Side information-driven image coding for hybrid machine–human vision
With the development of machine learning, advanced photography and image transmission systems, images are being processed more and more by machines, so image coding for machines (ICM) came into being. After the image codec compresses and transmits the image, the image will be handed over to machine...
Saved in:
Published in | EURASIP journal on image and video processing Vol. 2025; no. 1; pp. 3 - 24 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
28.01.2025
Springer Nature B.V SpringerOpen |
Subjects | |
Online Access | Get full text |
ISSN | 1687-5281 1687-5176 1687-5281 |
DOI | 10.1186/s13640-024-00661-0 |
Cover
Abstract | With the development of machine learning, advanced photography and image transmission systems, images are being processed more and more by machines, so image coding for machines (ICM) came into being. After the image codec compresses and transmits the image, the image will be handed over to machine vision task networks. These vision tasks include image classification, semantic segmentation, and so on. We propose a side information-driven image coding for hybrid machine–human vision (SICMH) framework, not only for machine vision tasks, but also for human vision-oriented image reconstruction. The proposed SICMH framework can perform image classification, semantic segmentation, and coarse image reconstruction by using purely the side information. Moreover, SICMH can perform fine image reconstruction by using the residue information. In particular, we propose a multi-scale feature fusion block to enhance the usage of side information, and a novel semantic segmentation network named modified TrSeg to generate better semantic segmentation maps. The experimental results well demonstrated the effectiveness of our proposed framework. SICMH achieves the same image classification and semantic segmentation accuracy as the existing traditional or learning-based multi-task ICM frameworks using the lowest bitrate. For the image reconstruction task, the proposed SICMH achieved the same PSNR as existing learning-based multi-task hybrid ICM frameworks and the traditional image codec BPG again with the lowest bitrate. |
---|---|
AbstractList | With the development of machine learning, advanced photography and image transmission systems, images are being processed more and more by machines, so image coding for machines (ICM) came into being. After the image codec compresses and transmits the image, the image will be handed over to machine vision task networks. These vision tasks include image classification, semantic segmentation, and so on. We propose a side information-driven image coding for hybrid machine–human vision (SICMH) framework, not only for machine vision tasks, but also for human vision-oriented image reconstruction. The proposed SICMH framework can perform image classification, semantic segmentation, and coarse image reconstruction by using purely the side information. Moreover, SICMH can perform fine image reconstruction by using the residue information. In particular, we propose a multi-scale feature fusion block to enhance the usage of side information, and a novel semantic segmentation network named modified TrSeg to generate better semantic segmentation maps. The experimental results well demonstrated the effectiveness of our proposed framework. SICMH achieves the same image classification and semantic segmentation accuracy as the existing traditional or learning-based multi-task ICM frameworks using the lowest bitrate. For the image reconstruction task, the proposed SICMH achieved the same PSNR as existing learning-based multi-task hybrid ICM frameworks and the traditional image codec BPG again with the lowest bitrate. Abstract With the development of machine learning, advanced photography and image transmission systems, images are being processed more and more by machines, so image coding for machines (ICM) came into being. After the image codec compresses and transmits the image, the image will be handed over to machine vision task networks. These vision tasks include image classification, semantic segmentation, and so on. We propose a side information-driven image coding for hybrid machine–human vision (SICMH) framework, not only for machine vision tasks, but also for human vision-oriented image reconstruction. The proposed SICMH framework can perform image classification, semantic segmentation, and coarse image reconstruction by using purely the side information. Moreover, SICMH can perform fine image reconstruction by using the residue information. In particular, we propose a multi-scale feature fusion block to enhance the usage of side information, and a novel semantic segmentation network named modified TrSeg to generate better semantic segmentation maps. The experimental results well demonstrated the effectiveness of our proposed framework. SICMH achieves the same image classification and semantic segmentation accuracy as the existing traditional or learning-based multi-task ICM frameworks using the lowest bitrate. For the image reconstruction task, the proposed SICMH achieved the same PSNR as existing learning-based multi-task hybrid ICM frameworks and the traditional image codec BPG again with the lowest bitrate. |
ArticleNumber | 3 |
Author | Peng, Wen-Hsiao Zhang, Zhongpeng Liu, Ying |
Author_xml | – sequence: 1 givenname: Zhongpeng surname: Zhang fullname: Zhang, Zhongpeng organization: Department of Computer Science and Engineering, Santa Clara University – sequence: 2 givenname: Ying surname: Liu fullname: Liu, Ying email: yliu15@scu.edu organization: Department of Computer Science and Engineering, Santa Clara University – sequence: 3 givenname: Wen-Hsiao surname: Peng fullname: Peng, Wen-Hsiao organization: Department of Computer Science, National Yang Ming Chiao Tung University |
BookMark | eNp9kMFOAyEURYmpiW31B1xN4noUBgaYpWmsNmniQl0TBpgpTQcqTJt05z_4h36J2DHqytUjj3vvuzkTMHLeGQAuEbxGiNObiDAlMIcFySGkFOXwBIwR5SwvC45Gf95nYBLjGsKyLHExBvMnq01mXeNDJ3vrXa6D3RuX2U62JlNeW9dm6TdbHepgddZJtbLOfLy9r3addNnexuQ6B6eN3ERz8T2n4GV-9zx7yJeP94vZ7TJXGME-LyHTWBqmDEl1uZZYykoxRSpeQ45RgRhk1OBC6oZUTClUKy1rVKfilVIlnoLFkKu9XIttSC3DQXhpxXHhQytk6K3aGFE2CmFSS66ZIRCayuiGFpRTSjTVsklZV0PWNvjXnYm9WPtdcKm-wIgmirSsWFIVg0oFH2Mwzc9VBMUXezGwF4m9OLIXMJnwYIpJ7FoTfqP_cX0CuEmJmQ |
Cites_doi | 10.1007/978-3-030-71278-5_10 10.1109/JIOT.2022.3150417 10.1109/CVPR.2016.350 10.1109/TCSVT.2021.3101953 10.1609/aaai.v34i07.6736 10.1109/JSAC.2022.3221999 10.1117/1.1469618 10.1007/978-3-030-04167-0_9 10.1109/TCSVT.2012.2221191 10.1109/PCS56426.2022.10018039 10.1016/j.patrec.2021.04.024 10.1109/ICIP.2019.8803275 10.1007/978-3-031-19836-6_29 10.1109/CVPR42600.2020.00796 10.1109/CVPR.2009.5206848 10.1109/ICCV.2019.00031 10.1109/30.125072 10.1109/GLOBECOM46510.2021.9685667 10.1109/ICIP40778.2020.9191247 10.1109/ICASSP.2019.8683541 10.1109/CVPR.2016.90 10.1109/DCC50243.2021.00024 10.1109/ICCV.2017.322 10.2352/EI.2022.34.14.COIMG-220 |
ContentType | Journal Article |
Copyright | The Author(s) 2024 Copyright Springer Nature B.V. Dec 2025 |
Copyright_xml | – notice: The Author(s) 2024 – notice: Copyright Springer Nature B.V. Dec 2025 |
DBID | C6C AAYXX CITATION 7SC 7SP 8FD 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ JQ2 L7M L~C L~D P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI DOA |
DOI | 10.1186/s13640-024-00661-0 |
DatabaseName | Springer Nature OA Free Journals CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central SciTech Premium Collection ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering |
EISSN | 1687-5281 |
EndPage | 24 |
ExternalDocumentID | oai_doaj_org_article_5fc134ba8d7e400e9edf6268664d6daf 10_1186_s13640_024_00661_0 |
GrantInformation_xml | – fundername: NVIDIA Academic Hardware Grant – fundername: National Science Foundation grantid: ECCS-2138635 funderid: http://dx.doi.org/10.13039/100000001 |
GroupedDBID | -A0 0R~ 29J 2WC 4.4 40G 5VS 8FE 8FG 8R4 8R5 AAJSJ AAKKN ABEEZ ACACY ACGFS ACM ACULB ADBBV ADINQ ADMLS AENEX AERSA AFGXO AFKRA AHBYD AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP ARAPS BCNDV BENPR BGLVJ C24 C6C CCPQU CS3 E3Z EBLON EBS ECE GROUPED_DOAJ HCIFZ HZ~ I-F IAO IN- ITG ITH KQ8 M~E OK1 P2P P62 PIMPY PROAC Q2X RHU RSV SEG SOJ U2A AASML AAYXX CITATION PHGZM PHGZT 7SC 7SP 8FD ABUWG AZQEC DWQXO JQ2 L7M L~C L~D PKEHL PQEST PQGLB PQQKQ PQUKI PUEGO |
ID | FETCH-LOGICAL-c310t-507d3ae7ce46408da3aa9c7c498b0831217076e32adf497cc1bcdab1b2819cc53 |
IEDL.DBID | 40G |
ISSN | 1687-5281 1687-5176 |
IngestDate | Wed Aug 27 01:24:32 EDT 2025 Tue Jul 22 15:12:13 EDT 2025 Tue Jul 01 03:14:44 EDT 2025 Fri Feb 21 02:36:52 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Image compression Image coding for machines Side information Semantic segmentation Image classification |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c310t-507d3ae7ce46408da3aa9c7c498b0831217076e32adf497cc1bcdab1b2819cc53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://link.springer.com/10.1186/s13640-024-00661-0 |
PQID | 3160666597 |
PQPubID | 237295 |
PageCount | 24 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_5fc134ba8d7e400e9edf6268664d6daf proquest_journals_3160666597 crossref_primary_10_1186_s13640_024_00661_0 springer_journals_10_1186_s13640_024_00661_0 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-01-28 |
PublicationDateYYYYMMDD | 2025-01-28 |
PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-28 day: 28 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: New York |
PublicationTitle | EURASIP journal on image and video processing |
PublicationTitleAbbrev | J Image Video Proc |
PublicationYear | 2025 |
Publisher | Springer International Publishing Springer Nature B.V SpringerOpen |
Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V – name: SpringerOpen |
References | 661_CR1 661_CR3 661_CR4 661_CR27 661_CR26 661_CR25 Z Wang (661_CR23) 2022; 9 661_CR5 661_CR6 661_CR7 DS Taubman (661_CR2) 2002; 11 661_CR8 661_CR13 661_CR35 661_CR12 D Huang (661_CR19) 2022; 41 661_CR34 661_CR11 661_CR10 GJ Sullivan (661_CR29) 2012; 22 661_CR32 Y Jin (661_CR9) 2021; 148 661_CR31 661_CR30 B Bross (661_CR28) 2021; 31 661_CR18 661_CR17 661_CR16 661_CR15 661_CR14 F Mentzer (661_CR33) 2020; 33 661_CR24 661_CR22 661_CR21 661_CR20 |
References_xml | – ident: 661_CR34 doi: 10.1007/978-3-030-71278-5_10 – volume: 9 start-page: 16181 issue: 17 year: 2022 ident: 661_CR23 publication-title: IEEE Int. Things J. doi: 10.1109/JIOT.2022.3150417 – ident: 661_CR12 doi: 10.1109/CVPR.2016.350 – ident: 661_CR15 – volume: 31 start-page: 3736 issue: 10 year: 2021 ident: 661_CR28 publication-title: IEEE Trans. Circ. Syst. Video Technol. doi: 10.1109/TCSVT.2021.3101953 – volume: 33 start-page: 11913 year: 2020 ident: 661_CR33 publication-title: Adv. Neural Inf. Processing Syst. – ident: 661_CR5 doi: 10.1609/aaai.v34i07.6736 – volume: 41 start-page: 55 issue: 1 year: 2022 ident: 661_CR19 publication-title: IEEE J. Selected Areas in Commun. doi: 10.1109/JSAC.2022.3221999 – volume: 11 start-page: 286 issue: 2 year: 2002 ident: 661_CR2 publication-title: J. Electron. Imaging doi: 10.1117/1.1469618 – ident: 661_CR22 doi: 10.1007/978-3-030-04167-0_9 – ident: 661_CR32 – ident: 661_CR3 – volume: 22 start-page: 1649 issue: 12 year: 2012 ident: 661_CR29 publication-title: IEEE Trans. Circ. Syst. Video Technol. doi: 10.1109/TCSVT.2012.2221191 – ident: 661_CR7 – ident: 661_CR8 doi: 10.1109/PCS56426.2022.10018039 – volume: 148 start-page: 29 year: 2021 ident: 661_CR9 publication-title: Pattern Recogn. Lett. doi: 10.1016/j.patrec.2021.04.024 – ident: 661_CR25 – ident: 661_CR27 – ident: 661_CR16 doi: 10.1109/ICIP.2019.8803275 – ident: 661_CR31 doi: 10.1007/978-3-031-19836-6_29 – ident: 661_CR30 doi: 10.1109/CVPR42600.2020.00796 – ident: 661_CR14 – ident: 661_CR11 doi: 10.1109/CVPR.2009.5206848 – ident: 661_CR18 doi: 10.1109/ICCV.2019.00031 – ident: 661_CR20 – ident: 661_CR1 doi: 10.1109/30.125072 – ident: 661_CR17 doi: 10.1109/GLOBECOM46510.2021.9685667 – ident: 661_CR21 doi: 10.1109/ICIP40778.2020.9191247 – ident: 661_CR35 – ident: 661_CR24 doi: 10.1109/ICASSP.2019.8683541 – ident: 661_CR6 doi: 10.1109/CVPR.2016.90 – ident: 661_CR4 – ident: 661_CR10 doi: 10.1109/DCC50243.2021.00024 – ident: 661_CR26 doi: 10.1109/ICCV.2017.322 – ident: 661_CR13 doi: 10.2352/EI.2022.34.14.COIMG-220 |
SSID | ssj0055532 ssib044603796 ssib044736454 ssib008501553 |
Score | 2.3240166 |
Snippet | With the development of machine learning, advanced photography and image transmission systems, images are being processed more and more by machines, so image... Abstract With the development of machine learning, advanced photography and image transmission systems, images are being processed more and more by machines,... |
SourceID | doaj proquest crossref springer |
SourceType | Open Website Aggregation Database Index Database Publisher |
StartPage | 3 |
SubjectTerms | Biometrics Codec Engineering Image classification Image coding Image coding for machines Image compression Image Processing and Computer Vision Image reconstruction Image segmentation Image transmission Information systems Machine learning Machine vision Pattern Recognition Semantic segmentation Semantics Side information Signal,Image and Speech Processing Vision systems Visual coding for humans and machines |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxbeiEBBHtjAahw7jjMCoqqQYIFK3SzHD9GhLWrLwMZ_4B_ySzg7CVAkxMIaR9HlO_vuO_keCJ1mvPA59WD9tLGEm4qTMhWOWAu-SGfM-1gUdnsnBkN-M8pH30Z9hZywuj1wDVwv94YyXmlpCwf7zZXOeiDhUghuhdU-WN-0TNtgqrbBeZ6zrC2RkaK3oEyENMaMk-BjIYBecUOxW_8KxfxxKxqdTX8LbTQsEV_U0m2jNTfdQZsNY8TNeVzsov792DrcND8NEBM7D-YLjydgJ7CZBc-EYRU_voTSLDyJuZPu_fUtDufDdWn5Hhr2rx-uBqSZjEAM0LElARJnmXaFcRz-S1rNtC5NYXgpqzA6DOKMtBCOZdp6XhbG0MpYXdEqXJsZk7N91JnOpu4AYQ8MMTVCW3DcnMJXQXNGFpp7LqgwWYLOWqDUU90AQ8XAQQpVw6oAVhVhVWmCLgOWn2-G5tXxAahUNSpVf6k0Qd1WE6o5UQvFaAy1IP5J0Hmrna_l30U6_A-RjtB6Fgb_ppRksos6y_mzOwY2sqxO4sb7ALpI3CY priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NThsxELYKvfRCKVCRApUP3IqV9a7X9p4QoAZUqb20SLlZ3rENOSSBJBy48Q68IU_C2PHyUwmOu7as3ZnxzDcezwwh-6VQoeYBtZ8FxwS0gjWF9Mw5tEW2rEJISWG__8izc_FrWA_zgds8X6vsdGJS1G4K8Yy8X_EEtRH_Hl5ds9g1KkZXcwuNFfKRo6WJcq4Hp0_ypOvUFqd7Rs-nqF6UlxNCxSCc6DR3jXNTdFTixqu5kl2SjZb9OcepBUOLxqKVRhf8lSFL9f5fgdT_4qrJXA3WyVrGmfRoKRhfyAc_2SCfM-akeUfPN8ng78h5msunRiYxN4sKkI7GqGkoTKNtozhKL29jchcdp9uX_uHuPrX3o8vk9C1yPvj57-SM5d4KDBDQLRjCQFdZr8AL_C_tbGVtAwpEo9vYfAw9lUJJX5XWBdEoAN6Csy1vY-ANoK6-ktXJdOK3CQ2IMQuQ1qHpFxxXRd6DVlYEIbmEskd-dIQyV8sSGia5HlqaJVkNktUkspqiR44jLZ9mxvLX6cV0dmHybjJ1AF6J1mqnPCoh33gX0DPTUgonnQ09sttxwuQ9OTfPEtQjBx13noff_qRv76-2Qz6VsSlwwVmpd8nqYnbj9xCpLNrvSRwfAXGn32c priority: 102 providerName: ProQuest |
Title | Side information-driven image coding for hybrid machine–human vision |
URI | https://link.springer.com/article/10.1186/s13640-024-00661-0 https://www.proquest.com/docview/3160666597 https://doaj.org/article/5fc134ba8d7e400e9edf6268664d6daf |
Volume | 2025 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxEB5Bc4FDKQVE6EM-cAOL9WO93mMaJa0iNUKUSLlZXj-ghyYoSQ9cEP-Bf8gv6djZhQbBgcusZHtXuzM7j0_2zAC85rKKJYto_azzVLpG0rpQgXqPvshyEWNOCrucqouZnMzLeZsUtu5Ou3dbktlSZ7XW6t2aCZWOInJJk59EEPwQeqmcWOpbIIvzzv6WZSl4lx7z1_t2XFCu1L8TXv6xI5odzfgA9tsIkQy2In0KD8LiEJ600SJpdXF9CI_vlRJ8BuOrax9IWwY1MZv6VTJk5PoGLQZxy-SjCM6Sz19Tkha5yacow8_vP3KbPrJNMn8Os_Ho4_CCtj0SqMPAbEMxnPPChsoFiV-pvRXW1q5ystZNaiKGiKOoVBDc-ijryjnWOG8b1qQNNOdK8QL2FstFeAkkYqxYOGU9unDJ8KkoQ6crK6NUTDnehzcd28yXbSkMkyGEVmbLZINMNpnJpujDWeLsr5WpjHUeWK4-mVYrTBkdE7Kx2lcBjUmog4-IsLRS0itvYx-OO7mYVrfWRrAMuhAJ9eFtJ6vf0_9-pVf_t_wIHvHU7LdglOtj2NusbsMJRiCb5jT_cEj1GGlvMJhcTfB6Npq-_4CjQy4TVcPTjPCRXn4bIZ3xwR2qz9y0 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NTtwwEB6h5dBe-kNbdQstPrSn1iJOHMc5IAQtq6XAqmpB4uY6_mk5sAu7WyFuvEPfg4fqk3TsxFAqtTeOSawoGo-_-Sbj8QfwOueVL5lH9NPGUm4aTutMOGotxiKdF97HprD9kRge8o9H5dECXKVemLCtMmFiBGo7MeEf-VrBItVG_rtxekaDalSoriYJjdYtdt3FOaZss_WdDzi_b_J8sH3wfkg7VQFqkMrMKRIgW2hXGccFz6TVhda1qQyvZRNkt5CjY27vilxbz-vKGNYYqxvWhJKTMUElAiF_kYeO1h4sbm2PPn2-9mBZRiGedI25Vlb8caAd51Uo-_EUK0ocG-uxApd6ySqR2nqkWJsxHJpRjKE08AJM-m-FzqgwcIsW_1XJjQFy8AgedMyWbLau-BgW3HgJHnYsl3QYMnsCgy_H1pHuwNbgFtROA-SS4xPENmImIZoSfEq-X4R2MnIS93u6X5c_o6Agadvhn8Lhndj9GfTGk7F7DsQjq82M0BbJBmf4VvQ2IyvNPRdMmLwPb5Oh1Gl7aIeKyY4UqjWrQrOqaFaV9WEr2PJ6ZDhwO96YTL-pbv2q0htW8EZLWzmEPVc76zEXlEJwK6z2fVhJM6E6FJipG5_tw7s0OzeP__1JL_7_tlW4NzzY31N7O6PdZbifB0nijNFcrkBvPv3hXiJPmjevOuck8PWu18NvxIQeIQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB5VrYS4QPkTCwV8gBNYGyeO7RwqBJTQUqiQoFJvxvFP6aG77e5WVW-8A2_D4_AkjJ24pUhw6zGJFUXj8TffZDz-AJ6WXIaaBUQ_Yx3ltuO0KYSnzmEsMmUVQmoK-7gjNnf5-716bwl-5l6YuK0yY2ICaje18R_5uGKJaiP_HYdhW8Snjfbl0TGNClKx0prlNHoX2fZnp5i-zde3NnCun5Vl-_bLm006KAxQi7RmQZEMucp4aT0XvFDOVMY0VlreqC5KcCFfxzzfV6VxgTfSWtZZZzrWxfKTtVExAuF_RVayiYmfat-d-7KqkyRPvsasq6j-ONqOcxkLgDxHjRrHpsqswEVfMylyg48S4znDoQXFaEojQ8D0_1IQTVoDlwjyXzXdFCrbVbgxcFzyqnfKW7DkJ7fh5sB3yYAm8zvQfj5wngxHt0YHoW4WwZccHCLKETuNcZXgU_LtLDaWkcO089P_-v4jSQuSvjH-LuxeidXvwfJkOvH3gQTkt4UVxiHt4Azfin5nlTQ8cMGELUfwPBtKH_XHd-iU9iihe7NqNKtOZtXFCF5HW56PjEdvpxvT2b4eVrKug2UV74xy0iMA-sa7gFmhEoI74UwYwVqeCT3gwVxfeO8IXuTZuXj870968P-3PYFruAr0h62d7YdwvYzaxAWjpVqD5cXsxD9CwrToHifPJPD1qpfCb1jOIPE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Side+information-driven+image+coding+for+hybrid+machine%E2%80%93human+vision&rft.jtitle=EURASIP+journal+on+image+and+video+processing&rft.au=Zhang%2C+Zhongpeng&rft.au=Liu%2C+Ying&rft.au=Peng%2C+Wen-Hsiao&rft.date=2025-01-28&rft.pub=Springer+International+Publishing&rft.eissn=1687-5281&rft.volume=2025&rft.issue=1&rft_id=info:doi/10.1186%2Fs13640-024-00661-0&rft.externalDocID=10_1186_s13640_024_00661_0 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1687-5281&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1687-5281&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1687-5281&client=summon |