Unsupervised learning in a BCI chess application using label proportions and expectation-maximization

The online usage of brain-computer interfaces (BCI) generates unlabeled data. This data in combination with the rich structure contained in BCI applications based on event-related potentials allow to design novel unsupervised classification approaches like learning from label proportions (LLP) or it...

Full description

Saved in:
Bibliographic Details
Published inBrain computer interfaces (Abingdon, England) Vol. ahead-of-print; no. ahead-of-print; pp. 1 - 14
Main Authors Hübner, David, Schall, Albrecht, Tangermann, Michael
Format Journal Article
LanguageEnglish
Published Taylor & Francis 02.04.2020
Subjects
Online AccessGet full text
ISSN2326-263X
2326-2621
DOI10.1080/2326263X.2020.1741072

Cover

Loading…
Abstract The online usage of brain-computer interfaces (BCI) generates unlabeled data. This data in combination with the rich structure contained in BCI applications based on event-related potentials allow to design novel unsupervised classification approaches like learning from label proportions (LLP) or its combination with expectation-maximization (EM) into a mixed model. In this work, we explore the feasibility of unsupervised classification in a BCI chess application. We propose an LLP extension based on weighted least squares regression. It requires randomization of timing parameters but overcomes the dependency on additional symbols. Simulations on electroencephalogram data obtained from six subjects playing BCI-controlled chess show that a combination of unsupervised LLP with EM (despite not using any labels) by constant adaptation quickly reaches and on the long run outperforms the average performance level of non-adaptive supervised classifiers. With our contribution, we increase the scope for which unsupervised learning methods can successfully be applied in BCI.
AbstractList The online usage of brain-computer interfaces (BCI) generates unlabeled data. This data in combination with the rich structure contained in BCI applications based on event-related potentials allow to design novel unsupervised classification approaches like learning from label proportions (LLP) or its combination with expectation-maximization (EM) into a mixed model. In this work, we explore the feasibility of unsupervised classification in a BCI chess application. We propose an LLP extension based on weighted least squares regression. It requires randomization of timing parameters but overcomes the dependency on additional symbols. Simulations on electroencephalogram data obtained from six subjects playing BCI-controlled chess show that a combination of unsupervised LLP with EM (despite not using any labels) by constant adaptation quickly reaches and on the long run outperforms the average performance level of non-adaptive supervised classifiers. With our contribution, we increase the scope for which unsupervised learning methods can successfully be applied in BCI.
Author Hübner, David
Tangermann, Michael
Schall, Albrecht
Author_xml – sequence: 1
  givenname: David
  orcidid: 0000-0003-4085-9154
  surname: Hübner
  fullname: Hübner, David
  organization: Cluster of Excellence, BrainLinks-BrainTools, University of Freiburg
– sequence: 2
  givenname: Albrecht
  surname: Schall
  fullname: Schall, Albrecht
  organization: Brain State Decoding Laboratory, Department of Computer Science, University of Freiburg
– sequence: 3
  givenname: Michael
  orcidid: 0000-0001-6729-0290
  surname: Tangermann
  fullname: Tangermann, Michael
  email: michael.tangermann@blbt.uni-freiburg.de
  organization: Autonomous Intelligent Systems Laboratory, Department of Computer Science, University of Freiburg
BookMark eNqFkMtOwzAQRS1UJErpJyD5B1L8yFNsgIpHpUpsqNSdNXEcMHLsyE6B8vUkbWHBAlYzc-eekeaeopF1ViF0TsmMkpxcMM5SlvL1jBHWS1lMScaO0HjQo35FRz89X5-gaQivhBBKecEpHSO1smHTKv-mg6qwUeCtts9YWwz4Zr7A8kWFgKFtjZbQaWfxJgwGA6UyuPWudX6Qe4-tsPpolex2vqiBD93oz91who5rMEFND3WCVne3T_OHaPl4v5hfLyPJKemiogSIZVkQGhMoIFZFWZasSNM6kVnFWRIzWsmcyizLQNEqS3mZFzJPZC9CkvIJSvZ3pXcheFWL1usG_FZQIoa4xHdcYohLHOLquctfnNT7NzoP2vxLX-1pbWvnG3h33lSig61xvvZgpQ6C_33iC1VGh78
CitedBy_id crossref_primary_10_1007_s11042_022_14136_9
crossref_primary_10_1145_3603621
crossref_primary_10_1142_S0219467823500286
Cites_doi 10.1088/1741-2552/aa6639
10.1088/1741-2560/13/2/026008
10.1088/1741-2560/11/3/035005
10.1109/TNSRE.2009.2015197
10.1109/TBME.2010.2093133
10.1371/journal.pone.0033758
10.1109/TBME.1965.4502353
10.1016/j.artmed.2014.12.001
10.1371/journal.pone.0133797
10.1088/1741-2552/aab2f2
10.1088/1741-2560/3/1/R02
10.3390/s120201211
10.1016/j.jneumeth.2016.04.008
10.1162/089976600300014764
10.1016/S0047-259X(03)00096-4
10.1371/journal.pone.0102504
10.1016/S1388-2457(02)00057-3
10.3389/fnins.2010.00198
10.1109/TBME.2010.2058804
10.1371/journal.pone.0175856
10.1371/journal.pone.0131491
10.1016/j.neuroimage.2010.06.048
10.1109/MCI.2018.2807039
10.1073/pnas.1605155114
10.1155/2007/71863
ContentType Journal Article
Copyright 2020 Informa UK Limited, trading as Taylor & Francis Group 2020
Copyright_xml – notice: 2020 Informa UK Limited, trading as Taylor & Francis Group 2020
DBID AAYXX
CITATION
DOI 10.1080/2326263X.2020.1741072
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 2326-2621
EndPage 14
ExternalDocumentID 10_1080_2326263X_2020_1741072
1741072
Genre Article
GrantInformation_xml – fundername: Cluster of Excellence BrainLinks-BrainTools
  grantid: EXC 1086
– fundername: bwHPC initiative
  grantid: INST 39/963-1 FUGG
GroupedDBID 0BK
0R~
30N
AALDU
AAMIU
AAPUL
AAQRR
ABDBF
ABJNI
ABLIJ
ABPAQ
ABXUL
ABXYU
ACGFS
ACUHS
ADCVX
ADGTB
AEISY
AEYOC
AGDLA
AHDZW
AIJEM
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AWYRJ
BLEHA
CCCUG
DEAQA
DGEBU
EBS
EUPTU
GTTXZ
H13
HZ~
IPNFZ
KYCEM
M4Z
O9-
RIG
RNANH
ROSJB
RTWRZ
SOJIQ
TBQAZ
TDBHL
TEN
TFL
TFT
TFW
TTHFI
TUROJ
ZGOLN
AAGDL
AAYXX
ADMLS
ADYSH
AFRVT
AIYEW
CITATION
ID FETCH-LOGICAL-c310t-9baa4cb90140a9a4e9bbb2966f5c7d325421dc81c777ae1d763b89c85cc81a563
ISSN 2326-263X
IngestDate Tue Jul 01 02:31:37 EDT 2025
Thu Apr 24 22:57:59 EDT 2025
Wed Dec 25 09:08:19 EST 2024
IsPeerReviewed true
IsScholarly true
Issue ahead-of-print
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c310t-9baa4cb90140a9a4e9bbb2966f5c7d325421dc81c777ae1d763b89c85cc81a563
ORCID 0000-0003-4085-9154
0000-0001-6729-0290
PageCount 14
ParticipantIDs informaworld_taylorfrancis_310_1080_2326263X_2020_1741072
crossref_primary_10_1080_2326263X_2020_1741072
crossref_citationtrail_10_1080_2326263X_2020_1741072
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-04-02
PublicationDateYYYYMMDD 2020-04-02
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-04-02
  day: 02
PublicationDecade 2020
PublicationTitle Brain computer interfaces (Abingdon, England)
PublicationYear 2020
Publisher Taylor & Francis
Publisher_xml – name: Taylor & Francis
References cit0011
cit0033
cit0012
cit0034
cit0010
cit0030
Kindermans P-J (cit0026) 2011
Grizou J (cit0032) 2014
Chavarriaga R (cit0008) 2016
cit0019
cit0017
Hübner D (cit0016) 2019
cit0018
cit0037
cit0038
cit0013
cit0035
cit0014
cit0001
cit0023
Dähne S (cit0029) 2011
Congedo M (cit0036) 2011
cit0021
Bolagh SNG (cit0031) 2016
Iturrate I (cit0005) 2015; 5
Bishop CM (cit0020) 2006; 128
Hübner D (cit0015) 2017
cit0009
Montgomery DC (cit0022) 2012; 821
cit0006
cit0028
cit0007
cit0004
cit0027
cit0002
cit0024
cit0003
cit0025
References_xml – volume-title: 24th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN 2016)
  year: 2016
  ident: cit0031
– start-page: 92
  volume-title: Proceedings of the 5th International Brain-Computer Interface Conference
  year: 2011
  ident: cit0029
– ident: cit0012
  doi: 10.1088/1741-2552/aa6639
– ident: cit0006
  doi: 10.1088/1741-2560/13/2/026008
– ident: cit0014
  doi: 10.1088/1741-2560/11/3/035005
– ident: cit0025
  doi: 10.1109/TNSRE.2009.2015197
– ident: cit0028
  doi: 10.1109/TBME.2010.2093133
– ident: cit0010
  doi: 10.1371/journal.pone.0033758
– ident: cit0037
  doi: 10.1109/TBME.1965.4502353
– ident: cit0023
– volume: 821
  volume-title: Introduction to linear regression analysis
  year: 2012
  ident: cit0022
– ident: cit0035
  doi: 10.1016/j.artmed.2014.12.001
– ident: cit0009
  doi: 10.1371/journal.pone.0133797
– ident: cit0019
  doi: 10.1088/1741-2552/aab2f2
– ident: cit0003
  doi: 10.1088/1741-2560/3/1/R02
– ident: cit0004
  doi: 10.3390/s120201211
– start-page: 3019
  volume-title: Proc. 41th Int. Conf. of the IEEE Eng. in Medicine and Biology Soc. (EMBC)
  year: 2019
  ident: cit0016
– ident: cit0038
  doi: 10.1016/j.jneumeth.2016.04.008
– ident: cit0024
  doi: 10.1162/089976600300014764
– ident: cit0021
  doi: 10.1016/S0047-259X(03)00096-4
– volume: 128
  volume-title: Pattern recognition and machine learning
  year: 2006
  ident: cit0020
– ident: cit0002
  doi: 10.1371/journal.pone.0102504
– ident: cit0001
  doi: 10.1016/S1388-2457(02)00057-3
– ident: cit0017
  doi: 10.3389/fnins.2010.00198
– start-page: 280
  volume-title: 5th International Brain-Computer Interface Conference 2011
  year: 2011
  ident: cit0036
– ident: cit0027
  doi: 10.1109/TBME.2010.2058804
– start-page: 1213
  volume-title: Twenty-Eighth AAAI Conference on Artificial Intelligence
  year: 2014
  ident: cit0032
– ident: cit0011
  doi: 10.1371/journal.pone.0175856
– volume: 5
  start-page: 1
  issue: 13893
  year: 2015
  ident: cit0005
  publication-title: Sci Rep
– ident: cit0033
  doi: 10.1371/journal.pone.0131491
– ident: cit0018
  doi: 10.1016/j.neuroimage.2010.06.048
– ident: cit0030
– ident: cit0013
  doi: 10.1109/MCI.2018.2807039
– start-page: 15
  volume-title: Proceedings of the 6th International Brain-Computer Interface Meeting
  year: 2016
  ident: cit0008
– start-page: 186
  volume-title: Proceedings of the 7th International Brain-Computer Interface Meeting 2017: from Vision to Reality
  year: 2017
  ident: cit0015
– start-page: 96
  volume-title: 5th International Brain-Computer Interface Conference (BCI-2011)
  year: 2011
  ident: cit0026
– ident: cit0007
  doi: 10.1073/pnas.1605155114
– ident: cit0034
  doi: 10.1155/2007/71863
SSID ssj0001139311
Score 2.124644
Snippet The online usage of brain-computer interfaces (BCI) generates unlabeled data. This data in combination with the rich structure contained in BCI...
SourceID crossref
informaworld
SourceType Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms event-related potentials
expectation-maximization
learning from label proportions
random SOA
Unsupervised learning
Title Unsupervised learning in a BCI chess application using label proportions and expectation-maximization
URI https://www.tandfonline.com/doi/abs/10.1080/2326263X.2020.1741072
Volume ahead-of-print
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfKuHBBwECMbcgHxCVySRzn69hVoILETq20W2Q7DlRqs2lNJcb_xP_Ie46TujAG4xJVluIkfb_kff3ee4S84bUxBWhmVgttmDC5YPAW1SzjmudpbYoswULhz-fpbCE-XSQXo9EPj7W0bdVYf7-1ruR_pAprIFeskr2HZIdNYQF-g3zhCBKG4z_JeNFstlf4sm_AbFz1QY5lE8jgbPoxwFlYm8BLUQdbGxkAwZsVMrPQ9rZEOIyeY69_3SXm2Vp-W65dheZe2hcHSlgaOk6CsL0mrmtL6gJDdQJO9pf92SBenGGGKfmzqXIFNh6XHrNAONKlq7dBF_3rwMWZ27LktZvk7HP8XaSCh5bg4gUvwXhLGU_t_F_QPf5aVyXdf5EzH3iuOtJ9X7mnqbs-J7_pgI40iRvjtcZ4J0jbAj-X75Ren-j_RRcODMXItU7ttylxm9Jt84A85OCVoB6Iw_NdSA-s6dhOfB6etK8Zy8N3t97QnjW01yvXs3LmT8hj557QSYe1p2RkmmfkcNLI9nJ9Q99SSxi2mZhDYnz40R5-dNlQSQF-1MKPevCjFn7Uwo968KOAFPon-D0niw_v59MZc1M7mAZXoWWFklJohen5UBZSmEIpxcGrrhOdVTFPBI8qnUc6yzJpogoUnMoLnScaFmWSxi_IQXPZmJeE8iIzQtXgw4CTkkexAnNUCZFXVRGKKs2PiOj_vVK7lvY4WWVV3im-IzIeTrvqerr87YTCF03Z2mBa3U2-KeM7z31134sdk0e7l-eEHLTXW3MKhm-rXlu4_QS0hKYh
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEN4YPOjFFxrxuQfjbZG228cekWhAgRMk3JrudkuIUAmURP31zvShxUQ9cG0zTbudnf1m95v5CLkxI60FrMws4kozrj3OYBZFzDWV6TmRFq6NhcK9vtMe8qeRPSrVwiCtEnPoKGsUkcZqnNy4GV1Q4u4ABWATlRGkd2YDKTmQw0AY3raF4-LktBr9730WgDhWKsOLVgzNikKe3560tkStNTAtLT2P-0QVL50xTl7qq0TW1cePfo6bfdUB2cuRKW1mrnRItnR8RKrNGLLy2Tu9pSlXNN2ErxI9jJerOYaZpQ5prjwxppOYBvS-1aGowrWkpcNxivz6MQWX01M6R2WGRerwFF6XosqAyigBbBa8TWZ5begxGT4-DFptlgs2MAUoMWFCBgFXEk9mG4EIuBZSShMSqshWbmhBLmoaofIM5bpuoI0QYpv0hPJsBRcD27FOSCV-jfUpoaZwNZcRwFfAp55hSUAiElLJMBQNHjpejfDiH_kq72aOohpT38ibnhbD6eNw-vlw1kj9y2yetfP4z0CUHcBP0n2UKBM98a0_bc82sL0mO-1Br-t3O_3nc7KLt1K-kHlBKslipS8BCiXyKvX1T-Q3-3Y
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELUQSIgLW0GU1QfEzaVJnMXHUqjKVnGgErcodmxU0YaoTSXg65nJAi0ScOg10USOPbbf2G_mEXJqG60F7MzMcKUZ1wFnMIsM821lB57RwncxUfi-53X7_ObJrdiEk5JWiTG0KQpF5Gs1Tu40NhUj7hxAANZQeYLozm4iIwdCGFiFVzy85MMsjmbv-5gFEI6Tq_CiFUOzKo_nty_N7VBz9Utndp7OBpFVmwvCyUtjmsmG-vhRznGhn9ok6yUupa3CkbbIkk62Sa2VQEw-eqdnNGeK5kfwNaL7yWSa4iIz0TEtdSee6SChEb1oX1PU4JrQmatxiuz6ZwoOp4c0RV2Gce7uFFpLUWNAFYQANoreBqMyM3SH9DtXj-0uK-UamAKMmDEho4grifeyzUhEXAsppQ3hlHGVHzsQidpWrAJL-b4faSuGlU0GQgWugoeR6zm7ZDl5TfQeobbwNZcGwCug08ByJOAQCYFkHIsmj72gTng1RKEqa5mjpMYwtMqSp1V3htidYdmdddL4MkuLYh7_GYjZ8Q-z_BTFFJInofOn7f4Ctidk9eGyE95d924PyBq-yclC9iFZzsZTfQQ4KJPHuad_AsZ3-ho
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unsupervised+learning+in+a+BCI+chess+application+using+label+proportions+and+expectation-maximization&rft.jtitle=Brain+computer+interfaces+%28Abingdon%2C+England%29&rft.au=H%C3%BCbner%2C+David&rft.au=Schall%2C+Albrecht&rft.au=Tangermann%2C+Michael&rft.date=2020-04-02&rft.issn=2326-263X&rft.eissn=2326-2621&rft.volume=7&rft.issue=1-2&rft.spage=22&rft.epage=35&rft_id=info:doi/10.1080%2F2326263X.2020.1741072&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_2326263X_2020_1741072
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2326-263X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2326-263X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2326-263X&client=summon