Estimation of parameters and reliability characteristics for a generalized Rayleigh distribution under progressive type-II censored sample
In this article, we obtain maximum likelihood and Bayes estimates of the parameters, reliability and hazard functions for generalized Rayleigh distribution when progressive type-II censored sample is available. Bayes estimates are derived under three loss functions: squared error, LINEX and generali...
Saved in:
Published in | Communications in statistics. Simulation and computation Vol. 50; no. 11; pp. 3669 - 3698 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Taylor & Francis
02.11.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 0361-0918 1532-4141 |
DOI | 10.1080/03610918.2019.1630431 |
Cover
Loading…
Abstract | In this article, we obtain maximum likelihood and Bayes estimates of the parameters, reliability and hazard functions for generalized Rayleigh distribution when progressive type-II censored sample is available. Bayes estimates are derived under three loss functions: squared error, LINEX and generalized entropy. It is assumed that the parameters have independent gamma prior distributions. The estimates cannot be obtained in closed form, and hence the method of Lindley's approximation is employed in obtaining the desired Bayes estimates. The highest posterior density credible intervals of the model parameters are computed using importance sampling procedure. Moreover, approximate confidence intervals are constructed based on the normal approximation to maximum likelihood estimate and log-transformed maximum likelihood estimate. In order to construct the asymptotic confidence interval of the reliability and hazard functions, it is required to find their variances. These are approximated by delta method. A numerical study is performed to compare the proposed estimates with respect to their average values and mean squared error using Monte Carlo simulations. Further, based on the asymptotic normality of the maximum likelihood estimates, we provide the coverage probabilities for some defined pivotal quantities for model parameters. Finally, a real life dataset is considered to compute the proposed estimates. |
---|---|
AbstractList | In this article, we obtain maximum likelihood and Bayes estimates of the parameters, reliability and hazard functions for generalized Rayleigh distribution when progressive type-II censored sample is available. Bayes estimates are derived under three loss functions: squared error, LINEX and generalized entropy. It is assumed that the parameters have independent gamma prior distributions. The estimates cannot be obtained in closed form, and hence the method of Lindley's approximation is employed in obtaining the desired Bayes estimates. The highest posterior density credible intervals of the model parameters are computed using importance sampling procedure. Moreover, approximate confidence intervals are constructed based on the normal approximation to maximum likelihood estimate and log-transformed maximum likelihood estimate. In order to construct the asymptotic confidence interval of the reliability and hazard functions, it is required to find their variances. These are approximated by delta method. A numerical study is performed to compare the proposed estimates with respect to their average values and mean squared error using Monte Carlo simulations. Further, based on the asymptotic normality of the maximum likelihood estimates, we provide the coverage probabilities for some defined pivotal quantities for model parameters. Finally, a real life dataset is considered to compute the proposed estimates. |
Author | Maiti, Kousik Kayal, Suchandan |
Author_xml | – sequence: 1 givenname: Kousik surname: Maiti fullname: Maiti, Kousik organization: Department of Mathematics, National Institute of Technology Rourkela – sequence: 2 givenname: Suchandan surname: Kayal fullname: Kayal, Suchandan organization: Department of Mathematics, National Institute of Technology Rourkela |
BookMark | eNqFkMFOGzEQhi0EEiHwCEh-gU3t9e5mrV5aRRQiIVVCcF7NesfBaGOvxk6r9BF4apwAlx7a0xzm-_7Dd8FOffDI2LUUCyla8UWoRgot20UppF7IRolKyRM2k7Uqi0pW8pTNDkxxgM7ZRYwvQgjVVu2Mvd7E5LaQXPA8WD4BwRYTUuTgB044Oujd6NKem-f8M_nlsmEit4E48A16JBjdHxz4A-xHdJtnPmSEXL87ru78gMQnChvCGN0v5Gk_YbFec4M-BspihO004iU7szBGvPq4c_b04-ZxdVfc_7xdr77fF0ZJkQqpoWkqUWuzrDW2vShVa8saYNAole7rFmxpS2GMwbpqMrQUcuhlA-1g9VKrOavfdw2FGAltN1FOQPtOiu4QtPsM2h2Cdh9Bs_f1L8-4dCyXCNz4X_vbu-18LreF34HGoUs5WSBL4I2Lnfr3xBt5D5R2 |
CitedBy_id | crossref_primary_10_1016_j_jrras_2024_100898 crossref_primary_10_1155_2022_1690458 crossref_primary_10_32604_cmes_2024_049188 crossref_primary_10_1007_s40745_023_00477_1 crossref_primary_10_1371_journal_pone_0298638 crossref_primary_10_1007_s13198_019_00875_w crossref_primary_10_15672_hujms_988054 crossref_primary_10_1007_s13370_025_01250_8 crossref_primary_10_3390_axioms14040244 crossref_primary_10_3390_sym16030309 crossref_primary_10_3390_sym17030457 crossref_primary_10_1016_j_jrras_2023_100674 crossref_primary_10_3934_math_20231149 crossref_primary_10_3390_sym15071396 crossref_primary_10_1007_s42979_022_01200_2 crossref_primary_10_1155_2022_7704167 crossref_primary_10_1007_s41872_020_00162_9 crossref_primary_10_3934_math_2024184 crossref_primary_10_1080_02664763_2024_2373930 crossref_primary_10_1080_02664763_2020_1821613 crossref_primary_10_1007_s40745_020_00292_y crossref_primary_10_1155_2022_1266384 crossref_primary_10_1155_2022_8155929 crossref_primary_10_1007_s00180_023_01376_y |
Cites_doi | 10.1007/BF02613681 10.1080/00031305.1995.10476150 10.1016/j.csda.2004.05.008 10.1016/j.jkss.2008.10.005 10.1002/9781118033005 10.1214/aoms/1177731607 10.1080/03610926.2016.1213290 10.1007/BF02888353 10.1007/978-1-4612-1334-5 10.1080/03610929308831008 10.1080/03610929408831356 10.1109/TR.2008.928239 10.1109/24.103016 10.1109/TR.2010.2055950 10.1080/00949655.2017.1398256 10.1016/j.jspi.2011.04.016 10.1016/0378-3758(92)90118-C 10.1080/00949655.2016.1209199 10.1080/00401706.1995.10484376 10.1080/02664763.2016.1183602 10.1016/0304-4076(83)90047-7 10.1080/01966324.2017.1334604 10.1080/03610918.2013.856921 10.2991/jsta.2017.16.2.4 10.1093/biomet/64.1.129 10.1023/A:1011352923990 10.1007/978-0-8176-4807-7 10.1080/10618600.1999.10474802 10.1007/s41096-017-0029-5 |
ContentType | Journal Article |
Copyright | 2019 Taylor & Francis Group, LLC 2019 |
Copyright_xml | – notice: 2019 Taylor & Francis Group, LLC 2019 |
DBID | AAYXX CITATION |
DOI | 10.1080/03610918.2019.1630431 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics Mathematics Computer Science |
EISSN | 1532-4141 |
EndPage | 3698 |
ExternalDocumentID | 10_1080_03610918_2019_1630431 1630431 |
Genre | Research Article |
GroupedDBID | -~X .7F .DC .QJ 0BK 0R~ 29F 2DF 30N 4.4 5GY 5VS 8VB AAENE AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABEHJ ABFIM ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFS ACIWK ACTIO ADCVX ADXPE AEISY AEOZL AEPSL AEYOC AFKVX AGDLA AGMYJ AIJEM AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO EBS E~A E~B GTTXZ H13 HF~ HZ~ H~P IPNFZ J.P K1G KYCEM LJTGL M4Z NA5 NY~ O9- P2P QWB RIG RNANH ROSJB RTWRZ S-T SNACF TBQAZ TDBHL TEJ TFL TFT TFW TN5 TTHFI TUROJ TWF UPT UT5 UU3 WH7 ZGOLN ZL0 ~S~ AAGDL AAHIA AAYXX ADYSH AFRVT AIYEW AMPGV AMVHM CITATION |
ID | FETCH-LOGICAL-c310t-19a664059c759e8b0238f25aad9e139b58af2f20ccce546759701db16a8df9793 |
ISSN | 0361-0918 |
IngestDate | Tue Jul 01 03:10:00 EDT 2025 Thu Apr 24 23:02:47 EDT 2025 Wed Dec 25 09:06:11 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c310t-19a664059c759e8b0238f25aad9e139b58af2f20ccce546759701db16a8df9793 |
PageCount | 30 |
ParticipantIDs | crossref_citationtrail_10_1080_03610918_2019_1630431 informaworld_taylorfrancis_310_1080_03610918_2019_1630431 crossref_primary_10_1080_03610918_2019_1630431 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-11-02 |
PublicationDateYYYYMMDD | 2021-11-02 |
PublicationDate_xml | – month: 11 year: 2021 text: 2021-11-02 day: 02 |
PublicationDecade | 2020 |
PublicationTitle | Communications in statistics. Simulation and computation |
PublicationYear | 2021 |
Publisher | Taylor & Francis |
Publisher_xml | – name: Taylor & Francis |
References | Meeker W. Q. (CIT0023) 1998 CIT0030 CIT0032 CIT0031 CIT0012 CIT0034 CIT0011 Chen M. H. (CIT0010) 1999; 8 Varian H. R. (CIT0033) 1975 CIT0035 CIT0016 CIT0015 CIT0018 Greene W. H. (CIT0014) 2000 CIT0017 CIT0019 CIT0021 CIT0020 Feynman R. P. (CIT0013) 1987; 51 CIT0022 CIT0003 CIT0025 CIT0002 CIT0024 CIT0005 CIT0027 CIT0004 CIT0007 CIT0029 CIT0006 Raqab M. Z. (CIT0026) 2006; 4 CIT0028 CIT0009 CIT0008 |
References_xml | – ident: CIT0034 doi: 10.1007/BF02613681 – ident: CIT0006 doi: 10.1080/00031305.1995.10476150 – ident: CIT0018 doi: 10.1016/j.csda.2004.05.008 – ident: CIT0017 doi: 10.1016/j.jkss.2008.10.005 – volume: 51 start-page: 6 volume-title: Engineering and science year: 1987 ident: CIT0013 – ident: CIT0019 doi: 10.1002/9781118033005 – ident: CIT0008 doi: 10.1214/aoms/1177731607 – ident: CIT0030 doi: 10.1080/03610926.2016.1213290 – ident: CIT0021 doi: 10.1007/BF02888353 – ident: CIT0004 doi: 10.1007/978-1-4612-1334-5 – ident: CIT0025 doi: 10.1080/03610929308831008 – volume-title: Statistical methods for reliability data year: 1998 ident: CIT0023 – ident: CIT0009 doi: 10.1080/03610929408831356 – ident: CIT0015 doi: 10.1109/TR.2008.928239 – ident: CIT0032 doi: 10.1109/24.103016 – ident: CIT0035 doi: 10.1109/TR.2010.2055950 – volume: 4 start-page: 179 year: 2006 ident: CIT0026 publication-title: Journal of Probability and Statistical Sciences – ident: CIT0012 doi: 10.1080/00949655.2017.1398256 – ident: CIT0027 doi: 10.1016/j.jspi.2011.04.016 – ident: CIT0007 doi: 10.1016/0378-3758(92)90118-C – ident: CIT0016 doi: 10.1080/00949655.2016.1209199 – ident: CIT0024 doi: 10.1080/00401706.1995.10484376 – start-page: 195 volume-title: Studies in Bayesian econometrics and statistics in honor of Leonard J. Savage year: 1975 ident: CIT0033 – ident: CIT0020 doi: 10.1080/02664763.2016.1183602 – ident: CIT0002 doi: 10.1016/0304-4076(83)90047-7 – ident: CIT0022 doi: 10.1080/01966324.2017.1334604 – ident: CIT0011 doi: 10.1080/03610918.2013.856921 – ident: CIT0003 doi: 10.2991/jsta.2017.16.2.4 – ident: CIT0029 doi: 10.1093/biomet/64.1.129 – ident: CIT0031 doi: 10.1023/A:1011352923990 – ident: CIT0005 doi: 10.1007/978-0-8176-4807-7 – volume: 8 start-page: 69 issue: 1 year: 1999 ident: CIT0010 publication-title: Journal of Computational and Graphical Statistics doi: 10.1080/10618600.1999.10474802 – volume-title: Econometric analysis year: 2000 ident: CIT0014 – ident: CIT0028 doi: 10.1007/s41096-017-0029-5 |
SSID | ssj0003848 |
Score | 2.3697975 |
Snippet | In this article, we obtain maximum likelihood and Bayes estimates of the parameters, reliability and hazard functions for generalized Rayleigh distribution... |
SourceID | crossref informaworld |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 3669 |
SubjectTerms | Bayes estimates Confidence interval Coverage probability Delta method Importance sampling method Lindley's approximation Mean squared error Progressive type-II censoring |
Title | Estimation of parameters and reliability characteristics for a generalized Rayleigh distribution under progressive type-II censored sample |
URI | https://www.tandfonline.com/doi/abs/10.1080/03610918.2019.1630431 |
Volume | 50 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JbtswECXc9JIeurgtmm7gobdABqnN4rEoUiQtnEPjALkJpCwCAmI7sOUCySf0R_qbneEiUU3Q9SIYtikJnqdZ6Jn3CHknuOZTyWQkBc-iVLFpJJnOojovlJaCCcZwdnh2mh-fp58usovR6HvQtbRr1aS6uXOu5F-sCu-BXXFK9i8s250U3oDXYF84goXh-Ec2PoLnc9nlfMjivcTuFku7vKkvG0vCfY3jvQNaZtM6ierJuCPV3EDS-QUqd9wlxX9sOhEsI5K7sT1c2C77tTZbttHJyWEF5e8ae9e3EvmFwxx3MHNi2m1xasleeXJ41iydYpgfqbvaDdsBZrJxPQbr3bbpJok-y2sjTgC-DqeVFw7Wbsci5mZ0r69v57fEQwKfl-TwXeFccu19chyl3PJjeadt2Wo9OHnggpPcar-4cJ7kVuX6VqhwvZUJ8s1z0-QnJpCcItlQHxu7jkX3yT1yP4Z6BKUyEnbahfykMDJt3d37UTEkcb_rAoMkaECRGyQ388fkoatK6HsLsSdkVK_G5JFX_KAuAIzJg1nH8rsdk_2zzq5PybcejHStaQ9GCraiARjpT2CkcFtU0gCM1IORhmCkBow0ACN1YKQejNSC8Rk5_3g0_3AcOaGPqILqoo24kHkOlYOoppmoC4V5pI4zKReihgpFZYXUsY5ZVVV1BpEdimDGF4rnslhoARHmOdlbrVf1C0J1plTMpiJjukiTXAqhFZy5kkXBuVTFAUn9L19WjgUfxVguS-7Jcp3BSjRY6Qx2QCbdsitLA_O7BSI0a9ka0GuL9zL55dqX_7H2FdnvH7nXZK_d7Oo3kDa36q2B7A9ofMMg |
linkProvider | Taylor & Francis |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1NbxMxEIZHUA4tB1oCiPLRzqFXp_Ym3rWPCLVKoMmhaqXeVrbXRhUlQckWqf0J_Go8690oQaIcetvLrGzZHo9H7zwDcKRFEIXhhhktJBtaXjDDg2Q-VzYYzTXnVDs8meajy-GXK3m1VgtDskp6Q4cEimh8NR1uSkZ3krjj6HWJZ9kos3Q_RhREiHkKz6TOC-piMODTlTceqKaDFpkwsumqeP71m437aYNeunbvnO6C60ac5Cbf-7e17bv7v2COj5vSHrxow1L8lPbRS3jiZz3Y7Vo-YOsBevB8ssK8LnuwQ6FqIj2_gt8n8SMVQuI8IDHFf5DWZolxVLjwN9cJCX6HbhMSjXHyaPBbAmBf3_sKz81dk7PFiri-bUsupHq3BTaKMhLv_vJICWQ2HqOLj_H5IhouDdGOX8Pl6cnF5xFrOz0wF8PLmglt8jyGjtoVUntlKZAImTSm0j6GqFYqE7KQceecl9G1x1cQF5UVuVFV0NHFvIGt2Xzm3wIGaW3GCy15UMNBbrQONv7ZGaWEMFbtw7Bb39K1GHTqxnFTio6W2i5FSUtRtkuxD_2V2c_EAfmfgV7fPGXdJGBC6pZSDh60ffcI20PYHl1Mzsqz8fTre9jJSIJDWfDsA2zVi1v_McZQtT1oDskfizEPGw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1NTxsxEIZHhUoIDqUEKugXc-jVwd7EG_tYtUSkLVFVgcRtZXtthKAJShYk-An86nrWuxGpVHrgtpdZ2Rp7PLbeeQbgkxZBDAw3zGghWd_yATM8SOZzZYPRXHNOtcPH4_zotP_tTLZqwnkjq6Q7dEigiDpW0-a-LkOriDuIQZdwlrUwS3djQkGAmBV4mRM8nKo4-HgRjHuqbqBFJoxs2iKef_1m6Xhagpc-OnaGm2DbASe1yWX3prJdd_8Xy_FZM3oNr5qkFD-nVbQFL_ykA5ttwwds9n8HNo4XkNd5B9YpUU2c5214OIwfqQwSpwGJKP6blDZzjIPCmb-6SEDwO3TLiGiMc0eD5wl_fXHvS_xl7uoXWyyJ6ts05EKqdpthrScj6e6tR3o-ZqMRungVn86i4dwQ63gHToeHJ1-OWNPngbmYXFZMaJPnMXHUbiC1V5bSiJBJY0rtY4JqpTIhCxl3znkZA3u8A3FRWpEbVQYdA8wbWJ1MJ34XMEhrMz7QkgfV7-VG62Djn51RSghj1R70W_cWroGgUy-Oq0K0rNTGFQW5omhcsQfdhdl1ooD8z0A_XjtFVT-_hNQrpeg9afv2Gbb7sPbz67D4MRp_fwfrGelv6Ak8ew-r1ezGf4gJVGU_1lvkDyHaDb8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimation+of+parameters+and+reliability+characteristics+for+a+generalized+Rayleigh+distribution+under+progressive+type-II+censored+sample&rft.jtitle=Communications+in+statistics.+Simulation+and+computation&rft.au=Maiti%2C+Kousik&rft.au=Kayal%2C+Suchandan&rft.date=2021-11-02&rft.pub=Taylor+%26+Francis&rft.issn=0361-0918&rft.eissn=1532-4141&rft.volume=50&rft.issue=11&rft.spage=3669&rft.epage=3698&rft_id=info:doi/10.1080%2F03610918.2019.1630431&rft.externalDocID=1630431 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0361-0918&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0361-0918&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0361-0918&client=summon |