Mapping urban land surface temperature using remote sensing techniques and artificial neural network modelling
The objective of the present study is to monitor and predict the changes in land surface temperature (LST) in the North of Jordan during the Period 2000 to 2016. Due to political instability in the nearby countries Syria and Iraq, Jordan has witnessed increased influxes of refugees, starting from th...
Saved in:
Published in | International journal of remote sensing Vol. 40; no. 10; pp. 3968 - 3983 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Taylor & Francis
19.05.2019
|
Online Access | Get full text |
Cover
Loading…
Abstract | The objective of the present study is to monitor and predict the changes in land surface temperature (LST) in the North of Jordan during the Period 2000 to 2016. Due to political instability in the nearby countries Syria and Iraq, Jordan has witnessed increased influxes of refugees, starting from the year 2003, which has been led to the urban expansion in the area that reflected on the climatic conditions and affected the LST values. Satellite images were used for providing LST, the acquired images represented two seasons of each year, namely summer and winter. Simulation and prediction of LST values for the next 10 years were carried out using nonlinear autoregressive exogenous (NARX) artificial neural network (ANN) model. The inputs to the model consist of meteorological data collected from eight stations in the study area, population, and land use and land cover (LULC). In fact, LULC was expressed in terms of normalized difference building index (NDBI) and normalized difference vegetation index (NDVI) that were obtained from satellite images. The model showed a high correlation between these parameters and the values of simulated LST, where the correlation coefficient for the training set, validation set, testing set and for the entire data ranged from 0.91 to 0.92. Based on the predicted LST values, LST maps for the next 10 years were developed and compared with the present actual LST maps for the year 2016. The comparison has shown an average increase of 1.1
°
C in the average LST values, which is considered a significant increase compared with previous studies. |
---|---|
AbstractList | The objective of the present study is to monitor and predict the changes in land surface temperature (LST) in the North of Jordan during the Period 2000 to 2016. Due to political instability in the nearby countries Syria and Iraq, Jordan has witnessed increased influxes of refugees, starting from the year 2003, which has been led to the urban expansion in the area that reflected on the climatic conditions and affected the LST values. Satellite images were used for providing LST, the acquired images represented two seasons of each year, namely summer and winter. Simulation and prediction of LST values for the next 10 years were carried out using nonlinear autoregressive exogenous (NARX) artificial neural network (ANN) model. The inputs to the model consist of meteorological data collected from eight stations in the study area, population, and land use and land cover (LULC). In fact, LULC was expressed in terms of normalized difference building index (NDBI) and normalized difference vegetation index (NDVI) that were obtained from satellite images. The model showed a high correlation between these parameters and the values of simulated LST, where the correlation coefficient for the training set, validation set, testing set and for the entire data ranged from 0.91 to 0.92. Based on the predicted LST values, LST maps for the next 10 years were developed and compared with the present actual LST maps for the year 2016. The comparison has shown an average increase of 1.1
°
C in the average LST values, which is considered a significant increase compared with previous studies. |
Author | Abu Qdais, Hani Shatnawi, Nawras |
Author_xml | – sequence: 1 givenname: Nawras orcidid: 0000-0001-6752-1810 surname: Shatnawi fullname: Shatnawi, Nawras email: nnshatnawi@bau.edu.jo organization: Surveying and Geomatics Engineering Department, Al-Balqa Applied University – sequence: 2 givenname: Hani surname: Abu Qdais fullname: Abu Qdais, Hani organization: Civil Engineering Department, Jordan University of Science and Technology |
BookMark | eNp9kMtOwzAQRS1UJNrCJyD5B1LGcewkO1DFSypiA-to6owhkDjBdoT69zQtbFldjXTP1egs2Mz1jhi7FLASUMAViEwKocUqBVGshFJ5XqYnbC6k1okqQczYfOokU-mMLUL4AACdq3zO3BMOQ-Pe-Oi36HiLruZh9BYN8UjdQB7j6ImPYSp56vpIPJA7nJHMu2u-Rgp84tDHxjamwZY7Gv0h4nfvP3nX19S2e-ScnVpsA1385pK93t2-rB-SzfP94_pmkxgpICa5lUoJILNNDdqSrJQ1oE3R1FlaSl0iFNqaMjPSZKC1yAtRqy0qAJlL0nLJ1HHX-D4ET7YafNOh31UCqkla9SetmqRVv9L23PWRa5ztfYf779u6irhre289OtOESv4_8QON1Hf8 |
CitedBy_id | crossref_primary_10_3390_su142114087 crossref_primary_10_1007_s10708_022_10609_4 crossref_primary_10_21523_gcj5_19030102 crossref_primary_10_3390_su151612329 crossref_primary_10_1016_j_envc_2021_100190 crossref_primary_10_1016_j_pce_2023_103535 crossref_primary_10_1016_j_suscom_2024_100987 crossref_primary_10_1016_j_uclim_2022_101203 crossref_primary_10_3390_atmos14040649 crossref_primary_10_3390_s23083917 crossref_primary_10_1007_s10661_024_12701_3 crossref_primary_10_1016_j_asr_2021_01_058 crossref_primary_10_1007_s11869_020_00968_7 crossref_primary_10_1117_1_JRS_17_048501 crossref_primary_10_1007_s10661_022_10839_6 crossref_primary_10_3390_ijerph20032642 crossref_primary_10_1016_j_scs_2022_104107 crossref_primary_10_17341_gazimmfd_772082 crossref_primary_10_3390_agronomy12061268 crossref_primary_10_1016_j_jenvman_2024_121787 crossref_primary_10_1016_j_asr_2020_06_039 crossref_primary_10_1007_s11356_022_22079_9 crossref_primary_10_1016_j_pce_2021_103021 crossref_primary_10_3390_w15213834 crossref_primary_10_1088_1755_1315_887_1_012009 crossref_primary_10_5897_AJEST2023_3236 crossref_primary_10_1007_s44213_023_00017_w crossref_primary_10_1016_j_ecoinf_2023_102439 crossref_primary_10_3390_agronomy14010060 crossref_primary_10_1080_14702541_2023_2224287 crossref_primary_10_1007_s12518_024_00570_x crossref_primary_10_1007_s13762_024_05584_x crossref_primary_10_1007_s41207_021_00257_4 crossref_primary_10_1109_TGRS_2023_3291708 crossref_primary_10_1007_s12518_021_00390_3 crossref_primary_10_1080_24749508_2022_2132010 crossref_primary_10_1111_tgis_13158 crossref_primary_10_1007_s11600_021_00691_6 crossref_primary_10_3390_land13040555 crossref_primary_10_3390_environments10070128 crossref_primary_10_1016_j_enbuild_2022_112452 |
Cites_doi | 10.1016/j.rse.2012.04.024 10.1603/0022-2585-39.4.621 10.1080/09640568.2012.717888 10.1002/(ISSN)1097-0088 10.2307/2845983 10.5053/ekoloji 10.1016/S0034-4257(03)00079-8 10.1016/j.jtusci.2013.04.001 10.1007/BF00119211 10.3844/ajessp.2007.30.36 10.3390/atmos8060110 10.1016/0034-4257(79)90013-0 10.1016/j.uclim.2017.04.005 10.1007/s12524-011-0158-3 10.1016/j.isprsjprs.2009.02.006 10.3390/rs5115969 10.1016/0034-4257(93)90065-6 10.1007/978-1-349-20610-0 10.1177/0734242X9401200405 10.1016/j.aqpro.2015.02.179 10.1016/j.jag.2008.05.001 |
ContentType | Journal Article |
Copyright | 2018 Informa UK Limited, trading as Taylor & Francis Group 2018 |
Copyright_xml | – notice: 2018 Informa UK Limited, trading as Taylor & Francis Group 2018 |
DBID | AAYXX CITATION |
DOI | 10.1080/01431161.2018.1557792 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 1366-5901 |
EndPage | 3983 |
ExternalDocumentID | 10_1080_01431161_2018_1557792 1557792 |
Genre | Articles |
GroupedDBID | -~X .7F .DC .QJ 0BK 29J 30N 4.4 5GY 5VS AAAVI AAENE AAJMT AALDU AAMIU AAPUL AAQRR ABBKH ABCCY ABFIM ABHAV ABJVF ABLIJ ABLJU ABPEM ABPTK ABQHQ ABXUL ACGEJ ACGFS ACIWK ACTIO ADCVX ADGTB ADXPE AEGYZ AEISY AENEX AEOZL AEPSL AEXLP AEYOC AFKVX AFOLD AFWLO AGDLA AGMYJ AHDLD AIJEM AIRXU AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO DU5 EBS EJD E~A E~B F5P FUNRP FVPDL H13 HF~ IPNFZ J.P KYCEM LJTGL M4Z P2P RIG RNANH ROSJB RTWRZ S-T SNACF TEN TFL TFT TFW TN5 TNC TQWBC TTHFI TWF UPT UT5 UU3 V1K ZGOLN ~02 ~S~ 0R~ AAHBH AAYXX ABJNI ABPAQ ABRLO ABXYU AHDZW CITATION TBQAZ TDBHL TUROJ |
ID | FETCH-LOGICAL-c310t-7f35510ecb2caf9ef33d0af2acd429369a086fc94c3c40661781d5ba500373e63 |
ISSN | 0143-1161 |
IngestDate | Fri Aug 23 02:07:01 EDT 2024 Tue Jun 13 19:50:46 EDT 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c310t-7f35510ecb2caf9ef33d0af2acd429369a086fc94c3c40661781d5ba500373e63 |
ORCID | 0000-0001-6752-1810 |
PageCount | 16 |
ParticipantIDs | informaworld_taylorfrancis_310_1080_01431161_2018_1557792 crossref_primary_10_1080_01431161_2018_1557792 |
PublicationCentury | 2000 |
PublicationDate | 5/19/2019 2019-05-19 |
PublicationDateYYYYMMDD | 2019-05-19 |
PublicationDate_xml | – month: 05 year: 2019 text: 5/19/2019 day: 19 |
PublicationDecade | 2010 |
PublicationTitle | International journal of remote sensing |
PublicationYear | 2019 |
Publisher | Taylor & Francis |
Publisher_xml | – name: Taylor & Francis |
References | Shahmohamadi P. A. (CIT0029) 2010; 5 CIT0030 CIT0010 CIT0031 World Bank (CIT0038) 2017; 14 CIT0034 CIT0011 CIT0033 Al-Seroury F. A. (CIT0002) 2012; 8 UN-Habitat (CIT0032) 2016 CIT0014 CIT0036 CIT0035 CIT0016 Zhang Z. (CIT0040) 2008; 37 IPCC (CIT0013) 2013 CIT0015 CIT0037 CIT0017 CIT0039 CIT0019 Makhamreha Z. (CIT0021) 2011; 24 Medsker L. (CIT0023) 2000 Hadadin N. A. (CIT0012) 2007; 3 CIT0041 Maduako ID. (CIT0020) 2016; 5 CIT0001 CIT0022 Bhargava A. (CIT0006) 2017; 5 Emmanuel M. R. (CIT0009) 2005 Asimakopoulos D. N. (CIT0003) 2001 CIT0025 CIT0024 CIT0005 CIT0027 CIT0004 Chow V. T. (CIT0007) 1988 Kumar K. S. (CIT0018) 2013; 2 CIT0026 CIT0028 CIT0008 |
References_xml | – ident: CIT0005 doi: 10.1016/j.rse.2012.04.024 – ident: CIT0017 doi: 10.1603/0022-2585-39.4.621 – volume: 8 issue: 2 year: 2012 ident: CIT0002 publication-title: Journal of American Science contributor: fullname: Al-Seroury F. A. – volume: 37 start-page: 601 year: 2008 ident: CIT0040 publication-title: The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences contributor: fullname: Zhang Z. – ident: CIT0010 doi: 10.1080/09640568.2012.717888 – ident: CIT0011 doi: 10.1002/(ISSN)1097-0088 – volume: 14 year: 2017 ident: CIT0038 publication-title: Policy Note September contributor: fullname: World Bank – volume: 5 start-page: 626 issue: 6 year: 2010 ident: CIT0029 publication-title: International Journal of Physical Sciences contributor: fullname: Shahmohamadi P. A. – volume: 2 start-page: 87 year: 2013 ident: CIT0018 publication-title: International Journal of Advanced Trends in Computer Sciebce and Engineering contributor: fullname: Kumar K. S. – volume: 5 start-page: 1 issue: 1 year: 2016 ident: CIT0020 publication-title: Journal of Remote Sensing and GIS, contributor: fullname: Maduako ID. – volume-title: Applied Hydrology year: 1988 ident: CIT0007 contributor: fullname: Chow V. T. – ident: CIT0027 doi: 10.2307/2845983 – ident: CIT0016 doi: 10.5053/ekoloji – ident: CIT0035 doi: 10.1016/S0034-4257(03)00079-8 – ident: CIT0025 – ident: CIT0022 doi: 10.1016/j.jtusci.2013.04.001 – ident: CIT0026 doi: 10.1007/BF00119211 – volume: 3 start-page: 30 issue: 1 year: 2007 ident: CIT0012 publication-title: Solutions and Recommendations, American Journal of Environmental Sciences doi: 10.3844/ajessp.2007.30.36 contributor: fullname: Hadadin N. A. – ident: CIT0033 – ident: CIT0041 doi: 10.3390/atmos8060110 – ident: CIT0031 doi: 10.1016/0034-4257(79)90013-0 – ident: CIT0024 doi: 10.1016/j.uclim.2017.04.005 – ident: CIT0014 – volume: 5 start-page: 2 year: 2017 ident: CIT0006 publication-title: Journal of Biodiversity and Endanger Species contributor: fullname: Bhargava A. – volume-title: Urbanization and Development: Emerging Futures, World Cities Report year: 2016 ident: CIT0032 contributor: fullname: UN-Habitat – ident: CIT0028 doi: 10.1007/s12524-011-0158-3 – ident: CIT0008 – ident: CIT0039 doi: 10.1016/j.isprsjprs.2009.02.006 – ident: CIT0001 doi: 10.3390/rs5115969 – volume: 24 start-page: 252 year: 2011 ident: CIT0021 publication-title: European Journal of Social Sciences contributor: fullname: Makhamreha Z. – volume-title: Energy and Climate in the Urban Built Environment year: 2001 ident: CIT0003 contributor: fullname: Asimakopoulos D. N. – ident: CIT0019 doi: 10.1016/0034-4257(93)90065-6 – volume-title: An Urban Approach to Climate-Sensitive Design; Strategies for the Tropics year: 2005 ident: CIT0009 contributor: fullname: Emmanuel M. R. – ident: CIT0037 doi: 10.1007/978-1-349-20610-0 – ident: CIT0015 doi: 10.1177/0734242X9401200405 – ident: CIT0030 doi: 10.1016/j.aqpro.2015.02.179 – ident: CIT0034 – volume-title: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change year: 2013 ident: CIT0013 contributor: fullname: IPCC – volume-title: Recurrent Neural Networks: Design and Applications year: 2000 ident: CIT0023 contributor: fullname: Medsker L. – ident: CIT0036 – ident: CIT0004 doi: 10.1016/j.jag.2008.05.001 |
SSID | ssj0006757 |
Score | 2.5004878 |
Snippet | The objective of the present study is to monitor and predict the changes in land surface temperature (LST) in the North of Jordan during the Period 2000 to... |
SourceID | crossref informaworld |
SourceType | Aggregation Database Publisher |
StartPage | 3968 |
Title | Mapping urban land surface temperature using remote sensing techniques and artificial neural network modelling |
URI | https://www.tandfonline.com/doi/abs/10.1080/01431161.2018.1557792 |
Volume | 40 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBbb5NBeQtO0NOkDHXJbtNiSbK-OS19LIIVAQkIvRpJlmhLc4NoE8iPymztjyY9tQ2h6sY3B0q7m02hmmPmGkMNExo47q1lWcskkGBhMa-6YiYqshPMgXRZYO3z8NV2fyaOL5GI2u5tkLbWNWdjbe-tK_keq8A7kilWyj5DsMCi8gGeQL1xBwnD9Jxkf6-uu3KmtDWzTqy4G3talhr2KlFOBL3nedvGA2oFU3PwXZqxjiVRP3upJmnH0QCaBFJfdrUsQ971yrvoT7seY-T4GEif0E5uzDPGb77qp9M2l1-c3tR4s-ZVp5yeF9kwHa11dTsMQWPmUsKDs-sikYHHsmdUXzmtTkaYMi1un6tazM_WwiibKUyjfYSccxEL5Fjd_KfmQFQkT4nyYnrdcgFmUZb6r3iap9h-H3ZCCGPfcqGGYHIfJwzBPyDYHxQUac3u1_vjtfDjbwb3yBfjhz_Y1YcjWft_v2bB2NrhwJ1bM6XOyE9wPuvJY2iUzV70gT7-4QFy-R6qAKdphiiKmaMAUnWCKdpiiXto0SJuOmKL43Ygp6jFFA6bogKmX5Ozzp9MPaxZ6cjALjkADWxoM1Dhy1nCrS-VKIYpIl1zbAiwbkSoNPnJplbTCgq2IBahxkRjsuyEy4VLximxVPyv3mlCuzFJEUqtEGZmm4PjHynInpVQZh0XcJ4t-7fJrT72SPyi1faKmK5w3Xcyr9A1qcvHgtwePnewNeTZug7dkq6lb9w7s08a8D6D5DXdfjCs |
link.rule.ids | 315,783,787,27936,27937,60214,61003 |
linkProvider | Library Specific Holdings |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZQGcrCG1GeHlgTEttJ6hEhqgJtp1bqFjmOXSSkgNJkgF_PXR5ViwRLpyiKLkrOZ99n67vvCLkLhG-Y0cqJLBOOAIDhKMWMk3hpZCEfhP0Ua4fHk3A4Ey_zYL5WC4O0StxD21ooolqrcXLjYXRLibtHTTofoAoys_ouZMQokrAM74YoAIZlHN5ktRoDIK5LplGKE2zaKp6_XrORnzbUS9fyzuCA6PaLa7rJu1sWiau_f4k5bvdLh2S_gaX0oY6jI7JjsmPSbTqkv32dkGysUMlhQcs8URlFPiRdlrlV2lCUt2q0mSny6Bc0NxABhi6RHQ-3K6HYJUU7jNZauIKinGZ1qcjotOrLgwXyp2Q2eJo-Dp2mV4OjASAWMNQAXHzP6IRpZaWxnKeeskzpFDIeD6WCvZPVUmiuAUNgYaKfBgn2Y-ARNyE_I53sIzPnhDKZ9LknlAxkIsIQNoS-1MwIIWTEwD094rYjFH_Wkhyx3yqdNm6M0Y1x48YekevjGBfVWYitG5fE_F_biy1sb0l3OB2P4tHz5PWS7MEjibwDX16RTpGX5hrgTJHcVPH6A8hM6Cs |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF6kgnrxLdbnHrymJtlN0j2KWuqjxYMFb2F3s1tBiCWPg_56Z_IoraCXnkIIE5KZyc634ZtvCLkKuGd8o6UTWZ87HACGI6VvHOUmkYV6EPYT7B0ejcPhhD--BS2bMG9olbiHtrVQRLVW48c9S2zLiLtGSToPkAoSs_o9KIhRJGAVXgck4GKqM3c8X4wBD9cd06jECTZtE89ft1kqT0vipQtlZ7BDVPvANdvko1cWqqe_f2k5rvRGu2S7AaX0ps6iPbJm0n2y2cxHf_86IOlIoo7DlJaZkilFNiTNy8xKbSiKWzXKzBRZ9FOaGYi_oTly4-F0LhObU7TDXK1lKyiKaVaHiopOq6k82B5_SCaD-9fbodNManA0wMMCAg2wxXONVr6WVhjLWOJK60udQL1joZCwc7JacM00IAhsS_SSQOE0BhYxE7Ij0kk_U3NMqC9Un7lcikAoHoawHfSE9g3nXEQ-uKdLem2A4lktyBF7rc5p48YY3Rg3buwSsRjGuKj-hNh6bEnM_rU9WcH2kmy83A3i54fx0ynZgisCSQeeOCOdIivNOWCZQl1U2foDEwHm2A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mapping+urban+land+surface+temperature+using+remote+sensing+techniques+and+artificial+neural+network+modelling&rft.jtitle=International+journal+of+remote+sensing&rft.au=Shatnawi%2C+Nawras&rft.au=Abu+Qdais%2C+Hani&rft.date=2019-05-19&rft.issn=0143-1161&rft.eissn=1366-5901&rft.volume=40&rft.issue=10&rft.spage=3968&rft.epage=3983&rft_id=info:doi/10.1080%2F01431161.2018.1557792&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_01431161_2018_1557792 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0143-1161&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0143-1161&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0143-1161&client=summon |