Generative AI and CAD automation for diverse and novel mechanical component designs under data constraints
The efficient design of complex engineering components in data-constrained environments presents significant challenges to traditional methodologies. Existing deep learning-based generative design approaches often depend on large datasets, which limits their applicability in data-scarce contexts. Ad...
Saved in:
Published in | Discover applied sciences Vol. 7; no. 4; pp. 315 - 21 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
09.04.2025
Springer Nature B.V Springer |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The efficient design of complex engineering components in data-constrained environments presents significant challenges to traditional methodologies. Existing deep learning-based generative design approaches often depend on large datasets, which limits their applicability in data-scarce contexts. Additionally, conventional image generation techniques often produce impractical designs, requiring extensive manual validation by engineers. This paper presents a novel method that integrates stable diffusion-based Generative AI with computer-aided design automation to minimize data requirements while maintaining high design accuracy. Through the implementation of low-rank adaptation fine-tuning, the proposed method reduces the required training data from over 16,600 to approximately 200 samples. This significant reduction in data ensures efficiency in data-scarce environments while ensuring compliance with stringent mechanical and aesthetic design requirements. Experimental results demonstrate a consistent 90% accuracy in generating feasible designs that meet these constraints. This paper also explores the relevant background and technological developments that support these experimental results, offering context for the challenges and solutions addressed. Furthermore, the automated validation system further enhances efficiency by filtering out all infeasible designs, thereby eliminating the need for manual expert validation. Experimental results demonstrate a 30% reduction in the overall design process, from initial concept to prototyping preparation, compared to traditional workflows, confirming the method’s effectiveness in real-world applications. This research provides a scalable solution to the challenges of generative design in data-limited settings and contributes to advancing intelligent design systems across various engineering sectors.
Article Highlights
A new AI-assisted approach accelerates mechanical design by automatically generating diverse design options.
The method significantly reduces data requirements while maintaining high accuracy in generating feasible designs.
An automated validation system ensures only feasible designs are generated, allowing non-experts to participate in mechanical design. |
---|---|
AbstractList | The efficient design of complex engineering components in data-constrained environments presents significant challenges to traditional methodologies. Existing deep learning-based generative design approaches often depend on large datasets, which limits their applicability in data-scarce contexts. Additionally, conventional image generation techniques often produce impractical designs, requiring extensive manual validation by engineers. This paper presents a novel method that integrates stable diffusion-based Generative AI with computer-aided design automation to minimize data requirements while maintaining high design accuracy. Through the implementation of low-rank adaptation fine-tuning, the proposed method reduces the required training data from over 16,600 to approximately 200 samples. This significant reduction in data ensures efficiency in data-scarce environments while ensuring compliance with stringent mechanical and aesthetic design requirements. Experimental results demonstrate a consistent 90% accuracy in generating feasible designs that meet these constraints. This paper also explores the relevant background and technological developments that support these experimental results, offering context for the challenges and solutions addressed. Furthermore, the automated validation system further enhances efficiency by filtering out all infeasible designs, thereby eliminating the need for manual expert validation. Experimental results demonstrate a 30% reduction in the overall design process, from initial concept to prototyping preparation, compared to traditional workflows, confirming the method’s effectiveness in real-world applications. This research provides a scalable solution to the challenges of generative design in data-limited settings and contributes to advancing intelligent design systems across various engineering sectors.
Article Highlights
A new AI-assisted approach accelerates mechanical design by automatically generating diverse design options.
The method significantly reduces data requirements while maintaining high accuracy in generating feasible designs.
An automated validation system ensures only feasible designs are generated, allowing non-experts to participate in mechanical design. The efficient design of complex engineering components in data-constrained environments presents significant challenges to traditional methodologies. Existing deep learning-based generative design approaches often depend on large datasets, which limits their applicability in data-scarce contexts. Additionally, conventional image generation techniques often produce impractical designs, requiring extensive manual validation by engineers. This paper presents a novel method that integrates stable diffusion-based Generative AI with computer-aided design automation to minimize data requirements while maintaining high design accuracy. Through the implementation of low-rank adaptation fine-tuning, the proposed method reduces the required training data from over 16,600 to approximately 200 samples. This significant reduction in data ensures efficiency in data-scarce environments while ensuring compliance with stringent mechanical and aesthetic design requirements. Experimental results demonstrate a consistent 90% accuracy in generating feasible designs that meet these constraints. This paper also explores the relevant background and technological developments that support these experimental results, offering context for the challenges and solutions addressed. Furthermore, the automated validation system further enhances efficiency by filtering out all infeasible designs, thereby eliminating the need for manual expert validation. Experimental results demonstrate a 30% reduction in the overall design process, from initial concept to prototyping preparation, compared to traditional workflows, confirming the method’s effectiveness in real-world applications. This research provides a scalable solution to the challenges of generative design in data-limited settings and contributes to advancing intelligent design systems across various engineering sectors.Article HighlightsA new AI-assisted approach accelerates mechanical design by automatically generating diverse design options.The method significantly reduces data requirements while maintaining high accuracy in generating feasible designs.An automated validation system ensures only feasible designs are generated, allowing non-experts to participate in mechanical design. Abstract The efficient design of complex engineering components in data-constrained environments presents significant challenges to traditional methodologies. Existing deep learning-based generative design approaches often depend on large datasets, which limits their applicability in data-scarce contexts. Additionally, conventional image generation techniques often produce impractical designs, requiring extensive manual validation by engineers. This paper presents a novel method that integrates stable diffusion-based Generative AI with computer-aided design automation to minimize data requirements while maintaining high design accuracy. Through the implementation of low-rank adaptation fine-tuning, the proposed method reduces the required training data from over 16,600 to approximately 200 samples. This significant reduction in data ensures efficiency in data-scarce environments while ensuring compliance with stringent mechanical and aesthetic design requirements. Experimental results demonstrate a consistent 90% accuracy in generating feasible designs that meet these constraints. This paper also explores the relevant background and technological developments that support these experimental results, offering context for the challenges and solutions addressed. Furthermore, the automated validation system further enhances efficiency by filtering out all infeasible designs, thereby eliminating the need for manual expert validation. Experimental results demonstrate a 30% reduction in the overall design process, from initial concept to prototyping preparation, compared to traditional workflows, confirming the method’s effectiveness in real-world applications. This research provides a scalable solution to the challenges of generative design in data-limited settings and contributes to advancing intelligent design systems across various engineering sectors. |
ArticleNumber | 315 |
Author | Li, Kun-Ying Chen, Qing-Wei Tang, Tsann-Tay Zhang, Hsuan-Cheng Huang, Cheng-Kai |
Author_xml | – sequence: 1 givenname: Kun-Ying surname: Li fullname: Li, Kun-Ying organization: Department of Intelligent Automation Engineering, National Chin-Yi University of Technology – sequence: 2 givenname: Cheng-Kai surname: Huang fullname: Huang, Cheng-Kai email: CKHuang@ncut.edu.tw organization: Department of Mechanical Engineering, National Chin-Yi University of Technology – sequence: 3 givenname: Qing-Wei surname: Chen fullname: Chen, Qing-Wei organization: Department of Mechanical Engineering, National Chin-Yi University of Technology – sequence: 4 givenname: Hsuan-Cheng surname: Zhang fullname: Zhang, Hsuan-Cheng organization: Department of Mechanical Engineering, National Chin-Yi University of Technology – sequence: 5 givenname: Tsann-Tay surname: Tang fullname: Tang, Tsann-Tay organization: Information and Communications Research Laboratories, Industrial Technology Research Institute |
BookMark | eNp9UUtrGzEQFiGFPP9AToKcNx09d3U0busYArkkZ6FdzbprbMmR5ED_fRVvaHvqaYbvNQPfFTkPMSAhdwweGED7NUsuFW-AqwZ0J0SjzsilAJCN4Zqd_7NfkNuctwAgBLStMpdku8KAyZXpHeliTV3wdLn4Rt2xxH1FY6BjTNRXOmU80SG-447ucfjpwjS4HR3i_lAfCoV6zNMmZHoMHqvJFVfJkEtyUyj5hnwZ3S7j7ee8Jq8_vr8sH5un59V6uXhqBsGgNFwLhtAxPeqecSaRedRSVWjseyawM1w6DthqQNSetUp6qaEXTPVaIBfXZD3n-ui29pCmvUu_bHSTPQExbaxLZRp2aNFL743CjnEuwYyd4EwYGHvW1omqZt3PWYcU346Yi93GYwr1fSuYASW0MV1V8Vk1pJhzwvHPVQb2oyI7V2RrRfZUkf2IFrMpV3HYYPob_R_Xb63OlCA |
Cites_doi | 10.24002/jarina.v2i1.6662 10.1145/3563657.3596098 10.1109/TPAMI.1986.4767851 10.3390/machines11090879 10.1145/3569219.3569352 10.1007/978-3-031-60107-1_13 10.48550/arXiv.2311.05556 10.1115/DETC2022-67123 10.1115/1.4053011 10.1017/pds.2023.184 10.1787/bdb9256a-en 10.48550/arXiv.2303.12755 10.1007/s00158-021-02953-9 10.1109/PuneCon55413.2022.10014718 10.3390/designs4030019 |
ContentType | Journal Article |
Copyright | The Author(s) 2025 Copyright Springer Nature B.V. Apr 2025 |
Copyright_xml | – notice: The Author(s) 2025 – notice: Copyright Springer Nature B.V. Apr 2025 |
DBID | C6C AAYXX CITATION 3V. 7XB 88I 8FE 8FG 8FK ABJCF ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BGLVJ BHPHI BKSAR CCPQU D1I DWQXO GNUQQ HCIFZ KB. L6V M2P M7S PATMY PCBAR PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY Q9U DOA |
DOI | 10.1007/s42452-025-06833-5 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Technology collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea ProQuest Central Student SciTech Premium Collection Materials Science Database ProQuest Engineering Collection Science Database Engineering Database Environmental Science Database Earth, Atmospheric & Aquatic Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection ProQuest Central Basic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Engineering Collection Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Materials Science Database ProQuest Central (New) Engineering Collection ProQuest Materials Science Collection Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Environmental Science Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection Environmental Science Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 3004-9261 2523-3971 |
EndPage | 21 |
ExternalDocumentID | oai_doaj_org_article_ed4dd95e8122409f8321390fb17139e5 10_1007_s42452_025_06833_5 |
GrantInformation_xml | – fundername: National Science and Technology Council grantid: NSTC113-2222-E-167-001-MY2 funderid: http://dx.doi.org/10.13039/100020595 |
GroupedDBID | AAJSJ AASML ADMLS ALMA_UNASSIGNED_HOLDINGS BGNMA C6C GROUPED_DOAJ M4Y M~E NU0 SOJ AAYXX CITATION 0R~ 3V. 7XB 88I 8FE 8FG 8FK AAHNG AAKKN ABDZT ABECU ABEEZ ABFTV ABHQN ABJCF ABKCH ABMQK ABTMW ABUWG ABXPI ACACY ACMLO ACOKC ACSTC ACULB ADKNI ADURQ ADYFF AEJRE AEUYN AFGXO AFKRA AFQWF AGDGC AGJBK AILAN AITGF AJZVZ AMKLP ATCPS AXYYD AZQEC BAPOH BENPR BGLVJ BHPHI BKSAR C24 CCPQU D1I DWQXO EBLON EBS FNLPD GNUQQ GNWQR HCIFZ J-C KB. KOV L6V M2P M7S NQJWS OK1 PATMY PCBAR PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY Q9U STPWE TSG UOJIU UTJUX VEKWB VFIZW ZMTXR |
ID | FETCH-LOGICAL-c310t-2631e0816f6b1214e1de645e08fbb13e8924a20e760ee6d1754d460b315b63e23 |
IEDL.DBID | C6C |
ISSN | 3004-9261 2523-3963 |
IngestDate | Wed Aug 27 01:26:14 EDT 2025 Wed Aug 13 10:52:54 EDT 2025 Sun Jul 06 05:02:17 EDT 2025 Mon Jul 21 06:07:54 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Engineering design Data-constrained environments CAD automation Generative artificial intelligence |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c310t-2631e0816f6b1214e1de645e08fbb13e8924a20e760ee6d1754d460b315b63e23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://doi.org/10.1007/s42452-025-06833-5 |
PQID | 3190536998 |
PQPubID | 5758472 |
PageCount | 21 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_ed4dd95e8122409f8321390fb17139e5 proquest_journals_3190536998 crossref_primary_10_1007_s42452_025_06833_5 springer_journals_10_1007_s42452_025_06833_5 |
PublicationCentury | 2000 |
PublicationDate | 2025-04-09 |
PublicationDateYYYYMMDD | 2025-04-09 |
PublicationDate_xml | – month: 04 year: 2025 text: 2025-04-09 day: 09 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: London |
PublicationTitle | Discover applied sciences |
PublicationTitleAbbrev | Discov Appl Sci |
PublicationYear | 2025 |
Publisher | Springer International Publishing Springer Nature B.V Springer |
Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V – name: Springer |
References | 6833_CR26 6833_CR28 A Lianos (6833_CR18) 2020; 4 DE Goldberg (6833_CR10) 1989 E Enjellina (6833_CR23) 2023 S Yoo (6833_CR11) 2021; 63 6833_CR8 6833_CR6 6833_CR7 6833_CR4 J Smith (6833_CR14) 2023; 115 6833_CR5 J Canny (6833_CR27) 1986; 8 6833_CR2 OECD (6833_CR1) 2021 6833_CR3 6833_CR20 6833_CR22 K Deb (6833_CR9) 2001 R Davis (6833_CR13) 2022; 19 M Johnson (6833_CR15) 2022; 18 6833_CR24 Y Zhang (6833_CR12) 2022; 144 6833_CR25 6833_CR16 YH Lee (6833_CR19) 2024 H Bikas (6833_CR17) 2023; 11 R Brisco (6833_CR21) 2023; 3 |
References_xml | – year: 2023 ident: 6833_CR23 publication-title: J Artif Intell Archit doi: 10.24002/jarina.v2i1.6662 – ident: 6833_CR20 doi: 10.1145/3563657.3596098 – volume: 8 start-page: 679 issue: 6 year: 1986 ident: 6833_CR27 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.1986.4767851 – volume: 11 start-page: 879 issue: 9 year: 2023 ident: 6833_CR17 publication-title: Machines doi: 10.3390/machines11090879 – ident: 6833_CR2 – ident: 6833_CR4 – ident: 6833_CR22 doi: 10.1145/3569219.3569352 – volume-title: Multi-objective optimization using evolutionary algorithms year: 2001 ident: 6833_CR9 – volume-title: Genetic algorithms in search, optimization, and machine learning year: 1989 ident: 6833_CR10 – ident: 6833_CR8 – start-page: 178 volume-title: International Conference on Human-Computer Interaction year: 2024 ident: 6833_CR19 doi: 10.1007/978-3-031-60107-1_13 – ident: 6833_CR25 doi: 10.48550/arXiv.2311.05556 – ident: 6833_CR6 – ident: 6833_CR16 doi: 10.1115/DETC2022-67123 – volume: 144 start-page: 051702 issue: 5 year: 2022 ident: 6833_CR12 publication-title: J Mech Des doi: 10.1115/1.4053011 – ident: 6833_CR28 – volume: 3 start-page: 1835 year: 2023 ident: 6833_CR21 publication-title: Proc Des Soc doi: 10.1017/pds.2023.184 – volume-title: Digital transformation of SMEs: key challenges and enabling factors year: 2021 ident: 6833_CR1 doi: 10.1787/bdb9256a-en – ident: 6833_CR3 – volume: 115 start-page: 105254 year: 2023 ident: 6833_CR14 publication-title: Eng Appl Artif Intell – volume: 18 start-page: 3930 issue: 6 year: 2022 ident: 6833_CR15 publication-title: IEEE Trans Ind Inform – ident: 6833_CR5 – ident: 6833_CR26 doi: 10.48550/arXiv.2303.12755 – volume: 63 start-page: 2667 year: 2021 ident: 6833_CR11 publication-title: Struct Multidisc Optim doi: 10.1007/s00158-021-02953-9 – ident: 6833_CR24 doi: 10.1109/PuneCon55413.2022.10014718 – volume: 19 start-page: 23 issue: 1 year: 2022 ident: 6833_CR13 publication-title: Comput Aided Des Appl – ident: 6833_CR7 – volume: 4 start-page: 19 issue: 3 year: 2020 ident: 6833_CR18 publication-title: Designs doi: 10.3390/designs4030019 |
SSID | ssj0003307759 ssj0002793483 ssib051670015 |
Score | 2.3017669 |
Snippet | The efficient design of complex engineering components in data-constrained environments presents significant challenges to traditional methodologies. Existing... Abstract The efficient design of complex engineering components in data-constrained environments presents significant challenges to traditional methodologies.... |
SourceID | doaj proquest crossref springer |
SourceType | Open Website Aggregation Database Index Database Publisher |
StartPage | 315 |
SubjectTerms | Aesthetic design Applied and Technical Physics Automation CAD CAD automation Chemistry/Food Science Computer aided design Constraints Costs Data-constrained environments Datasets Deep learning Design optimization Designers Diffusion models Earth Sciences Efficiency Engineering Engineering design Environment Generative artificial intelligence Image processing Machine learning Manufacturing Materials Science Mechanical components Methods Performance evaluation Product development Prototyping |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDI7QTlwQCBCFgXLgBhFN82h7HIhpIMGJSbtFyeJKIOgQ6_j9OGk3NiTEhWvcqpad-iHbnwk512UFU289Ew40kzZ1zIWCo3d5oQvhtY-zVQ-PejSW9xM1WVv1FXrCWnjgVnBX4KX3pYIilIDSsgqbdTBPrxzH9KqEiF6KPm8tmQo2GLP0PFdlNyUTZ-VCiS9jYXtrikwIpjY8UQTs34gyfxRGo78Z7pKdLlCkg5bBPbIF9T55aVGig4migztqa09RlNQumlk7gkgxBqU-9lpAJNezT3ilbxAGfIM-aOghn9XoaqiPzRtzGsbI8CXbWCQGQFn7XDfzAzIe3j7djFi3LYFNMURrWKYFh7BGo9KOZ1wC96ClwqPKOS6gwEzLZinkOgXQHsMG6aVOneDKaQGZOCS9Gr9_RKiQoCvleKEtl6ryTuQSw8gUJKZj1bRMyMVScua9BcUwK_jjKGeDcjZRzkYl5DoId_VkALSOB6hm06nZ_KXmhPSXqjHdXzY3aD7QhmjMGBNyuVTXN_l3lo7_g6UTsp3F6yRZWvZJr_lYwClGKI07i5fxC-Xr3uI priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NT90wDI-2x2U7IPalPWBTDtxYtKT5eO0JAQKxSSA0DYlblLy4aIi1jFf4-7HzUhhI2zVp08p2HDu2f2ZsyzUtzFNIQkdwwgQZRaSAY4qz2tU6uZRrq45P3NGZ-X5uz8uF26KkVY46MSvq1M_pjvwrigrKi0PvYOf6j6CuURRdLS00XrIVVMF1PWErewcnpz9GibKKqlDKgXeZw2yNNhmbs0IPTGgUv1JJk-vpKAxYCerwKvFHtbBPTqsM6v_EEn0WPM1n0uEaWy3GJN9dcv8NewHdW_b6L4jBd-xyiStNSo3vfuOhSxyJz8Pt0C-LFjlarTzl7AzI011_B1f8N1BJMHGQU9Z53-HhxFNO91hwKjzDl8IQcJIgaMOvbli8Z2eHBz_3j0TpryDmaNQNonJaATXeaF1UlTKgEjhjcaiNUWmo0TcLlYSZkwAuoaFhknEyamWj01DpD2zS4fc_Mq4NuNZGVbugjG1T1DODhqcEgw5cO2-mbHuko79ewmj4B8DkTHWPVPeZ6t5O2R6R-uFJgsDOA_3NhS87ykMyKTUWaooNyqallku6kW1U6Hc3gItsjozyZV8u_KMUTdmXkXmP0__-pfX_r7bBXlVZbIyQzSabDDe38AmtlSF-LiJ5D3VX4sw priority: 102 providerName: ProQuest |
Title | Generative AI and CAD automation for diverse and novel mechanical component designs under data constraints |
URI | https://link.springer.com/article/10.1007/s42452-025-06833-5 https://www.proquest.com/docview/3190536998 https://doaj.org/article/ed4dd95e8122409f8321390fb17139e5 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4VuMAB9QFiKV350FuxsONHkuOyZUurglBbJG6WvZ5IoDaL2NDf37E3uy0IDj1F8iOJZvz4xuP5BuC9rRucRh-5Cmi59iLwkByOMZSVrVS0McdWnZ3b00v95cpc9TQ5KRbmkf_-aJ48cwVPSVcF9VXcrMGGkapMaRrGdrw6TyG7vCxN3cfFPN31wd6TKfof4MpHrtC8w0xewnYPDdlooctX8ALb17D1D2HgG7hZsESnJYqNPjPfRkaiZP6-my1CEBlhUBbzXQvM1e3sN_5kvzAF-CZ9sHSHfNbSVsNivrwxZymMjDr5zlNlIpT1120334HLycmP8SnvsyXwKUG0jhdWSUxpNBobZCE1yohWGypqQpAKK7K0fCGwtALRRoINOmorgpImWIWF2oX1lr6_B0xptI0JsrJeatPEoEpNMFKgJnOsmdYD-LCUo7tdkGK4Ff1xlrojqbssdWcGcJxEvWqZCK1zAenZ9fPDYdQx1gar5OkTdZMSKKlaNEGSFV0jveRgqSjXz7K5o-WD1hBLFuMADpfK-1v9_C_t_1_zt7BZ5GGkuagPYL27u8d3hEW6MIS1avJpCBujj2dfv9Pz-OT84tswD81htu__AE3L2b0 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqcgAOiKdYKOADnMDCjh-bHBAqj2WXPk6t1Jux15OKCpLSTUH8KX4jM07SUiS49RonTjT-PI-MvxnGnrqqhmUKSegITpggo4iUcExxWrpSJ5cyt2pn1833zccDe7DGfo1cGDpWOerErKhTu6R_5C8RKogXh9HB6-NvgrpGUXZ1bKHRw2ILfv7AkG31avEO1_dZUcze772di6GrgFiiK9OJwmkF1G6idlEVyoBK4IzFS3WMSkOJEUkoJEydBHAJzatJxsmolY1OAxU6QJV_xWi05MRMn30Y8WsVcV4G83qUk3qVNrkSaIHxntAI9oG3k9l7lHQsBPWTlSgWLewF25hbCFzwe_9K1WYLOLvJbgyuK9_ssXaLrUFzm13_o6DhHXbUV7EmFco3Fzw0ieNS83DatT1FkqOPzFM-CwJ5uGm_wxf-FYiATHjhdMa9bdAU8pQPl6w40dzwodAFHKSCt-Fz063usv1Lkfs9tt7g--8zrg242kZVuqCMrVPUU4NurgSD4WK9rCbs-ShHf9wX7fBn5Zmz1D1K3Wepezthb0jUZ3dSwe18oT059MP-9ZBMSpWFkjKRsqqpwZOuZB0VRvkV4CQb40L5QQus_DlmJ-zFuHjnw__-pAf_n-0Juzrf29n224vdrYfsWpEhZISsNth6d3IKj9BP6uLjDE7OPl32bvgNauwcZw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqrYTggHiKpQV8gBNYtWPHmxwQamlXXQqrClGpN2OvJxUVTUo3BfHX-HXMOElLkeDWa5w40czneWRejD23ZQWL6KPQAawwXgYRKOAYw6SwhY42ptqqD3O7e2DeHeaHK-zXUAtDaZWDTEyCOjYL-ke-gVBBvFj0DjaqPi1if3v65vSboAlSFGkdxml0ENmDnz_QfVu-nm0jr19k2XTn09td0U8YEAs0a1qRWa2ARk9UNqhMGVARrMnxUhWC0lCgd-IzCRMrAWxEVWuisTJolQergZoeoPhfnZBXNGKrWzvz_Y8DmnNFFTC9sj1OIb5Sm9QXNEPvT2iEfl_Fk2r5KASZCZouK5FIWuRXNGUaKHDFCv4rcJv04fQOu90bsnyzQ95dtgL1PXbrj_aG99lx19OaBCrfnHFfR46M5_68bbqCSY4WM48pMwTSct18h6_8BKgcmdDDKeO9qVEx8phSTZacit7wId96XKT2t_5L3S4fsINrofxDNqrx_Y8Y1wZslQdVWK9MXsWgJwaNXgkGncdqUY7Zy4GO7rRr4eEumjUnqjukuktUd_mYbRGpL-6k9tvpQnN25PrT7CCaGMscCopLyrKicU-6lFVQ6POXgJusD4xyvUxYuksEj9mrgXmXy__-pMf_3-0Zu4Enwb2fzffW2M0sIcgIWa6zUXt2Dk_QaGrD0x6dnH2-7gPxG9xUIfk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generative+AI+and+CAD+automation+for+diverse+and+novel+mechanical+component+designs+under+data+constraints&rft.jtitle=Discover+applied+sciences&rft.au=Li%2C+Kun-Ying&rft.au=Huang%2C+Cheng-Kai&rft.au=Chen%2C+Qing-Wei&rft.au=Zhang%2C+Hsuan-Cheng&rft.date=2025-04-09&rft.pub=Springer+International+Publishing&rft.eissn=3004-9261&rft.volume=7&rft.issue=4&rft_id=info:doi/10.1007%2Fs42452-025-06833-5&rft.externalDocID=10_1007_s42452_025_06833_5 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=3004-9261&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=3004-9261&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=3004-9261&client=summon |