Predicting the rate of forest fire spread toward any directions based on a CNN model considering the correlations of input variables

Modeling forest fire spread rate is a complex problem, and the existing models are unable to accurately predict the rate of fires spreading towards any directions. In this paper, a convolutional neural network (CNN)-based model is designed to predict the spread rate of forest fires spreading in any...

Full description

Saved in:
Bibliographic Details
Published inJournal of forest research Vol. 28; no. 2; pp. 111 - 119
Main Authors Li, Xingdong, Lin, Chuanying, Zhang, Mingxian, Li, Sanping, Sun, Shufa, Liu, Jiuqing, Hu, Tongxin, Sun, Long
Format Journal Article
LanguageEnglish
Published Taylor & Francis 04.03.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Modeling forest fire spread rate is a complex problem, and the existing models are unable to accurately predict the rate of fires spreading towards any directions. In this paper, a convolutional neural network (CNN)-based model is designed to predict the spread rate of forest fires spreading in any directions and using the spread direction as one of the model's inputs. Several outdoor burning experiments were designed and conducted in order to obtain a dataset on which the model can be trained and validated. Correlation analysis was performed on the variables, and their positions are arranged in a fourth-order matrix according to the strength of their correlations to reflect the correlations in space for feature extraction by the CNN. A deep neural network (DNN)-based model is also designed for comparison to demonstrate the advantages of considering the correlation between variables. The comparison with the improved Wang's model proves that the model proposed in this paper has higher prediction accuracy compared with the traditional model. The validation experiments were carried out in terms of fire spread rate or fire line's position. The proposed spread model can provide the technical support for managing the forest fires.
AbstractList Modeling forest fire spread rate is a complex problem, and the existing models are unable to accurately predict the rate of fires spreading towards any directions. In this paper, a convolutional neural network (CNN)-based model is designed to predict the spread rate of forest fires spreading in any directions and using the spread direction as one of the model's inputs. Several outdoor burning experiments were designed and conducted in order to obtain a dataset on which the model can be trained and validated. Correlation analysis was performed on the variables, and their positions are arranged in a fourth-order matrix according to the strength of their correlations to reflect the correlations in space for feature extraction by the CNN. A deep neural network (DNN)-based model is also designed for comparison to demonstrate the advantages of considering the correlation between variables. The comparison with the improved Wang's model proves that the model proposed in this paper has higher prediction accuracy compared with the traditional model. The validation experiments were carried out in terms of fire spread rate or fire line's position. The proposed spread model can provide the technical support for managing the forest fires.
Author Lin, Chuanying
Li, Xingdong
Hu, Tongxin
Liu, Jiuqing
Zhang, Mingxian
Li, Sanping
Sun, Shufa
Sun, Long
Author_xml – sequence: 1
  givenname: Xingdong
  orcidid: 0000-0002-0057-9804
  surname: Li
  fullname: Li, Xingdong
  email: lixd@nefu.edu.cn
  organization: Northeast Forestry University, Harbin, China
– sequence: 2
  givenname: Chuanying
  orcidid: 0000-0003-1921-5047
  surname: Lin
  fullname: Lin, Chuanying
  organization: Northeast Forestry University
– sequence: 3
  givenname: Mingxian
  surname: Zhang
  fullname: Zhang, Mingxian
  organization: Northeast Forestry University
– sequence: 4
  givenname: Sanping
  surname: Li
  fullname: Li, Sanping
  organization: Northeast Forestry University
– sequence: 5
  givenname: Shufa
  surname: Sun
  fullname: Sun, Shufa
  organization: Northeast Forestry University
– sequence: 6
  givenname: Jiuqing
  surname: Liu
  fullname: Liu, Jiuqing
  organization: Northeast Forestry University
– sequence: 7
  givenname: Tongxin
  surname: Hu
  fullname: Hu, Tongxin
  organization: Northeast Forestry University
– sequence: 8
  givenname: Long
  surname: Sun
  fullname: Sun, Long
  organization: Northeast Forestry University
BookMark eNp9kE1PAjEQhhuDiYD-BJP-gcV-7C7LTUP8Sgh60PNm2E61ZmnJtEq4-8MtAa6eZjLzPu_hGbGBDx4Zu5ZiIkUjbqQuZT2bziZKKDVRUjdiVp-xoaylKKal0IO850yxD12wUYxfQiihm3LIfl8JjeuS8x88fSInSMiD5TYQxsStI-RxQwiGp7AFMhz8jpt8zkzwka8gouHBc-Dz5ZKvg8Ged_njDNKptQtE2MOByO3Ob74T_wFysOoxXrJzC33Eq-Mcs_eH-7f5U7F4eXye3y2KTkuRCmWMFvVK1ADSlFbJElRTSwMl1hK6BkojaqMqBCi1kFWVM9P8l1ZblDDVY1YdejsKMRLadkNuDbRrpWj3KtuTynavsj2qzNztgXM-e1nDNlBv2gS7PpAl8J2Lrf6_4g926X74
CitedBy_id crossref_primary_10_3390_fire6060237
Cites_doi 10.1007/s10694-019-00846-4
10.1029/2019EA000661
10.3390/rs70302431
10.1002/asi.10242
10.5558/tfc65450-6
10.1007/s00180-020-00999-9
10.1007/s13753-019-00233-1
10.1007/s12652-020-01963-7
10.1111/jvs.12166
10.1002/2017EF000657
10.1073/pnas.1721738115
10.1016/j.jenvman.2016.02.021
10.1016/j.jnlssr.2020.06.009
10.3390/ijgi8030143
10.1007/s11277-016-3171-6
10.2737/RMRS-GTR-371
10.1016/j.scitotenv.2017.06.219
10.1038/s43247-020-00065-8
10.1111/gcb.15569
10.1109/JSTARS.2012.2231956
ContentType Journal Article
Copyright 2022 The Japanese Forest Society 2022
Copyright_xml – notice: 2022 The Japanese Forest Society 2022
DBID AAYXX
CITATION
DOI 10.1080/13416979.2022.2138096
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Forestry
EISSN 1610-7403
EndPage 119
ExternalDocumentID 10_1080_13416979_2022_2138096
2138096
Genre Forest Environment
GroupedDBID -4W
-56
-5G
-BR
-~C
.86
.VR
06C
06D
0BK
0R~
0VY
1N0
203
29K
29~
2J2
2JY
2KM
2LR
2~H
30N
30V
4.4
408
409
40D
40E
5GY
67N
67Z
6NX
7WY
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVI
AAAVM
AABHQ
AAJKR
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
AARTL
AAWCG
AAYIU
ABBBX
ABBKH
ABBXA
ABCCY
ABHLI
ABJOX
ABJVF
ABLIJ
ABMNI
ABNWP
ABPLI
ABQHQ
ABTHY
ABXUL
ACGFS
ACKNC
ACOMO
ACPRK
ACSNA
ACTIO
ADGTB
ADHIR
ADIMF
ADINQ
AEGNC
AEGYZ
AEISY
AEJHL
AENEX
AETLH
AEYOC
AFRAH
AFWLO
AFWTZ
AFZKB
AGAYW
AGDLA
AGWIL
AGWZB
AGYKE
AHBYD
AHDLD
AHSBF
AHYZX
AIIXL
AIJEM
AIRXU
AKBVH
AKMHD
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
ALWAN
AQRUH
ARMRJ
ASPBG
ATCPS
AVWKF
AWQZV
AZFZN
B-.
BA0
BGNMA
BLEHA
CCCUG
CS3
D-I
DGEBU
DKSSO
DL5
DU5
EBS
ECGQY
EPAXT
ESBYG
FEDTE
FNLPD
FRRFC
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HZ~
I09
IHE
IJ-
IPNFZ
ITM
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
K60
K6~
KDC
KOV
KPH
KYCEM
LAS
LJTGL
M4Y
M4Z
MA-
NB0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
PF0
QOK
QOR
QOS
R9I
RIG
RNANH
ROSJB
RPX
RSV
RTWRZ
S16
S1Z
S27
S3A
S3B
SAP
SBL
SDH
SDM
SHX
SOJ
SZN
T13
TFL
TFT
TFW
TQWBC
TSG
TSK
TSV
TTHFI
TUC
U2A
U9L
VC2
W23
W48
WJK
WK8
Z45
ZGOLN
ZOVNA
~A9
~EX
~KM
AAHBH
AAYXX
ABJNI
ABPAQ
ABXYU
AFBBN
AHDZW
AWYRJ
CITATION
HVGLF
NU0
Q2X
TBQAZ
TDBHL
TUROJ
ID FETCH-LOGICAL-c310t-2dd306b06aa1d4f214a2861da4e61ac8a4d06d25eaa4301554f2761d1f3fe1a73
ISSN 1341-6979
IngestDate Fri Aug 23 00:51:04 EDT 2024
Tue Jun 13 19:49:40 EDT 2023
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c310t-2dd306b06aa1d4f214a2861da4e61ac8a4d06d25eaa4301554f2761d1f3fe1a73
ORCID 0000-0003-1921-5047
0000-0002-0057-9804
PageCount 9
ParticipantIDs crossref_primary_10_1080_13416979_2022_2138096
informaworld_taylorfrancis_310_1080_13416979_2022_2138096
PublicationCentury 2000
PublicationDate 2023-03-04
PublicationDateYYYYMMDD 2023-03-04
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-03-04
  day: 04
PublicationDecade 2020
PublicationTitle Journal of forest research
PublicationYear 2023
Publisher Taylor & Francis
Publisher_xml – name: Taylor & Francis
References cit0011
cit0012
Sun L (cit0021) 2016; 6
cit0010
Zhang X (cit0025) 2020; 50
Wang W (cit0023) 2018; 324
cit0018
cit0015
cit0016
Ruan J (cit0019) 2021; 07
cit0013
cit0014
Mao X (cit0017) 1993; 4
cit0022
cit0001
cit0020
Wang X (cit0024) 2011; 32
Zhou X (cit0027) 2020; 02
cit0008
cit0009
cit0006
cit0007
cit0004
cit0026
cit0005
cit0002
cit0003
References_xml – ident: cit0012
  doi: 10.1007/s10694-019-00846-4
– ident: cit0015
  doi: 10.1029/2019EA000661
– volume: 6
  start-page: 11
  year: 2016
  ident: cit0021
  publication-title: 5th Int Fire Behav Fuels Conf, Melbourne, Australia
  contributor:
    fullname: Sun L
– ident: cit0006
  doi: 10.3390/rs70302431
– ident: cit0003
  doi: 10.1002/asi.10242
– ident: cit0020
  doi: 10.5558/tfc65450-6
– ident: cit0018
  doi: 10.1007/s00180-020-00999-9
– ident: cit0026
  doi: 10.1007/s13753-019-00233-1
– ident: cit0010
  doi: 10.1007/s12652-020-01963-7
– volume: 32
  start-page: 28
  year: 2011
  ident: cit0024
  publication-title: Heilongjiang Agric Sci
  contributor:
    fullname: Wang X
– ident: cit0007
  doi: 10.1111/jvs.12166
– volume: 02
  start-page: 1
  year: 2020
  ident: cit0027
  publication-title: Nanjing Univ Inf Sci Technol
  contributor:
    fullname: Zhou X
– volume: 50
  start-page: 7
  year: 2020
  ident: cit0025
  publication-title: Shandong For Sci Technol
  contributor:
    fullname: Zhang X
– ident: cit0005
  doi: 10.1002/2017EF000657
– ident: cit0014
  doi: 10.1073/pnas.1721738115
– ident: cit0009
  doi: 10.1016/j.jenvman.2016.02.021
– ident: cit0016
  doi: 10.1016/j.jnlssr.2020.06.009
– ident: cit0001
  doi: 10.3390/ijgi8030143
– ident: cit0013
  doi: 10.1007/s11277-016-3171-6
– volume: 4
  start-page: 100
  year: 1993
  ident: cit0017
  publication-title: J Appl Meteorol
  contributor:
    fullname: Mao X
– volume: 07
  start-page: 37
  year: 2021
  ident: cit0019
  publication-title: Modern Comp
  contributor:
    fullname: Ruan J
– ident: cit0004
  doi: 10.2737/RMRS-GTR-371
– ident: cit0011
  doi: 10.1016/j.scitotenv.2017.06.219
– ident: cit0002
  doi: 10.1038/s43247-020-00065-8
– ident: cit0008
  doi: 10.1111/gcb.15569
– ident: cit0022
  doi: 10.1109/JSTARS.2012.2231956
– volume: 324
  start-page: 012
  year: 2018
  ident: cit0023
  publication-title: Iop Conf
  contributor:
    fullname: Wang W
SSID ssj0020384
Score 2.3516502
Snippet Modeling forest fire spread rate is a complex problem, and the existing models are unable to accurately predict the rate of fires spreading towards any...
SourceID crossref
informaworld
SourceType Aggregation Database
Publisher
StartPage 111
SubjectTerms CNN
correlation analysis
different spread direction
Forest fire spread rate model
Title Predicting the rate of forest fire spread toward any directions based on a CNN model considering the correlations of input variables
URI https://www.tandfonline.com/doi/abs/10.1080/13416979.2022.2138096
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELbKIiEuiKdYXvKBW5Tg2Hk4R7RitUJshURX6i1yYkfaS1p1UwSc-Tf8SWZsJ_FCQTwuUerED-X7OjO2ZzyEvGS5KbJKsrjkuYxRQ8eq0jw2RhSd4qYqJAY4ny-Ls4vs7TpfLxbfAq-l_dAk7ZeDcSX_giqUAa4YJfsXyE6NQgHcA75wBYTh-kcYv9_hNsswRjzhqQ9o_IEdCrI-6kCaRVdbsAo1WJjoHRvh5r5TYtb_DVWYxu0CFZ0sly4rDvqh2xSeY6st5u8IPOYu--1-iD7CHBujrq5-Yd36MfizhKY153fWeWANbeuN15m21G_972GAl3P5tJp9DoWfAiK7Zj6ofju-7RcuuLCeW_PC5eqnHCKBGAbdGheVSzOTGFcGhl5cZkyEspvLgKM8EMSjCDf-V3VQXTj_SuwNO0tglDzhqZCs-uF4bqvw_ZMb5CYHqWbjhdhymt0zIV0GZT_0MVxMslcHO7hmCF07JjcwcFZ3yR2PHX3taHaPLEx_n9w6tTjuPj8gX2e2UeAFRbbRTUcd0hTZRh3bqGMbBTDpzDZq2UY3PVUU2EYt22jANttqyDZs3bKNTmx7SC5O36xOzmKfwyNuYeIwxFxrmJQ2rFAq1VnH00xxWaRaZaZIVStVplmheW6UygTa7_BOCc_TTnQmVaV4RI76TW8eE1p1rRJl2ciywYTpreJQNW-4ECVrWWOOSTJ-0HrrjmqpU38C7ohAjQjUHoFjUoWfvR4sIztHxlr8tu6T_6j7lNye_w_PyNGw25vnYNoOzQtLqe_7t6H8
link.rule.ids 315,783,787,27938,27939,60220,61009
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA66gnrxLa7POXjt2jyatkdZlFXX4kHBW0nzABG6i3Y9ePaHm-lDVkEvnpsJbZJmvknmm4-Q0zCyUqRJGMQsSgL00IFKDQus5dIpZlOZIMH5NpOjB3H9GD3OcWEwrRJjaNcUiqj3avy58TC6S4k7wyJkMo2RZ8LYgFGeeCC-SJYk0kaRxhFmX0FXyJNG2FbQAG06Fs9v3XzzT9-ql875nct1ors3btJNngezqhjo9x_FHP_3SRtkrYWlcN6so02yYMstsoy6nSgGt00-7l7wRgdzpMFDRsACEzBx4OoW4PzGCa9TD0ANVHUiLvhNBhp_iQsb0FsamJSgYJhlUAvwgG7VQrteNUqFtMl52PtTOZ1V8ObDeSR4ve6Qh8uL--EoaAUcAu1RYxUwY3xEUoRSKWqEY1QolkhqlLCSKp0oYUJpWGSVEhzBm28T--fUcWepivku6ZWT0u4RSJ1WPI6LJC5QLVsr5k2jgnEehzosbJ8MumnLp02djpy25U-7sc1xbPN2bPsknZ_cvKoPSFyjZpLzP233_2F7QlZG97fjfHyV3RyQVVSvr1PaxCHpVS8ze-QxTlUc14v4E1vS74g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA4-YPHiW3w7B69d82raHmV18Vk8uOCtpE0CInQXt-vBsz_cTB_iCnrx3Exok2nmm_ab-Qg5paFVMolpEPEwDjBCBzoxPLBWKKe5TVSMBc73qboayZunsGMTTltaJebQrmkUUZ_V-HJPjOsYcWfYg0wlEZaZcN7nTMQehy-SZY8EKDq2oOlXzkVF3OjaShagTVfE89s0c-Fprnnpt7AzXCN5d8MN2-SlP6vyfvH-o5fjv55onay2oBTOGy_aIAu23CQ9VO1EKbgt8vHwiv9zkCENHjACtpeAsQNXjwDnj02YTjz8NFDVNFzwRww00RLdGjBWGhiXoGGQplDL70DRaoV2sxYoFNJS83D253Iyq-DNJ_NY3jXdJqPh5ePgKmjlG4LCY8Yq4Mb4fCSnSmtmpONMah4rZrS0iuki1tJQZXhotZYCoZsfE_nrzAlnmY7EDlkqx6XdJZC4QosoyuMoR63sQnNvGuZciIgWNLd7pN_tWjZpunRkrG1-2q1thmubtWu7R5Lve5tV9ecR12iZZOJP2_1_2J6Q3sPFMLu7Tm8PyApK19d8NnlIlqrXmT3yAKfKj2sX_gSlDu4-
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+the+rate+of+forest+fire+spread+toward+any+directions+based+on+a+CNN+model+considering+the+correlations+of+input+variables&rft.jtitle=Journal+of+forest+research&rft.au=Li%2C+Xingdong&rft.au=Lin%2C+Chuanying&rft.au=Zhang%2C+Mingxian&rft.au=Li%2C+Sanping&rft.date=2023-03-04&rft.pub=Taylor+%26+Francis&rft.issn=1341-6979&rft.eissn=1610-7403&rft.volume=28&rft.issue=2&rft.spage=111&rft.epage=119&rft_id=info:doi/10.1080%2F13416979.2022.2138096&rft.externalDocID=2138096
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1341-6979&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1341-6979&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1341-6979&client=summon