Predicting the rate of forest fire spread toward any directions based on a CNN model considering the correlations of input variables
Modeling forest fire spread rate is a complex problem, and the existing models are unable to accurately predict the rate of fires spreading towards any directions. In this paper, a convolutional neural network (CNN)-based model is designed to predict the spread rate of forest fires spreading in any...
Saved in:
Published in | Journal of forest research Vol. 28; no. 2; pp. 111 - 119 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Taylor & Francis
04.03.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Modeling forest fire spread rate is a complex problem, and the existing models are unable to accurately predict the rate of fires spreading towards any directions. In this paper, a convolutional neural network (CNN)-based model is designed to predict the spread rate of forest fires spreading in any directions and using the spread direction as one of the model's inputs. Several outdoor burning experiments were designed and conducted in order to obtain a dataset on which the model can be trained and validated. Correlation analysis was performed on the variables, and their positions are arranged in a fourth-order matrix according to the strength of their correlations to reflect the correlations in space for feature extraction by the CNN. A deep neural network (DNN)-based model is also designed for comparison to demonstrate the advantages of considering the correlation between variables. The comparison with the improved Wang's model proves that the model proposed in this paper has higher prediction accuracy compared with the traditional model. The validation experiments were carried out in terms of fire spread rate or fire line's position. The proposed spread model can provide the technical support for managing the forest fires. |
---|---|
AbstractList | Modeling forest fire spread rate is a complex problem, and the existing models are unable to accurately predict the rate of fires spreading towards any directions. In this paper, a convolutional neural network (CNN)-based model is designed to predict the spread rate of forest fires spreading in any directions and using the spread direction as one of the model's inputs. Several outdoor burning experiments were designed and conducted in order to obtain a dataset on which the model can be trained and validated. Correlation analysis was performed on the variables, and their positions are arranged in a fourth-order matrix according to the strength of their correlations to reflect the correlations in space for feature extraction by the CNN. A deep neural network (DNN)-based model is also designed for comparison to demonstrate the advantages of considering the correlation between variables. The comparison with the improved Wang's model proves that the model proposed in this paper has higher prediction accuracy compared with the traditional model. The validation experiments were carried out in terms of fire spread rate or fire line's position. The proposed spread model can provide the technical support for managing the forest fires. |
Author | Lin, Chuanying Li, Xingdong Hu, Tongxin Liu, Jiuqing Zhang, Mingxian Li, Sanping Sun, Shufa Sun, Long |
Author_xml | – sequence: 1 givenname: Xingdong orcidid: 0000-0002-0057-9804 surname: Li fullname: Li, Xingdong email: lixd@nefu.edu.cn organization: Northeast Forestry University, Harbin, China – sequence: 2 givenname: Chuanying orcidid: 0000-0003-1921-5047 surname: Lin fullname: Lin, Chuanying organization: Northeast Forestry University – sequence: 3 givenname: Mingxian surname: Zhang fullname: Zhang, Mingxian organization: Northeast Forestry University – sequence: 4 givenname: Sanping surname: Li fullname: Li, Sanping organization: Northeast Forestry University – sequence: 5 givenname: Shufa surname: Sun fullname: Sun, Shufa organization: Northeast Forestry University – sequence: 6 givenname: Jiuqing surname: Liu fullname: Liu, Jiuqing organization: Northeast Forestry University – sequence: 7 givenname: Tongxin surname: Hu fullname: Hu, Tongxin organization: Northeast Forestry University – sequence: 8 givenname: Long surname: Sun fullname: Sun, Long organization: Northeast Forestry University |
BookMark | eNp9kE1PAjEQhhuDiYD-BJP-gcV-7C7LTUP8Sgh60PNm2E61ZmnJtEq4-8MtAa6eZjLzPu_hGbGBDx4Zu5ZiIkUjbqQuZT2bziZKKDVRUjdiVp-xoaylKKal0IO850yxD12wUYxfQiihm3LIfl8JjeuS8x88fSInSMiD5TYQxsStI-RxQwiGp7AFMhz8jpt8zkzwka8gouHBc-Dz5ZKvg8Ged_njDNKptQtE2MOByO3Ob74T_wFysOoxXrJzC33Eq-Mcs_eH-7f5U7F4eXye3y2KTkuRCmWMFvVK1ADSlFbJElRTSwMl1hK6BkojaqMqBCi1kFWVM9P8l1ZblDDVY1YdejsKMRLadkNuDbRrpWj3KtuTynavsj2qzNztgXM-e1nDNlBv2gS7PpAl8J2Lrf6_4g926X74 |
CitedBy_id | crossref_primary_10_3390_fire6060237 |
Cites_doi | 10.1007/s10694-019-00846-4 10.1029/2019EA000661 10.3390/rs70302431 10.1002/asi.10242 10.5558/tfc65450-6 10.1007/s00180-020-00999-9 10.1007/s13753-019-00233-1 10.1007/s12652-020-01963-7 10.1111/jvs.12166 10.1002/2017EF000657 10.1073/pnas.1721738115 10.1016/j.jenvman.2016.02.021 10.1016/j.jnlssr.2020.06.009 10.3390/ijgi8030143 10.1007/s11277-016-3171-6 10.2737/RMRS-GTR-371 10.1016/j.scitotenv.2017.06.219 10.1038/s43247-020-00065-8 10.1111/gcb.15569 10.1109/JSTARS.2012.2231956 |
ContentType | Journal Article |
Copyright | 2022 The Japanese Forest Society 2022 |
Copyright_xml | – notice: 2022 The Japanese Forest Society 2022 |
DBID | AAYXX CITATION |
DOI | 10.1080/13416979.2022.2138096 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Forestry |
EISSN | 1610-7403 |
EndPage | 119 |
ExternalDocumentID | 10_1080_13416979_2022_2138096 2138096 |
Genre | Forest Environment |
GroupedDBID | -4W -56 -5G -BR -~C .86 .VR 06C 06D 0BK 0R~ 0VY 1N0 203 29K 29~ 2J2 2JY 2KM 2LR 2~H 30N 30V 4.4 408 409 40D 40E 5GY 67N 67Z 6NX 7WY 8FL 8TC 8UJ 95- 95. 95~ 96X AAAVI AAAVM AABHQ AAJKR AAJMT AALDU AAMIU AAPUL AAQRR AARTL AAWCG AAYIU ABBBX ABBKH ABBXA ABCCY ABHLI ABJOX ABJVF ABLIJ ABMNI ABNWP ABPLI ABQHQ ABTHY ABXUL ACGFS ACKNC ACOMO ACPRK ACSNA ACTIO ADGTB ADHIR ADIMF ADINQ AEGNC AEGYZ AEISY AEJHL AENEX AETLH AEYOC AFRAH AFWLO AFWTZ AFZKB AGAYW AGDLA AGWIL AGWZB AGYKE AHBYD AHDLD AHSBF AHYZX AIIXL AIJEM AIRXU AKBVH AKMHD AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU ALWAN AQRUH ARMRJ ASPBG ATCPS AVWKF AWQZV AZFZN B-. BA0 BGNMA BLEHA CCCUG CS3 D-I DGEBU DKSSO DL5 DU5 EBS ECGQY EPAXT ESBYG FEDTE FNLPD FRRFC FWDCC G-Y G-Z GGCAI GGRSB GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS HF~ HG5 HG6 HMJXF HQYDN HRMNR HZ~ I09 IHE IJ- IPNFZ ITM IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX K60 K6~ KDC KOV KPH KYCEM LAS LJTGL M4Y M4Z MA- NB0 O9- O93 O9G O9I O9J OAM P19 P2P PF0 QOK QOR QOS R9I RIG RNANH ROSJB RPX RSV RTWRZ S16 S1Z S27 S3A S3B SAP SBL SDH SDM SHX SOJ SZN T13 TFL TFT TFW TQWBC TSG TSK TSV TTHFI TUC U2A U9L VC2 W23 W48 WJK WK8 Z45 ZGOLN ZOVNA ~A9 ~EX ~KM AAHBH AAYXX ABJNI ABPAQ ABXYU AFBBN AHDZW AWYRJ CITATION HVGLF NU0 Q2X TBQAZ TDBHL TUROJ |
ID | FETCH-LOGICAL-c310t-2dd306b06aa1d4f214a2861da4e61ac8a4d06d25eaa4301554f2761d1f3fe1a73 |
ISSN | 1341-6979 |
IngestDate | Fri Aug 23 00:51:04 EDT 2024 Tue Jun 13 19:49:40 EDT 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c310t-2dd306b06aa1d4f214a2861da4e61ac8a4d06d25eaa4301554f2761d1f3fe1a73 |
ORCID | 0000-0003-1921-5047 0000-0002-0057-9804 |
PageCount | 9 |
ParticipantIDs | crossref_primary_10_1080_13416979_2022_2138096 informaworld_taylorfrancis_310_1080_13416979_2022_2138096 |
PublicationCentury | 2000 |
PublicationDate | 2023-03-04 |
PublicationDateYYYYMMDD | 2023-03-04 |
PublicationDate_xml | – month: 03 year: 2023 text: 2023-03-04 day: 04 |
PublicationDecade | 2020 |
PublicationTitle | Journal of forest research |
PublicationYear | 2023 |
Publisher | Taylor & Francis |
Publisher_xml | – name: Taylor & Francis |
References | cit0011 cit0012 Sun L (cit0021) 2016; 6 cit0010 Zhang X (cit0025) 2020; 50 Wang W (cit0023) 2018; 324 cit0018 cit0015 cit0016 Ruan J (cit0019) 2021; 07 cit0013 cit0014 Mao X (cit0017) 1993; 4 cit0022 cit0001 cit0020 Wang X (cit0024) 2011; 32 Zhou X (cit0027) 2020; 02 cit0008 cit0009 cit0006 cit0007 cit0004 cit0026 cit0005 cit0002 cit0003 |
References_xml | – ident: cit0012 doi: 10.1007/s10694-019-00846-4 – ident: cit0015 doi: 10.1029/2019EA000661 – volume: 6 start-page: 11 year: 2016 ident: cit0021 publication-title: 5th Int Fire Behav Fuels Conf, Melbourne, Australia contributor: fullname: Sun L – ident: cit0006 doi: 10.3390/rs70302431 – ident: cit0003 doi: 10.1002/asi.10242 – ident: cit0020 doi: 10.5558/tfc65450-6 – ident: cit0018 doi: 10.1007/s00180-020-00999-9 – ident: cit0026 doi: 10.1007/s13753-019-00233-1 – ident: cit0010 doi: 10.1007/s12652-020-01963-7 – volume: 32 start-page: 28 year: 2011 ident: cit0024 publication-title: Heilongjiang Agric Sci contributor: fullname: Wang X – ident: cit0007 doi: 10.1111/jvs.12166 – volume: 02 start-page: 1 year: 2020 ident: cit0027 publication-title: Nanjing Univ Inf Sci Technol contributor: fullname: Zhou X – volume: 50 start-page: 7 year: 2020 ident: cit0025 publication-title: Shandong For Sci Technol contributor: fullname: Zhang X – ident: cit0005 doi: 10.1002/2017EF000657 – ident: cit0014 doi: 10.1073/pnas.1721738115 – ident: cit0009 doi: 10.1016/j.jenvman.2016.02.021 – ident: cit0016 doi: 10.1016/j.jnlssr.2020.06.009 – ident: cit0001 doi: 10.3390/ijgi8030143 – ident: cit0013 doi: 10.1007/s11277-016-3171-6 – volume: 4 start-page: 100 year: 1993 ident: cit0017 publication-title: J Appl Meteorol contributor: fullname: Mao X – volume: 07 start-page: 37 year: 2021 ident: cit0019 publication-title: Modern Comp contributor: fullname: Ruan J – ident: cit0004 doi: 10.2737/RMRS-GTR-371 – ident: cit0011 doi: 10.1016/j.scitotenv.2017.06.219 – ident: cit0002 doi: 10.1038/s43247-020-00065-8 – ident: cit0008 doi: 10.1111/gcb.15569 – ident: cit0022 doi: 10.1109/JSTARS.2012.2231956 – volume: 324 start-page: 012 year: 2018 ident: cit0023 publication-title: Iop Conf contributor: fullname: Wang W |
SSID | ssj0020384 |
Score | 2.3516502 |
Snippet | Modeling forest fire spread rate is a complex problem, and the existing models are unable to accurately predict the rate of fires spreading towards any... |
SourceID | crossref informaworld |
SourceType | Aggregation Database Publisher |
StartPage | 111 |
SubjectTerms | CNN correlation analysis different spread direction Forest fire spread rate model |
Title | Predicting the rate of forest fire spread toward any directions based on a CNN model considering the correlations of input variables |
URI | https://www.tandfonline.com/doi/abs/10.1080/13416979.2022.2138096 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELbKIiEuiKdYXvKBW5Tg2Hk4R7RitUJshURX6i1yYkfaS1p1UwSc-Tf8SWZsJ_FCQTwuUerED-X7OjO2ZzyEvGS5KbJKsrjkuYxRQ8eq0jw2RhSd4qYqJAY4ny-Ls4vs7TpfLxbfAq-l_dAk7ZeDcSX_giqUAa4YJfsXyE6NQgHcA75wBYTh-kcYv9_hNsswRjzhqQ9o_IEdCrI-6kCaRVdbsAo1WJjoHRvh5r5TYtb_DVWYxu0CFZ0sly4rDvqh2xSeY6st5u8IPOYu--1-iD7CHBujrq5-Yd36MfizhKY153fWeWANbeuN15m21G_972GAl3P5tJp9DoWfAiK7Zj6ofju-7RcuuLCeW_PC5eqnHCKBGAbdGheVSzOTGFcGhl5cZkyEspvLgKM8EMSjCDf-V3VQXTj_SuwNO0tglDzhqZCs-uF4bqvw_ZMb5CYHqWbjhdhymt0zIV0GZT_0MVxMslcHO7hmCF07JjcwcFZ3yR2PHX3taHaPLEx_n9w6tTjuPj8gX2e2UeAFRbbRTUcd0hTZRh3bqGMbBTDpzDZq2UY3PVUU2EYt22jANttqyDZs3bKNTmx7SC5O36xOzmKfwyNuYeIwxFxrmJQ2rFAq1VnH00xxWaRaZaZIVStVplmheW6UygTa7_BOCc_TTnQmVaV4RI76TW8eE1p1rRJl2ciywYTpreJQNW-4ECVrWWOOSTJ-0HrrjmqpU38C7ohAjQjUHoFjUoWfvR4sIztHxlr8tu6T_6j7lNye_w_PyNGw25vnYNoOzQtLqe_7t6H8 |
link.rule.ids | 315,783,787,27938,27939,60220,61009 |
linkProvider | Taylor & Francis |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA66gnrxLa7POXjt2jyatkdZlFXX4kHBW0nzABG6i3Y9ePaHm-lDVkEvnpsJbZJmvknmm4-Q0zCyUqRJGMQsSgL00IFKDQus5dIpZlOZIMH5NpOjB3H9GD3OcWEwrRJjaNcUiqj3avy58TC6S4k7wyJkMo2RZ8LYgFGeeCC-SJYk0kaRxhFmX0FXyJNG2FbQAG06Fs9v3XzzT9-ql875nct1ors3btJNngezqhjo9x_FHP_3SRtkrYWlcN6so02yYMstsoy6nSgGt00-7l7wRgdzpMFDRsACEzBx4OoW4PzGCa9TD0ANVHUiLvhNBhp_iQsb0FsamJSgYJhlUAvwgG7VQrteNUqFtMl52PtTOZ1V8ObDeSR4ve6Qh8uL--EoaAUcAu1RYxUwY3xEUoRSKWqEY1QolkhqlLCSKp0oYUJpWGSVEhzBm28T--fUcWepivku6ZWT0u4RSJ1WPI6LJC5QLVsr5k2jgnEehzosbJ8MumnLp02djpy25U-7sc1xbPN2bPsknZ_cvKoPSFyjZpLzP233_2F7QlZG97fjfHyV3RyQVVSvr1PaxCHpVS8ze-QxTlUc14v4E1vS74g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA4-YPHiW3w7B69d82raHmV18Vk8uOCtpE0CInQXt-vBsz_cTB_iCnrx3Exok2nmm_ab-Qg5paFVMolpEPEwDjBCBzoxPLBWKKe5TVSMBc73qboayZunsGMTTltaJebQrmkUUZ_V-HJPjOsYcWfYg0wlEZaZcN7nTMQehy-SZY8EKDq2oOlXzkVF3OjaShagTVfE89s0c-Fprnnpt7AzXCN5d8MN2-SlP6vyfvH-o5fjv55onay2oBTOGy_aIAu23CQ9VO1EKbgt8vHwiv9zkCENHjACtpeAsQNXjwDnj02YTjz8NFDVNFzwRww00RLdGjBWGhiXoGGQplDL70DRaoV2sxYoFNJS83D253Iyq-DNJ_NY3jXdJqPh5ePgKmjlG4LCY8Yq4Mb4fCSnSmtmpONMah4rZrS0iuki1tJQZXhotZYCoZsfE_nrzAlnmY7EDlkqx6XdJZC4QosoyuMoR63sQnNvGuZciIgWNLd7pN_tWjZpunRkrG1-2q1thmubtWu7R5Lve5tV9ecR12iZZOJP2_1_2J6Q3sPFMLu7Tm8PyApK19d8NnlIlqrXmT3yAKfKj2sX_gSlDu4- |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+the+rate+of+forest+fire+spread+toward+any+directions+based+on+a+CNN+model+considering+the+correlations+of+input+variables&rft.jtitle=Journal+of+forest+research&rft.au=Li%2C+Xingdong&rft.au=Lin%2C+Chuanying&rft.au=Zhang%2C+Mingxian&rft.au=Li%2C+Sanping&rft.date=2023-03-04&rft.pub=Taylor+%26+Francis&rft.issn=1341-6979&rft.eissn=1610-7403&rft.volume=28&rft.issue=2&rft.spage=111&rft.epage=119&rft_id=info:doi/10.1080%2F13416979.2022.2138096&rft.externalDocID=2138096 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1341-6979&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1341-6979&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1341-6979&client=summon |