Generalized linear mixed hidden semi‐Markov models in longitudinal settings: A Bayesian approach
Hidden Markov and semi‐Markov models (H(S)MMs) constitute useful tools for modeling observations subject to certain dependency structures. The hidden states render these models very flexible and allow them to capture many different types of latent patterns and dynamics present in the data. This has...
Saved in:
Published in | Statistics in medicine Vol. 40; no. 10; pp. 2373 - 2388 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken, USA
John Wiley & Sons, Inc
10.05.2021
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
ISSN | 0277-6715 1097-0258 1097-0258 |
DOI | 10.1002/sim.8908 |
Cover
Abstract | Hidden Markov and semi‐Markov models (H(S)MMs) constitute useful tools for modeling observations subject to certain dependency structures. The hidden states render these models very flexible and allow them to capture many different types of latent patterns and dynamics present in the data. This has led to the increased popularity of these models, which have been applied to a variety of problems in various domains and settings, including longitudinal data. In many longitudinal studies, the response variable is categorical or count‐type. Generalized linear mixed models (GLMMs) can be used to analyze a wide range of variables, including categorical and count. The present study proposes a model that combines HSMMs with GLMMs, leading to generalized linear mixed hidden semi‐Markov models (GLM‐HSMMs). These models can account for time‐varying unobserved heterogeneity and handle different response types. Parameter estimation is achieved using a Monte Carlo Newton‐Raphson (MCNR)‐like algorithm. In our proposed model, the distribution of the random effects depends on hidden states. We illustrate the applicability of GLM‐HSMMs with an example in the field of occupational health, where the response variable consists of count values. Furthermore, we assess the performance of our MCNR‐like algorithm through a simulation study. |
---|---|
AbstractList | Hidden Markov and semi-Markov models (H(S)MMs) constitute useful tools for modeling observations subject to certain dependency structures. The hidden states render these models very flexible and allow them to capture many different types of latent patterns and dynamics present in the data. This has led to the increased popularity of these models, which have been applied to a variety of problems in various domains and settings, including longitudinal data. In many longitudinal studies, the response variable is categorical or count-type. Generalized linear mixed models (GLMMs) can be used to analyze a wide range of variables, including categorical and count. The present study proposes a model that combines HSMMs with GLMMs, leading to generalized linear mixed hidden semi-Markov models (GLM-HSMMs). These models can account for time-varying unobserved heterogeneity and handle different response types. Parameter estimation is achieved using a Monte Carlo Newton-Raphson (MCNR)-like algorithm. In our proposed model, the distribution of the random effects depends on hidden states. We illustrate the applicability of GLM-HSMMs with an example in the field of occupational health, where the response variable consists of count values. Furthermore, we assess the performance of our MCNR-like algorithm through a simulation study.Hidden Markov and semi-Markov models (H(S)MMs) constitute useful tools for modeling observations subject to certain dependency structures. The hidden states render these models very flexible and allow them to capture many different types of latent patterns and dynamics present in the data. This has led to the increased popularity of these models, which have been applied to a variety of problems in various domains and settings, including longitudinal data. In many longitudinal studies, the response variable is categorical or count-type. Generalized linear mixed models (GLMMs) can be used to analyze a wide range of variables, including categorical and count. The present study proposes a model that combines HSMMs with GLMMs, leading to generalized linear mixed hidden semi-Markov models (GLM-HSMMs). These models can account for time-varying unobserved heterogeneity and handle different response types. Parameter estimation is achieved using a Monte Carlo Newton-Raphson (MCNR)-like algorithm. In our proposed model, the distribution of the random effects depends on hidden states. We illustrate the applicability of GLM-HSMMs with an example in the field of occupational health, where the response variable consists of count values. Furthermore, we assess the performance of our MCNR-like algorithm through a simulation study. Hidden Markov and semi-Markov models (H(S)MMs) constitute useful tools for modeling observations subject to certain dependency structures. The hidden states render these models very flexible and allow them to capture many different types of latent patterns and dynamics present in the data. This has led to the increased popularity of these models, which have been applied to a variety of problems in various domains and settings, including longitudinal data. In many longitudinal studies, the response variable is categorical or count-type. Generalized linear mixed models (GLMMs) can be used to analyze a wide range of variables, including categorical and count. The present study proposes a model that combines HSMMs with GLMMs, leading to generalized linear mixed hidden semi-Markov models (GLM-HSMMs). These models can account for time-varying unobserved heterogeneity and handle different response types. Parameter estimation is achieved using a Monte Carlo Newton-Raphson (MCNR)-like algorithm. In our proposed model, the distribution of the random effects depends on hidden states. We illustrate the applicability of GLM-HSMMs with an example in the field of occupational health, where the response variable consists of count values. Furthermore, we assess the performance of our MCNR-like algorithm through a simulation study. |
Author | Bulla, Jan Sadeghifar, Majid Mahjub, Hossein Haji‐Maghsoudi, Saiedeh Roshanaei, Ghodratollah |
Author_xml | – sequence: 1 givenname: Saiedeh surname: Haji‐Maghsoudi fullname: Haji‐Maghsoudi, Saiedeh organization: Hamadan University of Medical Sciences – sequence: 2 givenname: Jan surname: Bulla fullname: Bulla, Jan organization: University Regensburg – sequence: 3 givenname: Majid surname: Sadeghifar fullname: Sadeghifar, Majid organization: Bu‐Ali Sina University – sequence: 4 givenname: Ghodratollah orcidid: 0000-0002-3547-9125 surname: Roshanaei fullname: Roshanaei, Ghodratollah organization: Hamadan University of Medical Sciences – sequence: 5 givenname: Hossein orcidid: 0000-0002-9375-3807 surname: Mahjub fullname: Mahjub, Hossein email: mahjub@umsha.ac.ir organization: Hamadan University of Medical Sciences |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33588516$$D View this record in MEDLINE/PubMed |
BookMark | eNp10ctO3DAUBmCrAsFwkfoElaVuugnYiZ2cdAeIm8SIRcs6cuyTwdRxpvakMKx4hD5jnwQPDEWq1JVl6Tvnl_3vkA0_eCTkI2cHnLH8MNr-AGoGH8iEs7rKWC5hg0xYXlVZWXG5TXZivGOMc5lXW2S7KCSA5OWEtOfoMShnH9FQZz2qQHv7kC631hj0NGJv_zz9nqrwY_hF-8Ggi9R66gY_s4vRWK9cQouF9bP4lR7RY7XEaJWnaj4Pg9K3e2SzUy7i_vrcJTdnp99PLrKr6_PLk6OrTBecQcZrKGoujW6FUkJ3tWSy4gJy3kGlFZQaFOO56UqjscWuTQI0CGg1lKrEYpd8ed2bYn-OGBdNb6NG55THYYxNLuo0z0CwRD__Q--GMaSXJCVZLQQIUSb1aa3GtkfTzIPtVVg2b7_3nqjDEGPA7i_hrFkV06RimlUxiWav9N46XP7XNd8upy_-GUdHjyg |
Cites_doi | 10.1080/0094965031000147704 10.1198/jcgs.2010.09015 10.1177/0962280217748675 10.1111/j.1541-0420.2009.01338.x 10.1002/(SICI)1526-4025(199907/09)15:3<195::AID-ASMB376>3.0.CO;2-F 10.1201/9781420011579 10.1080/10618600.2015.1089776 10.1201/b20790 10.1007/978-3-319-06692-9_2 10.1080/00949657708811858 10.1080/03610910903411185 10.1111/sjos.12155 10.1201/b13246 10.1016/S0885-2308(86)80009-2 10.1080/01621459.2014.998935 10.1080/01621459.1990.10474930 10.1016/j.csda.2006.07.021 10.1214/08-BA326 10.2486/indhealth.2016-0108 10.1111/j.1467-985X.2008.00529.x 10.1016/j.csda.2010.06.015 10.1080/01621459.1997.10473613 10.1002/sim.2147 10.1016/j.csda.2006.03.015 10.1198/1061860032030 10.18637/jss.v039.i04 10.1002/sim.3463 10.1890/11-2241.1 10.1002/sim.4478 10.1080/01621459.2013.770307 10.1007/s00180-007-0063-y 10.1016/j.csda.2011.12.017 10.1016/j.ssci.2017.09.012 10.1111/j.1467-842X.2012.00669.x 10.1214/09-AOAS282 10.1016/j.artint.2009.11.011 10.1002/sim.5553 10.1111/j.1751-5823.2011.00160.x 10.1198/016214506000001086 10.1016/j.csda.2008.08.025 10.1016/j.ssci.2014.10.005 10.1111/j.2517-6161.1982.tb01203.x 10.1111/1539-6924.00326 |
ContentType | Journal Article |
Copyright | 2021 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: 2021 John Wiley & Sons, Ltd. |
DBID | AAYXX CITATION NPM K9. 7X8 |
DOI | 10.1002/sim.8908 |
DatabaseName | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed CrossRef ProQuest Health & Medical Complete (Alumni) |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Statistics Public Health |
EISSN | 1097-0258 |
EndPage | 2388 |
ExternalDocumentID | 33588516 10_1002_sim_8908 SIM8908 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Hamadan University of Medical Sciences funderid: 9609286096 – fundername: GENDER‐Net Co‐Plus funderid: GNP‐182 – fundername: Hamadan University of Medical Sciences grantid: 9609286096 – fundername: GENDER-Net Co-Plus grantid: GNP-182 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 123 1L6 1OB 1OC 1ZS 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5RE 5VS 66C 6PF 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAWTL AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABOCM ABPVW ACAHQ ACCFJ ACCZN ACGFS ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EMOBN F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K ROL RWI RX1 RYL SUPJJ SV3 TN5 UB1 V2E W8V W99 WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WUP WWH WXSBR WYISQ XBAML XG1 XV2 ZZTAW ~IA ~WT AAYXX AEYWJ AGHNM AGYGG AMVHM CITATION NPM AAMMB AEFGJ AGXDD AIDQK AIDYY K9. 7X8 |
ID | FETCH-LOGICAL-c3108-1983915dcb4aa4cf9505714821f87ca86c8a012df6dcebefbf958c848bc86a6e3 |
IEDL.DBID | DR2 |
ISSN | 0277-6715 1097-0258 |
IngestDate | Fri Jul 11 08:58:13 EDT 2025 Mon Jul 14 07:45:54 EDT 2025 Wed Feb 19 02:27:46 EST 2025 Tue Jul 01 03:28:16 EDT 2025 Wed Jan 22 16:29:24 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | generalized linear models hidden Markov models Bayesian estimation hidden semi-Markov models Monte Carlo Newton-Raphson |
Language | English |
License | 2021 John Wiley & Sons, Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3108-1983915dcb4aa4cf9505714821f87ca86c8a012df6dcebefbf958c848bc86a6e3 |
Notes | Funding information GENDER‐Net Co‐Plus, GNP‐182; Hamadan University of Medical Sciences, 9609286096 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-3547-9125 0000-0002-9375-3807 |
PMID | 33588516 |
PQID | 2509448446 |
PQPubID | 48361 |
PageCount | 16 |
ParticipantIDs | proquest_miscellaneous_2490120840 proquest_journals_2509448446 pubmed_primary_33588516 crossref_primary_10_1002_sim_8908 wiley_primary_10_1002_sim_8908_SIM8908 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 10 May 2021 |
PublicationDateYYYYMMDD | 2021-05-10 |
PublicationDate_xml | – month: 05 year: 2021 text: 10 May 2021 day: 10 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA – name: England – name: New York |
PublicationTitle | Statistics in medicine |
PublicationTitleAlternate | Stat Med |
PublicationYear | 2021 |
Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc |
References | 2010; 54 2007; 102 2010; 19 2015; 72 2006; 451 2011; 55 2008; 3 2012; 56 2012; 54 2005; 24 2003; 12 2010; 66 1990; 85 2004; 74 1986; 1 1997; 92 2015; 42 1997; 59 1999; 15 2019; 28 2016; 111 2008; 23 1982 2010; 4 2006; 51 2012 2013; 108 2010; 39 2018; 101 2008 2011; 79 2004 2014; 2014 2007; 51 2011; 39 2015; 7 2012; 31 2009; 28 2012; 93 2009; 191 2013; 32 2017; 55 2010; 174 2016 2014 2016; 8 2016; 25 2003; 23 2008; 171 Barbu VS (e_1_2_10_15_1) 2009 e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_21_1 e_1_2_10_44_1 e_1_2_10_42_1 e_1_2_10_40_1 e_1_2_10_2_1 e_1_2_10_18_1 e_1_2_10_53_1 e_1_2_10_6_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_8_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_13_1 e_1_2_10_34_1 e_1_2_10_11_1 e_1_2_10_32_1 e_1_2_10_30_1 e_1_2_10_51_1 Louis TA (e_1_2_10_50_1) 1982 e_1_2_10_29_1 e_1_2_10_27_1 e_1_2_10_48_1 e_1_2_10_24_1 e_1_2_10_45_1 e_1_2_10_22_1 e_1_2_10_43_1 e_1_2_10_20_1 e_1_2_10_41_1 e_1_2_10_52_1 e_1_2_10_19_1 Hedeker D (e_1_2_10_3_1) 2006 e_1_2_10_5_1 e_1_2_10_38_1 e_1_2_10_7_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_10_1 e_1_2_10_33_1 MohammadFam I (e_1_2_10_31_1) 2015; 7 Gharibi V (e_1_2_10_25_1) 2016; 8 Wang N (e_1_2_10_17_1) 2014; 2014 e_1_2_10_28_1 e_1_2_10_49_1 McCulloch CE (e_1_2_10_4_1) 2004 e_1_2_10_26_1 e_1_2_10_47_1 |
References_xml | – volume: 3 start-page: 659 issue: 4 year: 2008 end-page: 688 article-title: EM versus Markov chain Monte Carlo for estimation of hidden Markov models: a computational perspective publication-title: Bayesian Anal – volume: 1 start-page: 29 issue: 1 year: 1986 end-page: 45 article-title: Continuously variable duration hidden Markov models for automatic speech recognition publication-title: Comput Speech Lang – volume: 32 start-page: 808 issue: 5 year: 2013 end-page: 821 article-title: A general binomial regression model to estimate standardized risk differences from binary response data publication-title: Stat Med – volume: 15 start-page: 195 issue: 3 year: 1999 end-page: 224 article-title: Computational methods for discrete hidden semi‐Markov chains publication-title: Appl Stoch Model Bus Ind – volume: 85 start-page: 699 issue: 411 year: 1990 end-page: 704 article-title: Monte Carlo implementation of the EM algorithm and the poor man's data augmentation algorithms publication-title: J Am Stat Assoc – volume: 19 start-page: 746 issue: 3 year: 2010 end-page: 765 article-title: Multivariate discrete hidden Markov models for domain‐based measurements and assessment of risk factors in child development publication-title: J Comput Graph Stat – volume: 28 start-page: 293 issue: 2 year: 2009 end-page: 310 article-title: Multiple indicator hidden Markov model with an application to medical utilization data publication-title: Stat Med – volume: 7 start-page: 69 issue: 2 year: 2015 end-page: 75 article-title: Interventions to promote of safety participation using generalized estimating equations publication-title: Int J Occup Hyg – volume: 24 start-page: 2789 issue: 18 year: 2005 end-page: 2805 article-title: Estimating treatment efficacy over time: a logistic regression model for binary longitudinal outcomes publication-title: Stat Med – volume: 54 start-page: 611 issue: 3 year: 2010 end-page: 619 article-title: HSMM—an R package for analyzing hidden semi‐Markov models publication-title: Comp Stat Data Anal – volume: 42 start-page: 1127 issue: 4 year: 2015 end-page: 1135 article-title: Generalized linear mixed models based on latent Markov heterogeneity structures publication-title: Scand Stat – volume: 111 start-page: 216 issue: 513 year: 2016 end-page: 228 article-title: Pairwise likelihood inference for nested hidden Markov chain models for multilevel longitudinal data publication-title: J Am Stat Assoc – volume: 59 start-page: 233 issue: 3 year: 1997 end-page: 250 article-title: The Monte Carlo Newton‐Raphson algorithm publication-title: J Stat Comput Simul – volume: 72 start-page: 329 year: 2015 end-page: 336 article-title: Analysis of investigation reports on occupational accidents publication-title: Saf Sci – year: 2008 – year: 2004 – volume: 54 start-page: 261 issue: 3 year: 2012 end-page: 279 article-title: Flexible latent‐state modelling of old faithful's eruption inter‐arrival times in 2009 publication-title: Aust N Z J Stat – volume: 171 start-page: 739 year: 2008 end-page: 753 article-title: Qualitative longitudinal analysis of symptoms in patients with primary and metastatic brain tumours publication-title: J R Stat Soc Ser A – volume: 191 year: 2009 – volume: 51 start-page: 2192 issue: 4 year: 2006 end-page: 2209 article-title: Stylized facts of financial time series and hidden semi‐Markov models publication-title: Comp Stat Data Anal – volume: 39 start-page: 1 issue: 4 year: 2011 end-page: 22 article-title: Hidden semi markov models for multiple observation sequences: the mhsmm package for R publication-title: J Stat Softw – volume: 102 start-page: 201 issue: 477 year: 2007 end-page: 210 article-title: Mixed hidden Markov models: an extension of the hidden Markov model to the longitudinal data setting publication-title: J Am Stat Assoc – volume: 28 start-page: 2112 issue: 7 year: 2019 end-page: 2124 article-title: Bayesian hidden Markov models for delineating the pathology of Alzheimer's disease publication-title: Stat Methods Med Res – volume: 55 start-page: 210 issue: 3 year: 2017 end-page: 218 article-title: Occupational safety and health in construction: a review of applications and trends publication-title: Ind Health – volume: 8 start-page: 145 issue: 3 year: 2016 end-page: 150 article-title: The relationship between workers' attitude towards safety and occupational accidents experience publication-title: Int J Occup Hyg – volume: 92 start-page: 162 issue: 437 year: 1997 end-page: 170 article-title: Maximum likelihood algorithms for generalized linear mixed models publication-title: J Am Stat Assoc – volume: 174 start-page: 215 issue: 2 year: 2010 end-page: 243 article-title: Hidden semi‐Markov models publication-title: Artif Intell – volume: 31 start-page: 871 issue: 9 year: 2012 end-page: 886 article-title: A mixed non‐homogeneous hidden Markov model for categorical data, with application to alcohol consumption publication-title: Stat Med – volume: 25 start-page: 1097 issue: 4 year: 2016 end-page: 1116 article-title: Clustering multivariate longitudinal observations: the contaminated Gaussian hidden Markov model publication-title: J Comput Graph Stat – volume: 79 start-page: 427 issue: 3 year: 2011 end-page: 454 article-title: Mixed hidden Markov models for longitudinal data: an overview publication-title: Int Stat Rev – volume: 74 start-page: 349 issue: 5 year: 2004 end-page: 360 article-title: An automated (Markov chain) Monte Carlo EM algorithm publication-title: J Stat Comput Simul – volume: 39 start-page: 240 issue: 2 year: 2010 end-page: 261 article-title: An EM and a stochastic version of the EM algorithm for nonparametric hidden semi‐Markov models publication-title: Commun Stat Simul Comput – volume: 2014 year: 2014 article-title: A hidden semi‐markov model with duration‐dependent state transition probabilities for prognostics publication-title: Math Probl Eng – year: 2016 – volume: 108 start-page: 370 issue: 502 year: 2013 end-page: 380 article-title: Partially ordered mixed hidden Markov model for the disablement process of older adults publication-title: J Am Stat Assoc – start-page: 226 year: 1982 end-page: 233 article-title: Finding the observed information matrix when using the EM algorithm publication-title: J R Stat Soc Ser B – start-page: 11 year: 2014 end-page: 19 – year: 2012 – volume: 51 start-page: 2379 issue: 5 year: 2007 end-page: 2409 article-title: Exploring the state sequence space for hidden Markov and semi‐Markov chains publication-title: Comp Stat Data Anal – volume: 451 year: 2006 – volume: 56 start-page: 2073 issue: 6 year: 2012 end-page: 2085 article-title: Maximum likelihood estimation in discrete mixed hidden Markov models using the SAEM algorithm publication-title: Comp Stat Data Anal – volume: 23 start-page: 445 issue: 3 year: 2003 end-page: 459 article-title: Near‐miss incident management in the chemical process industry publication-title: Risk Anal Int J – volume: 66 start-page: 753 issue: 3 year: 2010 end-page: 762 article-title: Markov and semi‐Markov switching linear mixed models used to identify forest tree growth components publication-title: Biometrics – volume: 101 start-page: 173 year: 2018 end-page: 179 article-title: Individual and workplace factors related to fatal occupational accidents among shipyard workers in Turkey publication-title: Saf Sci – volume: 4 start-page: 366 issue: 1 year: 2010 end-page: 395 article-title: Hidden Markov models for alcoholism treatment trial data publication-title: Ann Appl Stat – volume: 55 start-page: 715 issue: 1 year: 2011 end-page: 724 article-title: Hidden Markov models with arbitrary state dwell‐time distributions publication-title: Comp Stat Data Anal – volume: 23 start-page: 1 issue: 1 year: 2008 end-page: 18 article-title: Computational issues in parameter estimation for stationary hidden Markov models publication-title: Comput Stat – volume: 93 start-page: 2336 issue: 11 year: 2012 end-page: 2342 article-title: Flexible and practical modeling of animal telemetry data: hidden Markov models and extensions publication-title: Ecology – volume: 12 start-page: 604 issue: 3 year: 2003 end-page: 639 article-title: Estimating hidden semi‐Markov chains from discrete sequences publication-title: J Comput Graph Stat – volume-title: Longitudinal Data Analysis year: 2006 ident: e_1_2_10_3_1 – ident: e_1_2_10_36_1 doi: 10.1080/0094965031000147704 – ident: e_1_2_10_46_1 doi: 10.1198/jcgs.2010.09015 – ident: e_1_2_10_12_1 doi: 10.1177/0962280217748675 – ident: e_1_2_10_52_1 – ident: e_1_2_10_22_1 doi: 10.1111/j.1541-0420.2009.01338.x – ident: e_1_2_10_33_1 doi: 10.1002/(SICI)1526-4025(199907/09)15:3<195::AID-ASMB376>3.0.CO;2-F – ident: e_1_2_10_2_1 doi: 10.1201/9781420011579 – ident: e_1_2_10_40_1 doi: 10.1080/10618600.2015.1089776 – volume: 7 start-page: 69 issue: 2 year: 2015 ident: e_1_2_10_31_1 article-title: Interventions to promote of safety participation using generalized estimating equations publication-title: Int J Occup Hyg – ident: e_1_2_10_45_1 doi: 10.1201/b20790 – volume-title: Generalized, Linear, and Mixed Models year: 2004 ident: e_1_2_10_4_1 – ident: e_1_2_10_29_1 – ident: e_1_2_10_6_1 doi: 10.1007/978-3-319-06692-9_2 – ident: e_1_2_10_37_1 doi: 10.1080/00949657708811858 – ident: e_1_2_10_53_1 doi: 10.1080/03610910903411185 – ident: e_1_2_10_7_1 doi: 10.1111/sjos.12155 – ident: e_1_2_10_9_1 doi: 10.1201/b13246 – ident: e_1_2_10_42_1 doi: 10.1016/S0885-2308(86)80009-2 – ident: e_1_2_10_10_1 doi: 10.1080/01621459.2014.998935 – ident: e_1_2_10_35_1 doi: 10.1080/01621459.1990.10474930 – volume: 8 start-page: 145 issue: 3 year: 2016 ident: e_1_2_10_25_1 article-title: The relationship between workers' attitude towards safety and occupational accidents experience publication-title: Int J Occup Hyg – ident: e_1_2_10_16_1 doi: 10.1016/j.csda.2006.07.021 – ident: e_1_2_10_39_1 doi: 10.1214/08-BA326 – ident: e_1_2_10_26_1 doi: 10.2486/indhealth.2016-0108 – ident: e_1_2_10_48_1 doi: 10.1111/j.1467-985X.2008.00529.x – ident: e_1_2_10_24_1 doi: 10.1016/j.csda.2010.06.015 – ident: e_1_2_10_34_1 doi: 10.1080/01621459.1997.10473613 – ident: e_1_2_10_41_1 – ident: e_1_2_10_19_1 doi: 10.1002/sim.2147 – volume-title: Semi‐Markov Chains and Hidden Semi‐Markov Models toward Applications: their Use in Reliability and DNA Analysis year: 2009 ident: e_1_2_10_15_1 – ident: e_1_2_10_51_1 doi: 10.1016/j.csda.2006.03.015 – ident: e_1_2_10_32_1 doi: 10.1198/1061860032030 – ident: e_1_2_10_44_1 doi: 10.18637/jss.v039.i04 – ident: e_1_2_10_21_1 doi: 10.1002/sim.3463 – ident: e_1_2_10_49_1 doi: 10.1890/11-2241.1 – ident: e_1_2_10_13_1 doi: 10.1002/sim.4478 – ident: e_1_2_10_47_1 doi: 10.1080/01621459.2013.770307 – volume: 2014 year: 2014 ident: e_1_2_10_17_1 article-title: A hidden semi‐markov model with duration‐dependent state transition probabilities for prognostics publication-title: Math Probl Eng – ident: e_1_2_10_38_1 doi: 10.1007/s00180-007-0063-y – ident: e_1_2_10_11_1 doi: 10.1016/j.csda.2011.12.017 – ident: e_1_2_10_27_1 doi: 10.1016/j.ssci.2017.09.012 – ident: e_1_2_10_23_1 doi: 10.1111/j.1467-842X.2012.00669.x – ident: e_1_2_10_14_1 doi: 10.1214/09-AOAS282 – ident: e_1_2_10_18_1 doi: 10.1016/j.artint.2009.11.011 – ident: e_1_2_10_20_1 doi: 10.1002/sim.5553 – ident: e_1_2_10_8_1 doi: 10.1111/j.1751-5823.2011.00160.x – ident: e_1_2_10_5_1 doi: 10.1198/016214506000001086 – ident: e_1_2_10_43_1 doi: 10.1016/j.csda.2008.08.025 – ident: e_1_2_10_28_1 doi: 10.1016/j.ssci.2014.10.005 – start-page: 226 year: 1982 ident: e_1_2_10_50_1 article-title: Finding the observed information matrix when using the EM algorithm publication-title: J R Stat Soc Ser B doi: 10.1111/j.2517-6161.1982.tb01203.x – ident: e_1_2_10_30_1 doi: 10.1111/1539-6924.00326 |
SSID | ssj0011527 |
Score | 2.3544896 |
Snippet | Hidden Markov and semi‐Markov models (H(S)MMs) constitute useful tools for modeling observations subject to certain dependency structures. The hidden states... Hidden Markov and semi-Markov models (H(S)MMs) constitute useful tools for modeling observations subject to certain dependency structures. The hidden states... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 2373 |
SubjectTerms | Bayesian estimation generalized linear models hidden Markov models hidden semi‐Markov models Monte Carlo Newton‐Raphson Parameter estimation |
Title | Generalized linear mixed hidden semi‐Markov models in longitudinal settings: A Bayesian approach |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsim.8908 https://www.ncbi.nlm.nih.gov/pubmed/33588516 https://www.proquest.com/docview/2509448446 https://www.proquest.com/docview/2490120840 |
Volume | 40 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3NTtwwEIBHFQeEhKBd_pbSykiIW5ZN4iQ2N6BFFGk58CMhcYhsxxERbBaRXdRy4hF4xj5JZ-JkK1ohIU5RFDtO7LE9Y3u-AdiSPI9kHhuPNgs9nvelp7RvPD_RJtQhmtCGlgYGJ_HRBT--jC6bU5XkC-P4ENMFN-oZ9XhNHVzpaucvNLQqhj0haz9fP4wJm__tdEqO8ttorbRDGSd-1HJn-8FOm_HlTPSfevlSW62nm8NFuGo_1J0yuelNxrpnHv9hOL7vTz7CQqOFsj0nNp_ggy07MDto9tk7MO9W85hzUurAHOmkDum8BLpBVRePNmNUurpnw-In3lwTj6RklR0Wv5-eyQ1o9MDqWDsVK0p2O6LgSJOMAnFhovrEdbXL9ti--mXJmZO1hPNluDj8fn5w5DWhGjyD-iHaoVIQaT4zmivFTS7J7iHEqJ-LxCgRG6FwKszyODMoNrnGFMIILrQRsYptuAIz5ai0a8AIYSajKOhbnnE_8ZVJcBiKsAAubZ9nXdhsmy29c0SO1LGXgxRrMqWa7MJG255p0yerNCBWIBcok_iK6WPsTbRFoko7mmAaLsmbGK3eLqw6OZgWEoaRQP0Uc2_Xrflq6enZjwFd19-a8DPMBXRUpobCbsDM-H5iv6CuM9Zfa6n-AwKu-s0 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fT9RAEJ8QSJSE-OcUOEVZE-Nb767ttt3VJxTIgRwPAgkPJs3udhsauJ6hd0R58iP4Gf0kznTbI2hIiE9N09luuzuzO392fgPwVvI8knlsPAoWejwfSE9p33h-ok2oQzShDbkGRofx8ITvn0anC_ChzYVx-BBzhxtJRr1ek4CTQ7p_gxpaFeOekJTou8RRzyDLa_vLHDvKb-u1UowyTvyoRZ4dBP225e296B8F87a-Wm84u4_ha_up7pzJeW821T1z_ReK43_-yxN41CiibMtxzlNYsGUHHoyaUHsHVpxDj7k8pQ4sk1rqUJ2fgW7QqotrmzHqXl2ycfEdb84IkqRklR0Xv3_-okygyRWry-1UrCjZxYTqI80yqsWFRPWh6-o922If1Q9L-ZysBTl_Die7O8efhl5TrcEzqCKiKSoFgc1nRnOluMklmT6EMurnIjFKxEYo3A2zPM4Mck6ukUIYwYU2IlaxDVdhsZyUdh0YoZjJKAoGlmfcT3xlElyJIuyASzvgWRfetPOWfnOgHKmDXw5SHMmURrILG-2Epo1YVmlAcIFcIFviK-aPUaAoSqJKO5khDZeUUIyGbxfWHCPMOwnDSKCKiq3f1dN5Z-_p0d6Iri_uS7gJD4fHo4P0YO_w80tYDujkTI0RuwGL08uZfYWqz1S_rln8D7DM_uw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1RS9xAEB6Kggil2rO1p7auIH3LeUk2yW7f1PbQ1hOxFYQ-hN3NhoZ6OTF3pfrUn-Bv7C_pTDY50SKUPoWQ2WyyO7P7ze7ONwDbkueRzGPj0Wahx_O-9JT2jecn2oQ6RBfa0NLA8Dg-OOMfz6Pz5lQlxcI4fojZghtZRj1ek4FfZvnOHWloVYx6QlKc7zyPEUgQIDqdUUf5bbpW2qKMEz9qiWf7wU5b8v5U9Be-vA9X6_lmsARf2y91x0y-96YT3TM3D0gc_-9XluFZA0PZrtOb5_DElh1YGDYb7R146pbzmItS6sAigVLH6bwCuuGqLm5sxqh2dcVGxU-8-UaEJCWr7Kj4_euW4oDGP1idbKdiRckuxpQdaZpRJi4Uqo9cV-_YLttT15aiOVlLcf4CzgYfvuwfeE2uBs8gQERHVAqims-M5kpxk0tyfIhj1M9FYpSIjVA4F2Z5nBnUm1yjhDCCC21ErGIbvoS5clzaV8CIw0xGUdC3PON-4iuT4DgUYQVc2j7PurDVdlt66Sg5Uke-HKTYkim1ZBc22v5MG6Os0oDIArlApcRXzB6jOdEeiSrteIoyXFI4Mbq9XVh1ejCrJAwjgQAVS7-te_PR2tPPh0O6rv2r4CYsnLwfpEeHx5_WYTGgYzM1QewGzE2upvY14p6JflMr-B-8QP2b |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generalized+linear+mixed+hidden+semi-Markov+models+in+longitudinal+settings%3A+A+Bayesian+approach&rft.jtitle=Statistics+in+medicine&rft.au=Haji-Maghsoudi%2C+Saiedeh&rft.au=Bulla%2C+Jan&rft.au=Sadeghifar%2C+Majid&rft.au=Roshanaei%2C+Ghodratollah&rft.date=2021-05-10&rft.eissn=1097-0258&rft.volume=40&rft.issue=10&rft.spage=2373&rft_id=info:doi/10.1002%2Fsim.8908&rft_id=info%3Apmid%2F33588516&rft.externalDocID=33588516 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0277-6715&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0277-6715&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0277-6715&client=summon |