Generative AI and CAD automation for diverse and novel mechanical component designs under data constraints

The efficient design of complex engineering components in data-constrained environments presents significant challenges to traditional methodologies. Existing deep learning-based generative design approaches often depend on large datasets, which limits their applicability in data-scarce contexts. Ad...

Full description

Saved in:
Bibliographic Details
Published inDiscover applied sciences Vol. 7; no. 4; pp. 315 - 21
Main Authors Li, Kun-Ying, Huang, Cheng-Kai, Chen, Qing-Wei, Zhang, Hsuan-Cheng, Tang, Tsann-Tay
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 09.04.2025
Springer Nature B.V
Springer
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The efficient design of complex engineering components in data-constrained environments presents significant challenges to traditional methodologies. Existing deep learning-based generative design approaches often depend on large datasets, which limits their applicability in data-scarce contexts. Additionally, conventional image generation techniques often produce impractical designs, requiring extensive manual validation by engineers. This paper presents a novel method that integrates stable diffusion-based Generative AI with computer-aided design automation to minimize data requirements while maintaining high design accuracy. Through the implementation of low-rank adaptation fine-tuning, the proposed method reduces the required training data from over 16,600 to approximately 200 samples. This significant reduction in data ensures efficiency in data-scarce environments while ensuring compliance with stringent mechanical and aesthetic design requirements. Experimental results demonstrate a consistent 90% accuracy in generating feasible designs that meet these constraints. This paper also explores the relevant background and technological developments that support these experimental results, offering context for the challenges and solutions addressed. Furthermore, the automated validation system further enhances efficiency by filtering out all infeasible designs, thereby eliminating the need for manual expert validation. Experimental results demonstrate a 30% reduction in the overall design process, from initial concept to prototyping preparation, compared to traditional workflows, confirming the method’s effectiveness in real-world applications. This research provides a scalable solution to the challenges of generative design in data-limited settings and contributes to advancing intelligent design systems across various engineering sectors. Article Highlights A new AI-assisted approach accelerates mechanical design by automatically generating diverse design options. The method significantly reduces data requirements while maintaining high accuracy in generating feasible designs. An automated validation system ensures only feasible designs are generated, allowing non-experts to participate in mechanical design.
AbstractList The efficient design of complex engineering components in data-constrained environments presents significant challenges to traditional methodologies. Existing deep learning-based generative design approaches often depend on large datasets, which limits their applicability in data-scarce contexts. Additionally, conventional image generation techniques often produce impractical designs, requiring extensive manual validation by engineers. This paper presents a novel method that integrates stable diffusion-based Generative AI with computer-aided design automation to minimize data requirements while maintaining high design accuracy. Through the implementation of low-rank adaptation fine-tuning, the proposed method reduces the required training data from over 16,600 to approximately 200 samples. This significant reduction in data ensures efficiency in data-scarce environments while ensuring compliance with stringent mechanical and aesthetic design requirements. Experimental results demonstrate a consistent 90% accuracy in generating feasible designs that meet these constraints. This paper also explores the relevant background and technological developments that support these experimental results, offering context for the challenges and solutions addressed. Furthermore, the automated validation system further enhances efficiency by filtering out all infeasible designs, thereby eliminating the need for manual expert validation. Experimental results demonstrate a 30% reduction in the overall design process, from initial concept to prototyping preparation, compared to traditional workflows, confirming the method’s effectiveness in real-world applications. This research provides a scalable solution to the challenges of generative design in data-limited settings and contributes to advancing intelligent design systems across various engineering sectors. Article Highlights A new AI-assisted approach accelerates mechanical design by automatically generating diverse design options. The method significantly reduces data requirements while maintaining high accuracy in generating feasible designs. An automated validation system ensures only feasible designs are generated, allowing non-experts to participate in mechanical design.
The efficient design of complex engineering components in data-constrained environments presents significant challenges to traditional methodologies. Existing deep learning-based generative design approaches often depend on large datasets, which limits their applicability in data-scarce contexts. Additionally, conventional image generation techniques often produce impractical designs, requiring extensive manual validation by engineers. This paper presents a novel method that integrates stable diffusion-based Generative AI with computer-aided design automation to minimize data requirements while maintaining high design accuracy. Through the implementation of low-rank adaptation fine-tuning, the proposed method reduces the required training data from over 16,600 to approximately 200 samples. This significant reduction in data ensures efficiency in data-scarce environments while ensuring compliance with stringent mechanical and aesthetic design requirements. Experimental results demonstrate a consistent 90% accuracy in generating feasible designs that meet these constraints. This paper also explores the relevant background and technological developments that support these experimental results, offering context for the challenges and solutions addressed. Furthermore, the automated validation system further enhances efficiency by filtering out all infeasible designs, thereby eliminating the need for manual expert validation. Experimental results demonstrate a 30% reduction in the overall design process, from initial concept to prototyping preparation, compared to traditional workflows, confirming the method’s effectiveness in real-world applications. This research provides a scalable solution to the challenges of generative design in data-limited settings and contributes to advancing intelligent design systems across various engineering sectors.Article HighlightsA new AI-assisted approach accelerates mechanical design by automatically generating diverse design options.The method significantly reduces data requirements while maintaining high accuracy in generating feasible designs.An automated validation system ensures only feasible designs are generated, allowing non-experts to participate in mechanical design.
Abstract The efficient design of complex engineering components in data-constrained environments presents significant challenges to traditional methodologies. Existing deep learning-based generative design approaches often depend on large datasets, which limits their applicability in data-scarce contexts. Additionally, conventional image generation techniques often produce impractical designs, requiring extensive manual validation by engineers. This paper presents a novel method that integrates stable diffusion-based Generative AI with computer-aided design automation to minimize data requirements while maintaining high design accuracy. Through the implementation of low-rank adaptation fine-tuning, the proposed method reduces the required training data from over 16,600 to approximately 200 samples. This significant reduction in data ensures efficiency in data-scarce environments while ensuring compliance with stringent mechanical and aesthetic design requirements. Experimental results demonstrate a consistent 90% accuracy in generating feasible designs that meet these constraints. This paper also explores the relevant background and technological developments that support these experimental results, offering context for the challenges and solutions addressed. Furthermore, the automated validation system further enhances efficiency by filtering out all infeasible designs, thereby eliminating the need for manual expert validation. Experimental results demonstrate a 30% reduction in the overall design process, from initial concept to prototyping preparation, compared to traditional workflows, confirming the method’s effectiveness in real-world applications. This research provides a scalable solution to the challenges of generative design in data-limited settings and contributes to advancing intelligent design systems across various engineering sectors.
ArticleNumber 315
Author Li, Kun-Ying
Chen, Qing-Wei
Tang, Tsann-Tay
Zhang, Hsuan-Cheng
Huang, Cheng-Kai
Author_xml – sequence: 1
  givenname: Kun-Ying
  surname: Li
  fullname: Li, Kun-Ying
  organization: Department of Intelligent Automation Engineering, National Chin-Yi University of Technology
– sequence: 2
  givenname: Cheng-Kai
  surname: Huang
  fullname: Huang, Cheng-Kai
  email: CKHuang@ncut.edu.tw
  organization: Department of Mechanical Engineering, National Chin-Yi University of Technology
– sequence: 3
  givenname: Qing-Wei
  surname: Chen
  fullname: Chen, Qing-Wei
  organization: Department of Mechanical Engineering, National Chin-Yi University of Technology
– sequence: 4
  givenname: Hsuan-Cheng
  surname: Zhang
  fullname: Zhang, Hsuan-Cheng
  organization: Department of Mechanical Engineering, National Chin-Yi University of Technology
– sequence: 5
  givenname: Tsann-Tay
  surname: Tang
  fullname: Tang, Tsann-Tay
  organization: Information and Communications Research Laboratories, Industrial Technology Research Institute
BookMark eNp9UUtrGzEQFiGFPP9AToKcNx09d3U0busYArkkZ6FdzbprbMmR5ED_fRVvaHvqaYbvNQPfFTkPMSAhdwweGED7NUsuFW-AqwZ0J0SjzsilAJCN4Zqd_7NfkNuctwAgBLStMpdku8KAyZXpHeliTV3wdLn4Rt2xxH1FY6BjTNRXOmU80SG-447ucfjpwjS4HR3i_lAfCoV6zNMmZHoMHqvJFVfJkEtyUyj5hnwZ3S7j7ee8Jq8_vr8sH5un59V6uXhqBsGgNFwLhtAxPeqecSaRedRSVWjseyawM1w6DthqQNSetUp6qaEXTPVaIBfXZD3n-ui29pCmvUu_bHSTPQExbaxLZRp2aNFL743CjnEuwYyd4EwYGHvW1omqZt3PWYcU346Yi93GYwr1fSuYASW0MV1V8Vk1pJhzwvHPVQb2oyI7V2RrRfZUkf2IFrMpV3HYYPob_R_Xb63OlCA
Cites_doi 10.24002/jarina.v2i1.6662
10.1145/3563657.3596098
10.1109/TPAMI.1986.4767851
10.3390/machines11090879
10.1145/3569219.3569352
10.1007/978-3-031-60107-1_13
10.48550/arXiv.2311.05556
10.1115/DETC2022-67123
10.1115/1.4053011
10.1017/pds.2023.184
10.1787/bdb9256a-en
10.48550/arXiv.2303.12755
10.1007/s00158-021-02953-9
10.1109/PuneCon55413.2022.10014718
10.3390/designs4030019
ContentType Journal Article
Copyright The Author(s) 2025
Copyright Springer Nature B.V. Apr 2025
Copyright_xml – notice: The Author(s) 2025
– notice: Copyright Springer Nature B.V. Apr 2025
DBID C6C
AAYXX
CITATION
3V.
7XB
88I
8FE
8FG
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
D1I
DWQXO
GNUQQ
HCIFZ
KB.
L6V
M2P
M7S
PATMY
PCBAR
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
Q9U
DOA
DOI 10.1007/s42452-025-06833-5
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
Materials Science Database
ProQuest Engineering Collection
Science Database
Engineering Database
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Engineering Collection
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Materials Science Database
ProQuest Central (New)
Engineering Collection
ProQuest Materials Science Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Environmental Science Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Environmental Science Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 3004-9261
2523-3971
EndPage 21
ExternalDocumentID oai_doaj_org_article_ed4dd95e8122409f8321390fb17139e5
10_1007_s42452_025_06833_5
GrantInformation_xml – fundername: National Science and Technology Council
  grantid: NSTC113-2222-E-167-001-MY2
  funderid: http://dx.doi.org/10.13039/100020595
GroupedDBID AAJSJ
AASML
ADMLS
ALMA_UNASSIGNED_HOLDINGS
BGNMA
C6C
GROUPED_DOAJ
M4Y
M~E
NU0
SOJ
AAYXX
CITATION
0R~
3V.
7XB
88I
8FE
8FG
8FK
AAHNG
AAKKN
ABDZT
ABECU
ABEEZ
ABFTV
ABHQN
ABJCF
ABKCH
ABMQK
ABTMW
ABUWG
ABXPI
ACACY
ACMLO
ACOKC
ACSTC
ACULB
ADKNI
ADURQ
ADYFF
AEJRE
AEUYN
AFGXO
AFKRA
AFQWF
AGDGC
AGJBK
AILAN
AITGF
AJZVZ
AMKLP
ATCPS
AXYYD
AZQEC
BAPOH
BENPR
BGLVJ
BHPHI
BKSAR
C24
CCPQU
D1I
DWQXO
EBLON
EBS
FNLPD
GNUQQ
GNWQR
HCIFZ
J-C
KB.
KOV
L6V
M2P
M7S
NQJWS
OK1
PATMY
PCBAR
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
Q9U
STPWE
TSG
UOJIU
UTJUX
VEKWB
VFIZW
ZMTXR
ID FETCH-LOGICAL-c310t-2631e0816f6b1214e1de645e08fbb13e8924a20e760ee6d1754d460b315b63e23
IEDL.DBID C6C
ISSN 3004-9261
2523-3963
IngestDate Wed Aug 27 01:26:14 EDT 2025
Wed Aug 13 10:52:54 EDT 2025
Sun Jul 06 05:02:17 EDT 2025
Mon Jul 21 06:07:54 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Engineering design
Data-constrained environments
CAD automation
Generative artificial intelligence
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c310t-2631e0816f6b1214e1de645e08fbb13e8924a20e760ee6d1754d460b315b63e23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://doi.org/10.1007/s42452-025-06833-5
PQID 3190536998
PQPubID 5758472
PageCount 21
ParticipantIDs doaj_primary_oai_doaj_org_article_ed4dd95e8122409f8321390fb17139e5
proquest_journals_3190536998
crossref_primary_10_1007_s42452_025_06833_5
springer_journals_10_1007_s42452_025_06833_5
PublicationCentury 2000
PublicationDate 2025-04-09
PublicationDateYYYYMMDD 2025-04-09
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-04-09
  day: 09
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: London
PublicationTitle Discover applied sciences
PublicationTitleAbbrev Discov Appl Sci
PublicationYear 2025
Publisher Springer International Publishing
Springer Nature B.V
Springer
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
– name: Springer
References 6833_CR26
6833_CR28
A Lianos (6833_CR18) 2020; 4
DE Goldberg (6833_CR10) 1989
E Enjellina (6833_CR23) 2023
S Yoo (6833_CR11) 2021; 63
6833_CR8
6833_CR6
6833_CR7
6833_CR4
J Smith (6833_CR14) 2023; 115
6833_CR5
J Canny (6833_CR27) 1986; 8
6833_CR2
OECD (6833_CR1) 2021
6833_CR3
6833_CR20
6833_CR22
K Deb (6833_CR9) 2001
R Davis (6833_CR13) 2022; 19
M Johnson (6833_CR15) 2022; 18
6833_CR24
Y Zhang (6833_CR12) 2022; 144
6833_CR25
6833_CR16
YH Lee (6833_CR19) 2024
H Bikas (6833_CR17) 2023; 11
R Brisco (6833_CR21) 2023; 3
References_xml – year: 2023
  ident: 6833_CR23
  publication-title: J Artif Intell Archit
  doi: 10.24002/jarina.v2i1.6662
– ident: 6833_CR20
  doi: 10.1145/3563657.3596098
– volume: 8
  start-page: 679
  issue: 6
  year: 1986
  ident: 6833_CR27
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.1986.4767851
– volume: 11
  start-page: 879
  issue: 9
  year: 2023
  ident: 6833_CR17
  publication-title: Machines
  doi: 10.3390/machines11090879
– ident: 6833_CR2
– ident: 6833_CR4
– ident: 6833_CR22
  doi: 10.1145/3569219.3569352
– volume-title: Multi-objective optimization using evolutionary algorithms
  year: 2001
  ident: 6833_CR9
– volume-title: Genetic algorithms in search, optimization, and machine learning
  year: 1989
  ident: 6833_CR10
– ident: 6833_CR8
– start-page: 178
  volume-title: International Conference on Human-Computer Interaction
  year: 2024
  ident: 6833_CR19
  doi: 10.1007/978-3-031-60107-1_13
– ident: 6833_CR25
  doi: 10.48550/arXiv.2311.05556
– ident: 6833_CR6
– ident: 6833_CR16
  doi: 10.1115/DETC2022-67123
– volume: 144
  start-page: 051702
  issue: 5
  year: 2022
  ident: 6833_CR12
  publication-title: J Mech Des
  doi: 10.1115/1.4053011
– ident: 6833_CR28
– volume: 3
  start-page: 1835
  year: 2023
  ident: 6833_CR21
  publication-title: Proc Des Soc
  doi: 10.1017/pds.2023.184
– volume-title: Digital transformation of SMEs: key challenges and enabling factors
  year: 2021
  ident: 6833_CR1
  doi: 10.1787/bdb9256a-en
– ident: 6833_CR3
– volume: 115
  start-page: 105254
  year: 2023
  ident: 6833_CR14
  publication-title: Eng Appl Artif Intell
– volume: 18
  start-page: 3930
  issue: 6
  year: 2022
  ident: 6833_CR15
  publication-title: IEEE Trans Ind Inform
– ident: 6833_CR5
– ident: 6833_CR26
  doi: 10.48550/arXiv.2303.12755
– volume: 63
  start-page: 2667
  year: 2021
  ident: 6833_CR11
  publication-title: Struct Multidisc Optim
  doi: 10.1007/s00158-021-02953-9
– ident: 6833_CR24
  doi: 10.1109/PuneCon55413.2022.10014718
– volume: 19
  start-page: 23
  issue: 1
  year: 2022
  ident: 6833_CR13
  publication-title: Comput Aided Des Appl
– ident: 6833_CR7
– volume: 4
  start-page: 19
  issue: 3
  year: 2020
  ident: 6833_CR18
  publication-title: Designs
  doi: 10.3390/designs4030019
SSID ssj0003307759
ssj0002793483
ssib051670015
Score 2.3017669
Snippet The efficient design of complex engineering components in data-constrained environments presents significant challenges to traditional methodologies. Existing...
Abstract The efficient design of complex engineering components in data-constrained environments presents significant challenges to traditional methodologies....
SourceID doaj
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 315
SubjectTerms Aesthetic design
Applied and Technical Physics
Automation
CAD
CAD automation
Chemistry/Food Science
Computer aided design
Constraints
Costs
Data-constrained environments
Datasets
Deep learning
Design optimization
Designers
Diffusion models
Earth Sciences
Efficiency
Engineering
Engineering design
Environment
Generative artificial intelligence
Image processing
Machine learning
Manufacturing
Materials Science
Mechanical components
Methods
Performance evaluation
Product development
Prototyping
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDI7QTlwQCBCFgXLgBhFN82h7HIhpIMGJSbtFyeJKIOgQ6_j9OGk3NiTEhWvcqpad-iHbnwk512UFU289Ew40kzZ1zIWCo3d5oQvhtY-zVQ-PejSW9xM1WVv1FXrCWnjgVnBX4KX3pYIilIDSsgqbdTBPrxzH9KqEiF6KPm8tmQo2GLP0PFdlNyUTZ-VCiS9jYXtrikwIpjY8UQTs34gyfxRGo78Z7pKdLlCkg5bBPbIF9T55aVGig4migztqa09RlNQumlk7gkgxBqU-9lpAJNezT3ilbxAGfIM-aOghn9XoaqiPzRtzGsbI8CXbWCQGQFn7XDfzAzIe3j7djFi3LYFNMURrWKYFh7BGo9KOZ1wC96ClwqPKOS6gwEzLZinkOgXQHsMG6aVOneDKaQGZOCS9Gr9_RKiQoCvleKEtl6ryTuQSw8gUJKZj1bRMyMVScua9BcUwK_jjKGeDcjZRzkYl5DoId_VkALSOB6hm06nZ_KXmhPSXqjHdXzY3aD7QhmjMGBNyuVTXN_l3lo7_g6UTsp3F6yRZWvZJr_lYwClGKI07i5fxC-Xr3uI
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NT90wDI-2x2U7IPalPWBTDtxYtKT5eO0JAQKxSSA0DYlblLy4aIi1jFf4-7HzUhhI2zVp08p2HDu2f2ZsyzUtzFNIQkdwwgQZRaSAY4qz2tU6uZRrq45P3NGZ-X5uz8uF26KkVY46MSvq1M_pjvwrigrKi0PvYOf6j6CuURRdLS00XrIVVMF1PWErewcnpz9GibKKqlDKgXeZw2yNNhmbs0IPTGgUv1JJk-vpKAxYCerwKvFHtbBPTqsM6v_EEn0WPM1n0uEaWy3GJN9dcv8NewHdW_b6L4jBd-xyiStNSo3vfuOhSxyJz8Pt0C-LFjlarTzl7AzI011_B1f8N1BJMHGQU9Z53-HhxFNO91hwKjzDl8IQcJIgaMOvbli8Z2eHBz_3j0TpryDmaNQNonJaATXeaF1UlTKgEjhjcaiNUWmo0TcLlYSZkwAuoaFhknEyamWj01DpD2zS4fc_Mq4NuNZGVbugjG1T1DODhqcEgw5cO2-mbHuko79ewmj4B8DkTHWPVPeZ6t5O2R6R-uFJgsDOA_3NhS87ykMyKTUWaooNyqallku6kW1U6Hc3gItsjozyZV8u_KMUTdmXkXmP0__-pfX_r7bBXlVZbIyQzSabDDe38AmtlSF-LiJ5D3VX4sw
  priority: 102
  providerName: ProQuest
Title Generative AI and CAD automation for diverse and novel mechanical component designs under data constraints
URI https://link.springer.com/article/10.1007/s42452-025-06833-5
https://www.proquest.com/docview/3190536998
https://doaj.org/article/ed4dd95e8122409f8321390fb17139e5
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4VuMAB9QFiKV350FuxsONHkuOyZUurglBbJG6WvZ5IoDaL2NDf37E3uy0IDj1F8iOJZvz4xuP5BuC9rRucRh-5Cmi59iLwkByOMZSVrVS0McdWnZ3b00v95cpc9TQ5KRbmkf_-aJ48cwVPSVcF9VXcrMGGkapMaRrGdrw6TyG7vCxN3cfFPN31wd6TKfof4MpHrtC8w0xewnYPDdlooctX8ALb17D1D2HgG7hZsESnJYqNPjPfRkaiZP6-my1CEBlhUBbzXQvM1e3sN_5kvzAF-CZ9sHSHfNbSVsNivrwxZymMjDr5zlNlIpT1120334HLycmP8SnvsyXwKUG0jhdWSUxpNBobZCE1yohWGypqQpAKK7K0fCGwtALRRoINOmorgpImWIWF2oX1lr6_B0xptI0JsrJeatPEoEpNMFKgJnOsmdYD-LCUo7tdkGK4Ff1xlrojqbssdWcGcJxEvWqZCK1zAenZ9fPDYdQx1gar5OkTdZMSKKlaNEGSFV0jveRgqSjXz7K5o-WD1hBLFuMADpfK-1v9_C_t_1_zt7BZ5GGkuagPYL27u8d3hEW6MIS1avJpCBujj2dfv9Pz-OT84tswD81htu__AE3L2b0
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqcgAOiKdYKOADnMDCjh-bHBAqj2WXPk6t1Jux15OKCpLSTUH8KX4jM07SUiS49RonTjT-PI-MvxnGnrqqhmUKSegITpggo4iUcExxWrpSJ5cyt2pn1833zccDe7DGfo1cGDpWOerErKhTu6R_5C8RKogXh9HB6-NvgrpGUXZ1bKHRw2ILfv7AkG31avEO1_dZUcze772di6GrgFiiK9OJwmkF1G6idlEVyoBK4IzFS3WMSkOJEUkoJEydBHAJzatJxsmolY1OAxU6QJV_xWi05MRMn30Y8WsVcV4G83qUk3qVNrkSaIHxntAI9oG3k9l7lHQsBPWTlSgWLewF25hbCFzwe_9K1WYLOLvJbgyuK9_ssXaLrUFzm13_o6DhHXbUV7EmFco3Fzw0ieNS83DatT1FkqOPzFM-CwJ5uGm_wxf-FYiATHjhdMa9bdAU8pQPl6w40dzwodAFHKSCt-Fz063usv1Lkfs9tt7g--8zrg242kZVuqCMrVPUU4NurgSD4WK9rCbs-ShHf9wX7fBn5Zmz1D1K3Wepezthb0jUZ3dSwe18oT059MP-9ZBMSpWFkjKRsqqpwZOuZB0VRvkV4CQb40L5QQus_DlmJ-zFuHjnw__-pAf_n-0Juzrf29n224vdrYfsWpEhZISsNth6d3IKj9BP6uLjDE7OPl32bvgNauwcZw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqrYTggHiKpQV8gBNYtWPHmxwQamlXXQqrClGpN2OvJxUVTUo3BfHX-HXMOElLkeDWa5w40czneWRejD23ZQWL6KPQAawwXgYRKOAYw6SwhY42ptqqD3O7e2DeHeaHK-zXUAtDaZWDTEyCOjYL-ke-gVBBvFj0DjaqPi1if3v65vSboAlSFGkdxml0ENmDnz_QfVu-nm0jr19k2XTn09td0U8YEAs0a1qRWa2ARk9UNqhMGVARrMnxUhWC0lCgd-IzCRMrAWxEVWuisTJolQergZoeoPhfnZBXNGKrWzvz_Y8DmnNFFTC9sj1OIb5Sm9QXNEPvT2iEfl_Fk2r5KASZCZouK5FIWuRXNGUaKHDFCv4rcJv04fQOu90bsnyzQ95dtgL1PXbrj_aG99lx19OaBCrfnHFfR46M5_68bbqCSY4WM48pMwTSct18h6_8BKgcmdDDKeO9qVEx8phSTZacit7wId96XKT2t_5L3S4fsINrofxDNqrx_Y8Y1wZslQdVWK9MXsWgJwaNXgkGncdqUY7Zy4GO7rRr4eEumjUnqjukuktUd_mYbRGpL-6k9tvpQnN25PrT7CCaGMscCopLyrKicU-6lFVQ6POXgJusD4xyvUxYuksEj9mrgXmXy__-pMf_3-0Zu4Enwb2fzffW2M0sIcgIWa6zUXt2Dk_QaGrD0x6dnH2-7gPxG9xUIfk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generative+AI+and+CAD+automation+for+diverse+and+novel+mechanical+component+designs+under+data+constraints&rft.jtitle=Discover+applied+sciences&rft.au=Li%2C+Kun-Ying&rft.au=Huang%2C+Cheng-Kai&rft.au=Chen%2C+Qing-Wei&rft.au=Zhang%2C+Hsuan-Cheng&rft.date=2025-04-09&rft.pub=Springer+International+Publishing&rft.eissn=3004-9261&rft.volume=7&rft.issue=4&rft_id=info:doi/10.1007%2Fs42452-025-06833-5&rft.externalDocID=10_1007_s42452_025_06833_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=3004-9261&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=3004-9261&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=3004-9261&client=summon