccessLink | https://doaj.org/article/3e8ede2273eb4825a1fbb2da4ae6f128 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_3e8ede2273eb4825a1fbb2da4ae6f128 crossref_primary_10_3390_appliedmath5020070 |
PublicationCentury | 2000 |
PublicationDate | 2025-06-13 |
PublicationDateYYYYMMDD | 2025-06-13 |
PublicationDate_xml | – month: 06 year: 2025 text: 2025-06-13 day: 13 |
PublicationDecade | 2020 |
PublicationTitle | AppliedMath |
PublicationYear | 2025 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Dong (ref_1) 1992; 3 Briones (ref_14) 2004; 997 Tresca (ref_3) 1872; 20 ref_11 ref_10 ref_17 ref_16 Danchin (ref_12) 2025; 62 Wen (ref_9) 2021; 41 Li (ref_25) 2005; 23 Ewing (ref_4) 1885; 176 Seralan (ref_19) 2024; 18 Bao (ref_18) 2021; 64 ref_24 ref_23 ref_22 Froc (ref_7) 2022; 50 ref_21 Ma (ref_20) 2023; 98 Liu (ref_15) 2025; 5 Abbott (ref_2) 2000; 3 Briones (ref_13) 2005; 1033 ref_5 Hu (ref_8) 2025; 13 ref_6 |
References_xml | – volume: 18 start-page: 4071 year: 2024 ident: ref_19 article-title: Collective behavior of an adapting synapse-based neuronal network with memristive effect and randomness publication-title: Cogn. Neurodyn. doi: 10.1007/s11571-024-10178-x – volume: 62 start-page: 303 year: 2025 ident: ref_12 article-title: Limitations of genomics to predict and treat autism: A disorder born in the womb publication-title: J. Med. Genet. doi: 10.1136/jmg-2024-110224 – volume: 41 start-page: 9891 year: 2021 ident: ref_9 article-title: Developmental Regulation of Homeostatic Plasticity in Mouse Primary Visual Cortex publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.1200-21.2021 – volume: 3 start-page: 1178 year: 2000 ident: ref_2 article-title: Synaptic plasticity: Taming the beast publication-title: Nat. Neurosci. doi: 10.1038/81453 – volume: 997 start-page: 137 year: 2004 ident: ref_14 article-title: Behaviorally-induced ultrastructural plasticity in the hippocampal region after cerebral ischemia publication-title: Brain Res. doi: 10.1016/j.brainres.2003.10.030 – volume: 50 start-page: 431 year: 2022 ident: ref_7 article-title: Weight dependence in BCM leads to adjustable synaptic competition publication-title: J. Comput. Neurosci. doi: 10.1007/s10827-022-00824-w – ident: ref_10 doi: 10.1098/rstb.2016.0155 – ident: ref_22 doi: 10.1007/978-3-319-61485-4 – ident: ref_16 doi: 10.3390/ma18102293 – ident: ref_5 doi: 10.1201/9781003285816 – ident: ref_24 doi: 10.1007/978-3-319-78145-7 – ident: ref_6 doi: 10.1007/978-3-642-38218-5 – ident: ref_23 – ident: ref_17 doi: 10.3390/e27030257 – ident: ref_11 doi: 10.1038/s41598-025-00444-1 – volume: 5 start-page: 024013 year: 2025 ident: ref_15 article-title: Variation-resilient spike-timing-dependent plasticity in memristors using bursting neuron circuit publication-title: Neuromorphic Comput. Eng. doi: 10.1088/2634-4386/add9c0 – volume: 13 start-page: 3311 year: 2025 ident: ref_8 article-title: Enlarging the frequency threshold range of Bienenstock-Cooper-Munro rules in WOx-based memristive synapses by Al doping publication-title: J. Mater. Chem. C doi: 10.1039/D4TC04069D – volume: 64 start-page: 1107 year: 2021 ident: ref_18 article-title: Memristive neuron model with an adapting synapse and its hardware implementations publication-title: Sci. China Technol. Sci. doi: 10.1007/s11431-020-1730-0 – volume: 20 start-page: 75 year: 1872 ident: ref_3 article-title: Mémoire sur l’écoulement des corps solides publication-title: Mémoire Présentés par Divers Savants Acad. Sci. Paris – volume: 1033 start-page: 51 year: 2005 ident: ref_13 article-title: Changes in number of synapses and mitochondria in pre-synaptic terminals in the dentate gyrus following cerebral ischemia and rehabilitation training publication-title: Brain Res. doi: 10.1016/j.brainres.2004.11.017 – volume: 23 start-page: 1599 year: 2005 ident: ref_25 article-title: Coexisting chaotic attractors in a single neuron model with adapting feedback synapse publication-title: Chaos Solitons Fractals doi: 10.1016/S0960-0779(04)00379-0 – volume: 3 start-page: 267 year: 1992 ident: ref_1 article-title: Dynamic properties of neural networks with adapting synapses publication-title: Netw. Comput. Neural Syst. doi: 10.1088/0954-898X_3_3_002 – volume: 98 start-page: 105202 year: 2023 ident: ref_20 article-title: Hidden dynamics of memristor-coupled neurons with multi-stability and multi-transient hyperchaotic behavior publication-title: Phys. Scr. doi: 10.1088/1402-4896/acf24f – ident: ref_21 doi: 10.1007/978-0-8176-4605-9 – volume: 176 start-page: 523640 year: 1885 ident: ref_4 article-title: Experimental researches in magnetism publication-title: Trans. R. Soc. Lond. |
SSID | ssj0002857378 |
Score | 2.294524 |
Snippet | Despite its significance, hysteresis remains underrepresented in mainstream models of plasticity. In this work, we propose a novel framework that explicitly... |
SourceID | doaj crossref |
SourceType | Open Website Index Database |
StartPage | 70 |
SubjectTerms | adaptive synapse bifurcation diagram bistable chaotic system feedback hysteresis |
Title | Hysteresis in Neuron Models with Adapting Feedback Synapses |
URI | https://doaj.org/article/3e8ede2273eb4825a1fbb2da4ae6f128 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LSsNAFB2kKzeiqFhfzMKdDM4jT1xVaSlC3WihuzCPO1iVWExduPHbvTepUnHhxk0WIQnJvTDnnMnMOYydOfKUk8GL3KdeIOJbYRV4ESjWQUWTJY72Dk9us_E0uZmls7WoL1oT1tkDd4W7MFBAAI0oCy5BOWNVdE4Hm1jIIg6uNPrKUq6Jqcd2yijNTV50u2QM6vrufzAEpIEPqaQJOvkDidYM-1tkGW2zrRUl5IPuVXbYBtS77HJMFsuohecNn9e89dCoOSWXPTecJk_5INgFrVnmIwQgZ_0Tv3uv7aKBZo9NR8P767FYBR0Ij-xqKWypJfgQAfHYqcxZG6IMGtmD8kUKgDQlIlHJg_HK2EyT6jEQ8AbvXYKcYp_16pcaDhiHxOrcm5A5VErGOlcqE4pYgkmL3JSxz86_PrpadH4WFeoAKlH1u0R9dkV1-b6SvKjbE9ihatWh6q8OHf7HQ47YpqbkXUoNMsest3x9gxOkA0t32nYej5OP4Sf9aLe5 |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hysteresis+in+Neuron+Models+with+Adapting+Feedback+Synapses&rft.jtitle=AppliedMath&rft.au=Sebastian+Thomas+Lynch&rft.au=Stephen+Lynch&rft.date=2025-06-13&rft.pub=MDPI+AG&rft.eissn=2673-9909&rft.volume=5&rft.issue=2&rft.spage=70&rft_id=info:doi/10.3390%2Fappliedmath5020070&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_3e8ede2273eb4825a1fbb2da4ae6f128 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2673-9909&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2673-9909&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2673-9909&client=summon |