Recent Progress in Oxygen Electrocatalysts for Zinc–Air Batteries
Zinc–air batteries (ZABs) have attracted extensive attention due to their remarkable high theoretical energy output. They represent one of the most promising future power sources. However, many barriers restrict their application on a large scale. One of the main challenges is the sluggish rates of...
Saved in:
Published in | Small methods Vol. 1; no. 12 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
01.12.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Zinc–air batteries (ZABs) have attracted extensive attention due to their remarkable high theoretical energy output. They represent one of the most promising future power sources. However, many barriers restrict their application on a large scale. One of the main challenges is the sluggish rates of the oxygen‐reduction reaction (ORR) and oxygen‐evolution reaction (OER), which govern the discharging and charging processes of the battery, respectively. Here, recent advances related to oxygen electrocatalyst materials for ZABs are discussed. Detailed discussions will focus on unifunctional ORR electrocatalysts and bifunctional ORR and OER electrocatalysts. Pt‐based nanomaterials, as the best ORR electrocatalysts, possess the virtue of high activity, but have the disadvantages of high cost, scarcity, and poor stability. Thus, materials based on transition metals (alloys, metal oxides, metal nitrides, and spinel oxides) and metal‐free materials are widely investigated as nonprecious ORR catalysts owing to their promising catalytic activities. As for bifunctional ORR and OER electrocatalysts, the following two categories are introduced: (i) metal‐based materials, including single metal/metal‐oxides‐based materials and mixed‐metal/metal‐oxides‐based materials; and (ii) metal‐free materials. Finally, perspectives on the continuous research and limitation of the current ZAB technology are provided.
Zinc–air batteries (ZABs), which generate electricity through a redox reaction between zinc metal and oxygen, have attracted extensive attention. The sluggish rates of the oxygen reduction and evolution reactions, which govern the discharging and charging processes of the battery, respectively, have largely limited their development. A timely snapshot of oxygen electrocatalysts for ZABs is provided. |
---|---|
AbstractList | Zinc–air batteries (ZABs) have attracted extensive attention due to their remarkable high theoretical energy output. They represent one of the most promising future power sources. However, many barriers restrict their application on a large scale. One of the main challenges is the sluggish rates of the oxygen‐reduction reaction (ORR) and oxygen‐evolution reaction (OER), which govern the discharging and charging processes of the battery, respectively. Here, recent advances related to oxygen electrocatalyst materials for ZABs are discussed. Detailed discussions will focus on unifunctional ORR electrocatalysts and bifunctional ORR and OER electrocatalysts. Pt‐based nanomaterials, as the best ORR electrocatalysts, possess the virtue of high activity, but have the disadvantages of high cost, scarcity, and poor stability. Thus, materials based on transition metals (alloys, metal oxides, metal nitrides, and spinel oxides) and metal‐free materials are widely investigated as nonprecious ORR catalysts owing to their promising catalytic activities. As for bifunctional ORR and OER electrocatalysts, the following two categories are introduced: (i) metal‐based materials, including single metal/metal‐oxides‐based materials and mixed‐metal/metal‐oxides‐based materials; and (ii) metal‐free materials. Finally, perspectives on the continuous research and limitation of the current ZAB technology are provided.
Zinc–air batteries (ZABs), which generate electricity through a redox reaction between zinc metal and oxygen, have attracted extensive attention. The sluggish rates of the oxygen reduction and evolution reactions, which govern the discharging and charging processes of the battery, respectively, have largely limited their development. A timely snapshot of oxygen electrocatalysts for ZABs is provided. Zinc–air batteries (ZABs) have attracted extensive attention due to their remarkable high theoretical energy output. They represent one of the most promising future power sources. However, many barriers restrict their application on a large scale. One of the main challenges is the sluggish rates of the oxygen‐reduction reaction (ORR) and oxygen‐evolution reaction (OER), which govern the discharging and charging processes of the battery, respectively. Here, recent advances related to oxygen electrocatalyst materials for ZABs are discussed. Detailed discussions will focus on unifunctional ORR electrocatalysts and bifunctional ORR and OER electrocatalysts. Pt‐based nanomaterials, as the best ORR electrocatalysts, possess the virtue of high activity, but have the disadvantages of high cost, scarcity, and poor stability. Thus, materials based on transition metals (alloys, metal oxides, metal nitrides, and spinel oxides) and metal‐free materials are widely investigated as nonprecious ORR catalysts owing to their promising catalytic activities. As for bifunctional ORR and OER electrocatalysts, the following two categories are introduced: (i) metal‐based materials, including single metal/metal‐oxides‐based materials and mixed‐metal/metal‐oxides‐based materials; and (ii) metal‐free materials. Finally, perspectives on the continuous research and limitation of the current ZAB technology are provided. |
Author | Yao, Xiangdong Yang, Dongjiang Zhang, Lijie Yan, Xuecheng |
Author_xml | – sequence: 1 givenname: Dongjiang surname: Yang fullname: Yang, Dongjiang organization: Griffith University – sequence: 2 givenname: Lijie surname: Zhang fullname: Zhang, Lijie organization: Qingdao University – sequence: 3 givenname: Xuecheng surname: Yan fullname: Yan, Xuecheng organization: Griffith University – sequence: 4 givenname: Xiangdong surname: Yao fullname: Yao, Xiangdong email: x.yao@griffith.edu.au organization: Griffith University |
BookMark | eNqFkM9Kw0AQhxepYK29et4XSJ3NNunmWGv9A5WK1ouXsJlMykq6kd0Fzc138A19ElMqKoJ4mhn4fTPDd8h6trHE2LGAkQCIT_wmlKMYxKQbINtj_VimaZSloHo_-gM29P4Rthkhk1j02eyWkGzgN65ZO_KeG8uXL-2aLJ_XhME1qIOuWx88rxrHH4zF99e3qXH8VIdAzpA_YvuVrj0NP-uA3Z_PV7PLaLG8uJpNFxFKAVmkUSZYFCXoNBGlVJihgDTOoPtEKxoDpgqSqlRdhkhNkqpQRAUKIpR6rOSAjXZ70TXeO6ryJ2c22rW5gHxrId9ayL8sdMD4F4Am6GAaG5w29d9YtsOeTU3tP0fyu-vV2Tf7AQSIdmI |
CitedBy_id | crossref_primary_10_1039_D2CE00364C crossref_primary_10_1016_j_apenergy_2021_116777 crossref_primary_10_1016_j_enchem_2022_100081 crossref_primary_10_1021_acscatal_8b02556 crossref_primary_10_1002_adma_201900592 crossref_primary_10_1002_ente_202401339 crossref_primary_10_1016_j_cej_2022_134650 crossref_primary_10_1039_D1CY00657F crossref_primary_10_1021_acs_organomet_8b00508 crossref_primary_10_1002_cnma_202300212 crossref_primary_10_1016_j_ceramint_2022_02_009 crossref_primary_10_3390_pr10040643 crossref_primary_10_1002_smtd_202000868 crossref_primary_10_1007_s12274_020_2751_7 crossref_primary_10_1016_j_rser_2024_114675 crossref_primary_10_1039_D2TA05914B crossref_primary_10_1002_adfm_202210127 crossref_primary_10_1002_admt_202100673 crossref_primary_10_1039_C8EE01991F crossref_primary_10_1016_j_jallcom_2021_163108 crossref_primary_10_1021_acsaem_3c02159 crossref_primary_10_1002_smll_202306396 crossref_primary_10_1016_j_jcis_2019_10_069 crossref_primary_10_1039_D3EE02102E crossref_primary_10_1002_aenm_202100514 crossref_primary_10_3390_catal13050860 crossref_primary_10_1002_adsu_202400881 crossref_primary_10_1016_j_nanoen_2018_03_010 crossref_primary_10_1016_j_jpowsour_2021_230221 crossref_primary_10_1039_D3TA07131F crossref_primary_10_1002_adma_201805062 crossref_primary_10_1016_j_ensm_2018_04_005 crossref_primary_10_1016_j_jece_2022_108052 crossref_primary_10_1002_cssc_202301779 crossref_primary_10_3390_nano11020261 crossref_primary_10_1016_j_apcatb_2019_04_021 crossref_primary_10_1016_j_jpowsour_2018_12_076 crossref_primary_10_1002_asia_202401177 crossref_primary_10_1002_smtd_201800331 crossref_primary_10_1016_j_apcatb_2019_04_027 crossref_primary_10_1002_aenm_201802263 crossref_primary_10_1002_inf2_12000 crossref_primary_10_1021_acsmaterialslett_9b00093 crossref_primary_10_1002_aenm_202003018 crossref_primary_10_1155_2023_5563539 crossref_primary_10_1007_s12678_021_00677_4 crossref_primary_10_1016_j_nexus_2025_100387 crossref_primary_10_1038_s41427_018_0057_y crossref_primary_10_1039_D3TA03675H crossref_primary_10_1016_j_ijhydene_2018_01_040 crossref_primary_10_1002_smll_201904210 crossref_primary_10_1016_j_ensm_2018_03_022 crossref_primary_10_1016_j_ces_2023_119460 crossref_primary_10_1016_j_jallcom_2021_158918 crossref_primary_10_1016_j_jechem_2020_06_053 crossref_primary_10_1016_j_ensm_2018_03_024 crossref_primary_10_1002_smtd_201800279 crossref_primary_10_1016_j_est_2023_110171 crossref_primary_10_1016_j_ijhydene_2023_10_260 crossref_primary_10_1007_s41230_022_2008_z crossref_primary_10_1016_j_cej_2020_127112 crossref_primary_10_1002_smtd_201900571 crossref_primary_10_1016_j_apcatb_2018_08_081 crossref_primary_10_1039_D1NR04537G crossref_primary_10_1002_smtd_202000827 crossref_primary_10_1002_aenm_201801909 crossref_primary_10_1016_j_jcis_2020_03_124 crossref_primary_10_1039_D1CS00135C crossref_primary_10_1016_j_ensm_2019_05_018 crossref_primary_10_1016_j_apsusc_2022_153070 crossref_primary_10_1002_adfm_202500657 crossref_primary_10_1016_j_ensm_2023_03_033 crossref_primary_10_1002_smll_201904903 crossref_primary_10_1039_D0TA05510G crossref_primary_10_1002_batt_201900052 crossref_primary_10_1002_advs_202103954 crossref_primary_10_1002_aenm_201802327 crossref_primary_10_3390_molecules29194562 crossref_primary_10_1007_s41918_019_00035_5 crossref_primary_10_1039_C9RA08723K crossref_primary_10_1016_j_jallcom_2022_166128 crossref_primary_10_1002_ente_202000999 crossref_primary_10_1002_smll_201901518 crossref_primary_10_1039_C7CS00690J crossref_primary_10_1016_j_ceramint_2019_11_096 crossref_primary_10_1016_j_cej_2020_125516 crossref_primary_10_1016_j_cej_2019_04_066 crossref_primary_10_1002_cssc_201903071 crossref_primary_10_1021_acsami_8b19971 crossref_primary_10_1002_smtd_201800144 crossref_primary_10_1002_batt_201800093 crossref_primary_10_1007_s11581_020_03473_0 crossref_primary_10_1002_adma_201802104 crossref_primary_10_1016_j_electacta_2020_135997 crossref_primary_10_1016_j_jechem_2020_11_028 crossref_primary_10_1002_celc_201800373 crossref_primary_10_1021_acsnano_2c09509 crossref_primary_10_1039_D3QI02010J crossref_primary_10_1002_admi_201802046 crossref_primary_10_1021_acsami_0c12801 crossref_primary_10_1002_cctc_202101311 crossref_primary_10_1016_j_mtadv_2020_100116 crossref_primary_10_3390_batteries6010015 crossref_primary_10_1039_D4EY00014E crossref_primary_10_1002_aenm_201801495 crossref_primary_10_1039_C8TA06057F crossref_primary_10_1007_s41918_022_00144_8 crossref_primary_10_3390_catal12091002 crossref_primary_10_1039_D3CE00693J crossref_primary_10_1002_adma_202408139 crossref_primary_10_1007_s10008_024_06116_w crossref_primary_10_1063_5_0017398 crossref_primary_10_1016_j_electacta_2020_137592 crossref_primary_10_1016_j_jelechem_2023_117315 crossref_primary_10_1002_aenm_201703572 crossref_primary_10_1016_j_cej_2019_122247 crossref_primary_10_1039_D3NA00074E crossref_primary_10_1039_C8QI00623G crossref_primary_10_1039_D0MA00745E crossref_primary_10_1002_cssc_202202192 crossref_primary_10_1021_acssuschemeng_1c04259 crossref_primary_10_1016_j_jallcom_2018_03_223 crossref_primary_10_1021_acssuschemeng_9b04703 crossref_primary_10_1002_batt_201800082 crossref_primary_10_1016_j_jcat_2019_11_014 crossref_primary_10_1016_j_nanoms_2024_09_008 crossref_primary_10_3390_en14196385 crossref_primary_10_1002_cey2_529 crossref_primary_10_1016_j_jallcom_2019_04_325 crossref_primary_10_1039_D2TA01319C crossref_primary_10_1039_C9TA01438A crossref_primary_10_1002_cssc_202000670 crossref_primary_10_1016_j_cej_2022_137542 crossref_primary_10_1016_j_matchemphys_2022_126724 crossref_primary_10_1002_smll_202002203 crossref_primary_10_1002_cnma_202400361 crossref_primary_10_1039_D2SE00606E crossref_primary_10_1002_adfm_202201011 crossref_primary_10_1021_acsami_1c18081 crossref_primary_10_1016_j_ensm_2024_103429 crossref_primary_10_1002_aenm_201803768 crossref_primary_10_1039_C7QI00780A crossref_primary_10_1016_j_jcat_2018_09_012 crossref_primary_10_1093_bulcsj_uoae015 crossref_primary_10_1016_S1872_5805_22_60591_2 crossref_primary_10_1016_j_ccr_2023_215491 crossref_primary_10_1002_smtd_201800055 crossref_primary_10_1016_j_ijhydene_2018_01_135 crossref_primary_10_1002_smll_202307863 crossref_primary_10_1007_s40820_020_0406_6 crossref_primary_10_1016_j_apcatb_2021_121006 crossref_primary_10_3390_catal10080822 crossref_primary_10_1002_chem_201904685 crossref_primary_10_1016_j_jallcom_2021_161011 crossref_primary_10_1002_celc_201800068 crossref_primary_10_1016_j_elecom_2023_107557 crossref_primary_10_1002_aenm_201703539 crossref_primary_10_1021_acs_jpcc_4c04479 crossref_primary_10_1002_admi_201800392 crossref_primary_10_1016_j_mtcomm_2021_102275 crossref_primary_10_1021_acssuschemeng_9b04699 crossref_primary_10_1039_D2DT03076D crossref_primary_10_1002_smll_202304863 crossref_primary_10_1016_j_mtener_2021_100879 crossref_primary_10_1021_acs_energyfuels_1c00388 crossref_primary_10_1002_aenm_201903833 crossref_primary_10_1002_celc_202001325 crossref_primary_10_1002_cey2_60 crossref_primary_10_1002_cssc_201900553 crossref_primary_10_3390_catal9110954 crossref_primary_10_1039_D1TA07019C crossref_primary_10_1007_s11426_020_9739_2 crossref_primary_10_1002_adma_201803800 crossref_primary_10_1002_chem_201902389 crossref_primary_10_1016_j_jpcs_2021_110207 crossref_primary_10_1016_j_cej_2020_127895 crossref_primary_10_1016_j_ijhydene_2024_08_026 crossref_primary_10_2139_ssrn_4201271 crossref_primary_10_1039_C9SE00822E crossref_primary_10_1016_j_jiec_2018_11_037 crossref_primary_10_1002_cjoc_202000445 crossref_primary_10_1002_smll_202000742 crossref_primary_10_1016_j_apcatb_2021_120065 crossref_primary_10_1039_D0QM00729C crossref_primary_10_1002_smtd_202301249 crossref_primary_10_1039_D5NJ00176E crossref_primary_10_1016_j_jallcom_2021_160935 crossref_primary_10_1002_aenm_201903930 crossref_primary_10_1016_j_mtsust_2021_100072 crossref_primary_10_1039_C9TA08134H crossref_primary_10_1016_j_diamond_2024_111683 crossref_primary_10_1039_D0TA00793E crossref_primary_10_1021_acs_inorgchem_4c02077 crossref_primary_10_1002_aenm_201901997 crossref_primary_10_1016_S1872_5805_21_60036_7 crossref_primary_10_1039_D4TA02585G crossref_primary_10_1039_C9TA06411G crossref_primary_10_1016_j_cej_2022_140403 crossref_primary_10_1002_adfm_202101193 crossref_primary_10_1021_acsnano_0c10242 crossref_primary_10_1016_j_cej_2018_09_185 crossref_primary_10_1002_aenm_202302388 crossref_primary_10_1016_j_carbon_2018_04_061 crossref_primary_10_1039_C9TA14231B |
Cites_doi | 10.1002/anie.201610301 10.1002/anie.201402710 10.1039/C6TA02150F 10.1021/nl2029078 10.1021/am506284k 10.1002/adma.201302753 10.1039/c3nr00300k 10.1039/C5CS00670H 10.1039/b915141a 10.1007/s10562-013-1188-y 10.1002/anie.201410258 10.1002/adma.201601406 10.1016/j.jpowsour.2015.08.051 10.1021/nn506387w 10.1002/adma.200701408 10.1002/aenm.201200013 10.1038/451652a 10.1002/adma.201602912 10.1002/adfm.201400161 10.1039/C4TA03052D 10.1002/adma.201604103 10.1002/adsu.201600038 10.1039/C4CS00015C 10.1016/j.electacta.2003.09.039 10.1039/C6CC06165F 10.1038/nmat3458 10.1002/adfm.201602158 10.1016/0013-4686(81)90037-2 10.1002/aenm.201601052 10.1002/smll.201602247 10.1039/C6TA00615A 10.1021/acscentsci.5b00191 10.1002/smll.201600051 10.1039/C5TA02229K 10.1021/jp211946n 10.1002/aenm.201000010 10.1002/advs.201600262 10.1002/ange.201201553 10.1016/j.nanoen.2015.11.030 10.1021/ja511596c 10.1016/0378-7753(79)80001-4 10.1039/C4CC09062D 10.1021/nn501506p 10.1039/C5EE03124A 10.1021/acsenergylett.6b00602 10.1021/nl100718k 10.1038/nmat3087 10.1016/0013-4686(84)85004-5 10.1039/C5QI00236B 10.1021/cm5037502 10.1021/ja306376s 10.1039/C6TA02030E 10.1039/c3nr05835b 10.1039/c3cp51942b 10.1002/adma.201601651 10.1016/0378-7753(91)87010-9 10.1002/adfm.201604356 10.1002/anie.201307319 10.1002/anie.201007859 10.1016/j.jpowsour.2010.12.047 10.1038/nchem.1069 10.20964/2016.07.68 10.1016/0022-0728(92)80299-J 10.1016/j.nanoen.2015.02.025 10.1002/smll.201503305 10.1002/anie.201206720 10.1002/anie.201509382 10.1002/anie.201309171 10.1038/ncomms5973 10.1016/j.electacta.2012.03.001 10.1038/258580a0 10.1039/C6TA00173D 10.1021/cs3000792 10.1039/c1ee01942b 10.1039/C3EE42696C 10.1016/j.jiec.2009.01.002 10.1039/C4NR05988C 10.1016/0378-7753(81)80027-4 10.1021/acsami.5b04865 10.1038/nmat3712 10.1039/C3CS60248F 10.1039/C6CC03687B 10.1021/acsnano.5b08040 10.1039/c1jm10349k 10.1039/C6TA00377J 10.1021/acsnano.7b02275 10.1021/cm901698s 10.1002/adma.201606534 10.1002/aenm.201601549 10.1021/nn3021234 10.1126/science.1212858 10.1126/science.1135941 10.1002/cssc.201400049 10.1016/j.nanoen.2017.04.014 10.1002/adfm.201603933 10.1021/nl2044327 10.1126/science.1140484 10.1038/nchem.931 10.1002/anie.201503612 10.1021/ja500432h 10.1021/ja3031449 10.1016/j.jpowsour.2013.06.025 10.1039/c3ta01402a 10.1021/nl401881z 10.1039/c0cp02365e 10.1038/nmat1368 10.1002/adma.201506112 10.1016/j.nanoen.2014.11.008 10.1016/0013-4686(91)85244-2 10.1039/c2ee03590a 10.1039/C5TA03199K 10.1038/35104644 10.1038/ncomms3221 10.1039/b703315j 10.1002/adma.201004377 10.1038/nnano.2015.48 10.1021/j100082a030 10.1016/j.nanoen.2014.11.021 10.1002/adma.201506197 10.1016/S0013-4686(02)00815-0 10.1002/aenm.201502054 10.1016/S0378-7753(00)00417-1 10.1021/acsami.5b01067 10.1039/C5RA26675K 10.1016/j.progsolidstchem.2007.01.029 10.1038/srep07665 10.1016/j.apcatb.2017.04.038 10.1038/ncomms2812 10.1021/acsami.6b03260 10.1039/C6TA00591H 10.1021/cs501571e 10.1038/nenergy.2015.6 |
ContentType | Journal Article |
Copyright | 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION |
DOI | 10.1002/smtd.201700209 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2366-9608 |
EndPage | n/a |
ExternalDocumentID | 10_1002_smtd_201700209 SMTD201700209 |
Genre | reviewArticle |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 51473081; 51672143 – fundername: ARC funderid: 170103317 |
GroupedDBID | 0R~ 1OC 33P AAHHS AAHQN AAIHA AAMNL AANLZ AAZKR ACCFJ ACCZN ACGFS ACXQS ADBBV ADKYN ADXAS ADZMN AEEZP AEIGN AEQDE AEUQT AEUYR AFBPY AFFPM AFZJQ AHBTC AITYG AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB ARCSS BFHJK BMXJE DCZOG EBS EJD HGLYW LATKE LEEKS LOXES LUTES LYRES MEWTI O9- P2W ROL SUPJJ WOHZO WXSBR ZZTAW AAYXX ABJNI ADMLS AEYWJ AGHNM AGYGG CITATION |
ID | FETCH-LOGICAL-c3109-ac35cbbd0a651d38c9c106290352a8e40c6805fd8bbdee875fb8eebc1eec3a483 |
ISSN | 2366-9608 |
IngestDate | Tue Jul 01 00:47:41 EDT 2025 Thu Apr 24 23:11:45 EDT 2025 Wed Jan 22 16:34:13 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#am http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3109-ac35cbbd0a651d38c9c106290352a8e40c6805fd8bbdee875fb8eebc1eec3a483 |
OpenAccessLink | http://hdl.handle.net/10072/388299 |
PageCount | 16 |
ParticipantIDs | crossref_primary_10_1002_smtd_201700209 crossref_citationtrail_10_1002_smtd_201700209 wiley_primary_10_1002_smtd_201700209_SMTD201700209 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-12-01 |
PublicationDateYYYYMMDD | 2017-12-01 |
PublicationDate_xml | – month: 12 year: 2017 text: 2017-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Small methods |
PublicationYear | 2017 |
References | 2007 2010; 35 39 2013; 4 2013; 25 2013; 1 2012; 124 2017 2017; 27 36 2016 2016; 4 4 2013; 243 2011; 11 2014; 24 2011; 10 2011; 13 1984; 29 2000; 91 2012; 12 2016; 38 2014; 136 2012; 51 2013 2014; 12 144 2010; 22 1992 1975; 340 258 2013; 15 2012; 134 2012 2012; 5 2 2013; 13 2010 2011; 10 21 2013; 12 2015; 298 2005 2008 2001; 4 451 414 2007; 9 1979; 4 2003; 48 2011; 23 2008; 20 2015 2016; 1 26 2012; 69 2017 2017; 2 1 2014; 7 2014; 6 2009; 15 2016; 45 2014; 53 2015; 13 1991; 36 2011; 1 2015; 3 2004; 49 2015; 51 2015; 11 2015 2011 2015; 11 3 5 2015; 54 2015; 10 2016; 10 1981; 6 2016; 52 1981; 26 2017; 29 2011; 4 2015; 9 2017; 211 2015; 7 2014 2015 2013; 7 54 52 2013 2016; 5 4 2015 2015 2016; 9 137 52 2014; 43 2016; 12 2016; 55 2014 2014; 5 8 2016; 11 2016; 4 2016; 6 2012; 2 2007; 316 2015; 27 2016; 1 2007; 315 2016; 3 2011 2011; 3 334 2014 2016 2016 2017; 2 4 6 11 2011; 50 2016; 20 2011 2015 2016; 196 5 28 2012; 6 2016; 28 2012; 116 2016; 26 2016; 8 2016; 9 1994; 98 e_1_2_7_108_1 e_1_2_7_3_1 e_1_2_7_104_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_83_1 e_1_2_7_100_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_87_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_45_2 e_1_2_7_45_3 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_49_2 e_1_2_7_49_3 e_1_2_7_49_4 Fu J. (e_1_2_7_9_1) 2016; 4 e_1_2_7_90_1 e_1_2_7_94_2 e_1_2_7_94_1 e_1_2_7_71_1 e_1_2_7_52_1 e_1_2_7_98_1 e_1_2_7_23_2 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_75_1 e_1_2_7_56_2 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_56_3 e_1_2_7_79_1 e_1_2_7_109_1 e_1_2_7_4_1 e_1_2_7_105_1 e_1_2_7_8_1 e_1_2_7_101_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_82_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_86_1 e_1_2_7_67_2 e_1_2_7_67_1 e_1_2_7_48_1 e_1_2_7_29_1 e_1_2_7_51_1 e_1_2_7_70_1 e_1_2_7_93_1 e_1_2_7_24_2 e_1_2_7_51_2 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_74_1 e_1_2_7_97_1 e_1_2_7_32_2 e_1_2_7_32_3 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_78_1 e_1_2_7_5_1 e_1_2_7_106_1 e_1_2_7_1_3 e_1_2_7_9_2 e_1_2_7_102_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_81_1 e_1_2_7_1_2 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_85_1 e_1_2_7_89_3 e_1_2_7_47_1 e_1_2_7_89_1 e_1_2_7_89_2 e_1_2_7_28_1 e_1_2_7_28_2 e_1_2_7_73_1 e_1_2_7_110_1 e_1_2_7_50_1 e_1_2_7_92_1 e_1_2_7_25_2 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_77_1 e_1_2_7_54_1 e_1_2_7_96_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_58_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_2_2 e_1_2_7_107_1 Nam G. (e_1_2_7_46_1) 2015; 9 e_1_2_7_80_1 e_1_2_7_103_1 e_1_2_7_18_1 e_1_2_7_84_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_88_1 e_1_2_7_65_1 e_1_2_7_10_1 e_1_2_7_88_2 e_1_2_7_69_1 e_1_2_7_27_1 e_1_2_7_91_1 e_1_2_7_72_1 e_1_2_7_95_1 e_1_2_7_72_2 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_76_1 e_1_2_7_99_1 e_1_2_7_53_2 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_38_1 |
References_xml | – volume: 4 start-page: 4864 year: 2016 publication-title: J. Mater. Chem. A – volume: 12 start-page: 2707 year: 2016 publication-title: Small – volume: 10 start-page: 4364 year: 2016 publication-title: ACS Nano – volume: 35 39 start-page: 221 4370 year: 2007 2010 publication-title: Prog. Solid State Chem. Chem. Soc. Rev. – volume: 7 start-page: 21138 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 3 start-page: 14188 year: 2015 publication-title: J. Mater. Chem. A – volume: 6 start-page: 7084 year: 2012 publication-title: ACS Nano – volume: 29 start-page: 1606534 year: 2017 publication-title: Adv. Mater. – volume: 43 start-page: 5257 year: 2014 publication-title: Chem. Soc. Rev. – volume: 48 start-page: 1015 year: 2003 publication-title: Electrochim. Acta – volume: 6 start-page: 1601052 year: 2016 publication-title: Adv. Energy Mater. – volume: 6 start-page: 22297 year: 2014 publication-title: ACS Appl. Mater. Interfaces – volume: 28 start-page: 3777 year: 2016 publication-title: Adv. Mater. – volume: 98 start-page: 7566 year: 1994 publication-title: J. Phys. Chem. – volume: 5 2 start-page: 6744 891 year: 2012 2012 publication-title: Energy Environ. Sci. ACS Catal. – volume: 12 start-page: 81 year: 2013 publication-title: Nat. Mater. – volume: 124 start-page: 7325 year: 2012 publication-title: Angew. Chem., Int. Ed. – volume: 51 start-page: 11496 year: 2012 publication-title: Angew. Chem., Int. Ed. – volume: 136 start-page: 4394 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 27 start-page: 1181 year: 2015 publication-title: Chem. Mater. – volume: 29 start-page: 1604103 year: 2017 publication-title: Adv. Mater. – volume: 28 start-page: 3000 year: 2016 publication-title: Adv. Mater. – volume: 9 start-page: 2654 year: 2007 publication-title: Phys. Chem. Chem. Phys. – volume: 340 258 start-page: 213 580 year: 1992 1975 publication-title: J. Electroanal. Chem. Nature – volume: 55 start-page: 4087 year: 2016 publication-title: Angew. Chem. – volume: 3 334 start-page: 546 1383 year: 2011 2011 publication-title: Nat. Chem. Science – volume: 4 start-page: 8602 year: 2016 publication-title: J. Mater. Chem. A – volume: 4 start-page: 2221 year: 2013 publication-title: Nat. Commun. – volume: 13 start-page: 387 year: 2015 publication-title: Nano Energy – volume: 12 144 start-page: 919 380 year: 2013 2014 publication-title: Nat. Mater. Catal. Lett. – volume: 243 start-page: 267 year: 2013 publication-title: J. Power Sources – volume: 196 5 28 start-page: 3673 1445 8771 year: 2011 2015 2016 publication-title: J. Power Sources ACS Catal. Adv. Mater. – volume: 6 start-page: 33205 year: 2016 publication-title: RSC Adv. – volume: 23 start-page: 1467 year: 2011 publication-title: Adv. Mater. – volume: 29 start-page: 1503 year: 1984 publication-title: Electrochim. Acta – volume: 52 start-page: 8156 year: 2016 publication-title: Chem. Commun. – volume: 7 start-page: 609 year: 2014 publication-title: Energy Environ. Sci. – volume: 9 start-page: 176 year: 2016 publication-title: Energy Environ. Sci. – volume: 3 start-page: 11736 year: 2015 publication-title: J. Mater. Chem. A – volume: 4 start-page: 6282 year: 2016 publication-title: J. Mater. Chem. A – volume: 49 start-page: 873 year: 2004 publication-title: Electrochim. Acta – volume: 2 1 start-page: 306 1600038 year: 2017 2017 publication-title: ACS Energy Lett. Adv. Sustainable Syst. – volume: 1 start-page: 4754 year: 2013 publication-title: J.Mater. Chem. A – volume: 36 start-page: 323 year: 1991 publication-title: J. Power Sources – volume: 22 start-page: 898 year: 2010 publication-title: Chem. Mater. – volume: 55 start-page: 15925 year: 2016 publication-title: Angew. Chem., Int. Ed. – volume: 26 start-page: 5893 year: 2016 publication-title: Adv. Funct. Mater. – volume: 4 start-page: 1805 year: 2013 publication-title: Nat. Commun. – volume: 69 start-page: 295 year: 2012 publication-title: Electrochim. Acta – volume: 10 start-page: 444 year: 2015 publication-title: Nat. Nanotechnol. – volume: 4 start-page: 263 year: 1979 publication-title: J. Power Sources – volume: 24 start-page: 4325 year: 2014 publication-title: Adv. Funct. Mater. – volume: 9 137 52 start-page: 2635 2804 11215 year: 2015 2015 2016 publication-title: ACS Nano J. Am. Chem. Soc. Chem. Commun. – volume: 36 start-page: 225 year: 1991 publication-title: Electrochim. Acta – volume: 6 start-page: 3173 year: 2014 publication-title: Nanoscale – volume: 116 start-page: 5827 year: 2012 publication-title: J. Phys. Chem. C – volume: 4 4 start-page: 160468 7107 year: 2016 2016 publication-title: Adv. Mater. J. Mater. Chem. A – volume: 10 start-page: 780 year: 2011 publication-title: Nat. Mater. – volume: 43 start-page: 7746 year: 2014 publication-title: Chem. Soc. Rev. – volume: 28 start-page: 8771 year: 2016 publication-title: Adv. Mater. – volume: 5 8 start-page: 4973 6856 year: 2014 2014 publication-title: Nat. Commun. ACS Nano – volume: 316 start-page: 732 year: 2007 publication-title: Science – volume: 13 start-page: 3420 year: 2013 publication-title: Nano Lett. – volume: 38 start-page: 9532 year: 2016 publication-title: Adv. Mater. – volume: 11 start-page: 366 year: 2015 publication-title: Nano Energy – volume: 11 start-page: 5900 year: 2016 publication-title: Int. J. Electrochem. Sci. – volume: 20 start-page: 571 year: 2008 publication-title: Adv. Mater. – volume: 12 start-page: 1295 year: 2016 publication-title: Small – volume: 53 start-page: 1570 year: 2014 publication-title: Angew. Chem., Int. Ed. – volume: 1 start-page: 15006 year: 2016 publication-title: Nat. Energy – volume: 54 start-page: 9654 year: 2015 publication-title: Angew. Chem., Int. Ed. – volume: 298 start-page: 102 year: 2015 publication-title: J. Power Sources – volume: 9 start-page: 6439 year: 2015 publication-title: ACS Nano – volume: 1 26 start-page: 261 8487 year: 2015 2016 publication-title: ACS Cent. Sci. Adv. Funct. Mater. – volume: 8 start-page: 10383 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 7 start-page: 1830 year: 2015 publication-title: Nanoscale – volume: 7 start-page: 7786 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 53 start-page: 8508 year: 2014 publication-title: Angew. Chem., Int. Ed. – volume: 4 start-page: 4148 year: 2011 publication-title: Energy Environ. Sci. – volume: 3 start-page: 417 year: 2016 publication-title: Inorg. Chem. Front. – volume: 6 start-page: 1502054 year: 2016 publication-title: Adv. Energy Mater. – volume: 134 start-page: 12326 year: 2012 publication-title: J. Am. Chem. Soc. – volume: 12 start-page: 5414 year: 2016 publication-title: Small – volume: 26 start-page: 781 year: 1981 publication-title: Electrochim. Acta – volume: 211 start-page: 148 year: 2017 publication-title: Appl. Catal., B – volume: 315 start-page: 493 year: 2007 publication-title: Science – volume: 2 start-page: 816 year: 2012 publication-title: Adv. Energy Mater. – volume: 7 54 52 start-page: 1755 1888 13818 year: 2014 2015 2013 publication-title: ChemSusChem Angew. Chem., Int. Ed. Angew. Chem., Int. Ed. – volume: 20 start-page: 315 year: 2016 publication-title: Nano Energy – volume: 6 start-page: 203 year: 1981 publication-title: J. Power Sources – volume: 91 start-page: 83 year: 2000 publication-title: J. Power Sources – volume: 27 36 start-page: 1604356 286 year: 2017 2017 publication-title: Adv. Funct. Mater. Nano Energy – volume: 134 start-page: 16127 year: 2012 publication-title: J. Am. Chem. Soc. – volume: 2 4 6 11 start-page: 18761 1600262 1601549 6186 year: 2014 2016 2016 2017 publication-title: J. Mater. Chem. A Adv. Sci. Adv. Energy Mater. ACS Nano – volume: 15 start-page: 445 year: 2009 publication-title: J. Ind. Eng. Chem. – volume: 25 start-page: 6138 year: 2013 publication-title: Adv. Mater. – volume: 4 start-page: 6376 year: 2016 publication-title: J. Mater. Chem. A – volume: 50 start-page: 2773 year: 2011 publication-title: Angew. Chem., Int. Ed. – volume: 11 start-page: 5362 year: 2011 publication-title: Nano Lett. – volume: 11 3 5 start-page: 333 79 7665 year: 2015 2011 2015 publication-title: Nano Energy Nat. Chem. Sci. Rep. – volume: 45 start-page: 517 year: 2016 publication-title: Chem. Soc. Rev. – volume: 4 451 414 start-page: 366 652 359 year: 2005 2008 2001 publication-title: Nat. Mater. Nature Nature – volume: 5 4 start-page: 4657 5258 year: 2013 2016 publication-title: Nanoscale J. Mater. Chem. A – volume: 51 start-page: 2710 year: 2015 publication-title: Chem. Commun. – volume: 12 start-page: 1946 year: 2012 publication-title: Nano Lett. – volume: 1 start-page: 34 year: 2011 publication-title: Adv. Energy Mater. – volume: 15 start-page: 12220 year: 2013 publication-title: Phys. Chem. Chem. Phys. – volume: 13 start-page: 5206 year: 2011 publication-title: Phys. Chem. Chem. Phys. – volume: 28 start-page: 6845 year: 2016 publication-title: Adv. Mater. – volume: 10 21 start-page: 2806 11478 year: 2010 2011 publication-title: Nano Lett. J. Mater. Chem. – ident: e_1_2_7_50_1 doi: 10.1002/anie.201610301 – ident: e_1_2_7_108_1 doi: 10.1002/anie.201402710 – ident: e_1_2_7_47_1 doi: 10.1039/C6TA02150F – ident: e_1_2_7_38_1 doi: 10.1021/nl2029078 – ident: e_1_2_7_65_1 doi: 10.1021/am506284k – ident: e_1_2_7_58_1 doi: 10.1002/adma.201302753 – ident: e_1_2_7_2_1 doi: 10.1039/c3nr00300k – ident: e_1_2_7_36_1 doi: 10.1039/C5CS00670H – ident: e_1_2_7_88_2 doi: 10.1039/b915141a – ident: e_1_2_7_23_2 doi: 10.1007/s10562-013-1188-y – ident: e_1_2_7_56_2 doi: 10.1002/anie.201410258 – ident: e_1_2_7_104_1 doi: 10.1002/adma.201601406 – ident: e_1_2_7_43_1 doi: 10.1016/j.jpowsour.2015.08.051 – ident: e_1_2_7_32_1 doi: 10.1021/nn506387w – ident: e_1_2_7_30_1 doi: 10.1002/adma.200701408 – ident: e_1_2_7_8_1 doi: 10.1002/aenm.201200013 – ident: e_1_2_7_1_2 doi: 10.1038/451652a – ident: e_1_2_7_103_1 doi: 10.1002/adma.201602912 – ident: e_1_2_7_20_1 doi: 10.1002/adfm.201400161 – ident: e_1_2_7_49_1 doi: 10.1039/C4TA03052D – ident: e_1_2_7_73_1 doi: 10.1002/adma.201604103 – ident: e_1_2_7_67_2 doi: 10.1002/adsu.201600038 – ident: e_1_2_7_7_1 doi: 10.1039/C4CS00015C – ident: e_1_2_7_39_1 doi: 10.1016/j.electacta.2003.09.039 – ident: e_1_2_7_32_3 doi: 10.1039/C6CC06165F – ident: e_1_2_7_35_1 doi: 10.1038/nmat3458 – ident: e_1_2_7_66_1 doi: 10.1002/adfm.201602158 – ident: e_1_2_7_16_1 doi: 10.1016/0013-4686(81)90037-2 – ident: e_1_2_7_55_1 doi: 10.1002/aenm.201601052 – ident: e_1_2_7_87_1 doi: 10.1002/smll.201602247 – ident: e_1_2_7_81_1 doi: 10.1039/C6TA00615A – ident: e_1_2_7_51_1 doi: 10.1021/acscentsci.5b00191 – ident: e_1_2_7_84_1 doi: 10.1002/smll.201600051 – ident: e_1_2_7_74_1 doi: 10.1039/C5TA02229K – ident: e_1_2_7_96_1 doi: 10.1021/jp211946n – ident: e_1_2_7_3_1 doi: 10.1002/aenm.201000010 – ident: e_1_2_7_49_2 doi: 10.1002/advs.201600262 – ident: e_1_2_7_31_1 doi: 10.1002/ange.201201553 – ident: e_1_2_7_99_1 doi: 10.1016/j.nanoen.2015.11.030 – ident: e_1_2_7_32_2 doi: 10.1021/ja511596c – ident: e_1_2_7_6_1 doi: 10.1016/0378-7753(79)80001-4 – ident: e_1_2_7_86_1 doi: 10.1039/C4CC09062D – ident: e_1_2_7_72_2 doi: 10.1021/nn501506p – ident: e_1_2_7_98_1 doi: 10.1039/C5EE03124A – ident: e_1_2_7_67_1 doi: 10.1021/acsenergylett.6b00602 – ident: e_1_2_7_28_1 doi: 10.1021/nl100718k – ident: e_1_2_7_83_1 doi: 10.1038/nmat3087 – ident: e_1_2_7_18_1 doi: 10.1016/0013-4686(84)85004-5 – ident: e_1_2_7_77_1 doi: 10.1039/C5QI00236B – ident: e_1_2_7_60_1 doi: 10.1021/cm5037502 – ident: e_1_2_7_59_1 doi: 10.1021/ja306376s – ident: e_1_2_7_4_1 doi: 10.1039/C6TA02030E – ident: e_1_2_7_92_1 doi: 10.1039/c3nr05835b – ident: e_1_2_7_105_1 doi: 10.1039/c3cp51942b – ident: e_1_2_7_45_3 doi: 10.1002/adma.201601651 – ident: e_1_2_7_17_1 doi: 10.1016/0378-7753(91)87010-9 – ident: e_1_2_7_53_1 doi: 10.1002/adfm.201604356 – ident: e_1_2_7_68_1 doi: 10.1002/anie.201307319 – ident: e_1_2_7_27_1 doi: 10.1002/anie.201007859 – ident: e_1_2_7_45_1 doi: 10.1016/j.jpowsour.2010.12.047 – ident: e_1_2_7_94_1 doi: 10.1038/nchem.1069 – ident: e_1_2_7_97_1 doi: 10.20964/2016.07.68 – ident: e_1_2_7_25_1 doi: 10.1016/0022-0728(92)80299-J – ident: e_1_2_7_109_1 doi: 10.1016/j.nanoen.2015.02.025 – ident: e_1_2_7_52_1 doi: 10.1002/smll.201503305 – ident: e_1_2_7_61_1 doi: 10.1002/anie.201206720 – ident: e_1_2_7_100_1 doi: 10.1002/anie.201509382 – ident: e_1_2_7_56_3 doi: 10.1002/anie.201309171 – ident: e_1_2_7_72_1 doi: 10.1038/ncomms5973 – ident: e_1_2_7_85_1 doi: 10.1016/j.electacta.2012.03.001 – ident: e_1_2_7_25_2 doi: 10.1038/258580a0 – ident: e_1_2_7_9_2 doi: 10.1039/C6TA00173D – ident: e_1_2_7_24_2 doi: 10.1021/cs3000792 – ident: e_1_2_7_37_1 doi: 10.1039/c1ee01942b – ident: e_1_2_7_107_1 doi: 10.1039/C3EE42696C – ident: e_1_2_7_5_1 doi: 10.1016/j.jiec.2009.01.002 – ident: e_1_2_7_106_1 doi: 10.1039/C4NR05988C – ident: e_1_2_7_10_1 doi: 10.1016/0378-7753(81)80027-4 – ident: e_1_2_7_44_1 doi: 10.1021/acsami.5b04865 – ident: e_1_2_7_23_1 doi: 10.1038/nmat3712 – ident: e_1_2_7_19_1 doi: 10.1039/C3CS60248F – ident: e_1_2_7_75_1 doi: 10.1039/C6CC03687B – ident: e_1_2_7_69_1 doi: 10.1021/acsnano.5b08040 – ident: e_1_2_7_28_2 doi: 10.1039/c1jm10349k – ident: e_1_2_7_2_2 doi: 10.1039/C6TA00377J – volume: 9 start-page: 6439 year: 2015 ident: e_1_2_7_46_1 publication-title: ACS Nano – ident: e_1_2_7_49_4 doi: 10.1021/acsnano.7b02275 – ident: e_1_2_7_41_1 doi: 10.1021/cm901698s – ident: e_1_2_7_54_1 doi: 10.1002/adma.201606534 – ident: e_1_2_7_76_1 doi: 10.1002/adma.201601651 – ident: e_1_2_7_49_3 doi: 10.1002/aenm.201601549 – ident: e_1_2_7_62_1 doi: 10.1021/nn3021234 – ident: e_1_2_7_94_2 doi: 10.1126/science.1212858 – ident: e_1_2_7_33_1 doi: 10.1126/science.1135941 – ident: e_1_2_7_56_1 doi: 10.1002/cssc.201400049 – ident: e_1_2_7_53_2 doi: 10.1016/j.nanoen.2017.04.014 – ident: e_1_2_7_51_2 doi: 10.1002/adfm.201603933 – ident: e_1_2_7_95_1 doi: 10.1021/nl2044327 – ident: e_1_2_7_26_1 doi: 10.1126/science.1140484 – ident: e_1_2_7_89_2 doi: 10.1038/nchem.931 – ident: e_1_2_7_101_1 doi: 10.1002/anie.201503612 – ident: e_1_2_7_12_1 doi: 10.1021/ja500432h – ident: e_1_2_7_22_1 doi: 10.1021/ja3031449 – ident: e_1_2_7_78_1 doi: 10.1016/j.jpowsour.2013.06.025 – ident: e_1_2_7_91_1 doi: 10.1039/c3ta01402a – ident: e_1_2_7_34_1 doi: 10.1021/nl401881z – ident: e_1_2_7_13_1 doi: 10.1039/c0cp02365e – ident: e_1_2_7_1_1 doi: 10.1038/nmat1368 – ident: e_1_2_7_110_1 doi: 10.1002/adma.201506112 – ident: e_1_2_7_71_1 doi: 10.1016/j.nanoen.2014.11.008 – ident: e_1_2_7_79_1 doi: 10.1016/0013-4686(91)85244-2 – ident: e_1_2_7_24_1 doi: 10.1039/c2ee03590a – ident: e_1_2_7_48_1 doi: 10.1039/C5TA03199K – ident: e_1_2_7_1_3 doi: 10.1038/35104644 – ident: e_1_2_7_21_1 doi: 10.1038/ncomms3221 – ident: e_1_2_7_14_1 doi: 10.1039/b703315j – ident: e_1_2_7_29_1 doi: 10.1002/adma.201004377 – ident: e_1_2_7_102_1 doi: 10.1038/nnano.2015.48 – ident: e_1_2_7_15_1 doi: 10.1021/j100082a030 – ident: e_1_2_7_89_1 doi: 10.1016/j.nanoen.2014.11.021 – ident: e_1_2_7_93_1 doi: 10.1002/adma.201506197 – ident: e_1_2_7_42_1 doi: 10.1016/S0013-4686(02)00815-0 – ident: e_1_2_7_11_1 doi: 10.1002/aenm.201502054 – ident: e_1_2_7_40_1 doi: 10.1016/S0378-7753(00)00417-1 – ident: e_1_2_7_57_1 doi: 10.1021/acsami.5b01067 – ident: e_1_2_7_64_1 doi: 10.1039/C5RA26675K – ident: e_1_2_7_88_1 doi: 10.1016/j.progsolidstchem.2007.01.029 – ident: e_1_2_7_89_3 doi: 10.1038/srep07665 – volume: 4 start-page: 160468 year: 2016 ident: e_1_2_7_9_1 publication-title: Adv. Mater. – ident: e_1_2_7_70_1 doi: 10.1016/j.apcatb.2017.04.038 – ident: e_1_2_7_82_1 doi: 10.1038/ncomms2812 – ident: e_1_2_7_63_1 doi: 10.1021/acsami.6b03260 – ident: e_1_2_7_90_1 doi: 10.1039/C6TA00591H – ident: e_1_2_7_45_2 doi: 10.1021/cs501571e – ident: e_1_2_7_80_1 doi: 10.1038/nenergy.2015.6 |
SSID | ssj0002013521 |
Score | 2.4782639 |
SecondaryResourceType | review_article |
Snippet | Zinc–air batteries (ZABs) have attracted extensive attention due to their remarkable high theoretical energy output. They represent one of the most promising... |
SourceID | crossref wiley |
SourceType | Enrichment Source Index Database Publisher |
SubjectTerms | bifunctional electrocatalysts oxygen electrocatalysts oxygen‐evolution reaction oxygen‐reduction reaction zinc–air batteries |
Title | Recent Progress in Oxygen Electrocatalysts for Zinc–Air Batteries |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmtd.201700209 |
Volume | 1 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF58XPQgPvHNHgQPJZruJml6LFYRsSq0QvUSsptNiWgqNgX15H_wH_pLnH0kqVrxcQnJMlk2mY_ZmdndbxDacZkjmE2ZFXHfsRxCwA6GkWdFcvIVsefFasW0deYdXzonXbdblrdSp0sytsefx54r-Y9WoQ30Kk_J_kGzRafQAPegX7iChuH6Kx2DzyeX8i_kHitpsZK0cv74BOKVQ13dRiVnngaZIl2oXCcwdrO5gTaSh4om18y3ERoXtX0nV6t1ZenC4b4yaeVmP-3dAKJ6XxLOp8lNIkbEZVt3KAATpfBVqBKzXdlB1DftJuUA01i5fUNZJkI9z4LQRxtOMaYtN62jCCJjLbZmgB3cZZK2VZIFErtezk35evynKavYSKhJl0kg3w-K9yfRNIGoAczedKPZOm0XSTeQAIezqgoOmuHmRJ422f84iA-OymjgojyPzjyaMyEDbmj9L6AJkS6i2REiySV0oJGAcyTgJMUaCfgzEjAgAUskvL28AgZwgYFldHl02Dk4tkx5DItLOlcr5NTljEV26LnViPq8ziG-J3XJcBv6wrG559tuHPkgIwTEpTHzhWC8KgSnoePTFTSV9lOxinBYg6_mNepwWgeLHvuEUohNY7dGYwc81DVk5f8i4IY7XpYwuQ3GK2AN7Rby95o15VtJon7tD2JBu9VpFk_rv-5-A82UAN5EU9nDUGyBF5mxbYONd87EboU |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+Progress+in+Oxygen+Electrocatalysts+for+Zinc%E2%80%93Air+Batteries&rft.jtitle=Small+methods&rft.au=Yang%2C+Dongjiang&rft.au=Zhang%2C+Lijie&rft.au=Yan%2C+Xuecheng&rft.au=Yao%2C+Xiangdong&rft.date=2017-12-01&rft.issn=2366-9608&rft.eissn=2366-9608&rft.volume=1&rft.issue=12&rft_id=info:doi/10.1002%2Fsmtd.201700209&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_smtd_201700209 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2366-9608&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2366-9608&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2366-9608&client=summon |