Chaotic-Based Big Bang-Big Crunch Algorithm (CBCA) for Energy Management System of Hybrid Isolated Micro-grid: An Inherent Control Scheme

In this manuscript, an energy management and maximum power point tracking (MPPT) to micro-grid based on hybrid renewable energy sources (HRESs) like wind, solar, battery using an inherent control scheme. The proposed control scheme is the chaotic-based big bang-big crunch algorithm (CBCA). Here, cha...

Full description

Saved in:
Bibliographic Details
Published inEnergy sources. Part A, Recovery, utilization, and environmental effects Vol. 47; no. 1; pp. 3827 - 3847
Main Authors Kalki, Kavin Mullai, Rajaguru, Harikumar
Format Journal Article
LanguageEnglish
Published Taylor & Francis 31.12.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this manuscript, an energy management and maximum power point tracking (MPPT) to micro-grid based on hybrid renewable energy sources (HRESs) like wind, solar, battery using an inherent control scheme. The proposed control scheme is the chaotic-based big bang-big crunch algorithm (CBCA). Here, chaotic-based techniques have been integrated into BB-BC to get the global optimum solution. In the proposed control scheme, the CBCA streamlines the parameter of the sources converter according to the required load demand and creates the optimal switching pulses. By the proposed control scheme the sources are controlled and operate in the MPPT during low energy generation or off-MPPT modes during the excess of energy to meet the load requirement based on the system power balance and energy constraints. The proposed control scheme is designed to operate the micro-grid as an autonomous system considering the power obtainable from renewable sources, the load power requirement including the condition of the battery. Finally, the voltage on the load side is controlled to assure proficient power transfer from the source of energy to the load. With this proper control, the proposed technique presents a steady control function at every micro-grid subsystems subject to different power generation including load conditions. By then, the performance of the CBCA scheme is implemented in the MATLAB/Simulink work site and also the implementation is likened to the existing approaches like GOA and AGONN. The statistical analysis of CBCA with existing approaches under cases 1, 2, and 3 has been analyzed. The CBCA method under cases 1, 2, and 3 of mean, median, the standard deviation is more efficient than the existing solution strategies. The mean value of the CBCA method under case 1 indicates 1.2641. The median value of the CBCA method under case 2 implicates 1.2204. The standard deviation value of the CBCA method under case 3 denotes 0.0762.
AbstractList In this manuscript, an energy management and maximum power point tracking (MPPT) to micro-grid based on hybrid renewable energy sources (HRESs) like wind, solar, battery using an inherent control scheme. The proposed control scheme is the chaotic-based big bang-big crunch algorithm (CBCA). Here, chaotic-based techniques have been integrated into BB-BC to get the global optimum solution. In the proposed control scheme, the CBCA streamlines the parameter of the sources converter according to the required load demand and creates the optimal switching pulses. By the proposed control scheme the sources are controlled and operate in the MPPT during low energy generation or off-MPPT modes during the excess of energy to meet the load requirement based on the system power balance and energy constraints. The proposed control scheme is designed to operate the micro-grid as an autonomous system considering the power obtainable from renewable sources, the load power requirement including the condition of the battery. Finally, the voltage on the load side is controlled to assure proficient power transfer from the source of energy to the load. With this proper control, the proposed technique presents a steady control function at every micro-grid subsystems subject to different power generation including load conditions. By then, the performance of the CBCA scheme is implemented in the MATLAB/Simulink work site and also the implementation is likened to the existing approaches like GOA and AGONN. The statistical analysis of CBCA with existing approaches under cases 1, 2, and 3 has been analyzed. The CBCA method under cases 1, 2, and 3 of mean, median, the standard deviation is more efficient than the existing solution strategies. The mean value of the CBCA method under case 1 indicates 1.2641. The median value of the CBCA method under case 2 implicates 1.2204. The standard deviation value of the CBCA method under case 3 denotes 0.0762.
Author Rajaguru, Harikumar
Kalki, Kavin Mullai
Author_xml – sequence: 1
  givenname: Kavin Mullai
  orcidid: 0000-0001-5788-6007
  surname: Kalki
  fullname: Kalki, Kavin Mullai
  email: kavinmullai.eee@kongu.edu
  organization: Kongu Engineering College
– sequence: 2
  givenname: Harikumar
  surname: Rajaguru
  fullname: Rajaguru, Harikumar
  organization: Bannari Amman Institute of Technology
BookMark eNqFkMtKxDAUhoMoeH0EIUtddEyaXnVjW0ZnwMHFuC9n0qSNtIkkEekj-Na26Gxc6OocfvL9nHyn6FAbLRC6pGRBSUZuaBwnKWHJIiThFGVxTmh4gE7mPEhDRg73-_ToGJ0690pIFMckP0GfVQfGKx6U4ESDS9XiEnQbzEtl3zXvcNG3xirfDfiqKqviGktj8VIL2454AxpaMQjt8XZ0XgzYSLwad1Y1eO1MD34q3ShuTdBO2S0uNF7rTtiZqIz21vR4y7up4hwdSeiduPiZZ-jlYflSrYKn58d1VTwFnFHiA4hExJKMRZBHtMmYIEnDcgJNHFLJpMxCznc5FRRYRLIEJEtzStguBZGnScjOUPxdO93knBWyfrNqADvWlNSzznqvs5511j86J-7uF8eVB6_mP4Dq_6Xvv2mlJ3sDfBjbN7WHsTdWWtBcuZr9XfEFqU-PLg
CitedBy_id crossref_primary_10_1109_TII_2024_3431089
Cites_doi 10.1016/j.rser.2015.07.187
10.1016/j.advengsoft.2005.04.005
10.1007/s00500-019-04408-2
10.1016/j.jclepro.2020.122364
10.1016/j.est.2020.101306
10.1016/j.jclepro.2020.122195
10.1115/1.4046098
10.1007/s00521-014-1613-1
10.1016/j.enconman.2018.05.034
10.31142/ijtsrd12950
10.33430/V27N1THIE-2018-0024
10.1016/j.conengprac.2020.104380
10.1016/j.ijhydene.2018.12.092
10.1016/j.energy.2017.12.057
10.1016/j.scs.2018.05.026
10.1109/ECAI.2018.8679015
10.2478/aee-2014-0038
10.1109/GUCON.2018.8674902
10.1016/j.energy.2019.06.029
10.1049/iet-rpg.2013.0193
10.1016/j.energy.2012.08.039
10.1016/j.ijhydene.2017.06.006
10.12720/joace.4.2.96-103
10.1016/j.scs.2020.102183
10.1109/TSG.2013.2258413
10.1007/s11708-017-0446-x
ContentType Journal Article
Copyright 2020 Taylor & Francis Group, LLC 2020
Copyright_xml – notice: 2020 Taylor & Francis Group, LLC 2020
DBID AAYXX
CITATION
DOI 10.1080/15567036.2020.1859012
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1556-7230
EndPage 3847
ExternalDocumentID 10_1080_15567036_2020_1859012
1859012
Genre Research Article
GroupedDBID .7F
.DC
.QJ
0BK
29G
2DF
30N
4.4
5GY
5VS
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGFS
ACTIO
ADCVX
ADGTB
ADYSH
AEOZL
AEPSL
AEYOC
AFKVX
AFRVT
AGDLA
AGMYJ
AIJEM
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DKSSO
EBS
E~A
E~B
GTTXZ
H13
HZ~
H~P
IPNFZ
J.P
KYCEM
LJTGL
M4Z
NA5
O9-
P2P
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TBQAZ
TDBHL
TEN
TFL
TFT
TFW
TNC
TTHFI
TUROJ
TWF
UT5
UU3
ZGOLN
~S~
AAYXX
CITATION
ID FETCH-LOGICAL-c310t-a4e436834a941d83e06d390ad521f3ff82ccb91e1a34086af379103b7ae97623
ISSN 1556-7036
IngestDate Thu Jul 03 08:16:06 EDT 2025
Thu Apr 24 23:01:54 EDT 2025
Sat Jun 21 04:10:28 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c310t-a4e436834a941d83e06d390ad521f3ff82ccb91e1a34086af379103b7ae97623
ORCID 0000-0001-5788-6007
PageCount 21
ParticipantIDs crossref_primary_10_1080_15567036_2020_1859012
crossref_citationtrail_10_1080_15567036_2020_1859012
informaworld_taylorfrancis_310_1080_15567036_2020_1859012
PublicationCentury 2000
PublicationDate 2025-12-31
PublicationDateYYYYMMDD 2025-12-31
PublicationDate_xml – month: 12
  year: 2025
  text: 2025-12-31
  day: 31
PublicationDecade 2020
PublicationTitle Energy sources. Part A, Recovery, utilization, and environmental effects
PublicationYear 2025
Publisher Taylor & Francis
Publisher_xml – name: Taylor & Francis
References e_1_3_2_28_1
e_1_3_2_29_1
e_1_3_2_20_1
e_1_3_2_21_1
e_1_3_2_22_1
e_1_3_2_23_1
e_1_3_2_24_1
e_1_3_2_25_1
Voyant C. (e_1_3_2_27_1); 1
e_1_3_2_16_1
e_1_3_2_9_1
e_1_3_2_17_1
e_1_3_2_8_1
e_1_3_2_18_1
e_1_3_2_7_1
e_1_3_2_19_1
e_1_3_2_2_1
e_1_3_2_10_1
e_1_3_2_11_1
e_1_3_2_6_1
e_1_3_2_12_1
e_1_3_2_5_1
e_1_3_2_13_1
e_1_3_2_4_1
e_1_3_2_14_1
e_1_3_2_3_1
e_1_3_2_15_1
Transpire Online (e_1_3_2_26_1) 2019
References_xml – ident: e_1_3_2_23_1
  doi: 10.1016/j.rser.2015.07.187
– ident: e_1_3_2_5_1
  doi: 10.1016/j.advengsoft.2005.04.005
– ident: e_1_3_2_28_1
  doi: 10.1007/s00500-019-04408-2
– ident: e_1_3_2_13_1
  doi: 10.1016/j.jclepro.2020.122364
– ident: e_1_3_2_16_1
  doi: 10.1016/j.est.2020.101306
– ident: e_1_3_2_11_1
  doi: 10.1016/j.jclepro.2020.122195
– ident: e_1_3_2_12_1
  doi: 10.1115/1.4046098
– ident: e_1_3_2_19_1
  doi: 10.1007/s00521-014-1613-1
– year: 2019
  ident: e_1_3_2_26_1
  article-title: A novel numerical optimization algorithm inspired from particles: particle swarm optimization
  publication-title: Transpire Online
– ident: e_1_3_2_3_1
  doi: 10.1016/j.enconman.2018.05.034
– ident: e_1_3_2_22_1
  doi: 10.31142/ijtsrd12950
– ident: e_1_3_2_17_1
  doi: 10.33430/V27N1THIE-2018-0024
– ident: e_1_3_2_6_1
  doi: 10.1016/j.conengprac.2020.104380
– ident: e_1_3_2_14_1
  doi: 10.1016/j.ijhydene.2018.12.092
– ident: e_1_3_2_7_1
  doi: 10.1016/j.energy.2017.12.057
– ident: e_1_3_2_8_1
  doi: 10.1016/j.scs.2018.05.026
– ident: e_1_3_2_29_1
  doi: 10.1109/ECAI.2018.8679015
– ident: e_1_3_2_10_1
  doi: 10.2478/aee-2014-0038
– ident: e_1_3_2_2_1
  doi: 10.1109/GUCON.2018.8674902
– ident: e_1_3_2_24_1
  doi: 10.1016/j.energy.2019.06.029
– ident: e_1_3_2_4_1
  doi: 10.1049/iet-rpg.2013.0193
– ident: e_1_3_2_9_1
  doi: 10.1016/j.energy.2012.08.039
– ident: e_1_3_2_21_1
  doi: 10.1016/j.ijhydene.2017.06.006
– ident: e_1_3_2_25_1
  doi: 10.12720/joace.4.2.96-103
– ident: e_1_3_2_15_1
  doi: 10.1016/j.scs.2020.102183
– ident: e_1_3_2_18_1
  doi: 10.1109/TSG.2013.2258413
– ident: e_1_3_2_20_1
  doi: 10.1007/s11708-017-0446-x
– volume: 1
  start-page: 569
  issue: 105
  ident: e_1_3_2_27_1
  article-title: Fouilloy ,A
  publication-title: Machine learning methods for solar radiation forecasting: A review. Renewable Energy
SSID ssj0045509
Score 2.396818
Snippet In this manuscript, an energy management and maximum power point tracking (MPPT) to micro-grid based on hybrid renewable energy sources (HRESs) like wind,...
SourceID crossref
informaworld
SourceType Enrichment Source
Index Database
Publisher
StartPage 3827
SubjectTerms Energy management
hybrid renewable energy sources
maximum power point tracking
sources converter
system power balance and energy constraints
Title Chaotic-Based Big Bang-Big Crunch Algorithm (CBCA) for Energy Management System of Hybrid Isolated Micro-grid: An Inherent Control Scheme
URI https://www.tandfonline.com/doi/abs/10.1080/15567036.2020.1859012
Volume 47
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbKcoHDiqdYXvKBAyhySeMkTbil0aIF1L1QpL1FzsNpoaSrkCLBP-A_8mOYie08YLWwXKLIqidO5qtnxp75TMgzL81mEDUIhkQxzOXSYWAFfea5EMY5fpF67WEwy1P_5IP79sw7m0x-DrKW9k06zb5fWFfyP1qFNtArVsleQbOdUGiAe9AvXEHDcP0nHcdrsYNGtgBTlFuLTWktRFUyvIlrMFhrK9qWOwj_15_b3dpFHOEqAGYWHquavz77RXOXtwv737CMy3oDgxfokC4xaY-V0NYtI66LltUp1onu70H1Y9YDLV_tDXyZgqdaN1akHVVMG22VC99mqwtBTRrpoPIO0KPTTTqzILbqmO134uumspYQP4tNv1X1UZT7et9aU1FvPmH2-HBVw_EMd2I_EXs-Q3IwZacGbY7ex9Gzt-LrHKFUTcU8UKQD2qzzQP3yD5OhcixRNj5uCoOBxgBLcp3eRpq8gN9MZ5fQONNMq0ZMgmISLeYaue5AEIOzMLdPjZ-A5eRhy-ar39TUlwX2ywtHM_KcRry6A49odYsc6lCGRgqXt8mkqO6QmwOCy7vkxwihFIBJDUKpQijtEEqfIz5fUHggVeihPTqpQifdSarQSQ06aY_OVzSqqMEm1dikCpv3yOr18So-YfrwD5ZBxNEw4RZ4OAJ3RejO8oAXtp_z0BY5-JuSSxk4WZaGs2ImuAthuZB8Dp4vT-eiAA_b4ffJQbWrigeEesLO5dy2My_E5QsvBMfNkTlaVmmDlCPimu-aZJoYH89n2SaXavWITLtu54oZ5m8dwqHSkqZdkpPq_JyEX9r34VUf9ojc6P9Wj8lBU--LJ-A-N-nTFoW_AFBet2k
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYQDMDAG_HmBgYYXJI4Thu2NgK1QLtQJLbISey2AlJUhQH-Af-auzygIAEDW-TorNg5331n3X3H2JGMYhujBsWJKIa7wjgcvaDHpYthnOPpSObNYLo9r33rXt7Ju6laGEqrpBjaFEQRua2mw02X0VVK3Cn6QI-IozC8c3CoQfWTaIbnpO_VSdeF1ausMRXt-jlnqvQ4yVRVPD9N88U_fWEvnfI7F8ssrr64SDe5rz1nUS1-_Ubm-L8lrbClEpZCs9CjVTaj0zW2OEVWuM7egqEa42veQseXQGs0gJZKB5weggm6xyE0HwbjySgbPsJx0AqaJ4DLgvO8uhA-82ygYEmHsYH2CxWMQQcPAGLeBLqUHsgHOHYGzRQ66ZCqETMIioR6uEEVe9QbrH9x3g_avGzkwGNEjxlXriaie-Eq37WThtCWlwjfUgliByOMaThxHPm2tpVwMcRSRtQRxYiorjSiJUdsstl0nOotBlJZialbVix9CkWlj07YMQlZSWPhLNvMrf5eGJck59Rr4yG0Sy7UaqND2uiw3OhtVvsQeypYPv4S8KdVI8zy6xVT9EIJxa-yO_-QPWTz7X73Orzu9K522YJDzYhz1sk9NptNnvU-IqQsOsiPwDvxRf4f
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELUQSAgO7IidOXCAg0sSJ2nDrQ1ULUuFBEjcIiex2wqaViUc4A_4a2ayQEECDtwiR2PFzngWa94bxg6cMDIxa5CciGK4LbTF0Qu63LExjbNcFTpZM5irjtu6s8_vnbKa8Kkoq6QcWudEEZmtpsM9inVZEXeMLtAl3ijM7iwcqhF8Eq3wjEtAS0JxGJ3SGBNm18soUx2Xk0wJ4vlpmi_u6Qt56YTbaS6ysPzgvNrkofKchpXo9RuX479WtMQWiqAU6rkWLbMplayw-QmqwlX25vfkEF_zBrq9GBr9LjRk0uX04I_ROfag_tgdjvtpbwCHfsOvHwGuCs4ybCF8VtlAzpEOQw2tF4KLQRvVHyPeGK6oOJB3cewE6gm0kx5hEVPw83J6uEEFG6g1dts8u_VbvGjjwCOMHVMubUU098KWnm3GNaEMNxaeIWOMHLTQumZFUeiZypTCxgRLalHFGEaEVakwVrLEOptOhonaYOBII9ZVw4gcjxJRx0MXbOmYbKQ2cJZNZpc_L4gKinPqtPEYmAUTarnRAW10UGz0Jqt8iI1yjo-_BLxJzQjS7HJF551QAvGr7NY_ZPfZ7PVpM7hsdy622ZxFnYgzyskdNp2On9UuhkdpuJcdgHe8LPzD
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chaotic-Based+Big+Bang-Big+Crunch+Algorithm+%28CBCA%29+for+Energy+Management+System+of+Hybrid+Isolated+Micro-grid%3A+An+Inherent+Control+Scheme&rft.jtitle=Energy+sources.+Part+A%2C+Recovery%2C+utilization%2C+and+environmental+effects&rft.au=Kalki%2C+Kavin+Mullai&rft.au=Rajaguru%2C+Harikumar&rft.date=2025-12-31&rft.issn=1556-7036&rft.eissn=1556-7230&rft.volume=47&rft.issue=1&rft.spage=3827&rft.epage=3847&rft_id=info:doi/10.1080%2F15567036.2020.1859012&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_15567036_2020_1859012
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1556-7036&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1556-7036&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1556-7036&client=summon