Recent Progress in Oxygen Electrocatalysts for Zinc–Air Batteries

Zinc–air batteries (ZABs) have attracted extensive attention due to their remarkable high theoretical energy output. They represent one of the most promising future power sources. However, many barriers restrict their application on a large scale. One of the main challenges is the sluggish rates of...

Full description

Saved in:
Bibliographic Details
Published inSmall methods Vol. 1; no. 12
Main Authors Yang, Dongjiang, Zhang, Lijie, Yan, Xuecheng, Yao, Xiangdong
Format Journal Article
LanguageEnglish
Published 01.12.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Zinc–air batteries (ZABs) have attracted extensive attention due to their remarkable high theoretical energy output. They represent one of the most promising future power sources. However, many barriers restrict their application on a large scale. One of the main challenges is the sluggish rates of the oxygen‐reduction reaction (ORR) and oxygen‐evolution reaction (OER), which govern the discharging and charging processes of the battery, respectively. Here, recent advances related to oxygen electrocatalyst materials for ZABs are discussed. Detailed discussions will focus on unifunctional ORR electrocatalysts and bifunctional ORR and OER electrocatalysts. Pt‐based nanomaterials, as the best ORR electrocatalysts, possess the virtue of high activity, but have the disadvantages of high cost, scarcity, and poor stability. Thus, materials based on transition metals (alloys, metal oxides, metal nitrides, and spinel oxides) and metal‐free materials are widely investigated as nonprecious ORR catalysts owing to their promising catalytic activities. As for bifunctional ORR and OER electrocatalysts, the following two categories are introduced: (i) metal‐based materials, including single metal/metal‐oxides‐based materials and mixed‐metal/metal‐oxides‐based materials; and (ii) metal‐free materials. Finally, perspectives on the continuous research and limitation of the current ZAB technology are provided. Zinc–air batteries (ZABs), which generate electricity through a redox reaction between zinc metal and oxygen, have attracted extensive attention. The sluggish rates of the oxygen reduction and evolution reactions, which govern the discharging and charging processes of the battery, respectively, have largely limited their development. A timely snapshot of oxygen electrocatalysts for ZABs is provided.
AbstractList Zinc–air batteries (ZABs) have attracted extensive attention due to their remarkable high theoretical energy output. They represent one of the most promising future power sources. However, many barriers restrict their application on a large scale. One of the main challenges is the sluggish rates of the oxygen‐reduction reaction (ORR) and oxygen‐evolution reaction (OER), which govern the discharging and charging processes of the battery, respectively. Here, recent advances related to oxygen electrocatalyst materials for ZABs are discussed. Detailed discussions will focus on unifunctional ORR electrocatalysts and bifunctional ORR and OER electrocatalysts. Pt‐based nanomaterials, as the best ORR electrocatalysts, possess the virtue of high activity, but have the disadvantages of high cost, scarcity, and poor stability. Thus, materials based on transition metals (alloys, metal oxides, metal nitrides, and spinel oxides) and metal‐free materials are widely investigated as nonprecious ORR catalysts owing to their promising catalytic activities. As for bifunctional ORR and OER electrocatalysts, the following two categories are introduced: (i) metal‐based materials, including single metal/metal‐oxides‐based materials and mixed‐metal/metal‐oxides‐based materials; and (ii) metal‐free materials. Finally, perspectives on the continuous research and limitation of the current ZAB technology are provided. Zinc–air batteries (ZABs), which generate electricity through a redox reaction between zinc metal and oxygen, have attracted extensive attention. The sluggish rates of the oxygen reduction and evolution reactions, which govern the discharging and charging processes of the battery, respectively, have largely limited their development. A timely snapshot of oxygen electrocatalysts for ZABs is provided.
Zinc–air batteries (ZABs) have attracted extensive attention due to their remarkable high theoretical energy output. They represent one of the most promising future power sources. However, many barriers restrict their application on a large scale. One of the main challenges is the sluggish rates of the oxygen‐reduction reaction (ORR) and oxygen‐evolution reaction (OER), which govern the discharging and charging processes of the battery, respectively. Here, recent advances related to oxygen electrocatalyst materials for ZABs are discussed. Detailed discussions will focus on unifunctional ORR electrocatalysts and bifunctional ORR and OER electrocatalysts. Pt‐based nanomaterials, as the best ORR electrocatalysts, possess the virtue of high activity, but have the disadvantages of high cost, scarcity, and poor stability. Thus, materials based on transition metals (alloys, metal oxides, metal nitrides, and spinel oxides) and metal‐free materials are widely investigated as nonprecious ORR catalysts owing to their promising catalytic activities. As for bifunctional ORR and OER electrocatalysts, the following two categories are introduced: (i) metal‐based materials, including single metal/metal‐oxides‐based materials and mixed‐metal/metal‐oxides‐based materials; and (ii) metal‐free materials. Finally, perspectives on the continuous research and limitation of the current ZAB technology are provided.
Author Yao, Xiangdong
Yang, Dongjiang
Zhang, Lijie
Yan, Xuecheng
Author_xml – sequence: 1
  givenname: Dongjiang
  surname: Yang
  fullname: Yang, Dongjiang
  organization: Griffith University
– sequence: 2
  givenname: Lijie
  surname: Zhang
  fullname: Zhang, Lijie
  organization: Qingdao University
– sequence: 3
  givenname: Xuecheng
  surname: Yan
  fullname: Yan, Xuecheng
  organization: Griffith University
– sequence: 4
  givenname: Xiangdong
  surname: Yao
  fullname: Yao, Xiangdong
  email: x.yao@griffith.edu.au
  organization: Griffith University
BookMark eNqFkM9Kw0AQhxepYK29et4XSJ3NNunmWGv9A5WK1ouXsJlMykq6kd0Fzc138A19ElMqKoJ4mhn4fTPDd8h6trHE2LGAkQCIT_wmlKMYxKQbINtj_VimaZSloHo_-gM29P4Rthkhk1j02eyWkGzgN65ZO_KeG8uXL-2aLJ_XhME1qIOuWx88rxrHH4zF99e3qXH8VIdAzpA_YvuVrj0NP-uA3Z_PV7PLaLG8uJpNFxFKAVmkUSZYFCXoNBGlVJihgDTOoPtEKxoDpgqSqlRdhkhNkqpQRAUKIpR6rOSAjXZ70TXeO6ryJ2c22rW5gHxrId9ayL8sdMD4F4Am6GAaG5w29d9YtsOeTU3tP0fyu-vV2Tf7AQSIdmI
CitedBy_id crossref_primary_10_1039_D2CE00364C
crossref_primary_10_1016_j_apenergy_2021_116777
crossref_primary_10_1016_j_enchem_2022_100081
crossref_primary_10_1021_acscatal_8b02556
crossref_primary_10_1002_adma_201900592
crossref_primary_10_1002_ente_202401339
crossref_primary_10_1016_j_cej_2022_134650
crossref_primary_10_1039_D1CY00657F
crossref_primary_10_1021_acs_organomet_8b00508
crossref_primary_10_1002_cnma_202300212
crossref_primary_10_1016_j_ceramint_2022_02_009
crossref_primary_10_3390_pr10040643
crossref_primary_10_1002_smtd_202000868
crossref_primary_10_1007_s12274_020_2751_7
crossref_primary_10_1016_j_rser_2024_114675
crossref_primary_10_1039_D2TA05914B
crossref_primary_10_1002_adfm_202210127
crossref_primary_10_1002_admt_202100673
crossref_primary_10_1039_C8EE01991F
crossref_primary_10_1016_j_jallcom_2021_163108
crossref_primary_10_1021_acsaem_3c02159
crossref_primary_10_1002_smll_202306396
crossref_primary_10_1016_j_jcis_2019_10_069
crossref_primary_10_1039_D3EE02102E
crossref_primary_10_1002_aenm_202100514
crossref_primary_10_3390_catal13050860
crossref_primary_10_1002_adsu_202400881
crossref_primary_10_1016_j_nanoen_2018_03_010
crossref_primary_10_1016_j_jpowsour_2021_230221
crossref_primary_10_1039_D3TA07131F
crossref_primary_10_1002_adma_201805062
crossref_primary_10_1016_j_ensm_2018_04_005
crossref_primary_10_1016_j_jece_2022_108052
crossref_primary_10_1002_cssc_202301779
crossref_primary_10_3390_nano11020261
crossref_primary_10_1016_j_apcatb_2019_04_021
crossref_primary_10_1016_j_jpowsour_2018_12_076
crossref_primary_10_1002_asia_202401177
crossref_primary_10_1002_smtd_201800331
crossref_primary_10_1016_j_apcatb_2019_04_027
crossref_primary_10_1002_aenm_201802263
crossref_primary_10_1002_inf2_12000
crossref_primary_10_1021_acsmaterialslett_9b00093
crossref_primary_10_1002_aenm_202003018
crossref_primary_10_1155_2023_5563539
crossref_primary_10_1007_s12678_021_00677_4
crossref_primary_10_1016_j_nexus_2025_100387
crossref_primary_10_1038_s41427_018_0057_y
crossref_primary_10_1039_D3TA03675H
crossref_primary_10_1016_j_ijhydene_2018_01_040
crossref_primary_10_1002_smll_201904210
crossref_primary_10_1016_j_ensm_2018_03_022
crossref_primary_10_1016_j_ces_2023_119460
crossref_primary_10_1016_j_jallcom_2021_158918
crossref_primary_10_1016_j_jechem_2020_06_053
crossref_primary_10_1016_j_ensm_2018_03_024
crossref_primary_10_1002_smtd_201800279
crossref_primary_10_1016_j_est_2023_110171
crossref_primary_10_1016_j_ijhydene_2023_10_260
crossref_primary_10_1007_s41230_022_2008_z
crossref_primary_10_1016_j_cej_2020_127112
crossref_primary_10_1002_smtd_201900571
crossref_primary_10_1016_j_apcatb_2018_08_081
crossref_primary_10_1039_D1NR04537G
crossref_primary_10_1002_smtd_202000827
crossref_primary_10_1002_aenm_201801909
crossref_primary_10_1016_j_jcis_2020_03_124
crossref_primary_10_1039_D1CS00135C
crossref_primary_10_1016_j_ensm_2019_05_018
crossref_primary_10_1016_j_apsusc_2022_153070
crossref_primary_10_1002_adfm_202500657
crossref_primary_10_1016_j_ensm_2023_03_033
crossref_primary_10_1002_smll_201904903
crossref_primary_10_1039_D0TA05510G
crossref_primary_10_1002_batt_201900052
crossref_primary_10_1002_advs_202103954
crossref_primary_10_1002_aenm_201802327
crossref_primary_10_3390_molecules29194562
crossref_primary_10_1007_s41918_019_00035_5
crossref_primary_10_1039_C9RA08723K
crossref_primary_10_1016_j_jallcom_2022_166128
crossref_primary_10_1002_ente_202000999
crossref_primary_10_1002_smll_201901518
crossref_primary_10_1039_C7CS00690J
crossref_primary_10_1016_j_ceramint_2019_11_096
crossref_primary_10_1016_j_cej_2020_125516
crossref_primary_10_1016_j_cej_2019_04_066
crossref_primary_10_1002_cssc_201903071
crossref_primary_10_1021_acsami_8b19971
crossref_primary_10_1002_smtd_201800144
crossref_primary_10_1002_batt_201800093
crossref_primary_10_1007_s11581_020_03473_0
crossref_primary_10_1002_adma_201802104
crossref_primary_10_1016_j_electacta_2020_135997
crossref_primary_10_1016_j_jechem_2020_11_028
crossref_primary_10_1002_celc_201800373
crossref_primary_10_1021_acsnano_2c09509
crossref_primary_10_1039_D3QI02010J
crossref_primary_10_1002_admi_201802046
crossref_primary_10_1021_acsami_0c12801
crossref_primary_10_1002_cctc_202101311
crossref_primary_10_1016_j_mtadv_2020_100116
crossref_primary_10_3390_batteries6010015
crossref_primary_10_1039_D4EY00014E
crossref_primary_10_1002_aenm_201801495
crossref_primary_10_1039_C8TA06057F
crossref_primary_10_1007_s41918_022_00144_8
crossref_primary_10_3390_catal12091002
crossref_primary_10_1039_D3CE00693J
crossref_primary_10_1002_adma_202408139
crossref_primary_10_1007_s10008_024_06116_w
crossref_primary_10_1063_5_0017398
crossref_primary_10_1016_j_electacta_2020_137592
crossref_primary_10_1016_j_jelechem_2023_117315
crossref_primary_10_1002_aenm_201703572
crossref_primary_10_1016_j_cej_2019_122247
crossref_primary_10_1039_D3NA00074E
crossref_primary_10_1039_C8QI00623G
crossref_primary_10_1039_D0MA00745E
crossref_primary_10_1002_cssc_202202192
crossref_primary_10_1021_acssuschemeng_1c04259
crossref_primary_10_1016_j_jallcom_2018_03_223
crossref_primary_10_1021_acssuschemeng_9b04703
crossref_primary_10_1002_batt_201800082
crossref_primary_10_1016_j_jcat_2019_11_014
crossref_primary_10_1016_j_nanoms_2024_09_008
crossref_primary_10_3390_en14196385
crossref_primary_10_1002_cey2_529
crossref_primary_10_1016_j_jallcom_2019_04_325
crossref_primary_10_1039_D2TA01319C
crossref_primary_10_1039_C9TA01438A
crossref_primary_10_1002_cssc_202000670
crossref_primary_10_1016_j_cej_2022_137542
crossref_primary_10_1016_j_matchemphys_2022_126724
crossref_primary_10_1002_smll_202002203
crossref_primary_10_1002_cnma_202400361
crossref_primary_10_1039_D2SE00606E
crossref_primary_10_1002_adfm_202201011
crossref_primary_10_1021_acsami_1c18081
crossref_primary_10_1016_j_ensm_2024_103429
crossref_primary_10_1002_aenm_201803768
crossref_primary_10_1039_C7QI00780A
crossref_primary_10_1016_j_jcat_2018_09_012
crossref_primary_10_1093_bulcsj_uoae015
crossref_primary_10_1016_S1872_5805_22_60591_2
crossref_primary_10_1016_j_ccr_2023_215491
crossref_primary_10_1002_smtd_201800055
crossref_primary_10_1016_j_ijhydene_2018_01_135
crossref_primary_10_1002_smll_202307863
crossref_primary_10_1007_s40820_020_0406_6
crossref_primary_10_1016_j_apcatb_2021_121006
crossref_primary_10_3390_catal10080822
crossref_primary_10_1002_chem_201904685
crossref_primary_10_1016_j_jallcom_2021_161011
crossref_primary_10_1002_celc_201800068
crossref_primary_10_1016_j_elecom_2023_107557
crossref_primary_10_1002_aenm_201703539
crossref_primary_10_1021_acs_jpcc_4c04479
crossref_primary_10_1002_admi_201800392
crossref_primary_10_1016_j_mtcomm_2021_102275
crossref_primary_10_1021_acssuschemeng_9b04699
crossref_primary_10_1039_D2DT03076D
crossref_primary_10_1002_smll_202304863
crossref_primary_10_1016_j_mtener_2021_100879
crossref_primary_10_1021_acs_energyfuels_1c00388
crossref_primary_10_1002_aenm_201903833
crossref_primary_10_1002_celc_202001325
crossref_primary_10_1002_cey2_60
crossref_primary_10_1002_cssc_201900553
crossref_primary_10_3390_catal9110954
crossref_primary_10_1039_D1TA07019C
crossref_primary_10_1007_s11426_020_9739_2
crossref_primary_10_1002_adma_201803800
crossref_primary_10_1002_chem_201902389
crossref_primary_10_1016_j_jpcs_2021_110207
crossref_primary_10_1016_j_cej_2020_127895
crossref_primary_10_1016_j_ijhydene_2024_08_026
crossref_primary_10_2139_ssrn_4201271
crossref_primary_10_1039_C9SE00822E
crossref_primary_10_1016_j_jiec_2018_11_037
crossref_primary_10_1002_cjoc_202000445
crossref_primary_10_1002_smll_202000742
crossref_primary_10_1016_j_apcatb_2021_120065
crossref_primary_10_1039_D0QM00729C
crossref_primary_10_1002_smtd_202301249
crossref_primary_10_1039_D5NJ00176E
crossref_primary_10_1016_j_jallcom_2021_160935
crossref_primary_10_1002_aenm_201903930
crossref_primary_10_1016_j_mtsust_2021_100072
crossref_primary_10_1039_C9TA08134H
crossref_primary_10_1016_j_diamond_2024_111683
crossref_primary_10_1039_D0TA00793E
crossref_primary_10_1021_acs_inorgchem_4c02077
crossref_primary_10_1002_aenm_201901997
crossref_primary_10_1016_S1872_5805_21_60036_7
crossref_primary_10_1039_D4TA02585G
crossref_primary_10_1039_C9TA06411G
crossref_primary_10_1016_j_cej_2022_140403
crossref_primary_10_1002_adfm_202101193
crossref_primary_10_1021_acsnano_0c10242
crossref_primary_10_1016_j_cej_2018_09_185
crossref_primary_10_1002_aenm_202302388
crossref_primary_10_1016_j_carbon_2018_04_061
crossref_primary_10_1039_C9TA14231B
Cites_doi 10.1002/anie.201610301
10.1002/anie.201402710
10.1039/C6TA02150F
10.1021/nl2029078
10.1021/am506284k
10.1002/adma.201302753
10.1039/c3nr00300k
10.1039/C5CS00670H
10.1039/b915141a
10.1007/s10562-013-1188-y
10.1002/anie.201410258
10.1002/adma.201601406
10.1016/j.jpowsour.2015.08.051
10.1021/nn506387w
10.1002/adma.200701408
10.1002/aenm.201200013
10.1038/451652a
10.1002/adma.201602912
10.1002/adfm.201400161
10.1039/C4TA03052D
10.1002/adma.201604103
10.1002/adsu.201600038
10.1039/C4CS00015C
10.1016/j.electacta.2003.09.039
10.1039/C6CC06165F
10.1038/nmat3458
10.1002/adfm.201602158
10.1016/0013-4686(81)90037-2
10.1002/aenm.201601052
10.1002/smll.201602247
10.1039/C6TA00615A
10.1021/acscentsci.5b00191
10.1002/smll.201600051
10.1039/C5TA02229K
10.1021/jp211946n
10.1002/aenm.201000010
10.1002/advs.201600262
10.1002/ange.201201553
10.1016/j.nanoen.2015.11.030
10.1021/ja511596c
10.1016/0378-7753(79)80001-4
10.1039/C4CC09062D
10.1021/nn501506p
10.1039/C5EE03124A
10.1021/acsenergylett.6b00602
10.1021/nl100718k
10.1038/nmat3087
10.1016/0013-4686(84)85004-5
10.1039/C5QI00236B
10.1021/cm5037502
10.1021/ja306376s
10.1039/C6TA02030E
10.1039/c3nr05835b
10.1039/c3cp51942b
10.1002/adma.201601651
10.1016/0378-7753(91)87010-9
10.1002/adfm.201604356
10.1002/anie.201307319
10.1002/anie.201007859
10.1016/j.jpowsour.2010.12.047
10.1038/nchem.1069
10.20964/2016.07.68
10.1016/0022-0728(92)80299-J
10.1016/j.nanoen.2015.02.025
10.1002/smll.201503305
10.1002/anie.201206720
10.1002/anie.201509382
10.1002/anie.201309171
10.1038/ncomms5973
10.1016/j.electacta.2012.03.001
10.1038/258580a0
10.1039/C6TA00173D
10.1021/cs3000792
10.1039/c1ee01942b
10.1039/C3EE42696C
10.1016/j.jiec.2009.01.002
10.1039/C4NR05988C
10.1016/0378-7753(81)80027-4
10.1021/acsami.5b04865
10.1038/nmat3712
10.1039/C3CS60248F
10.1039/C6CC03687B
10.1021/acsnano.5b08040
10.1039/c1jm10349k
10.1039/C6TA00377J
10.1021/acsnano.7b02275
10.1021/cm901698s
10.1002/adma.201606534
10.1002/aenm.201601549
10.1021/nn3021234
10.1126/science.1212858
10.1126/science.1135941
10.1002/cssc.201400049
10.1016/j.nanoen.2017.04.014
10.1002/adfm.201603933
10.1021/nl2044327
10.1126/science.1140484
10.1038/nchem.931
10.1002/anie.201503612
10.1021/ja500432h
10.1021/ja3031449
10.1016/j.jpowsour.2013.06.025
10.1039/c3ta01402a
10.1021/nl401881z
10.1039/c0cp02365e
10.1038/nmat1368
10.1002/adma.201506112
10.1016/j.nanoen.2014.11.008
10.1016/0013-4686(91)85244-2
10.1039/c2ee03590a
10.1039/C5TA03199K
10.1038/35104644
10.1038/ncomms3221
10.1039/b703315j
10.1002/adma.201004377
10.1038/nnano.2015.48
10.1021/j100082a030
10.1016/j.nanoen.2014.11.021
10.1002/adma.201506197
10.1016/S0013-4686(02)00815-0
10.1002/aenm.201502054
10.1016/S0378-7753(00)00417-1
10.1021/acsami.5b01067
10.1039/C5RA26675K
10.1016/j.progsolidstchem.2007.01.029
10.1038/srep07665
10.1016/j.apcatb.2017.04.038
10.1038/ncomms2812
10.1021/acsami.6b03260
10.1039/C6TA00591H
10.1021/cs501571e
10.1038/nenergy.2015.6
ContentType Journal Article
Copyright 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
DOI 10.1002/smtd.201700209
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2366-9608
EndPage n/a
ExternalDocumentID 10_1002_smtd_201700209
SMTD201700209
Genre reviewArticle
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 51473081; 51672143
– fundername: ARC
  funderid: 170103317
GroupedDBID 0R~
1OC
33P
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAZKR
ACCFJ
ACCZN
ACGFS
ACXQS
ADBBV
ADKYN
ADXAS
ADZMN
AEEZP
AEIGN
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFZJQ
AHBTC
AITYG
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
ARCSS
BFHJK
BMXJE
DCZOG
EBS
EJD
HGLYW
LATKE
LEEKS
LOXES
LUTES
LYRES
MEWTI
O9-
P2W
ROL
SUPJJ
WOHZO
WXSBR
ZZTAW
AAYXX
ABJNI
ADMLS
AEYWJ
AGHNM
AGYGG
CITATION
ID FETCH-LOGICAL-c3109-ac35cbbd0a651d38c9c106290352a8e40c6805fd8bbdee875fb8eebc1eec3a483
ISSN 2366-9608
IngestDate Tue Jul 01 00:47:41 EDT 2025
Thu Apr 24 23:11:45 EDT 2025
Wed Jan 22 16:34:13 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#am
http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3109-ac35cbbd0a651d38c9c106290352a8e40c6805fd8bbdee875fb8eebc1eec3a483
OpenAccessLink http://hdl.handle.net/10072/388299
PageCount 16
ParticipantIDs crossref_primary_10_1002_smtd_201700209
crossref_citationtrail_10_1002_smtd_201700209
wiley_primary_10_1002_smtd_201700209_SMTD201700209
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-12-01
PublicationDateYYYYMMDD 2017-12-01
PublicationDate_xml – month: 12
  year: 2017
  text: 2017-12-01
  day: 01
PublicationDecade 2010
PublicationTitle Small methods
PublicationYear 2017
References 2007 2010; 35 39
2013; 4
2013; 25
2013; 1
2012; 124
2017 2017; 27 36
2016 2016; 4 4
2013; 243
2011; 11
2014; 24
2011; 10
2011; 13
1984; 29
2000; 91
2012; 12
2016; 38
2014; 136
2012; 51
2013 2014; 12 144
2010; 22
1992 1975; 340 258
2013; 15
2012; 134
2012 2012; 5 2
2013; 13
2010 2011; 10 21
2013; 12
2015; 298
2005 2008 2001; 4 451 414
2007; 9
1979; 4
2003; 48
2011; 23
2008; 20
2015 2016; 1 26
2012; 69
2017 2017; 2 1
2014; 7
2014; 6
2009; 15
2016; 45
2014; 53
2015; 13
1991; 36
2011; 1
2015; 3
2004; 49
2015; 51
2015; 11
2015 2011 2015; 11 3 5
2015; 54
2015; 10
2016; 10
1981; 6
2016; 52
1981; 26
2017; 29
2011; 4
2015; 9
2017; 211
2015; 7
2014 2015 2013; 7 54 52
2013 2016; 5 4
2015 2015 2016; 9 137 52
2014; 43
2016; 12
2016; 55
2014 2014; 5 8
2016; 11
2016; 4
2016; 6
2012; 2
2007; 316
2015; 27
2016; 1
2007; 315
2016; 3
2011 2011; 3 334
2014 2016 2016 2017; 2 4 6 11
2011; 50
2016; 20
2011 2015 2016; 196 5 28
2012; 6
2016; 28
2012; 116
2016; 26
2016; 8
2016; 9
1994; 98
e_1_2_7_108_1
e_1_2_7_3_1
e_1_2_7_104_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_83_1
e_1_2_7_100_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_87_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_45_2
e_1_2_7_45_3
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_49_2
e_1_2_7_49_3
e_1_2_7_49_4
Fu J. (e_1_2_7_9_1) 2016; 4
e_1_2_7_90_1
e_1_2_7_94_2
e_1_2_7_94_1
e_1_2_7_71_1
e_1_2_7_52_1
e_1_2_7_98_1
e_1_2_7_23_2
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_75_1
e_1_2_7_56_2
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_56_3
e_1_2_7_79_1
e_1_2_7_109_1
e_1_2_7_4_1
e_1_2_7_105_1
e_1_2_7_8_1
e_1_2_7_101_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_82_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_86_1
e_1_2_7_67_2
e_1_2_7_67_1
e_1_2_7_48_1
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_70_1
e_1_2_7_93_1
e_1_2_7_24_2
e_1_2_7_51_2
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_74_1
e_1_2_7_97_1
e_1_2_7_32_2
e_1_2_7_32_3
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_78_1
e_1_2_7_5_1
e_1_2_7_106_1
e_1_2_7_1_3
e_1_2_7_9_2
e_1_2_7_102_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_81_1
e_1_2_7_1_2
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_85_1
e_1_2_7_89_3
e_1_2_7_47_1
e_1_2_7_89_1
e_1_2_7_89_2
e_1_2_7_28_1
e_1_2_7_28_2
e_1_2_7_73_1
e_1_2_7_110_1
e_1_2_7_50_1
e_1_2_7_92_1
e_1_2_7_25_2
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_77_1
e_1_2_7_54_1
e_1_2_7_96_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_58_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_2_2
e_1_2_7_107_1
Nam G. (e_1_2_7_46_1) 2015; 9
e_1_2_7_80_1
e_1_2_7_103_1
e_1_2_7_18_1
e_1_2_7_84_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_88_1
e_1_2_7_65_1
e_1_2_7_10_1
e_1_2_7_88_2
e_1_2_7_69_1
e_1_2_7_27_1
e_1_2_7_91_1
e_1_2_7_72_1
e_1_2_7_95_1
e_1_2_7_72_2
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_76_1
e_1_2_7_99_1
e_1_2_7_53_2
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_38_1
References_xml – volume: 4
  start-page: 4864
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 12
  start-page: 2707
  year: 2016
  publication-title: Small
– volume: 10
  start-page: 4364
  year: 2016
  publication-title: ACS Nano
– volume: 35 39
  start-page: 221 4370
  year: 2007 2010
  publication-title: Prog. Solid State Chem. Chem. Soc. Rev.
– volume: 7
  start-page: 21138
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 3
  start-page: 14188
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 6
  start-page: 7084
  year: 2012
  publication-title: ACS Nano
– volume: 29
  start-page: 1606534
  year: 2017
  publication-title: Adv. Mater.
– volume: 43
  start-page: 5257
  year: 2014
  publication-title: Chem. Soc. Rev.
– volume: 48
  start-page: 1015
  year: 2003
  publication-title: Electrochim. Acta
– volume: 6
  start-page: 1601052
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 6
  start-page: 22297
  year: 2014
  publication-title: ACS Appl. Mater. Interfaces
– volume: 28
  start-page: 3777
  year: 2016
  publication-title: Adv. Mater.
– volume: 98
  start-page: 7566
  year: 1994
  publication-title: J. Phys. Chem.
– volume: 5 2
  start-page: 6744 891
  year: 2012 2012
  publication-title: Energy Environ. Sci. ACS Catal.
– volume: 12
  start-page: 81
  year: 2013
  publication-title: Nat. Mater.
– volume: 124
  start-page: 7325
  year: 2012
  publication-title: Angew. Chem., Int. Ed.
– volume: 51
  start-page: 11496
  year: 2012
  publication-title: Angew. Chem., Int. Ed.
– volume: 136
  start-page: 4394
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 27
  start-page: 1181
  year: 2015
  publication-title: Chem. Mater.
– volume: 29
  start-page: 1604103
  year: 2017
  publication-title: Adv. Mater.
– volume: 28
  start-page: 3000
  year: 2016
  publication-title: Adv. Mater.
– volume: 9
  start-page: 2654
  year: 2007
  publication-title: Phys. Chem. Chem. Phys.
– volume: 340 258
  start-page: 213 580
  year: 1992 1975
  publication-title: J. Electroanal. Chem. Nature
– volume: 55
  start-page: 4087
  year: 2016
  publication-title: Angew. Chem.
– volume: 3 334
  start-page: 546 1383
  year: 2011 2011
  publication-title: Nat. Chem. Science
– volume: 4
  start-page: 8602
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 4
  start-page: 2221
  year: 2013
  publication-title: Nat. Commun.
– volume: 13
  start-page: 387
  year: 2015
  publication-title: Nano Energy
– volume: 12 144
  start-page: 919 380
  year: 2013 2014
  publication-title: Nat. Mater. Catal. Lett.
– volume: 243
  start-page: 267
  year: 2013
  publication-title: J. Power Sources
– volume: 196 5 28
  start-page: 3673 1445 8771
  year: 2011 2015 2016
  publication-title: J. Power Sources ACS Catal. Adv. Mater.
– volume: 6
  start-page: 33205
  year: 2016
  publication-title: RSC Adv.
– volume: 23
  start-page: 1467
  year: 2011
  publication-title: Adv. Mater.
– volume: 29
  start-page: 1503
  year: 1984
  publication-title: Electrochim. Acta
– volume: 52
  start-page: 8156
  year: 2016
  publication-title: Chem. Commun.
– volume: 7
  start-page: 609
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 9
  start-page: 176
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 3
  start-page: 11736
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 4
  start-page: 6282
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 49
  start-page: 873
  year: 2004
  publication-title: Electrochim. Acta
– volume: 2 1
  start-page: 306 1600038
  year: 2017 2017
  publication-title: ACS Energy Lett. Adv. Sustainable Syst.
– volume: 1
  start-page: 4754
  year: 2013
  publication-title: J.Mater. Chem. A
– volume: 36
  start-page: 323
  year: 1991
  publication-title: J. Power Sources
– volume: 22
  start-page: 898
  year: 2010
  publication-title: Chem. Mater.
– volume: 55
  start-page: 15925
  year: 2016
  publication-title: Angew. Chem., Int. Ed.
– volume: 26
  start-page: 5893
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 4
  start-page: 1805
  year: 2013
  publication-title: Nat. Commun.
– volume: 69
  start-page: 295
  year: 2012
  publication-title: Electrochim. Acta
– volume: 10
  start-page: 444
  year: 2015
  publication-title: Nat. Nanotechnol.
– volume: 4
  start-page: 263
  year: 1979
  publication-title: J. Power Sources
– volume: 24
  start-page: 4325
  year: 2014
  publication-title: Adv. Funct. Mater.
– volume: 9 137 52
  start-page: 2635 2804 11215
  year: 2015 2015 2016
  publication-title: ACS Nano J. Am. Chem. Soc. Chem. Commun.
– volume: 36
  start-page: 225
  year: 1991
  publication-title: Electrochim. Acta
– volume: 6
  start-page: 3173
  year: 2014
  publication-title: Nanoscale
– volume: 116
  start-page: 5827
  year: 2012
  publication-title: J. Phys. Chem. C
– volume: 4 4
  start-page: 160468 7107
  year: 2016 2016
  publication-title: Adv. Mater. J. Mater. Chem. A
– volume: 10
  start-page: 780
  year: 2011
  publication-title: Nat. Mater.
– volume: 43
  start-page: 7746
  year: 2014
  publication-title: Chem. Soc. Rev.
– volume: 28
  start-page: 8771
  year: 2016
  publication-title: Adv. Mater.
– volume: 5 8
  start-page: 4973 6856
  year: 2014 2014
  publication-title: Nat. Commun. ACS Nano
– volume: 316
  start-page: 732
  year: 2007
  publication-title: Science
– volume: 13
  start-page: 3420
  year: 2013
  publication-title: Nano Lett.
– volume: 38
  start-page: 9532
  year: 2016
  publication-title: Adv. Mater.
– volume: 11
  start-page: 366
  year: 2015
  publication-title: Nano Energy
– volume: 11
  start-page: 5900
  year: 2016
  publication-title: Int. J. Electrochem. Sci.
– volume: 20
  start-page: 571
  year: 2008
  publication-title: Adv. Mater.
– volume: 12
  start-page: 1295
  year: 2016
  publication-title: Small
– volume: 53
  start-page: 1570
  year: 2014
  publication-title: Angew. Chem., Int. Ed.
– volume: 1
  start-page: 15006
  year: 2016
  publication-title: Nat. Energy
– volume: 54
  start-page: 9654
  year: 2015
  publication-title: Angew. Chem., Int. Ed.
– volume: 298
  start-page: 102
  year: 2015
  publication-title: J. Power Sources
– volume: 9
  start-page: 6439
  year: 2015
  publication-title: ACS Nano
– volume: 1 26
  start-page: 261 8487
  year: 2015 2016
  publication-title: ACS Cent. Sci. Adv. Funct. Mater.
– volume: 8
  start-page: 10383
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 7
  start-page: 1830
  year: 2015
  publication-title: Nanoscale
– volume: 7
  start-page: 7786
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 53
  start-page: 8508
  year: 2014
  publication-title: Angew. Chem., Int. Ed.
– volume: 4
  start-page: 4148
  year: 2011
  publication-title: Energy Environ. Sci.
– volume: 3
  start-page: 417
  year: 2016
  publication-title: Inorg. Chem. Front.
– volume: 6
  start-page: 1502054
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 134
  start-page: 12326
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 12
  start-page: 5414
  year: 2016
  publication-title: Small
– volume: 26
  start-page: 781
  year: 1981
  publication-title: Electrochim. Acta
– volume: 211
  start-page: 148
  year: 2017
  publication-title: Appl. Catal., B
– volume: 315
  start-page: 493
  year: 2007
  publication-title: Science
– volume: 2
  start-page: 816
  year: 2012
  publication-title: Adv. Energy Mater.
– volume: 7 54 52
  start-page: 1755 1888 13818
  year: 2014 2015 2013
  publication-title: ChemSusChem Angew. Chem., Int. Ed. Angew. Chem., Int. Ed.
– volume: 20
  start-page: 315
  year: 2016
  publication-title: Nano Energy
– volume: 6
  start-page: 203
  year: 1981
  publication-title: J. Power Sources
– volume: 91
  start-page: 83
  year: 2000
  publication-title: J. Power Sources
– volume: 27 36
  start-page: 1604356 286
  year: 2017 2017
  publication-title: Adv. Funct. Mater. Nano Energy
– volume: 134
  start-page: 16127
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 2 4 6 11
  start-page: 18761 1600262 1601549 6186
  year: 2014 2016 2016 2017
  publication-title: J. Mater. Chem. A Adv. Sci. Adv. Energy Mater. ACS Nano
– volume: 15
  start-page: 445
  year: 2009
  publication-title: J. Ind. Eng. Chem.
– volume: 25
  start-page: 6138
  year: 2013
  publication-title: Adv. Mater.
– volume: 4
  start-page: 6376
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 50
  start-page: 2773
  year: 2011
  publication-title: Angew. Chem., Int. Ed.
– volume: 11
  start-page: 5362
  year: 2011
  publication-title: Nano Lett.
– volume: 11 3 5
  start-page: 333 79 7665
  year: 2015 2011 2015
  publication-title: Nano Energy Nat. Chem. Sci. Rep.
– volume: 45
  start-page: 517
  year: 2016
  publication-title: Chem. Soc. Rev.
– volume: 4 451 414
  start-page: 366 652 359
  year: 2005 2008 2001
  publication-title: Nat. Mater. Nature Nature
– volume: 5 4
  start-page: 4657 5258
  year: 2013 2016
  publication-title: Nanoscale J. Mater. Chem. A
– volume: 51
  start-page: 2710
  year: 2015
  publication-title: Chem. Commun.
– volume: 12
  start-page: 1946
  year: 2012
  publication-title: Nano Lett.
– volume: 1
  start-page: 34
  year: 2011
  publication-title: Adv. Energy Mater.
– volume: 15
  start-page: 12220
  year: 2013
  publication-title: Phys. Chem. Chem. Phys.
– volume: 13
  start-page: 5206
  year: 2011
  publication-title: Phys. Chem. Chem. Phys.
– volume: 28
  start-page: 6845
  year: 2016
  publication-title: Adv. Mater.
– volume: 10 21
  start-page: 2806 11478
  year: 2010 2011
  publication-title: Nano Lett. J. Mater. Chem.
– ident: e_1_2_7_50_1
  doi: 10.1002/anie.201610301
– ident: e_1_2_7_108_1
  doi: 10.1002/anie.201402710
– ident: e_1_2_7_47_1
  doi: 10.1039/C6TA02150F
– ident: e_1_2_7_38_1
  doi: 10.1021/nl2029078
– ident: e_1_2_7_65_1
  doi: 10.1021/am506284k
– ident: e_1_2_7_58_1
  doi: 10.1002/adma.201302753
– ident: e_1_2_7_2_1
  doi: 10.1039/c3nr00300k
– ident: e_1_2_7_36_1
  doi: 10.1039/C5CS00670H
– ident: e_1_2_7_88_2
  doi: 10.1039/b915141a
– ident: e_1_2_7_23_2
  doi: 10.1007/s10562-013-1188-y
– ident: e_1_2_7_56_2
  doi: 10.1002/anie.201410258
– ident: e_1_2_7_104_1
  doi: 10.1002/adma.201601406
– ident: e_1_2_7_43_1
  doi: 10.1016/j.jpowsour.2015.08.051
– ident: e_1_2_7_32_1
  doi: 10.1021/nn506387w
– ident: e_1_2_7_30_1
  doi: 10.1002/adma.200701408
– ident: e_1_2_7_8_1
  doi: 10.1002/aenm.201200013
– ident: e_1_2_7_1_2
  doi: 10.1038/451652a
– ident: e_1_2_7_103_1
  doi: 10.1002/adma.201602912
– ident: e_1_2_7_20_1
  doi: 10.1002/adfm.201400161
– ident: e_1_2_7_49_1
  doi: 10.1039/C4TA03052D
– ident: e_1_2_7_73_1
  doi: 10.1002/adma.201604103
– ident: e_1_2_7_67_2
  doi: 10.1002/adsu.201600038
– ident: e_1_2_7_7_1
  doi: 10.1039/C4CS00015C
– ident: e_1_2_7_39_1
  doi: 10.1016/j.electacta.2003.09.039
– ident: e_1_2_7_32_3
  doi: 10.1039/C6CC06165F
– ident: e_1_2_7_35_1
  doi: 10.1038/nmat3458
– ident: e_1_2_7_66_1
  doi: 10.1002/adfm.201602158
– ident: e_1_2_7_16_1
  doi: 10.1016/0013-4686(81)90037-2
– ident: e_1_2_7_55_1
  doi: 10.1002/aenm.201601052
– ident: e_1_2_7_87_1
  doi: 10.1002/smll.201602247
– ident: e_1_2_7_81_1
  doi: 10.1039/C6TA00615A
– ident: e_1_2_7_51_1
  doi: 10.1021/acscentsci.5b00191
– ident: e_1_2_7_84_1
  doi: 10.1002/smll.201600051
– ident: e_1_2_7_74_1
  doi: 10.1039/C5TA02229K
– ident: e_1_2_7_96_1
  doi: 10.1021/jp211946n
– ident: e_1_2_7_3_1
  doi: 10.1002/aenm.201000010
– ident: e_1_2_7_49_2
  doi: 10.1002/advs.201600262
– ident: e_1_2_7_31_1
  doi: 10.1002/ange.201201553
– ident: e_1_2_7_99_1
  doi: 10.1016/j.nanoen.2015.11.030
– ident: e_1_2_7_32_2
  doi: 10.1021/ja511596c
– ident: e_1_2_7_6_1
  doi: 10.1016/0378-7753(79)80001-4
– ident: e_1_2_7_86_1
  doi: 10.1039/C4CC09062D
– ident: e_1_2_7_72_2
  doi: 10.1021/nn501506p
– ident: e_1_2_7_98_1
  doi: 10.1039/C5EE03124A
– ident: e_1_2_7_67_1
  doi: 10.1021/acsenergylett.6b00602
– ident: e_1_2_7_28_1
  doi: 10.1021/nl100718k
– ident: e_1_2_7_83_1
  doi: 10.1038/nmat3087
– ident: e_1_2_7_18_1
  doi: 10.1016/0013-4686(84)85004-5
– ident: e_1_2_7_77_1
  doi: 10.1039/C5QI00236B
– ident: e_1_2_7_60_1
  doi: 10.1021/cm5037502
– ident: e_1_2_7_59_1
  doi: 10.1021/ja306376s
– ident: e_1_2_7_4_1
  doi: 10.1039/C6TA02030E
– ident: e_1_2_7_92_1
  doi: 10.1039/c3nr05835b
– ident: e_1_2_7_105_1
  doi: 10.1039/c3cp51942b
– ident: e_1_2_7_45_3
  doi: 10.1002/adma.201601651
– ident: e_1_2_7_17_1
  doi: 10.1016/0378-7753(91)87010-9
– ident: e_1_2_7_53_1
  doi: 10.1002/adfm.201604356
– ident: e_1_2_7_68_1
  doi: 10.1002/anie.201307319
– ident: e_1_2_7_27_1
  doi: 10.1002/anie.201007859
– ident: e_1_2_7_45_1
  doi: 10.1016/j.jpowsour.2010.12.047
– ident: e_1_2_7_94_1
  doi: 10.1038/nchem.1069
– ident: e_1_2_7_97_1
  doi: 10.20964/2016.07.68
– ident: e_1_2_7_25_1
  doi: 10.1016/0022-0728(92)80299-J
– ident: e_1_2_7_109_1
  doi: 10.1016/j.nanoen.2015.02.025
– ident: e_1_2_7_52_1
  doi: 10.1002/smll.201503305
– ident: e_1_2_7_61_1
  doi: 10.1002/anie.201206720
– ident: e_1_2_7_100_1
  doi: 10.1002/anie.201509382
– ident: e_1_2_7_56_3
  doi: 10.1002/anie.201309171
– ident: e_1_2_7_72_1
  doi: 10.1038/ncomms5973
– ident: e_1_2_7_85_1
  doi: 10.1016/j.electacta.2012.03.001
– ident: e_1_2_7_25_2
  doi: 10.1038/258580a0
– ident: e_1_2_7_9_2
  doi: 10.1039/C6TA00173D
– ident: e_1_2_7_24_2
  doi: 10.1021/cs3000792
– ident: e_1_2_7_37_1
  doi: 10.1039/c1ee01942b
– ident: e_1_2_7_107_1
  doi: 10.1039/C3EE42696C
– ident: e_1_2_7_5_1
  doi: 10.1016/j.jiec.2009.01.002
– ident: e_1_2_7_106_1
  doi: 10.1039/C4NR05988C
– ident: e_1_2_7_10_1
  doi: 10.1016/0378-7753(81)80027-4
– ident: e_1_2_7_44_1
  doi: 10.1021/acsami.5b04865
– ident: e_1_2_7_23_1
  doi: 10.1038/nmat3712
– ident: e_1_2_7_19_1
  doi: 10.1039/C3CS60248F
– ident: e_1_2_7_75_1
  doi: 10.1039/C6CC03687B
– ident: e_1_2_7_69_1
  doi: 10.1021/acsnano.5b08040
– ident: e_1_2_7_28_2
  doi: 10.1039/c1jm10349k
– ident: e_1_2_7_2_2
  doi: 10.1039/C6TA00377J
– volume: 9
  start-page: 6439
  year: 2015
  ident: e_1_2_7_46_1
  publication-title: ACS Nano
– ident: e_1_2_7_49_4
  doi: 10.1021/acsnano.7b02275
– ident: e_1_2_7_41_1
  doi: 10.1021/cm901698s
– ident: e_1_2_7_54_1
  doi: 10.1002/adma.201606534
– ident: e_1_2_7_76_1
  doi: 10.1002/adma.201601651
– ident: e_1_2_7_49_3
  doi: 10.1002/aenm.201601549
– ident: e_1_2_7_62_1
  doi: 10.1021/nn3021234
– ident: e_1_2_7_94_2
  doi: 10.1126/science.1212858
– ident: e_1_2_7_33_1
  doi: 10.1126/science.1135941
– ident: e_1_2_7_56_1
  doi: 10.1002/cssc.201400049
– ident: e_1_2_7_53_2
  doi: 10.1016/j.nanoen.2017.04.014
– ident: e_1_2_7_51_2
  doi: 10.1002/adfm.201603933
– ident: e_1_2_7_95_1
  doi: 10.1021/nl2044327
– ident: e_1_2_7_26_1
  doi: 10.1126/science.1140484
– ident: e_1_2_7_89_2
  doi: 10.1038/nchem.931
– ident: e_1_2_7_101_1
  doi: 10.1002/anie.201503612
– ident: e_1_2_7_12_1
  doi: 10.1021/ja500432h
– ident: e_1_2_7_22_1
  doi: 10.1021/ja3031449
– ident: e_1_2_7_78_1
  doi: 10.1016/j.jpowsour.2013.06.025
– ident: e_1_2_7_91_1
  doi: 10.1039/c3ta01402a
– ident: e_1_2_7_34_1
  doi: 10.1021/nl401881z
– ident: e_1_2_7_13_1
  doi: 10.1039/c0cp02365e
– ident: e_1_2_7_1_1
  doi: 10.1038/nmat1368
– ident: e_1_2_7_110_1
  doi: 10.1002/adma.201506112
– ident: e_1_2_7_71_1
  doi: 10.1016/j.nanoen.2014.11.008
– ident: e_1_2_7_79_1
  doi: 10.1016/0013-4686(91)85244-2
– ident: e_1_2_7_24_1
  doi: 10.1039/c2ee03590a
– ident: e_1_2_7_48_1
  doi: 10.1039/C5TA03199K
– ident: e_1_2_7_1_3
  doi: 10.1038/35104644
– ident: e_1_2_7_21_1
  doi: 10.1038/ncomms3221
– ident: e_1_2_7_14_1
  doi: 10.1039/b703315j
– ident: e_1_2_7_29_1
  doi: 10.1002/adma.201004377
– ident: e_1_2_7_102_1
  doi: 10.1038/nnano.2015.48
– ident: e_1_2_7_15_1
  doi: 10.1021/j100082a030
– ident: e_1_2_7_89_1
  doi: 10.1016/j.nanoen.2014.11.021
– ident: e_1_2_7_93_1
  doi: 10.1002/adma.201506197
– ident: e_1_2_7_42_1
  doi: 10.1016/S0013-4686(02)00815-0
– ident: e_1_2_7_11_1
  doi: 10.1002/aenm.201502054
– ident: e_1_2_7_40_1
  doi: 10.1016/S0378-7753(00)00417-1
– ident: e_1_2_7_57_1
  doi: 10.1021/acsami.5b01067
– ident: e_1_2_7_64_1
  doi: 10.1039/C5RA26675K
– ident: e_1_2_7_88_1
  doi: 10.1016/j.progsolidstchem.2007.01.029
– ident: e_1_2_7_89_3
  doi: 10.1038/srep07665
– volume: 4
  start-page: 160468
  year: 2016
  ident: e_1_2_7_9_1
  publication-title: Adv. Mater.
– ident: e_1_2_7_70_1
  doi: 10.1016/j.apcatb.2017.04.038
– ident: e_1_2_7_82_1
  doi: 10.1038/ncomms2812
– ident: e_1_2_7_63_1
  doi: 10.1021/acsami.6b03260
– ident: e_1_2_7_90_1
  doi: 10.1039/C6TA00591H
– ident: e_1_2_7_45_2
  doi: 10.1021/cs501571e
– ident: e_1_2_7_80_1
  doi: 10.1038/nenergy.2015.6
SSID ssj0002013521
Score 2.4782639
SecondaryResourceType review_article
Snippet Zinc–air batteries (ZABs) have attracted extensive attention due to their remarkable high theoretical energy output. They represent one of the most promising...
SourceID crossref
wiley
SourceType Enrichment Source
Index Database
Publisher
SubjectTerms bifunctional electrocatalysts
oxygen electrocatalysts
oxygen‐evolution reaction
oxygen‐reduction reaction
zinc–air batteries
Title Recent Progress in Oxygen Electrocatalysts for Zinc–Air Batteries
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmtd.201700209
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF58XPQgPvHNHgQPJZruJml6LFYRsSq0QvUSsptNiWgqNgX15H_wH_pLnH0kqVrxcQnJMlk2mY_ZmdndbxDacZkjmE2ZFXHfsRxCwA6GkWdFcvIVsefFasW0deYdXzonXbdblrdSp0sytsefx54r-Y9WoQ30Kk_J_kGzRafQAPegX7iChuH6Kx2DzyeX8i_kHitpsZK0cv74BOKVQ13dRiVnngaZIl2oXCcwdrO5gTaSh4om18y3ERoXtX0nV6t1ZenC4b4yaeVmP-3dAKJ6XxLOp8lNIkbEZVt3KAATpfBVqBKzXdlB1DftJuUA01i5fUNZJkI9z4LQRxtOMaYtN62jCCJjLbZmgB3cZZK2VZIFErtezk35evynKavYSKhJl0kg3w-K9yfRNIGoAczedKPZOm0XSTeQAIezqgoOmuHmRJ422f84iA-OymjgojyPzjyaMyEDbmj9L6AJkS6i2REiySV0oJGAcyTgJMUaCfgzEjAgAUskvL28AgZwgYFldHl02Dk4tkx5DItLOlcr5NTljEV26LnViPq8ziG-J3XJcBv6wrG559tuHPkgIwTEpTHzhWC8KgSnoePTFTSV9lOxinBYg6_mNepwWgeLHvuEUohNY7dGYwc81DVk5f8i4IY7XpYwuQ3GK2AN7Rby95o15VtJon7tD2JBu9VpFk_rv-5-A82UAN5EU9nDUGyBF5mxbYONd87EboU
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+Progress+in+Oxygen+Electrocatalysts+for+Zinc%E2%80%93Air+Batteries&rft.jtitle=Small+methods&rft.au=Yang%2C+Dongjiang&rft.au=Zhang%2C+Lijie&rft.au=Yan%2C+Xuecheng&rft.au=Yao%2C+Xiangdong&rft.date=2017-12-01&rft.issn=2366-9608&rft.eissn=2366-9608&rft.volume=1&rft.issue=12&rft_id=info:doi/10.1002%2Fsmtd.201700209&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_smtd_201700209
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2366-9608&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2366-9608&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2366-9608&client=summon