Unsupervised learning in a BCI chess application using label proportions and expectation-maximization
The online usage of brain-computer interfaces (BCI) generates unlabeled data. This data in combination with the rich structure contained in BCI applications based on event-related potentials allow to design novel unsupervised classification approaches like learning from label proportions (LLP) or it...
Saved in:
Published in | Brain computer interfaces (Abingdon, England) Vol. ahead-of-print; no. ahead-of-print; pp. 1 - 14 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Taylor & Francis
02.04.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 2326-263X 2326-2621 |
DOI | 10.1080/2326263X.2020.1741072 |
Cover
Loading…
Abstract | The online usage of brain-computer interfaces (BCI) generates unlabeled data. This data in combination with the rich structure contained in BCI applications based on event-related potentials allow to design novel unsupervised classification approaches like learning from label proportions (LLP) or its combination with expectation-maximization (EM) into a mixed model. In this work, we explore the feasibility of unsupervised classification in a BCI chess application. We propose an LLP extension based on weighted least squares regression. It requires randomization of timing parameters but overcomes the dependency on additional symbols. Simulations on electroencephalogram data obtained from six subjects playing BCI-controlled chess show that a combination of unsupervised LLP with EM (despite not using any labels) by constant adaptation quickly reaches and on the long run outperforms the average performance level of non-adaptive supervised classifiers. With our contribution, we increase the scope for which unsupervised learning methods can successfully be applied in BCI. |
---|---|
AbstractList | The online usage of brain-computer interfaces (BCI) generates unlabeled data. This data in combination with the rich structure contained in BCI applications based on event-related potentials allow to design novel unsupervised classification approaches like learning from label proportions (LLP) or its combination with expectation-maximization (EM) into a mixed model. In this work, we explore the feasibility of unsupervised classification in a BCI chess application. We propose an LLP extension based on weighted least squares regression. It requires randomization of timing parameters but overcomes the dependency on additional symbols. Simulations on electroencephalogram data obtained from six subjects playing BCI-controlled chess show that a combination of unsupervised LLP with EM (despite not using any labels) by constant adaptation quickly reaches and on the long run outperforms the average performance level of non-adaptive supervised classifiers. With our contribution, we increase the scope for which unsupervised learning methods can successfully be applied in BCI. |
Author | Hübner, David Tangermann, Michael Schall, Albrecht |
Author_xml | – sequence: 1 givenname: David orcidid: 0000-0003-4085-9154 surname: Hübner fullname: Hübner, David organization: Cluster of Excellence, BrainLinks-BrainTools, University of Freiburg – sequence: 2 givenname: Albrecht surname: Schall fullname: Schall, Albrecht organization: Brain State Decoding Laboratory, Department of Computer Science, University of Freiburg – sequence: 3 givenname: Michael orcidid: 0000-0001-6729-0290 surname: Tangermann fullname: Tangermann, Michael email: michael.tangermann@blbt.uni-freiburg.de organization: Autonomous Intelligent Systems Laboratory, Department of Computer Science, University of Freiburg |
BookMark | eNqFkMtOwzAQRS1UJErpJyD5B1L8yFNsgIpHpUpsqNSdNXEcMHLsyE6B8vUkbWHBAlYzc-eekeaeopF1ViF0TsmMkpxcMM5SlvL1jBHWS1lMScaO0HjQo35FRz89X5-gaQivhBBKecEpHSO1smHTKv-mg6qwUeCtts9YWwz4Zr7A8kWFgKFtjZbQaWfxJgwGA6UyuPWudX6Qe4-tsPpolex2vqiBD93oz91who5rMEFND3WCVne3T_OHaPl4v5hfLyPJKemiogSIZVkQGhMoIFZFWZasSNM6kVnFWRIzWsmcyizLQNEqS3mZFzJPZC9CkvIJSvZ3pXcheFWL1usG_FZQIoa4xHdcYohLHOLquctfnNT7NzoP2vxLX-1pbWvnG3h33lSig61xvvZgpQ6C_33iC1VGh78 |
CitedBy_id | crossref_primary_10_1007_s11042_022_14136_9 crossref_primary_10_1145_3603621 crossref_primary_10_1142_S0219467823500286 |
Cites_doi | 10.1088/1741-2552/aa6639 10.1088/1741-2560/13/2/026008 10.1088/1741-2560/11/3/035005 10.1109/TNSRE.2009.2015197 10.1109/TBME.2010.2093133 10.1371/journal.pone.0033758 10.1109/TBME.1965.4502353 10.1016/j.artmed.2014.12.001 10.1371/journal.pone.0133797 10.1088/1741-2552/aab2f2 10.1088/1741-2560/3/1/R02 10.3390/s120201211 10.1016/j.jneumeth.2016.04.008 10.1162/089976600300014764 10.1016/S0047-259X(03)00096-4 10.1371/journal.pone.0102504 10.1016/S1388-2457(02)00057-3 10.3389/fnins.2010.00198 10.1109/TBME.2010.2058804 10.1371/journal.pone.0175856 10.1371/journal.pone.0131491 10.1016/j.neuroimage.2010.06.048 10.1109/MCI.2018.2807039 10.1073/pnas.1605155114 10.1155/2007/71863 |
ContentType | Journal Article |
Copyright | 2020 Informa UK Limited, trading as Taylor & Francis Group 2020 |
Copyright_xml | – notice: 2020 Informa UK Limited, trading as Taylor & Francis Group 2020 |
DBID | AAYXX CITATION |
DOI | 10.1080/2326263X.2020.1741072 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 2326-2621 |
EndPage | 14 |
ExternalDocumentID | 10_1080_2326263X_2020_1741072 1741072 |
Genre | Article |
GrantInformation_xml | – fundername: Cluster of Excellence BrainLinks-BrainTools grantid: EXC 1086 – fundername: bwHPC initiative grantid: INST 39/963-1 FUGG |
GroupedDBID | 0BK 0R~ 30N AALDU AAMIU AAPUL AAQRR ABDBF ABJNI ABLIJ ABPAQ ABXUL ABXYU ACGFS ACUHS ADCVX ADGTB AEISY AEYOC AGDLA AHDZW AIJEM AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AWYRJ BLEHA CCCUG DEAQA DGEBU EBS EUPTU GTTXZ H13 HZ~ IPNFZ KYCEM M4Z O9- RIG RNANH ROSJB RTWRZ SOJIQ TBQAZ TDBHL TEN TFL TFT TFW TTHFI TUROJ ZGOLN AAGDL AAYXX ADMLS ADYSH AFRVT AIYEW CITATION |
ID | FETCH-LOGICAL-c310t-9baa4cb90140a9a4e9bbb2966f5c7d325421dc81c777ae1d763b89c85cc81a563 |
ISSN | 2326-263X |
IngestDate | Tue Jul 01 02:31:37 EDT 2025 Thu Apr 24 22:57:59 EDT 2025 Wed Dec 25 09:08:19 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | ahead-of-print |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c310t-9baa4cb90140a9a4e9bbb2966f5c7d325421dc81c777ae1d763b89c85cc81a563 |
ORCID | 0000-0003-4085-9154 0000-0001-6729-0290 |
PageCount | 14 |
ParticipantIDs | informaworld_taylorfrancis_310_1080_2326263X_2020_1741072 crossref_primary_10_1080_2326263X_2020_1741072 crossref_citationtrail_10_1080_2326263X_2020_1741072 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-04-02 |
PublicationDateYYYYMMDD | 2020-04-02 |
PublicationDate_xml | – month: 04 year: 2020 text: 2020-04-02 day: 02 |
PublicationDecade | 2020 |
PublicationTitle | Brain computer interfaces (Abingdon, England) |
PublicationYear | 2020 |
Publisher | Taylor & Francis |
Publisher_xml | – name: Taylor & Francis |
References | cit0011 cit0033 cit0012 cit0034 cit0010 cit0030 Kindermans P-J (cit0026) 2011 Grizou J (cit0032) 2014 Chavarriaga R (cit0008) 2016 cit0019 cit0017 Hübner D (cit0016) 2019 cit0018 cit0037 cit0038 cit0013 cit0035 cit0014 cit0001 cit0023 Dähne S (cit0029) 2011 Congedo M (cit0036) 2011 cit0021 Bolagh SNG (cit0031) 2016 Iturrate I (cit0005) 2015; 5 Bishop CM (cit0020) 2006; 128 Hübner D (cit0015) 2017 cit0009 Montgomery DC (cit0022) 2012; 821 cit0006 cit0028 cit0007 cit0004 cit0027 cit0002 cit0024 cit0003 cit0025 |
References_xml | – volume-title: 24th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN 2016) year: 2016 ident: cit0031 – start-page: 92 volume-title: Proceedings of the 5th International Brain-Computer Interface Conference year: 2011 ident: cit0029 – ident: cit0012 doi: 10.1088/1741-2552/aa6639 – ident: cit0006 doi: 10.1088/1741-2560/13/2/026008 – ident: cit0014 doi: 10.1088/1741-2560/11/3/035005 – ident: cit0025 doi: 10.1109/TNSRE.2009.2015197 – ident: cit0028 doi: 10.1109/TBME.2010.2093133 – ident: cit0010 doi: 10.1371/journal.pone.0033758 – ident: cit0037 doi: 10.1109/TBME.1965.4502353 – ident: cit0023 – volume: 821 volume-title: Introduction to linear regression analysis year: 2012 ident: cit0022 – ident: cit0035 doi: 10.1016/j.artmed.2014.12.001 – ident: cit0009 doi: 10.1371/journal.pone.0133797 – ident: cit0019 doi: 10.1088/1741-2552/aab2f2 – ident: cit0003 doi: 10.1088/1741-2560/3/1/R02 – ident: cit0004 doi: 10.3390/s120201211 – start-page: 3019 volume-title: Proc. 41th Int. Conf. of the IEEE Eng. in Medicine and Biology Soc. (EMBC) year: 2019 ident: cit0016 – ident: cit0038 doi: 10.1016/j.jneumeth.2016.04.008 – ident: cit0024 doi: 10.1162/089976600300014764 – ident: cit0021 doi: 10.1016/S0047-259X(03)00096-4 – volume: 128 volume-title: Pattern recognition and machine learning year: 2006 ident: cit0020 – ident: cit0002 doi: 10.1371/journal.pone.0102504 – ident: cit0001 doi: 10.1016/S1388-2457(02)00057-3 – ident: cit0017 doi: 10.3389/fnins.2010.00198 – start-page: 280 volume-title: 5th International Brain-Computer Interface Conference 2011 year: 2011 ident: cit0036 – ident: cit0027 doi: 10.1109/TBME.2010.2058804 – start-page: 1213 volume-title: Twenty-Eighth AAAI Conference on Artificial Intelligence year: 2014 ident: cit0032 – ident: cit0011 doi: 10.1371/journal.pone.0175856 – volume: 5 start-page: 1 issue: 13893 year: 2015 ident: cit0005 publication-title: Sci Rep – ident: cit0033 doi: 10.1371/journal.pone.0131491 – ident: cit0018 doi: 10.1016/j.neuroimage.2010.06.048 – ident: cit0030 – ident: cit0013 doi: 10.1109/MCI.2018.2807039 – start-page: 15 volume-title: Proceedings of the 6th International Brain-Computer Interface Meeting year: 2016 ident: cit0008 – start-page: 186 volume-title: Proceedings of the 7th International Brain-Computer Interface Meeting 2017: from Vision to Reality year: 2017 ident: cit0015 – start-page: 96 volume-title: 5th International Brain-Computer Interface Conference (BCI-2011) year: 2011 ident: cit0026 – ident: cit0007 doi: 10.1073/pnas.1605155114 – ident: cit0034 doi: 10.1155/2007/71863 |
SSID | ssj0001139311 |
Score | 2.124644 |
Snippet | The online usage of brain-computer interfaces (BCI) generates unlabeled data. This data in combination with the rich structure contained in BCI... |
SourceID | crossref informaworld |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | event-related potentials expectation-maximization learning from label proportions random SOA Unsupervised learning |
Title | Unsupervised learning in a BCI chess application using label proportions and expectation-maximization |
URI | https://www.tandfonline.com/doi/abs/10.1080/2326263X.2020.1741072 |
Volume | ahead-of-print |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfKuHBBwECMbcgHxCVySRzn69hVoILETq20W2Q7DlRqs2lNJcb_xP_Ie46TujAG4xJVluIkfb_kff3ee4S84bUxBWhmVgttmDC5YPAW1SzjmudpbYoswULhz-fpbCE-XSQXo9EPj7W0bdVYf7-1ruR_pAprIFeskr2HZIdNYQF-g3zhCBKG4z_JeNFstlf4sm_AbFz1QY5lE8jgbPoxwFlYm8BLUQdbGxkAwZsVMrPQ9rZEOIyeY69_3SXm2Vp-W65dheZe2hcHSlgaOk6CsL0mrmtL6gJDdQJO9pf92SBenGGGKfmzqXIFNh6XHrNAONKlq7dBF_3rwMWZ27LktZvk7HP8XaSCh5bg4gUvwXhLGU_t_F_QPf5aVyXdf5EzH3iuOtJ9X7mnqbs-J7_pgI40iRvjtcZ4J0jbAj-X75Ren-j_RRcODMXItU7ttylxm9Jt84A85OCVoB6Iw_NdSA-s6dhOfB6etK8Zy8N3t97QnjW01yvXs3LmT8hj557QSYe1p2RkmmfkcNLI9nJ9Q99SSxi2mZhDYnz40R5-dNlQSQF-1MKPevCjFn7Uwo968KOAFPon-D0niw_v59MZc1M7mAZXoWWFklJohen5UBZSmEIpxcGrrhOdVTFPBI8qnUc6yzJpogoUnMoLnScaFmWSxi_IQXPZmJeE8iIzQtXgw4CTkkexAnNUCZFXVRGKKs2PiOj_vVK7lvY4WWVV3im-IzIeTrvqerr87YTCF03Z2mBa3U2-KeM7z31134sdk0e7l-eEHLTXW3MKhm-rXlu4_QS0hKYh |
linkProvider | Taylor & Francis |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEN4YPOjFFxrxuQfjbZG228cekWhAgRMk3JrudkuIUAmURP31zvShxUQ9cG0zTbudnf1m95v5CLkxI60FrMws4kozrj3OYBZFzDWV6TmRFq6NhcK9vtMe8qeRPSrVwiCtEnPoKGsUkcZqnNy4GV1Q4u4ABWATlRGkd2YDKTmQw0AY3raF4-LktBr9730WgDhWKsOLVgzNikKe3560tkStNTAtLT2P-0QVL50xTl7qq0TW1cePfo6bfdUB2cuRKW1mrnRItnR8RKrNGLLy2Tu9pSlXNN2ErxI9jJerOYaZpQ5prjwxppOYBvS-1aGowrWkpcNxivz6MQWX01M6R2WGRerwFF6XosqAyigBbBa8TWZ5begxGT4-DFptlgs2MAUoMWFCBgFXEk9mG4EIuBZSShMSqshWbmhBLmoaofIM5bpuoI0QYpv0hPJsBRcD27FOSCV-jfUpoaZwNZcRwFfAp55hSUAiElLJMBQNHjpejfDiH_kq72aOohpT38ibnhbD6eNw-vlw1kj9y2yetfP4z0CUHcBP0n2UKBM98a0_bc82sL0mO-1Br-t3O_3nc7KLt1K-kHlBKslipS8BCiXyKvX1T-Q3-3Y |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELUQSIgLW0GU1QfEzaVJnMXHUqjKVnGgErcodmxU0YaoTSXg65nJAi0ScOg10USOPbbf2G_mEXJqG60F7MzMcKUZ1wFnMIsM821lB57RwncxUfi-53X7_ObJrdiEk5JWiTG0KQpF5Gs1Tu40NhUj7hxAANZQeYLozm4iIwdCGFiFVzy85MMsjmbv-5gFEI6Tq_CiFUOzKo_nty_N7VBz9Utndp7OBpFVmwvCyUtjmsmG-vhRznGhn9ok6yUupa3CkbbIkk62Sa2VQEw-eqdnNGeK5kfwNaL7yWSa4iIz0TEtdSee6SChEb1oX1PU4JrQmatxiuz6ZwoOp4c0RV2Gce7uFFpLUWNAFYQANoreBqMyM3SH9DtXj-0uK-UamAKMmDEho4grifeyzUhEXAsppQ3hlHGVHzsQidpWrAJL-b4faSuGlU0GQgWugoeR6zm7ZDl5TfQeobbwNZcGwCug08ByJOAQCYFkHIsmj72gTng1RKEqa5mjpMYwtMqSp1V3htidYdmdddL4MkuLYh7_GYjZ8Q-z_BTFFJInofOn7f4Ctidk9eGyE95d924PyBq-yclC9iFZzsZTfQQ4KJPHuad_AsZ3-ho |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unsupervised+learning+in+a+BCI+chess+application+using+label+proportions+and+expectation-maximization&rft.jtitle=Brain+computer+interfaces+%28Abingdon%2C+England%29&rft.au=H%C3%BCbner%2C+David&rft.au=Schall%2C+Albrecht&rft.au=Tangermann%2C+Michael&rft.date=2020-04-02&rft.issn=2326-263X&rft.eissn=2326-2621&rft.volume=7&rft.issue=1-2&rft.spage=22&rft.epage=35&rft_id=info:doi/10.1080%2F2326263X.2020.1741072&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_2326263X_2020_1741072 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2326-263X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2326-263X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2326-263X&client=summon |