Estimation of parameters and reliability characteristics for a generalized Rayleigh distribution under progressive type-II censored sample

In this article, we obtain maximum likelihood and Bayes estimates of the parameters, reliability and hazard functions for generalized Rayleigh distribution when progressive type-II censored sample is available. Bayes estimates are derived under three loss functions: squared error, LINEX and generali...

Full description

Saved in:
Bibliographic Details
Published inCommunications in statistics. Simulation and computation Vol. 50; no. 11; pp. 3669 - 3698
Main Authors Maiti, Kousik, Kayal, Suchandan
Format Journal Article
LanguageEnglish
Published Taylor & Francis 02.11.2021
Subjects
Online AccessGet full text
ISSN0361-0918
1532-4141
DOI10.1080/03610918.2019.1630431

Cover

Loading…
Abstract In this article, we obtain maximum likelihood and Bayes estimates of the parameters, reliability and hazard functions for generalized Rayleigh distribution when progressive type-II censored sample is available. Bayes estimates are derived under three loss functions: squared error, LINEX and generalized entropy. It is assumed that the parameters have independent gamma prior distributions. The estimates cannot be obtained in closed form, and hence the method of Lindley's approximation is employed in obtaining the desired Bayes estimates. The highest posterior density credible intervals of the model parameters are computed using importance sampling procedure. Moreover, approximate confidence intervals are constructed based on the normal approximation to maximum likelihood estimate and log-transformed maximum likelihood estimate. In order to construct the asymptotic confidence interval of the reliability and hazard functions, it is required to find their variances. These are approximated by delta method. A numerical study is performed to compare the proposed estimates with respect to their average values and mean squared error using Monte Carlo simulations. Further, based on the asymptotic normality of the maximum likelihood estimates, we provide the coverage probabilities for some defined pivotal quantities for model parameters. Finally, a real life dataset is considered to compute the proposed estimates.
AbstractList In this article, we obtain maximum likelihood and Bayes estimates of the parameters, reliability and hazard functions for generalized Rayleigh distribution when progressive type-II censored sample is available. Bayes estimates are derived under three loss functions: squared error, LINEX and generalized entropy. It is assumed that the parameters have independent gamma prior distributions. The estimates cannot be obtained in closed form, and hence the method of Lindley's approximation is employed in obtaining the desired Bayes estimates. The highest posterior density credible intervals of the model parameters are computed using importance sampling procedure. Moreover, approximate confidence intervals are constructed based on the normal approximation to maximum likelihood estimate and log-transformed maximum likelihood estimate. In order to construct the asymptotic confidence interval of the reliability and hazard functions, it is required to find their variances. These are approximated by delta method. A numerical study is performed to compare the proposed estimates with respect to their average values and mean squared error using Monte Carlo simulations. Further, based on the asymptotic normality of the maximum likelihood estimates, we provide the coverage probabilities for some defined pivotal quantities for model parameters. Finally, a real life dataset is considered to compute the proposed estimates.
Author Maiti, Kousik
Kayal, Suchandan
Author_xml – sequence: 1
  givenname: Kousik
  surname: Maiti
  fullname: Maiti, Kousik
  organization: Department of Mathematics, National Institute of Technology Rourkela
– sequence: 2
  givenname: Suchandan
  surname: Kayal
  fullname: Kayal, Suchandan
  organization: Department of Mathematics, National Institute of Technology Rourkela
BookMark eNqFkMFOGzEQhi0EEiHwCEh-gU3t9e5mrV5aRRQiIVVCcF7NesfBaGOvxk6r9BF4apwAlx7a0xzm-_7Dd8FOffDI2LUUCyla8UWoRgot20UppF7IRolKyRM2k7Uqi0pW8pTNDkxxgM7ZRYwvQgjVVu2Mvd7E5LaQXPA8WD4BwRYTUuTgB044Oujd6NKem-f8M_nlsmEit4E48A16JBjdHxz4A-xHdJtnPmSEXL87ru78gMQnChvCGN0v5Gk_YbFec4M-BspihO004iU7szBGvPq4c_b04-ZxdVfc_7xdr77fF0ZJkQqpoWkqUWuzrDW2vShVa8saYNAole7rFmxpS2GMwbpqMrQUcuhlA-1g9VKrOavfdw2FGAltN1FOQPtOiu4QtPsM2h2Cdh9Bs_f1L8-4dCyXCNz4X_vbu-18LreF34HGoUs5WSBL4I2Lnfr3xBt5D5R2
CitedBy_id crossref_primary_10_1016_j_jrras_2024_100898
crossref_primary_10_1155_2022_1690458
crossref_primary_10_32604_cmes_2024_049188
crossref_primary_10_1007_s40745_023_00477_1
crossref_primary_10_1371_journal_pone_0298638
crossref_primary_10_1007_s13198_019_00875_w
crossref_primary_10_15672_hujms_988054
crossref_primary_10_1007_s13370_025_01250_8
crossref_primary_10_3390_axioms14040244
crossref_primary_10_3390_sym16030309
crossref_primary_10_3390_sym17030457
crossref_primary_10_1016_j_jrras_2023_100674
crossref_primary_10_3934_math_20231149
crossref_primary_10_3390_sym15071396
crossref_primary_10_1007_s42979_022_01200_2
crossref_primary_10_1155_2022_7704167
crossref_primary_10_1007_s41872_020_00162_9
crossref_primary_10_3934_math_2024184
crossref_primary_10_1080_02664763_2024_2373930
crossref_primary_10_1080_02664763_2020_1821613
crossref_primary_10_1007_s40745_020_00292_y
crossref_primary_10_1155_2022_1266384
crossref_primary_10_1155_2022_8155929
crossref_primary_10_1007_s00180_023_01376_y
Cites_doi 10.1007/BF02613681
10.1080/00031305.1995.10476150
10.1016/j.csda.2004.05.008
10.1016/j.jkss.2008.10.005
10.1002/9781118033005
10.1214/aoms/1177731607
10.1080/03610926.2016.1213290
10.1007/BF02888353
10.1007/978-1-4612-1334-5
10.1080/03610929308831008
10.1080/03610929408831356
10.1109/TR.2008.928239
10.1109/24.103016
10.1109/TR.2010.2055950
10.1080/00949655.2017.1398256
10.1016/j.jspi.2011.04.016
10.1016/0378-3758(92)90118-C
10.1080/00949655.2016.1209199
10.1080/00401706.1995.10484376
10.1080/02664763.2016.1183602
10.1016/0304-4076(83)90047-7
10.1080/01966324.2017.1334604
10.1080/03610918.2013.856921
10.2991/jsta.2017.16.2.4
10.1093/biomet/64.1.129
10.1023/A:1011352923990
10.1007/978-0-8176-4807-7
10.1080/10618600.1999.10474802
10.1007/s41096-017-0029-5
ContentType Journal Article
Copyright 2019 Taylor & Francis Group, LLC 2019
Copyright_xml – notice: 2019 Taylor & Francis Group, LLC 2019
DBID AAYXX
CITATION
DOI 10.1080/03610918.2019.1630431
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
Computer Science
EISSN 1532-4141
EndPage 3698
ExternalDocumentID 10_1080_03610918_2019_1630431
1630431
Genre Research Article
GroupedDBID -~X
.7F
.DC
.QJ
0BK
0R~
29F
2DF
30N
4.4
5GY
5VS
8VB
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABEHJ
ABFIM
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACIWK
ACTIO
ADCVX
ADXPE
AEISY
AEOZL
AEPSL
AEYOC
AFKVX
AGDLA
AGMYJ
AIJEM
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
EBS
E~A
E~B
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
K1G
KYCEM
LJTGL
M4Z
NA5
NY~
O9-
P2P
QWB
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TTHFI
TUROJ
TWF
UPT
UT5
UU3
WH7
ZGOLN
ZL0
~S~
AAGDL
AAHIA
AAYXX
ADYSH
AFRVT
AIYEW
AMPGV
AMVHM
CITATION
ID FETCH-LOGICAL-c310t-19a664059c759e8b0238f25aad9e139b58af2f20ccce546759701db16a8df9793
ISSN 0361-0918
IngestDate Tue Jul 01 03:10:00 EDT 2025
Thu Apr 24 23:02:47 EDT 2025
Wed Dec 25 09:06:11 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c310t-19a664059c759e8b0238f25aad9e139b58af2f20ccce546759701db16a8df9793
PageCount 30
ParticipantIDs crossref_citationtrail_10_1080_03610918_2019_1630431
informaworld_taylorfrancis_310_1080_03610918_2019_1630431
crossref_primary_10_1080_03610918_2019_1630431
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-11-02
PublicationDateYYYYMMDD 2021-11-02
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-02
  day: 02
PublicationDecade 2020
PublicationTitle Communications in statistics. Simulation and computation
PublicationYear 2021
Publisher Taylor & Francis
Publisher_xml – name: Taylor & Francis
References Meeker W. Q. (CIT0023) 1998
CIT0030
CIT0032
CIT0031
CIT0012
CIT0034
CIT0011
Chen M. H. (CIT0010) 1999; 8
Varian H. R. (CIT0033) 1975
CIT0035
CIT0016
CIT0015
CIT0018
Greene W. H. (CIT0014) 2000
CIT0017
CIT0019
CIT0021
CIT0020
Feynman R. P. (CIT0013) 1987; 51
CIT0022
CIT0003
CIT0025
CIT0002
CIT0024
CIT0005
CIT0027
CIT0004
CIT0007
CIT0029
CIT0006
Raqab M. Z. (CIT0026) 2006; 4
CIT0028
CIT0009
CIT0008
References_xml – ident: CIT0034
  doi: 10.1007/BF02613681
– ident: CIT0006
  doi: 10.1080/00031305.1995.10476150
– ident: CIT0018
  doi: 10.1016/j.csda.2004.05.008
– ident: CIT0017
  doi: 10.1016/j.jkss.2008.10.005
– volume: 51
  start-page: 6
  volume-title: Engineering and science
  year: 1987
  ident: CIT0013
– ident: CIT0019
  doi: 10.1002/9781118033005
– ident: CIT0008
  doi: 10.1214/aoms/1177731607
– ident: CIT0030
  doi: 10.1080/03610926.2016.1213290
– ident: CIT0021
  doi: 10.1007/BF02888353
– ident: CIT0004
  doi: 10.1007/978-1-4612-1334-5
– ident: CIT0025
  doi: 10.1080/03610929308831008
– volume-title: Statistical methods for reliability data
  year: 1998
  ident: CIT0023
– ident: CIT0009
  doi: 10.1080/03610929408831356
– ident: CIT0015
  doi: 10.1109/TR.2008.928239
– ident: CIT0032
  doi: 10.1109/24.103016
– ident: CIT0035
  doi: 10.1109/TR.2010.2055950
– volume: 4
  start-page: 179
  year: 2006
  ident: CIT0026
  publication-title: Journal of Probability and Statistical Sciences
– ident: CIT0012
  doi: 10.1080/00949655.2017.1398256
– ident: CIT0027
  doi: 10.1016/j.jspi.2011.04.016
– ident: CIT0007
  doi: 10.1016/0378-3758(92)90118-C
– ident: CIT0016
  doi: 10.1080/00949655.2016.1209199
– ident: CIT0024
  doi: 10.1080/00401706.1995.10484376
– start-page: 195
  volume-title: Studies in Bayesian econometrics and statistics in honor of Leonard J. Savage
  year: 1975
  ident: CIT0033
– ident: CIT0020
  doi: 10.1080/02664763.2016.1183602
– ident: CIT0002
  doi: 10.1016/0304-4076(83)90047-7
– ident: CIT0022
  doi: 10.1080/01966324.2017.1334604
– ident: CIT0011
  doi: 10.1080/03610918.2013.856921
– ident: CIT0003
  doi: 10.2991/jsta.2017.16.2.4
– ident: CIT0029
  doi: 10.1093/biomet/64.1.129
– ident: CIT0031
  doi: 10.1023/A:1011352923990
– ident: CIT0005
  doi: 10.1007/978-0-8176-4807-7
– volume: 8
  start-page: 69
  issue: 1
  year: 1999
  ident: CIT0010
  publication-title: Journal of Computational and Graphical Statistics
  doi: 10.1080/10618600.1999.10474802
– volume-title: Econometric analysis
  year: 2000
  ident: CIT0014
– ident: CIT0028
  doi: 10.1007/s41096-017-0029-5
SSID ssj0003848
Score 2.3697975
Snippet In this article, we obtain maximum likelihood and Bayes estimates of the parameters, reliability and hazard functions for generalized Rayleigh distribution...
SourceID crossref
informaworld
SourceType Enrichment Source
Index Database
Publisher
StartPage 3669
SubjectTerms Bayes estimates
Confidence interval
Coverage probability
Delta method
Importance sampling method
Lindley's approximation
Mean squared error
Progressive type-II censoring
Title Estimation of parameters and reliability characteristics for a generalized Rayleigh distribution under progressive type-II censored sample
URI https://www.tandfonline.com/doi/abs/10.1080/03610918.2019.1630431
Volume 50
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JbtswECXc9JIeurgtmm7gobdABqnN4rEoUiQtnEPjALkJpCwCAmI7sOUCySf0R_qbneEiUU3Q9SIYtikJnqdZ6Jn3CHknuOZTyWQkBc-iVLFpJJnOojovlJaCCcZwdnh2mh-fp58usovR6HvQtbRr1aS6uXOu5F-sCu-BXXFK9i8s250U3oDXYF84goXh-Ec2PoLnc9nlfMjivcTuFku7vKkvG0vCfY3jvQNaZtM6ierJuCPV3EDS-QUqd9wlxX9sOhEsI5K7sT1c2C77tTZbttHJyWEF5e8ae9e3EvmFwxx3MHNi2m1xasleeXJ41iydYpgfqbvaDdsBZrJxPQbr3bbpJok-y2sjTgC-DqeVFw7Wbsci5mZ0r69v57fEQwKfl-TwXeFccu19chyl3PJjeadt2Wo9OHnggpPcar-4cJ7kVuX6VqhwvZUJ8s1z0-QnJpCcItlQHxu7jkX3yT1yP4Z6BKUyEnbahfykMDJt3d37UTEkcb_rAoMkaECRGyQ388fkoatK6HsLsSdkVK_G5JFX_KAuAIzJg1nH8rsdk_2zzq5PybcejHStaQ9GCraiARjpT2CkcFtU0gCM1IORhmCkBow0ACN1YKQejNSC8Rk5_3g0_3AcOaGPqILqoo24kHkOlYOoppmoC4V5pI4zKReihgpFZYXUsY5ZVVV1BpEdimDGF4rnslhoARHmOdlbrVf1C0J1plTMpiJjukiTXAqhFZy5kkXBuVTFAUn9L19WjgUfxVguS-7Jcp3BSjRY6Qx2QCbdsitLA_O7BSI0a9ka0GuL9zL55dqX_7H2FdnvH7nXZK_d7Oo3kDa36q2B7A9ofMMg
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1NbxMxEIZHUA4tB1oCiPLRzqFXp_Ym3rWPCLVKoMmhaqXeVrbXRhUlQckWqf0J_Go8690oQaIcetvLrGzZHo9H7zwDcKRFEIXhhhktJBtaXjDDg2Q-VzYYzTXnVDs8meajy-GXK3m1VgtDskp6Q4cEimh8NR1uSkZ3krjj6HWJZ9kos3Q_RhREiHkKz6TOC-piMODTlTceqKaDFpkwsumqeP71m437aYNeunbvnO6C60ac5Cbf-7e17bv7v2COj5vSHrxow1L8lPbRS3jiZz3Y7Vo-YOsBevB8ssK8LnuwQ6FqIj2_gt8n8SMVQuI8IDHFf5DWZolxVLjwN9cJCX6HbhMSjXHyaPBbAmBf3_sKz81dk7PFiri-bUsupHq3BTaKMhLv_vJICWQ2HqOLj_H5IhouDdGOX8Pl6cnF5xFrOz0wF8PLmglt8jyGjtoVUntlKZAImTSm0j6GqFYqE7KQceecl9G1x1cQF5UVuVFV0NHFvIGt2Xzm3wIGaW3GCy15UMNBbrQONv7ZGaWEMFbtw7Bb39K1GHTqxnFTio6W2i5FSUtRtkuxD_2V2c_EAfmfgV7fPGXdJGBC6pZSDh60ffcI20PYHl1Mzsqz8fTre9jJSIJDWfDsA2zVi1v_McZQtT1oDskfizEPGw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1NTxsxEIZHhUoIDqUEKugXc-jVwd7EG_tYtUSkLVFVgcRtZXtthKAJShYk-An86nrWuxGpVHrgtpdZ2Rp7PLbeeQbgkxZBDAw3zGghWd_yATM8SOZzZYPRXHNOtcPH4_zotP_tTLZqwnkjq6Q7dEigiDpW0-a-LkOriDuIQZdwlrUwS3djQkGAmBV4mRM8nKo4-HgRjHuqbqBFJoxs2iKef_1m6Xhagpc-OnaGm2DbASe1yWX3prJdd_8Xy_FZM3oNr5qkFD-nVbQFL_ykA5ttwwds9n8HNo4XkNd5B9YpUU2c5214OIwfqQwSpwGJKP6blDZzjIPCmb-6SEDwO3TLiGiMc0eD5wl_fXHvS_xl7uoXWyyJ6ts05EKqdpthrScj6e6tR3o-ZqMRungVn86i4dwQ63gHToeHJ1-OWNPngbmYXFZMaJPnMXHUbiC1V5bSiJBJY0rtY4JqpTIhCxl3znkZA3u8A3FRWpEbVQYdA8wbWJ1MJ34XMEhrMz7QkgfV7-VG62Djn51RSghj1R70W_cWroGgUy-Oq0K0rNTGFQW5omhcsQfdhdl1ooD8z0A_XjtFVT-_hNQrpeg9afv2Gbb7sPbz67D4MRp_fwfrGelv6Ak8ew-r1ezGf4gJVGU_1lvkDyHaDb8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimation+of+parameters+and+reliability+characteristics+for+a+generalized+Rayleigh+distribution+under+progressive+type-II+censored+sample&rft.jtitle=Communications+in+statistics.+Simulation+and+computation&rft.au=Maiti%2C+Kousik&rft.au=Kayal%2C+Suchandan&rft.date=2021-11-02&rft.pub=Taylor+%26+Francis&rft.issn=0361-0918&rft.eissn=1532-4141&rft.volume=50&rft.issue=11&rft.spage=3669&rft.epage=3698&rft_id=info:doi/10.1080%2F03610918.2019.1630431&rft.externalDocID=1630431
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0361-0918&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0361-0918&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0361-0918&client=summon