Chaotic-Based Big Bang-Big Crunch Algorithm (CBCA) for Energy Management System of Hybrid Isolated Micro-grid: An Inherent Control Scheme
In this manuscript, an energy management and maximum power point tracking (MPPT) to micro-grid based on hybrid renewable energy sources (HRESs) like wind, solar, battery using an inherent control scheme. The proposed control scheme is the chaotic-based big bang-big crunch algorithm (CBCA). Here, cha...
Saved in:
Published in | Energy sources. Part A, Recovery, utilization, and environmental effects Vol. 47; no. 1; pp. 3827 - 3847 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Taylor & Francis
31.12.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this manuscript, an energy management and maximum power point tracking (MPPT) to micro-grid based on hybrid renewable energy sources (HRESs) like wind, solar, battery using an inherent control scheme. The proposed control scheme is the chaotic-based big bang-big crunch algorithm (CBCA). Here, chaotic-based techniques have been integrated into BB-BC to get the global optimum solution. In the proposed control scheme, the CBCA streamlines the parameter of the sources converter according to the required load demand and creates the optimal switching pulses. By the proposed control scheme the sources are controlled and operate in the MPPT during low energy generation or off-MPPT modes during the excess of energy to meet the load requirement based on the system power balance and energy constraints. The proposed control scheme is designed to operate the micro-grid as an autonomous system considering the power obtainable from renewable sources, the load power requirement including the condition of the battery. Finally, the voltage on the load side is controlled to assure proficient power transfer from the source of energy to the load. With this proper control, the proposed technique presents a steady control function at every micro-grid subsystems subject to different power generation including load conditions. By then, the performance of the CBCA scheme is implemented in the MATLAB/Simulink work site and also the implementation is likened to the existing approaches like GOA and AGONN. The statistical analysis of CBCA with existing approaches under cases 1, 2, and 3 has been analyzed. The CBCA method under cases 1, 2, and 3 of mean, median, the standard deviation is more efficient than the existing solution strategies. The mean value of the CBCA method under case 1 indicates 1.2641. The median value of the CBCA method under case 2 implicates 1.2204. The standard deviation value of the CBCA method under case 3 denotes 0.0762. |
---|---|
AbstractList | In this manuscript, an energy management and maximum power point tracking (MPPT) to micro-grid based on hybrid renewable energy sources (HRESs) like wind, solar, battery using an inherent control scheme. The proposed control scheme is the chaotic-based big bang-big crunch algorithm (CBCA). Here, chaotic-based techniques have been integrated into BB-BC to get the global optimum solution. In the proposed control scheme, the CBCA streamlines the parameter of the sources converter according to the required load demand and creates the optimal switching pulses. By the proposed control scheme the sources are controlled and operate in the MPPT during low energy generation or off-MPPT modes during the excess of energy to meet the load requirement based on the system power balance and energy constraints. The proposed control scheme is designed to operate the micro-grid as an autonomous system considering the power obtainable from renewable sources, the load power requirement including the condition of the battery. Finally, the voltage on the load side is controlled to assure proficient power transfer from the source of energy to the load. With this proper control, the proposed technique presents a steady control function at every micro-grid subsystems subject to different power generation including load conditions. By then, the performance of the CBCA scheme is implemented in the MATLAB/Simulink work site and also the implementation is likened to the existing approaches like GOA and AGONN. The statistical analysis of CBCA with existing approaches under cases 1, 2, and 3 has been analyzed. The CBCA method under cases 1, 2, and 3 of mean, median, the standard deviation is more efficient than the existing solution strategies. The mean value of the CBCA method under case 1 indicates 1.2641. The median value of the CBCA method under case 2 implicates 1.2204. The standard deviation value of the CBCA method under case 3 denotes 0.0762. |
Author | Rajaguru, Harikumar Kalki, Kavin Mullai |
Author_xml | – sequence: 1 givenname: Kavin Mullai orcidid: 0000-0001-5788-6007 surname: Kalki fullname: Kalki, Kavin Mullai email: kavinmullai.eee@kongu.edu organization: Kongu Engineering College – sequence: 2 givenname: Harikumar surname: Rajaguru fullname: Rajaguru, Harikumar organization: Bannari Amman Institute of Technology |
BookMark | eNqFkMtKxDAUhoMoeH0EIUtddEyaXnVjW0ZnwMHFuC9n0qSNtIkkEekj-Na26Gxc6OocfvL9nHyn6FAbLRC6pGRBSUZuaBwnKWHJIiThFGVxTmh4gE7mPEhDRg73-_ToGJ0690pIFMckP0GfVQfGKx6U4ESDS9XiEnQbzEtl3zXvcNG3xirfDfiqKqviGktj8VIL2454AxpaMQjt8XZ0XgzYSLwad1Y1eO1MD34q3ShuTdBO2S0uNF7rTtiZqIz21vR4y7up4hwdSeiduPiZZ-jlYflSrYKn58d1VTwFnFHiA4hExJKMRZBHtMmYIEnDcgJNHFLJpMxCznc5FRRYRLIEJEtzStguBZGnScjOUPxdO93knBWyfrNqADvWlNSzznqvs5511j86J-7uF8eVB6_mP4Dq_6Xvv2mlJ3sDfBjbN7WHsTdWWtBcuZr9XfEFqU-PLg |
CitedBy_id | crossref_primary_10_1109_TII_2024_3431089 |
Cites_doi | 10.1016/j.rser.2015.07.187 10.1016/j.advengsoft.2005.04.005 10.1007/s00500-019-04408-2 10.1016/j.jclepro.2020.122364 10.1016/j.est.2020.101306 10.1016/j.jclepro.2020.122195 10.1115/1.4046098 10.1007/s00521-014-1613-1 10.1016/j.enconman.2018.05.034 10.31142/ijtsrd12950 10.33430/V27N1THIE-2018-0024 10.1016/j.conengprac.2020.104380 10.1016/j.ijhydene.2018.12.092 10.1016/j.energy.2017.12.057 10.1016/j.scs.2018.05.026 10.1109/ECAI.2018.8679015 10.2478/aee-2014-0038 10.1109/GUCON.2018.8674902 10.1016/j.energy.2019.06.029 10.1049/iet-rpg.2013.0193 10.1016/j.energy.2012.08.039 10.1016/j.ijhydene.2017.06.006 10.12720/joace.4.2.96-103 10.1016/j.scs.2020.102183 10.1109/TSG.2013.2258413 10.1007/s11708-017-0446-x |
ContentType | Journal Article |
Copyright | 2020 Taylor & Francis Group, LLC 2020 |
Copyright_xml | – notice: 2020 Taylor & Francis Group, LLC 2020 |
DBID | AAYXX CITATION |
DOI | 10.1080/15567036.2020.1859012 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1556-7230 |
EndPage | 3847 |
ExternalDocumentID | 10_1080_15567036_2020_1859012 1859012 |
Genre | Research Article |
GroupedDBID | .7F .DC .QJ 0BK 29G 2DF 30N 4.4 5GY 5VS AAENE AAGDL AAHIA AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABHAV ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGFS ACTIO ADCVX ADGTB ADYSH AEOZL AEPSL AEYOC AFKVX AFRVT AGDLA AGMYJ AIJEM AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DKSSO EBS E~A E~B GTTXZ H13 HZ~ H~P IPNFZ J.P KYCEM LJTGL M4Z NA5 O9- P2P RIG RNANH ROSJB RTWRZ S-T SNACF TBQAZ TDBHL TEN TFL TFT TFW TNC TTHFI TUROJ TWF UT5 UU3 ZGOLN ~S~ AAYXX CITATION |
ID | FETCH-LOGICAL-c310t-a4e436834a941d83e06d390ad521f3ff82ccb91e1a34086af379103b7ae97623 |
ISSN | 1556-7036 |
IngestDate | Thu Jul 03 08:16:06 EDT 2025 Thu Apr 24 23:01:54 EDT 2025 Sat Jun 21 04:10:28 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c310t-a4e436834a941d83e06d390ad521f3ff82ccb91e1a34086af379103b7ae97623 |
ORCID | 0000-0001-5788-6007 |
PageCount | 21 |
ParticipantIDs | crossref_primary_10_1080_15567036_2020_1859012 crossref_citationtrail_10_1080_15567036_2020_1859012 informaworld_taylorfrancis_310_1080_15567036_2020_1859012 |
PublicationCentury | 2000 |
PublicationDate | 2025-12-31 |
PublicationDateYYYYMMDD | 2025-12-31 |
PublicationDate_xml | – month: 12 year: 2025 text: 2025-12-31 day: 31 |
PublicationDecade | 2020 |
PublicationTitle | Energy sources. Part A, Recovery, utilization, and environmental effects |
PublicationYear | 2025 |
Publisher | Taylor & Francis |
Publisher_xml | – name: Taylor & Francis |
References | e_1_3_2_28_1 e_1_3_2_29_1 e_1_3_2_20_1 e_1_3_2_21_1 e_1_3_2_22_1 e_1_3_2_23_1 e_1_3_2_24_1 e_1_3_2_25_1 Voyant C. (e_1_3_2_27_1); 1 e_1_3_2_16_1 e_1_3_2_9_1 e_1_3_2_17_1 e_1_3_2_8_1 e_1_3_2_18_1 e_1_3_2_7_1 e_1_3_2_19_1 e_1_3_2_2_1 e_1_3_2_10_1 e_1_3_2_11_1 e_1_3_2_6_1 e_1_3_2_12_1 e_1_3_2_5_1 e_1_3_2_13_1 e_1_3_2_4_1 e_1_3_2_14_1 e_1_3_2_3_1 e_1_3_2_15_1 Transpire Online (e_1_3_2_26_1) 2019 |
References_xml | – ident: e_1_3_2_23_1 doi: 10.1016/j.rser.2015.07.187 – ident: e_1_3_2_5_1 doi: 10.1016/j.advengsoft.2005.04.005 – ident: e_1_3_2_28_1 doi: 10.1007/s00500-019-04408-2 – ident: e_1_3_2_13_1 doi: 10.1016/j.jclepro.2020.122364 – ident: e_1_3_2_16_1 doi: 10.1016/j.est.2020.101306 – ident: e_1_3_2_11_1 doi: 10.1016/j.jclepro.2020.122195 – ident: e_1_3_2_12_1 doi: 10.1115/1.4046098 – ident: e_1_3_2_19_1 doi: 10.1007/s00521-014-1613-1 – year: 2019 ident: e_1_3_2_26_1 article-title: A novel numerical optimization algorithm inspired from particles: particle swarm optimization publication-title: Transpire Online – ident: e_1_3_2_3_1 doi: 10.1016/j.enconman.2018.05.034 – ident: e_1_3_2_22_1 doi: 10.31142/ijtsrd12950 – ident: e_1_3_2_17_1 doi: 10.33430/V27N1THIE-2018-0024 – ident: e_1_3_2_6_1 doi: 10.1016/j.conengprac.2020.104380 – ident: e_1_3_2_14_1 doi: 10.1016/j.ijhydene.2018.12.092 – ident: e_1_3_2_7_1 doi: 10.1016/j.energy.2017.12.057 – ident: e_1_3_2_8_1 doi: 10.1016/j.scs.2018.05.026 – ident: e_1_3_2_29_1 doi: 10.1109/ECAI.2018.8679015 – ident: e_1_3_2_10_1 doi: 10.2478/aee-2014-0038 – ident: e_1_3_2_2_1 doi: 10.1109/GUCON.2018.8674902 – ident: e_1_3_2_24_1 doi: 10.1016/j.energy.2019.06.029 – ident: e_1_3_2_4_1 doi: 10.1049/iet-rpg.2013.0193 – ident: e_1_3_2_9_1 doi: 10.1016/j.energy.2012.08.039 – ident: e_1_3_2_21_1 doi: 10.1016/j.ijhydene.2017.06.006 – ident: e_1_3_2_25_1 doi: 10.12720/joace.4.2.96-103 – ident: e_1_3_2_15_1 doi: 10.1016/j.scs.2020.102183 – ident: e_1_3_2_18_1 doi: 10.1109/TSG.2013.2258413 – ident: e_1_3_2_20_1 doi: 10.1007/s11708-017-0446-x – volume: 1 start-page: 569 issue: 105 ident: e_1_3_2_27_1 article-title: Fouilloy ,A publication-title: Machine learning methods for solar radiation forecasting: A review. Renewable Energy |
SSID | ssj0045509 |
Score | 2.396818 |
Snippet | In this manuscript, an energy management and maximum power point tracking (MPPT) to micro-grid based on hybrid renewable energy sources (HRESs) like wind,... |
SourceID | crossref informaworld |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 3827 |
SubjectTerms | Energy management hybrid renewable energy sources maximum power point tracking sources converter system power balance and energy constraints |
Title | Chaotic-Based Big Bang-Big Crunch Algorithm (CBCA) for Energy Management System of Hybrid Isolated Micro-grid: An Inherent Control Scheme |
URI | https://www.tandfonline.com/doi/abs/10.1080/15567036.2020.1859012 |
Volume | 47 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbKcoHDiqdYXvKBAyhySeMkTbil0aIF1L1QpL1FzsNpoaSrkCLBP-A_8mOYie08YLWwXKLIqidO5qtnxp75TMgzL81mEDUIhkQxzOXSYWAFfea5EMY5fpF67WEwy1P_5IP79sw7m0x-DrKW9k06zb5fWFfyP1qFNtArVsleQbOdUGiAe9AvXEHDcP0nHcdrsYNGtgBTlFuLTWktRFUyvIlrMFhrK9qWOwj_15_b3dpFHOEqAGYWHquavz77RXOXtwv737CMy3oDgxfokC4xaY-V0NYtI66LltUp1onu70H1Y9YDLV_tDXyZgqdaN1akHVVMG22VC99mqwtBTRrpoPIO0KPTTTqzILbqmO134uumspYQP4tNv1X1UZT7et9aU1FvPmH2-HBVw_EMd2I_EXs-Q3IwZacGbY7ex9Gzt-LrHKFUTcU8UKQD2qzzQP3yD5OhcixRNj5uCoOBxgBLcp3eRpq8gN9MZ5fQONNMq0ZMgmISLeYaue5AEIOzMLdPjZ-A5eRhy-ar39TUlwX2ywtHM_KcRry6A49odYsc6lCGRgqXt8mkqO6QmwOCy7vkxwihFIBJDUKpQijtEEqfIz5fUHggVeihPTqpQifdSarQSQ06aY_OVzSqqMEm1dikCpv3yOr18So-YfrwD5ZBxNEw4RZ4OAJ3RejO8oAXtp_z0BY5-JuSSxk4WZaGs2ImuAthuZB8Dp4vT-eiAA_b4ffJQbWrigeEesLO5dy2My_E5QsvBMfNkTlaVmmDlCPimu-aZJoYH89n2SaXavWITLtu54oZ5m8dwqHSkqZdkpPq_JyEX9r34VUf9ojc6P9Wj8lBU--LJ-A-N-nTFoW_AFBet2k |
linkProvider | Taylor & Francis |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYQDMDAG_HmBgYYXJI4Thu2NgK1QLtQJLbISey2AlJUhQH-Af-auzygIAEDW-TorNg5331n3X3H2JGMYhujBsWJKIa7wjgcvaDHpYthnOPpSObNYLo9r33rXt7Ju6laGEqrpBjaFEQRua2mw02X0VVK3Cn6QI-IozC8c3CoQfWTaIbnpO_VSdeF1ausMRXt-jlnqvQ4yVRVPD9N88U_fWEvnfI7F8ssrr64SDe5rz1nUS1-_Ubm-L8lrbClEpZCs9CjVTaj0zW2OEVWuM7egqEa42veQseXQGs0gJZKB5weggm6xyE0HwbjySgbPsJx0AqaJ4DLgvO8uhA-82ygYEmHsYH2CxWMQQcPAGLeBLqUHsgHOHYGzRQ66ZCqETMIioR6uEEVe9QbrH9x3g_avGzkwGNEjxlXriaie-Eq37WThtCWlwjfUgliByOMaThxHPm2tpVwMcRSRtQRxYiorjSiJUdsstl0nOotBlJZialbVix9CkWlj07YMQlZSWPhLNvMrf5eGJck59Rr4yG0Sy7UaqND2uiw3OhtVvsQeypYPv4S8KdVI8zy6xVT9EIJxa-yO_-QPWTz7X73Orzu9K522YJDzYhz1sk9NptNnvU-IqQsOsiPwDvxRf4f |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELUQSAgO7IidOXCAg0sSJ2nDrQ1ULUuFBEjcIiex2wqaViUc4A_4a2ayQEECDtwiR2PFzngWa94bxg6cMDIxa5CciGK4LbTF0Qu63LExjbNcFTpZM5irjtu6s8_vnbKa8Kkoq6QcWudEEZmtpsM9inVZEXeMLtAl3ijM7iwcqhF8Eq3wjEtAS0JxGJ3SGBNm18soUx2Xk0wJ4vlpmi_u6Qt56YTbaS6ysPzgvNrkofKchpXo9RuX479WtMQWiqAU6rkWLbMplayw-QmqwlX25vfkEF_zBrq9GBr9LjRk0uX04I_ROfag_tgdjvtpbwCHfsOvHwGuCs4ybCF8VtlAzpEOQw2tF4KLQRvVHyPeGK6oOJB3cewE6gm0kx5hEVPw83J6uEEFG6g1dts8u_VbvGjjwCOMHVMubUU098KWnm3GNaEMNxaeIWOMHLTQumZFUeiZypTCxgRLalHFGEaEVakwVrLEOptOhonaYOBII9ZVw4gcjxJRx0MXbOmYbKQ2cJZNZpc_L4gKinPqtPEYmAUTarnRAW10UGz0Jqt8iI1yjo-_BLxJzQjS7HJF551QAvGr7NY_ZPfZ7PVpM7hsdy622ZxFnYgzyskdNp2On9UuhkdpuJcdgHe8LPzD |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chaotic-Based+Big+Bang-Big+Crunch+Algorithm+%28CBCA%29+for+Energy+Management+System+of+Hybrid+Isolated+Micro-grid%3A+An+Inherent+Control+Scheme&rft.jtitle=Energy+sources.+Part+A%2C+Recovery%2C+utilization%2C+and+environmental+effects&rft.au=Kalki%2C+Kavin+Mullai&rft.au=Rajaguru%2C+Harikumar&rft.date=2025-12-31&rft.issn=1556-7036&rft.eissn=1556-7230&rft.volume=47&rft.issue=1&rft.spage=3827&rft.epage=3847&rft_id=info:doi/10.1080%2F15567036.2020.1859012&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_15567036_2020_1859012 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1556-7036&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1556-7036&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1556-7036&client=summon |