Side information-driven image coding for hybrid machine–human vision

With the development of machine learning, advanced photography and image transmission systems, images are being processed more and more by machines, so image coding for machines (ICM) came into being. After the image codec compresses and transmits the image, the image will be handed over to machine...

Full description

Saved in:
Bibliographic Details
Published inEURASIP journal on image and video processing Vol. 2025; no. 1; pp. 3 - 24
Main Authors Zhang, Zhongpeng, Liu, Ying, Peng, Wen-Hsiao
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 28.01.2025
Springer Nature B.V
SpringerOpen
Subjects
Online AccessGet full text
ISSN1687-5281
1687-5176
1687-5281
DOI10.1186/s13640-024-00661-0

Cover

Abstract With the development of machine learning, advanced photography and image transmission systems, images are being processed more and more by machines, so image coding for machines (ICM) came into being. After the image codec compresses and transmits the image, the image will be handed over to machine vision task networks. These vision tasks include image classification, semantic segmentation, and so on. We propose a side information-driven image coding for hybrid machine–human vision (SICMH) framework, not only for machine vision tasks, but also for human vision-oriented image reconstruction. The proposed SICMH framework can perform image classification, semantic segmentation, and coarse image reconstruction by using purely the side information. Moreover, SICMH can perform fine image reconstruction by using the residue information. In particular, we propose a multi-scale feature fusion block to enhance the usage of side information, and a novel semantic segmentation network named modified TrSeg to generate better semantic segmentation maps. The experimental results well demonstrated the effectiveness of our proposed framework. SICMH achieves the same image classification and semantic segmentation accuracy as the existing traditional or learning-based multi-task ICM frameworks using the lowest bitrate. For the image reconstruction task, the proposed SICMH achieved the same PSNR as existing learning-based multi-task hybrid ICM frameworks and the traditional image codec BPG again with the lowest bitrate.
AbstractList With the development of machine learning, advanced photography and image transmission systems, images are being processed more and more by machines, so image coding for machines (ICM) came into being. After the image codec compresses and transmits the image, the image will be handed over to machine vision task networks. These vision tasks include image classification, semantic segmentation, and so on. We propose a side information-driven image coding for hybrid machine–human vision (SICMH) framework, not only for machine vision tasks, but also for human vision-oriented image reconstruction. The proposed SICMH framework can perform image classification, semantic segmentation, and coarse image reconstruction by using purely the side information. Moreover, SICMH can perform fine image reconstruction by using the residue information. In particular, we propose a multi-scale feature fusion block to enhance the usage of side information, and a novel semantic segmentation network named modified TrSeg to generate better semantic segmentation maps. The experimental results well demonstrated the effectiveness of our proposed framework. SICMH achieves the same image classification and semantic segmentation accuracy as the existing traditional or learning-based multi-task ICM frameworks using the lowest bitrate. For the image reconstruction task, the proposed SICMH achieved the same PSNR as existing learning-based multi-task hybrid ICM frameworks and the traditional image codec BPG again with the lowest bitrate.
Abstract With the development of machine learning, advanced photography and image transmission systems, images are being processed more and more by machines, so image coding for machines (ICM) came into being. After the image codec compresses and transmits the image, the image will be handed over to machine vision task networks. These vision tasks include image classification, semantic segmentation, and so on. We propose a side information-driven image coding for hybrid machine–human vision (SICMH) framework, not only for machine vision tasks, but also for human vision-oriented image reconstruction. The proposed SICMH framework can perform image classification, semantic segmentation, and coarse image reconstruction by using purely the side information. Moreover, SICMH can perform fine image reconstruction by using the residue information. In particular, we propose a multi-scale feature fusion block to enhance the usage of side information, and a novel semantic segmentation network named modified TrSeg to generate better semantic segmentation maps. The experimental results well demonstrated the effectiveness of our proposed framework. SICMH achieves the same image classification and semantic segmentation accuracy as the existing traditional or learning-based multi-task ICM frameworks using the lowest bitrate. For the image reconstruction task, the proposed SICMH achieved the same PSNR as existing learning-based multi-task hybrid ICM frameworks and the traditional image codec BPG again with the lowest bitrate.
ArticleNumber 3
Author Peng, Wen-Hsiao
Zhang, Zhongpeng
Liu, Ying
Author_xml – sequence: 1
  givenname: Zhongpeng
  surname: Zhang
  fullname: Zhang, Zhongpeng
  organization: Department of Computer Science and Engineering, Santa Clara University
– sequence: 2
  givenname: Ying
  surname: Liu
  fullname: Liu, Ying
  email: yliu15@scu.edu
  organization: Department of Computer Science and Engineering, Santa Clara University
– sequence: 3
  givenname: Wen-Hsiao
  surname: Peng
  fullname: Peng, Wen-Hsiao
  organization: Department of Computer Science, National Yang Ming Chiao Tung University
BookMark eNp9kMFOAyEURYmpiW31B1xN4noUBgaYpWmsNmniQl0TBpgpTQcqTJt05z_4h36J2DHqytUjj3vvuzkTMHLeGQAuEbxGiNObiDAlMIcFySGkFOXwBIwR5SwvC45Gf95nYBLjGsKyLHExBvMnq01mXeNDJ3vrXa6D3RuX2U62JlNeW9dm6TdbHepgddZJtbLOfLy9r3addNnexuQ6B6eN3ERz8T2n4GV-9zx7yJeP94vZ7TJXGME-LyHTWBqmDEl1uZZYykoxRSpeQ45RgRhk1OBC6oZUTClUKy1rVKfilVIlnoLFkKu9XIttSC3DQXhpxXHhQytk6K3aGFE2CmFSS66ZIRCayuiGFpRTSjTVsklZV0PWNvjXnYm9WPtdcKm-wIgmirSsWFIVg0oFH2Mwzc9VBMUXezGwF4m9OLIXMJnwYIpJ7FoTfqP_cX0CuEmJmQ
Cites_doi 10.1007/978-3-030-71278-5_10
10.1109/JIOT.2022.3150417
10.1109/CVPR.2016.350
10.1109/TCSVT.2021.3101953
10.1609/aaai.v34i07.6736
10.1109/JSAC.2022.3221999
10.1117/1.1469618
10.1007/978-3-030-04167-0_9
10.1109/TCSVT.2012.2221191
10.1109/PCS56426.2022.10018039
10.1016/j.patrec.2021.04.024
10.1109/ICIP.2019.8803275
10.1007/978-3-031-19836-6_29
10.1109/CVPR42600.2020.00796
10.1109/CVPR.2009.5206848
10.1109/ICCV.2019.00031
10.1109/30.125072
10.1109/GLOBECOM46510.2021.9685667
10.1109/ICIP40778.2020.9191247
10.1109/ICASSP.2019.8683541
10.1109/CVPR.2016.90
10.1109/DCC50243.2021.00024
10.1109/ICCV.2017.322
10.2352/EI.2022.34.14.COIMG-220
ContentType Journal Article
Copyright The Author(s) 2024
Copyright Springer Nature B.V. Dec 2025
Copyright_xml – notice: The Author(s) 2024
– notice: Copyright Springer Nature B.V. Dec 2025
DBID C6C
AAYXX
CITATION
7SC
7SP
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
JQ2
L7M
L~C
L~D
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOA
DOI 10.1186/s13640-024-00661-0
DatabaseName Springer Nature OA Free Journals
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1687-5281
EndPage 24
ExternalDocumentID oai_doaj_org_article_5fc134ba8d7e400e9edf6268664d6daf
10_1186_s13640_024_00661_0
GrantInformation_xml – fundername: NVIDIA Academic Hardware Grant
– fundername: National Science Foundation
  grantid: ECCS-2138635
  funderid: http://dx.doi.org/10.13039/100000001
GroupedDBID -A0
0R~
29J
2WC
4.4
40G
5VS
8FE
8FG
8R4
8R5
AAJSJ
AAKKN
ABEEZ
ACACY
ACGFS
ACM
ACULB
ADBBV
ADINQ
ADMLS
AENEX
AERSA
AFGXO
AFKRA
AHBYD
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
ARAPS
BCNDV
BENPR
BGLVJ
C24
C6C
CCPQU
CS3
E3Z
EBLON
EBS
ECE
GROUPED_DOAJ
HCIFZ
HZ~
I-F
IAO
IN-
ITG
ITH
KQ8
M~E
OK1
P2P
P62
PIMPY
PROAC
Q2X
RHU
RSV
SEG
SOJ
U2A
AASML
AAYXX
CITATION
PHGZM
PHGZT
7SC
7SP
8FD
ABUWG
AZQEC
DWQXO
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PUEGO
ID FETCH-LOGICAL-c310t-507d3ae7ce46408da3aa9c7c498b0831217076e32adf497cc1bcdab1b2819cc53
IEDL.DBID 40G
ISSN 1687-5281
1687-5176
IngestDate Wed Aug 27 01:24:32 EDT 2025
Tue Jul 22 15:12:13 EDT 2025
Tue Jul 01 03:14:44 EDT 2025
Fri Feb 21 02:36:52 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Image compression
Image coding for machines
Side information
Semantic segmentation
Image classification
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c310t-507d3ae7ce46408da3aa9c7c498b0831217076e32adf497cc1bcdab1b2819cc53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://link.springer.com/10.1186/s13640-024-00661-0
PQID 3160666597
PQPubID 237295
PageCount 24
ParticipantIDs doaj_primary_oai_doaj_org_article_5fc134ba8d7e400e9edf6268664d6daf
proquest_journals_3160666597
crossref_primary_10_1186_s13640_024_00661_0
springer_journals_10_1186_s13640_024_00661_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-01-28
PublicationDateYYYYMMDD 2025-01-28
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-28
  day: 28
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: New York
PublicationTitle EURASIP journal on image and video processing
PublicationTitleAbbrev J Image Video Proc
PublicationYear 2025
Publisher Springer International Publishing
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
– name: SpringerOpen
References 661_CR1
661_CR3
661_CR4
661_CR27
661_CR26
661_CR25
Z Wang (661_CR23) 2022; 9
661_CR5
661_CR6
661_CR7
DS Taubman (661_CR2) 2002; 11
661_CR8
661_CR13
661_CR35
661_CR12
D Huang (661_CR19) 2022; 41
661_CR34
661_CR11
661_CR10
GJ Sullivan (661_CR29) 2012; 22
661_CR32
Y Jin (661_CR9) 2021; 148
661_CR31
661_CR30
B Bross (661_CR28) 2021; 31
661_CR18
661_CR17
661_CR16
661_CR15
661_CR14
F Mentzer (661_CR33) 2020; 33
661_CR24
661_CR22
661_CR21
661_CR20
References_xml – ident: 661_CR34
  doi: 10.1007/978-3-030-71278-5_10
– volume: 9
  start-page: 16181
  issue: 17
  year: 2022
  ident: 661_CR23
  publication-title: IEEE Int. Things J.
  doi: 10.1109/JIOT.2022.3150417
– ident: 661_CR12
  doi: 10.1109/CVPR.2016.350
– ident: 661_CR15
– volume: 31
  start-page: 3736
  issue: 10
  year: 2021
  ident: 661_CR28
  publication-title: IEEE Trans. Circ. Syst. Video Technol.
  doi: 10.1109/TCSVT.2021.3101953
– volume: 33
  start-page: 11913
  year: 2020
  ident: 661_CR33
  publication-title: Adv. Neural Inf. Processing Syst.
– ident: 661_CR5
  doi: 10.1609/aaai.v34i07.6736
– volume: 41
  start-page: 55
  issue: 1
  year: 2022
  ident: 661_CR19
  publication-title: IEEE J. Selected Areas in Commun.
  doi: 10.1109/JSAC.2022.3221999
– volume: 11
  start-page: 286
  issue: 2
  year: 2002
  ident: 661_CR2
  publication-title: J. Electron. Imaging
  doi: 10.1117/1.1469618
– ident: 661_CR22
  doi: 10.1007/978-3-030-04167-0_9
– ident: 661_CR32
– ident: 661_CR3
– volume: 22
  start-page: 1649
  issue: 12
  year: 2012
  ident: 661_CR29
  publication-title: IEEE Trans. Circ. Syst. Video Technol.
  doi: 10.1109/TCSVT.2012.2221191
– ident: 661_CR7
– ident: 661_CR8
  doi: 10.1109/PCS56426.2022.10018039
– volume: 148
  start-page: 29
  year: 2021
  ident: 661_CR9
  publication-title: Pattern Recogn. Lett.
  doi: 10.1016/j.patrec.2021.04.024
– ident: 661_CR25
– ident: 661_CR27
– ident: 661_CR16
  doi: 10.1109/ICIP.2019.8803275
– ident: 661_CR31
  doi: 10.1007/978-3-031-19836-6_29
– ident: 661_CR30
  doi: 10.1109/CVPR42600.2020.00796
– ident: 661_CR14
– ident: 661_CR11
  doi: 10.1109/CVPR.2009.5206848
– ident: 661_CR18
  doi: 10.1109/ICCV.2019.00031
– ident: 661_CR20
– ident: 661_CR1
  doi: 10.1109/30.125072
– ident: 661_CR17
  doi: 10.1109/GLOBECOM46510.2021.9685667
– ident: 661_CR21
  doi: 10.1109/ICIP40778.2020.9191247
– ident: 661_CR35
– ident: 661_CR24
  doi: 10.1109/ICASSP.2019.8683541
– ident: 661_CR6
  doi: 10.1109/CVPR.2016.90
– ident: 661_CR4
– ident: 661_CR10
  doi: 10.1109/DCC50243.2021.00024
– ident: 661_CR26
  doi: 10.1109/ICCV.2017.322
– ident: 661_CR13
  doi: 10.2352/EI.2022.34.14.COIMG-220
SSID ssj0055532
ssib044603796
ssib044736454
ssib008501553
Score 2.3240166
Snippet With the development of machine learning, advanced photography and image transmission systems, images are being processed more and more by machines, so image...
Abstract With the development of machine learning, advanced photography and image transmission systems, images are being processed more and more by machines,...
SourceID doaj
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 3
SubjectTerms Biometrics
Codec
Engineering
Image classification
Image coding
Image coding for machines
Image compression
Image Processing and Computer Vision
Image reconstruction
Image segmentation
Image transmission
Information systems
Machine learning
Machine vision
Pattern Recognition
Semantic segmentation
Semantics
Side information
Signal,Image and Speech Processing
Vision systems
Visual coding for humans and machines
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxbeiEBBHtjAahw7jjMCoqqQYIFK3SzHD9GhLWrLwMZ_4B_ySzg7CVAkxMIaR9HlO_vuO_keCJ1mvPA59WD9tLGEm4qTMhWOWAu-SGfM-1gUdnsnBkN-M8pH30Z9hZywuj1wDVwv94YyXmlpCwf7zZXOeiDhUghuhdU-WN-0TNtgqrbBeZ6zrC2RkaK3oEyENMaMk-BjIYBecUOxW_8KxfxxKxqdTX8LbTQsEV_U0m2jNTfdQZsNY8TNeVzsov792DrcND8NEBM7D-YLjydgJ7CZBc-EYRU_voTSLDyJuZPu_fUtDufDdWn5Hhr2rx-uBqSZjEAM0LElARJnmXaFcRz-S1rNtC5NYXgpqzA6DOKMtBCOZdp6XhbG0MpYXdEqXJsZk7N91JnOpu4AYQ8MMTVCW3DcnMJXQXNGFpp7LqgwWYLOWqDUU90AQ8XAQQpVw6oAVhVhVWmCLgOWn2-G5tXxAahUNSpVf6k0Qd1WE6o5UQvFaAy1IP5J0Hmrna_l30U6_A-RjtB6Fgb_ppRksos6y_mzOwY2sqxO4sb7ALpI3CY
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NThsxELYKvfRCKVCRApUP3IqV9a7X9p4QoAZUqb20SLlZ3rENOSSBJBy48Q68IU_C2PHyUwmOu7as3ZnxzDcezwwh-6VQoeYBtZ8FxwS0gjWF9Mw5tEW2rEJISWG__8izc_FrWA_zgds8X6vsdGJS1G4K8Yy8X_EEtRH_Hl5ds9g1KkZXcwuNFfKRo6WJcq4Hp0_ypOvUFqd7Rs-nqF6UlxNCxSCc6DR3jXNTdFTixqu5kl2SjZb9OcepBUOLxqKVRhf8lSFL9f5fgdT_4qrJXA3WyVrGmfRoKRhfyAc_2SCfM-akeUfPN8ng78h5msunRiYxN4sKkI7GqGkoTKNtozhKL29jchcdp9uX_uHuPrX3o8vk9C1yPvj57-SM5d4KDBDQLRjCQFdZr8AL_C_tbGVtAwpEo9vYfAw9lUJJX5XWBdEoAN6Csy1vY-ANoK6-ktXJdOK3CQ2IMQuQ1qHpFxxXRd6DVlYEIbmEskd-dIQyV8sSGia5HlqaJVkNktUkspqiR44jLZ9mxvLX6cV0dmHybjJ1AF6J1mqnPCoh33gX0DPTUgonnQ09sttxwuQ9OTfPEtQjBx13noff_qRv76-2Qz6VsSlwwVmpd8nqYnbj9xCpLNrvSRwfAXGn32c
  priority: 102
  providerName: ProQuest
Title Side information-driven image coding for hybrid machine–human vision
URI https://link.springer.com/article/10.1186/s13640-024-00661-0
https://www.proquest.com/docview/3160666597
https://doaj.org/article/5fc134ba8d7e400e9edf6268664d6daf
Volume 2025
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxEB5Bc4FDKQVE6EM-cAOL9WO93mMaJa0iNUKUSLlZXj-ghyYoSQ9cEP-Bf8gv6djZhQbBgcusZHtXuzM7j0_2zAC85rKKJYto_azzVLpG0rpQgXqPvshyEWNOCrucqouZnMzLeZsUtu5Ou3dbktlSZ7XW6t2aCZWOInJJk59EEPwQeqmcWOpbIIvzzv6WZSl4lx7z1_t2XFCu1L8TXv6xI5odzfgA9tsIkQy2In0KD8LiEJ600SJpdXF9CI_vlRJ8BuOrax9IWwY1MZv6VTJk5PoGLQZxy-SjCM6Sz19Tkha5yacow8_vP3KbPrJNMn8Os_Ho4_CCtj0SqMPAbEMxnPPChsoFiV-pvRXW1q5ystZNaiKGiKOoVBDc-ijryjnWOG8b1qQNNOdK8QL2FstFeAkkYqxYOGU9unDJ8KkoQ6crK6NUTDnehzcd28yXbSkMkyGEVmbLZINMNpnJpujDWeLsr5WpjHUeWK4-mVYrTBkdE7Kx2lcBjUmog4-IsLRS0itvYx-OO7mYVrfWRrAMuhAJ9eFtJ6vf0_9-pVf_t_wIHvHU7LdglOtj2NusbsMJRiCb5jT_cEj1GGlvMJhcTfB6Npq-_4CjQy4TVcPTjPCRXn4bIZ3xwR2qz9y0
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NTtwwEB6h5dBe-kNbdQstPrSn1iJOHMc5IAQtq6XAqmpB4uY6_mk5sAu7WyFuvEPfg4fqk3TsxFAqtTeOSawoGo-_-Sbj8QfwOueVL5lH9NPGUm4aTutMOGotxiKdF97HprD9kRge8o9H5dECXKVemLCtMmFiBGo7MeEf-VrBItVG_rtxekaDalSoriYJjdYtdt3FOaZss_WdDzi_b_J8sH3wfkg7VQFqkMrMKRIgW2hXGccFz6TVhda1qQyvZRNkt5CjY27vilxbz-vKGNYYqxvWhJKTMUElAiF_kYeO1h4sbm2PPn2-9mBZRiGedI25Vlb8caAd51Uo-_EUK0ocG-uxApd6ySqR2nqkWJsxHJpRjKE08AJM-m-FzqgwcIsW_1XJjQFy8AgedMyWbLau-BgW3HgJHnYsl3QYMnsCgy_H1pHuwNbgFtROA-SS4xPENmImIZoSfEq-X4R2MnIS93u6X5c_o6Agadvhn8Lhndj9GfTGk7F7DsQjq82M0BbJBmf4VvQ2IyvNPRdMmLwPb5Oh1Gl7aIeKyY4UqjWrQrOqaFaV9WEr2PJ6ZDhwO96YTL-pbv2q0htW8EZLWzmEPVc76zEXlEJwK6z2fVhJM6E6FJipG5_tw7s0OzeP__1JL_7_tlW4NzzY31N7O6PdZbifB0nijNFcrkBvPv3hXiJPmjevOuck8PWu18NvxIQeIQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB5VrYS4QPkTCwV8gBNYGyeO7RwqBJTQUqiQoFJvxvFP6aG77e5WVW-8A2_D4_AkjJ24pUhw6zGJFUXj8TffZDz-AJ6WXIaaBUQ_Yx3ltuO0KYSnzmEsMmUVQmoK-7gjNnf5-716bwl-5l6YuK0yY2ICaje18R_5uGKJaiP_HYdhW8Snjfbl0TGNClKx0prlNHoX2fZnp5i-zde3NnCun5Vl-_bLm006KAxQi7RmQZEMucp4aT0XvFDOVMY0VlreqC5KcCFfxzzfV6VxgTfSWtZZZzrWxfKTtVExAuF_RVayiYmfat-d-7KqkyRPvsasq6j-ONqOcxkLgDxHjRrHpsqswEVfMylyg48S4znDoQXFaEojQ8D0_1IQTVoDlwjyXzXdFCrbVbgxcFzyqnfKW7DkJ7fh5sB3yYAm8zvQfj5wngxHt0YHoW4WwZccHCLKETuNcZXgU_LtLDaWkcO089P_-v4jSQuSvjH-LuxeidXvwfJkOvH3gQTkt4UVxiHt4Azfin5nlTQ8cMGELUfwPBtKH_XHd-iU9iihe7NqNKtOZtXFCF5HW56PjEdvpxvT2b4eVrKug2UV74xy0iMA-sa7gFmhEoI74UwYwVqeCT3gwVxfeO8IXuTZuXj870968P-3PYFruAr0h62d7YdwvYzaxAWjpVqD5cXsxD9CwrToHifPJPD1qpfCb1jOIPE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Side+information-driven+image+coding+for+hybrid+machine%E2%80%93human+vision&rft.jtitle=EURASIP+journal+on+image+and+video+processing&rft.au=Zhang%2C+Zhongpeng&rft.au=Liu%2C+Ying&rft.au=Peng%2C+Wen-Hsiao&rft.date=2025-01-28&rft.pub=Springer+International+Publishing&rft.eissn=1687-5281&rft.volume=2025&rft.issue=1&rft_id=info:doi/10.1186%2Fs13640-024-00661-0&rft.externalDocID=10_1186_s13640_024_00661_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1687-5281&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1687-5281&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1687-5281&client=summon