Generalized linear mixed hidden semi‐Markov models in longitudinal settings: A Bayesian approach

Hidden Markov and semi‐Markov models (H(S)MMs) constitute useful tools for modeling observations subject to certain dependency structures. The hidden states render these models very flexible and allow them to capture many different types of latent patterns and dynamics present in the data. This has...

Full description

Saved in:
Bibliographic Details
Published inStatistics in medicine Vol. 40; no. 10; pp. 2373 - 2388
Main Authors Haji‐Maghsoudi, Saiedeh, Bulla, Jan, Sadeghifar, Majid, Roshanaei, Ghodratollah, Mahjub, Hossein
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 10.05.2021
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN0277-6715
1097-0258
1097-0258
DOI10.1002/sim.8908

Cover

Abstract Hidden Markov and semi‐Markov models (H(S)MMs) constitute useful tools for modeling observations subject to certain dependency structures. The hidden states render these models very flexible and allow them to capture many different types of latent patterns and dynamics present in the data. This has led to the increased popularity of these models, which have been applied to a variety of problems in various domains and settings, including longitudinal data. In many longitudinal studies, the response variable is categorical or count‐type. Generalized linear mixed models (GLMMs) can be used to analyze a wide range of variables, including categorical and count. The present study proposes a model that combines HSMMs with GLMMs, leading to generalized linear mixed hidden semi‐Markov models (GLM‐HSMMs). These models can account for time‐varying unobserved heterogeneity and handle different response types. Parameter estimation is achieved using a Monte Carlo Newton‐Raphson (MCNR)‐like algorithm. In our proposed model, the distribution of the random effects depends on hidden states. We illustrate the applicability of GLM‐HSMMs with an example in the field of occupational health, where the response variable consists of count values. Furthermore, we assess the performance of our MCNR‐like algorithm through a simulation study.
AbstractList Hidden Markov and semi-Markov models (H(S)MMs) constitute useful tools for modeling observations subject to certain dependency structures. The hidden states render these models very flexible and allow them to capture many different types of latent patterns and dynamics present in the data. This has led to the increased popularity of these models, which have been applied to a variety of problems in various domains and settings, including longitudinal data. In many longitudinal studies, the response variable is categorical or count-type. Generalized linear mixed models (GLMMs) can be used to analyze a wide range of variables, including categorical and count. The present study proposes a model that combines HSMMs with GLMMs, leading to generalized linear mixed hidden semi-Markov models (GLM-HSMMs). These models can account for time-varying unobserved heterogeneity and handle different response types. Parameter estimation is achieved using a Monte Carlo Newton-Raphson (MCNR)-like algorithm. In our proposed model, the distribution of the random effects depends on hidden states. We illustrate the applicability of GLM-HSMMs with an example in the field of occupational health, where the response variable consists of count values. Furthermore, we assess the performance of our MCNR-like algorithm through a simulation study.Hidden Markov and semi-Markov models (H(S)MMs) constitute useful tools for modeling observations subject to certain dependency structures. The hidden states render these models very flexible and allow them to capture many different types of latent patterns and dynamics present in the data. This has led to the increased popularity of these models, which have been applied to a variety of problems in various domains and settings, including longitudinal data. In many longitudinal studies, the response variable is categorical or count-type. Generalized linear mixed models (GLMMs) can be used to analyze a wide range of variables, including categorical and count. The present study proposes a model that combines HSMMs with GLMMs, leading to generalized linear mixed hidden semi-Markov models (GLM-HSMMs). These models can account for time-varying unobserved heterogeneity and handle different response types. Parameter estimation is achieved using a Monte Carlo Newton-Raphson (MCNR)-like algorithm. In our proposed model, the distribution of the random effects depends on hidden states. We illustrate the applicability of GLM-HSMMs with an example in the field of occupational health, where the response variable consists of count values. Furthermore, we assess the performance of our MCNR-like algorithm through a simulation study.
Hidden Markov and semi-Markov models (H(S)MMs) constitute useful tools for modeling observations subject to certain dependency structures. The hidden states render these models very flexible and allow them to capture many different types of latent patterns and dynamics present in the data. This has led to the increased popularity of these models, which have been applied to a variety of problems in various domains and settings, including longitudinal data. In many longitudinal studies, the response variable is categorical or count-type. Generalized linear mixed models (GLMMs) can be used to analyze a wide range of variables, including categorical and count. The present study proposes a model that combines HSMMs with GLMMs, leading to generalized linear mixed hidden semi-Markov models (GLM-HSMMs). These models can account for time-varying unobserved heterogeneity and handle different response types. Parameter estimation is achieved using a Monte Carlo Newton-Raphson (MCNR)-like algorithm. In our proposed model, the distribution of the random effects depends on hidden states. We illustrate the applicability of GLM-HSMMs with an example in the field of occupational health, where the response variable consists of count values. Furthermore, we assess the performance of our MCNR-like algorithm through a simulation study.
Author Bulla, Jan
Sadeghifar, Majid
Mahjub, Hossein
Haji‐Maghsoudi, Saiedeh
Roshanaei, Ghodratollah
Author_xml – sequence: 1
  givenname: Saiedeh
  surname: Haji‐Maghsoudi
  fullname: Haji‐Maghsoudi, Saiedeh
  organization: Hamadan University of Medical Sciences
– sequence: 2
  givenname: Jan
  surname: Bulla
  fullname: Bulla, Jan
  organization: University Regensburg
– sequence: 3
  givenname: Majid
  surname: Sadeghifar
  fullname: Sadeghifar, Majid
  organization: Bu‐Ali Sina University
– sequence: 4
  givenname: Ghodratollah
  orcidid: 0000-0002-3547-9125
  surname: Roshanaei
  fullname: Roshanaei, Ghodratollah
  organization: Hamadan University of Medical Sciences
– sequence: 5
  givenname: Hossein
  orcidid: 0000-0002-9375-3807
  surname: Mahjub
  fullname: Mahjub, Hossein
  email: mahjub@umsha.ac.ir
  organization: Hamadan University of Medical Sciences
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33588516$$D View this record in MEDLINE/PubMed
BookMark eNp10ctO3DAUBmCrAsFwkfoElaVuugnYiZ2cdAeIm8SIRcs6cuyTwdRxpvakMKx4hD5jnwQPDEWq1JVl6Tvnl_3vkA0_eCTkI2cHnLH8MNr-AGoGH8iEs7rKWC5hg0xYXlVZWXG5TXZivGOMc5lXW2S7KCSA5OWEtOfoMShnH9FQZz2qQHv7kC631hj0NGJv_zz9nqrwY_hF-8Ggi9R66gY_s4vRWK9cQouF9bP4lR7RY7XEaJWnaj4Pg9K3e2SzUy7i_vrcJTdnp99PLrKr6_PLk6OrTBecQcZrKGoujW6FUkJ3tWSy4gJy3kGlFZQaFOO56UqjscWuTQI0CGg1lKrEYpd8ed2bYn-OGBdNb6NG55THYYxNLuo0z0CwRD__Q--GMaSXJCVZLQQIUSb1aa3GtkfTzIPtVVg2b7_3nqjDEGPA7i_hrFkV06RimlUxiWav9N46XP7XNd8upy_-GUdHjyg
Cites_doi 10.1080/0094965031000147704
10.1198/jcgs.2010.09015
10.1177/0962280217748675
10.1111/j.1541-0420.2009.01338.x
10.1002/(SICI)1526-4025(199907/09)15:3<195::AID-ASMB376>3.0.CO;2-F
10.1201/9781420011579
10.1080/10618600.2015.1089776
10.1201/b20790
10.1007/978-3-319-06692-9_2
10.1080/00949657708811858
10.1080/03610910903411185
10.1111/sjos.12155
10.1201/b13246
10.1016/S0885-2308(86)80009-2
10.1080/01621459.2014.998935
10.1080/01621459.1990.10474930
10.1016/j.csda.2006.07.021
10.1214/08-BA326
10.2486/indhealth.2016-0108
10.1111/j.1467-985X.2008.00529.x
10.1016/j.csda.2010.06.015
10.1080/01621459.1997.10473613
10.1002/sim.2147
10.1016/j.csda.2006.03.015
10.1198/1061860032030
10.18637/jss.v039.i04
10.1002/sim.3463
10.1890/11-2241.1
10.1002/sim.4478
10.1080/01621459.2013.770307
10.1007/s00180-007-0063-y
10.1016/j.csda.2011.12.017
10.1016/j.ssci.2017.09.012
10.1111/j.1467-842X.2012.00669.x
10.1214/09-AOAS282
10.1016/j.artint.2009.11.011
10.1002/sim.5553
10.1111/j.1751-5823.2011.00160.x
10.1198/016214506000001086
10.1016/j.csda.2008.08.025
10.1016/j.ssci.2014.10.005
10.1111/j.2517-6161.1982.tb01203.x
10.1111/1539-6924.00326
ContentType Journal Article
Copyright 2021 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2021 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
NPM
K9.
7X8
DOI 10.1002/sim.8908
DatabaseName CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
CrossRef
ProQuest Health & Medical Complete (Alumni)

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Statistics
Public Health
EISSN 1097-0258
EndPage 2388
ExternalDocumentID 33588516
10_1002_sim_8908
SIM8908
Genre article
Journal Article
GrantInformation_xml – fundername: Hamadan University of Medical Sciences
  funderid: 9609286096
– fundername: GENDER‐Net Co‐Plus
  funderid: GNP‐182
– fundername: Hamadan University of Medical Sciences
  grantid: 9609286096
– fundername: GENDER-Net Co-Plus
  grantid: GNP-182
GroupedDBID ---
.3N
.GA
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5RE
5VS
66C
6PF
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAWTL
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABOCM
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EMOBN
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
RYL
SUPJJ
SV3
TN5
UB1
V2E
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WUP
WWH
WXSBR
WYISQ
XBAML
XG1
XV2
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGYGG
AMVHM
CITATION
NPM
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
K9.
7X8
ID FETCH-LOGICAL-c3108-1983915dcb4aa4cf9505714821f87ca86c8a012df6dcebefbf958c848bc86a6e3
IEDL.DBID DR2
ISSN 0277-6715
1097-0258
IngestDate Fri Jul 11 08:58:13 EDT 2025
Mon Jul 14 07:45:54 EDT 2025
Wed Feb 19 02:27:46 EST 2025
Tue Jul 01 03:28:16 EDT 2025
Wed Jan 22 16:29:24 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords generalized linear models
hidden Markov models
Bayesian estimation
hidden semi-Markov models
Monte Carlo Newton-Raphson
Language English
License 2021 John Wiley & Sons, Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3108-1983915dcb4aa4cf9505714821f87ca86c8a012df6dcebefbf958c848bc86a6e3
Notes Funding information
GENDER‐Net Co‐Plus, GNP‐182; Hamadan University of Medical Sciences, 9609286096
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-3547-9125
0000-0002-9375-3807
PMID 33588516
PQID 2509448446
PQPubID 48361
PageCount 16
ParticipantIDs proquest_miscellaneous_2490120840
proquest_journals_2509448446
pubmed_primary_33588516
crossref_primary_10_1002_sim_8908
wiley_primary_10_1002_sim_8908_SIM8908
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 10 May 2021
PublicationDateYYYYMMDD 2021-05-10
PublicationDate_xml – month: 05
  year: 2021
  text: 10 May 2021
  day: 10
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: England
– name: New York
PublicationTitle Statistics in medicine
PublicationTitleAlternate Stat Med
PublicationYear 2021
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2010; 54
2007; 102
2010; 19
2015; 72
2006; 451
2011; 55
2008; 3
2012; 56
2012; 54
2005; 24
2003; 12
2010; 66
1990; 85
2004; 74
1986; 1
1997; 92
2015; 42
1997; 59
1999; 15
2019; 28
2016; 111
2008; 23
1982
2010; 4
2006; 51
2012
2013; 108
2010; 39
2018; 101
2008
2011; 79
2004
2014; 2014
2007; 51
2011; 39
2015; 7
2012; 31
2009; 28
2012; 93
2009; 191
2013; 32
2017; 55
2010; 174
2016
2014
2016; 8
2016; 25
2003; 23
2008; 171
Barbu VS (e_1_2_10_15_1) 2009
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_42_1
e_1_2_10_40_1
e_1_2_10_2_1
e_1_2_10_18_1
e_1_2_10_53_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_30_1
e_1_2_10_51_1
Louis TA (e_1_2_10_50_1) 1982
e_1_2_10_29_1
e_1_2_10_27_1
e_1_2_10_48_1
e_1_2_10_24_1
e_1_2_10_45_1
e_1_2_10_22_1
e_1_2_10_43_1
e_1_2_10_20_1
e_1_2_10_41_1
e_1_2_10_52_1
e_1_2_10_19_1
Hedeker D (e_1_2_10_3_1) 2006
e_1_2_10_5_1
e_1_2_10_38_1
e_1_2_10_7_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_10_1
e_1_2_10_33_1
MohammadFam I (e_1_2_10_31_1) 2015; 7
Gharibi V (e_1_2_10_25_1) 2016; 8
Wang N (e_1_2_10_17_1) 2014; 2014
e_1_2_10_28_1
e_1_2_10_49_1
McCulloch CE (e_1_2_10_4_1) 2004
e_1_2_10_26_1
e_1_2_10_47_1
References_xml – volume: 3
  start-page: 659
  issue: 4
  year: 2008
  end-page: 688
  article-title: EM versus Markov chain Monte Carlo for estimation of hidden Markov models: a computational perspective
  publication-title: Bayesian Anal
– volume: 1
  start-page: 29
  issue: 1
  year: 1986
  end-page: 45
  article-title: Continuously variable duration hidden Markov models for automatic speech recognition
  publication-title: Comput Speech Lang
– volume: 32
  start-page: 808
  issue: 5
  year: 2013
  end-page: 821
  article-title: A general binomial regression model to estimate standardized risk differences from binary response data
  publication-title: Stat Med
– volume: 15
  start-page: 195
  issue: 3
  year: 1999
  end-page: 224
  article-title: Computational methods for discrete hidden semi‐Markov chains
  publication-title: Appl Stoch Model Bus Ind
– volume: 85
  start-page: 699
  issue: 411
  year: 1990
  end-page: 704
  article-title: Monte Carlo implementation of the EM algorithm and the poor man's data augmentation algorithms
  publication-title: J Am Stat Assoc
– volume: 19
  start-page: 746
  issue: 3
  year: 2010
  end-page: 765
  article-title: Multivariate discrete hidden Markov models for domain‐based measurements and assessment of risk factors in child development
  publication-title: J Comput Graph Stat
– volume: 28
  start-page: 293
  issue: 2
  year: 2009
  end-page: 310
  article-title: Multiple indicator hidden Markov model with an application to medical utilization data
  publication-title: Stat Med
– volume: 7
  start-page: 69
  issue: 2
  year: 2015
  end-page: 75
  article-title: Interventions to promote of safety participation using generalized estimating equations
  publication-title: Int J Occup Hyg
– volume: 24
  start-page: 2789
  issue: 18
  year: 2005
  end-page: 2805
  article-title: Estimating treatment efficacy over time: a logistic regression model for binary longitudinal outcomes
  publication-title: Stat Med
– volume: 54
  start-page: 611
  issue: 3
  year: 2010
  end-page: 619
  article-title: HSMM—an R package for analyzing hidden semi‐Markov models
  publication-title: Comp Stat Data Anal
– volume: 42
  start-page: 1127
  issue: 4
  year: 2015
  end-page: 1135
  article-title: Generalized linear mixed models based on latent Markov heterogeneity structures
  publication-title: Scand Stat
– volume: 111
  start-page: 216
  issue: 513
  year: 2016
  end-page: 228
  article-title: Pairwise likelihood inference for nested hidden Markov chain models for multilevel longitudinal data
  publication-title: J Am Stat Assoc
– volume: 59
  start-page: 233
  issue: 3
  year: 1997
  end-page: 250
  article-title: The Monte Carlo Newton‐Raphson algorithm
  publication-title: J Stat Comput Simul
– volume: 72
  start-page: 329
  year: 2015
  end-page: 336
  article-title: Analysis of investigation reports on occupational accidents
  publication-title: Saf Sci
– year: 2008
– year: 2004
– volume: 54
  start-page: 261
  issue: 3
  year: 2012
  end-page: 279
  article-title: Flexible latent‐state modelling of old faithful's eruption inter‐arrival times in 2009
  publication-title: Aust N Z J Stat
– volume: 171
  start-page: 739
  year: 2008
  end-page: 753
  article-title: Qualitative longitudinal analysis of symptoms in patients with primary and metastatic brain tumours
  publication-title: J R Stat Soc Ser A
– volume: 191
  year: 2009
– volume: 51
  start-page: 2192
  issue: 4
  year: 2006
  end-page: 2209
  article-title: Stylized facts of financial time series and hidden semi‐Markov models
  publication-title: Comp Stat Data Anal
– volume: 39
  start-page: 1
  issue: 4
  year: 2011
  end-page: 22
  article-title: Hidden semi markov models for multiple observation sequences: the mhsmm package for R
  publication-title: J Stat Softw
– volume: 102
  start-page: 201
  issue: 477
  year: 2007
  end-page: 210
  article-title: Mixed hidden Markov models: an extension of the hidden Markov model to the longitudinal data setting
  publication-title: J Am Stat Assoc
– volume: 28
  start-page: 2112
  issue: 7
  year: 2019
  end-page: 2124
  article-title: Bayesian hidden Markov models for delineating the pathology of Alzheimer's disease
  publication-title: Stat Methods Med Res
– volume: 55
  start-page: 210
  issue: 3
  year: 2017
  end-page: 218
  article-title: Occupational safety and health in construction: a review of applications and trends
  publication-title: Ind Health
– volume: 8
  start-page: 145
  issue: 3
  year: 2016
  end-page: 150
  article-title: The relationship between workers' attitude towards safety and occupational accidents experience
  publication-title: Int J Occup Hyg
– volume: 92
  start-page: 162
  issue: 437
  year: 1997
  end-page: 170
  article-title: Maximum likelihood algorithms for generalized linear mixed models
  publication-title: J Am Stat Assoc
– volume: 174
  start-page: 215
  issue: 2
  year: 2010
  end-page: 243
  article-title: Hidden semi‐Markov models
  publication-title: Artif Intell
– volume: 31
  start-page: 871
  issue: 9
  year: 2012
  end-page: 886
  article-title: A mixed non‐homogeneous hidden Markov model for categorical data, with application to alcohol consumption
  publication-title: Stat Med
– volume: 25
  start-page: 1097
  issue: 4
  year: 2016
  end-page: 1116
  article-title: Clustering multivariate longitudinal observations: the contaminated Gaussian hidden Markov model
  publication-title: J Comput Graph Stat
– volume: 79
  start-page: 427
  issue: 3
  year: 2011
  end-page: 454
  article-title: Mixed hidden Markov models for longitudinal data: an overview
  publication-title: Int Stat Rev
– volume: 74
  start-page: 349
  issue: 5
  year: 2004
  end-page: 360
  article-title: An automated (Markov chain) Monte Carlo EM algorithm
  publication-title: J Stat Comput Simul
– volume: 39
  start-page: 240
  issue: 2
  year: 2010
  end-page: 261
  article-title: An EM and a stochastic version of the EM algorithm for nonparametric hidden semi‐Markov models
  publication-title: Commun Stat Simul Comput
– volume: 2014
  year: 2014
  article-title: A hidden semi‐markov model with duration‐dependent state transition probabilities for prognostics
  publication-title: Math Probl Eng
– year: 2016
– volume: 108
  start-page: 370
  issue: 502
  year: 2013
  end-page: 380
  article-title: Partially ordered mixed hidden Markov model for the disablement process of older adults
  publication-title: J Am Stat Assoc
– start-page: 226
  year: 1982
  end-page: 233
  article-title: Finding the observed information matrix when using the EM algorithm
  publication-title: J R Stat Soc Ser B
– start-page: 11
  year: 2014
  end-page: 19
– year: 2012
– volume: 51
  start-page: 2379
  issue: 5
  year: 2007
  end-page: 2409
  article-title: Exploring the state sequence space for hidden Markov and semi‐Markov chains
  publication-title: Comp Stat Data Anal
– volume: 451
  year: 2006
– volume: 56
  start-page: 2073
  issue: 6
  year: 2012
  end-page: 2085
  article-title: Maximum likelihood estimation in discrete mixed hidden Markov models using the SAEM algorithm
  publication-title: Comp Stat Data Anal
– volume: 23
  start-page: 445
  issue: 3
  year: 2003
  end-page: 459
  article-title: Near‐miss incident management in the chemical process industry
  publication-title: Risk Anal Int J
– volume: 66
  start-page: 753
  issue: 3
  year: 2010
  end-page: 762
  article-title: Markov and semi‐Markov switching linear mixed models used to identify forest tree growth components
  publication-title: Biometrics
– volume: 101
  start-page: 173
  year: 2018
  end-page: 179
  article-title: Individual and workplace factors related to fatal occupational accidents among shipyard workers in Turkey
  publication-title: Saf Sci
– volume: 4
  start-page: 366
  issue: 1
  year: 2010
  end-page: 395
  article-title: Hidden Markov models for alcoholism treatment trial data
  publication-title: Ann Appl Stat
– volume: 55
  start-page: 715
  issue: 1
  year: 2011
  end-page: 724
  article-title: Hidden Markov models with arbitrary state dwell‐time distributions
  publication-title: Comp Stat Data Anal
– volume: 23
  start-page: 1
  issue: 1
  year: 2008
  end-page: 18
  article-title: Computational issues in parameter estimation for stationary hidden Markov models
  publication-title: Comput Stat
– volume: 93
  start-page: 2336
  issue: 11
  year: 2012
  end-page: 2342
  article-title: Flexible and practical modeling of animal telemetry data: hidden Markov models and extensions
  publication-title: Ecology
– volume: 12
  start-page: 604
  issue: 3
  year: 2003
  end-page: 639
  article-title: Estimating hidden semi‐Markov chains from discrete sequences
  publication-title: J Comput Graph Stat
– volume-title: Longitudinal Data Analysis
  year: 2006
  ident: e_1_2_10_3_1
– ident: e_1_2_10_36_1
  doi: 10.1080/0094965031000147704
– ident: e_1_2_10_46_1
  doi: 10.1198/jcgs.2010.09015
– ident: e_1_2_10_12_1
  doi: 10.1177/0962280217748675
– ident: e_1_2_10_52_1
– ident: e_1_2_10_22_1
  doi: 10.1111/j.1541-0420.2009.01338.x
– ident: e_1_2_10_33_1
  doi: 10.1002/(SICI)1526-4025(199907/09)15:3<195::AID-ASMB376>3.0.CO;2-F
– ident: e_1_2_10_2_1
  doi: 10.1201/9781420011579
– ident: e_1_2_10_40_1
  doi: 10.1080/10618600.2015.1089776
– volume: 7
  start-page: 69
  issue: 2
  year: 2015
  ident: e_1_2_10_31_1
  article-title: Interventions to promote of safety participation using generalized estimating equations
  publication-title: Int J Occup Hyg
– ident: e_1_2_10_45_1
  doi: 10.1201/b20790
– volume-title: Generalized, Linear, and Mixed Models
  year: 2004
  ident: e_1_2_10_4_1
– ident: e_1_2_10_29_1
– ident: e_1_2_10_6_1
  doi: 10.1007/978-3-319-06692-9_2
– ident: e_1_2_10_37_1
  doi: 10.1080/00949657708811858
– ident: e_1_2_10_53_1
  doi: 10.1080/03610910903411185
– ident: e_1_2_10_7_1
  doi: 10.1111/sjos.12155
– ident: e_1_2_10_9_1
  doi: 10.1201/b13246
– ident: e_1_2_10_42_1
  doi: 10.1016/S0885-2308(86)80009-2
– ident: e_1_2_10_10_1
  doi: 10.1080/01621459.2014.998935
– ident: e_1_2_10_35_1
  doi: 10.1080/01621459.1990.10474930
– volume: 8
  start-page: 145
  issue: 3
  year: 2016
  ident: e_1_2_10_25_1
  article-title: The relationship between workers' attitude towards safety and occupational accidents experience
  publication-title: Int J Occup Hyg
– ident: e_1_2_10_16_1
  doi: 10.1016/j.csda.2006.07.021
– ident: e_1_2_10_39_1
  doi: 10.1214/08-BA326
– ident: e_1_2_10_26_1
  doi: 10.2486/indhealth.2016-0108
– ident: e_1_2_10_48_1
  doi: 10.1111/j.1467-985X.2008.00529.x
– ident: e_1_2_10_24_1
  doi: 10.1016/j.csda.2010.06.015
– ident: e_1_2_10_34_1
  doi: 10.1080/01621459.1997.10473613
– ident: e_1_2_10_41_1
– ident: e_1_2_10_19_1
  doi: 10.1002/sim.2147
– volume-title: Semi‐Markov Chains and Hidden Semi‐Markov Models toward Applications: their Use in Reliability and DNA Analysis
  year: 2009
  ident: e_1_2_10_15_1
– ident: e_1_2_10_51_1
  doi: 10.1016/j.csda.2006.03.015
– ident: e_1_2_10_32_1
  doi: 10.1198/1061860032030
– ident: e_1_2_10_44_1
  doi: 10.18637/jss.v039.i04
– ident: e_1_2_10_21_1
  doi: 10.1002/sim.3463
– ident: e_1_2_10_49_1
  doi: 10.1890/11-2241.1
– ident: e_1_2_10_13_1
  doi: 10.1002/sim.4478
– ident: e_1_2_10_47_1
  doi: 10.1080/01621459.2013.770307
– volume: 2014
  year: 2014
  ident: e_1_2_10_17_1
  article-title: A hidden semi‐markov model with duration‐dependent state transition probabilities for prognostics
  publication-title: Math Probl Eng
– ident: e_1_2_10_38_1
  doi: 10.1007/s00180-007-0063-y
– ident: e_1_2_10_11_1
  doi: 10.1016/j.csda.2011.12.017
– ident: e_1_2_10_27_1
  doi: 10.1016/j.ssci.2017.09.012
– ident: e_1_2_10_23_1
  doi: 10.1111/j.1467-842X.2012.00669.x
– ident: e_1_2_10_14_1
  doi: 10.1214/09-AOAS282
– ident: e_1_2_10_18_1
  doi: 10.1016/j.artint.2009.11.011
– ident: e_1_2_10_20_1
  doi: 10.1002/sim.5553
– ident: e_1_2_10_8_1
  doi: 10.1111/j.1751-5823.2011.00160.x
– ident: e_1_2_10_5_1
  doi: 10.1198/016214506000001086
– ident: e_1_2_10_43_1
  doi: 10.1016/j.csda.2008.08.025
– ident: e_1_2_10_28_1
  doi: 10.1016/j.ssci.2014.10.005
– start-page: 226
  year: 1982
  ident: e_1_2_10_50_1
  article-title: Finding the observed information matrix when using the EM algorithm
  publication-title: J R Stat Soc Ser B
  doi: 10.1111/j.2517-6161.1982.tb01203.x
– ident: e_1_2_10_30_1
  doi: 10.1111/1539-6924.00326
SSID ssj0011527
Score 2.3544896
Snippet Hidden Markov and semi‐Markov models (H(S)MMs) constitute useful tools for modeling observations subject to certain dependency structures. The hidden states...
Hidden Markov and semi-Markov models (H(S)MMs) constitute useful tools for modeling observations subject to certain dependency structures. The hidden states...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage 2373
SubjectTerms Bayesian estimation
generalized linear models
hidden Markov models
hidden semi‐Markov models
Monte Carlo Newton‐Raphson
Parameter estimation
Title Generalized linear mixed hidden semi‐Markov models in longitudinal settings: A Bayesian approach
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsim.8908
https://www.ncbi.nlm.nih.gov/pubmed/33588516
https://www.proquest.com/docview/2509448446
https://www.proquest.com/docview/2490120840
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3NTtwwEIBHFQeEhKBd_pbSykiIW5ZN4iQ2N6BFFGk58CMhcYhsxxERbBaRXdRy4hF4xj5JZ-JkK1ohIU5RFDtO7LE9Y3u-AdiSPI9kHhuPNgs9nvelp7RvPD_RJtQhmtCGlgYGJ_HRBT--jC6bU5XkC-P4ENMFN-oZ9XhNHVzpaucvNLQqhj0haz9fP4wJm__tdEqO8ttorbRDGSd-1HJn-8FOm_HlTPSfevlSW62nm8NFuGo_1J0yuelNxrpnHv9hOL7vTz7CQqOFsj0nNp_ggy07MDto9tk7MO9W85hzUurAHOmkDum8BLpBVRePNmNUurpnw-In3lwTj6RklR0Wv5-eyQ1o9MDqWDsVK0p2O6LgSJOMAnFhovrEdbXL9ti--mXJmZO1hPNluDj8fn5w5DWhGjyD-iHaoVIQaT4zmivFTS7J7iHEqJ-LxCgRG6FwKszyODMoNrnGFMIILrQRsYptuAIz5ai0a8AIYSajKOhbnnE_8ZVJcBiKsAAubZ9nXdhsmy29c0SO1LGXgxRrMqWa7MJG255p0yerNCBWIBcok_iK6WPsTbRFoko7mmAaLsmbGK3eLqw6OZgWEoaRQP0Uc2_Xrflq6enZjwFd19-a8DPMBXRUpobCbsDM-H5iv6CuM9Zfa6n-AwKu-s0
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fT9RAEJ8QSJSE-OcUOEVZE-Nb767ttt3VJxTIgRwPAgkPJs3udhsauJ6hd0R58iP4Gf0kznTbI2hIiE9N09luuzuzO392fgPwVvI8knlsPAoWejwfSE9p33h-ok2oQzShDbkGRofx8ITvn0anC_ChzYVx-BBzhxtJRr1ek4CTQ7p_gxpaFeOekJTou8RRzyDLa_vLHDvKb-u1UowyTvyoRZ4dBP225e296B8F87a-Wm84u4_ha_up7pzJeW821T1z_ReK43_-yxN41CiibMtxzlNYsGUHHoyaUHsHVpxDj7k8pQ4sk1rqUJ2fgW7QqotrmzHqXl2ycfEdb84IkqRklR0Xv3_-okygyRWry-1UrCjZxYTqI80yqsWFRPWh6-o922If1Q9L-ZysBTl_Die7O8efhl5TrcEzqCKiKSoFgc1nRnOluMklmT6EMurnIjFKxEYo3A2zPM4Mck6ukUIYwYU2IlaxDVdhsZyUdh0YoZjJKAoGlmfcT3xlElyJIuyASzvgWRfetPOWfnOgHKmDXw5SHMmURrILG-2Epo1YVmlAcIFcIFviK-aPUaAoSqJKO5khDZeUUIyGbxfWHCPMOwnDSKCKiq3f1dN5Z-_p0d6Iri_uS7gJD4fHo4P0YO_w80tYDujkTI0RuwGL08uZfYWqz1S_rln8D7DM_uw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1RS9xAEB6Kggil2rO1p7auIH3LeUk2yW7f1PbQ1hOxFYQ-hN3NhoZ6OTF3pfrUn-Bv7C_pTDY50SKUPoWQ2WyyO7P7ze7ONwDbkueRzGPj0Wahx_O-9JT2jecn2oQ6RBfa0NLA8Dg-OOMfz6Pz5lQlxcI4fojZghtZRj1ek4FfZvnOHWloVYx6QlKc7zyPEUgQIDqdUUf5bbpW2qKMEz9qiWf7wU5b8v5U9Be-vA9X6_lmsARf2y91x0y-96YT3TM3D0gc_-9XluFZA0PZrtOb5_DElh1YGDYb7R146pbzmItS6sAigVLH6bwCuuGqLm5sxqh2dcVGxU-8-UaEJCWr7Kj4_euW4oDGP1idbKdiRckuxpQdaZpRJi4Uqo9cV-_YLttT15aiOVlLcf4CzgYfvuwfeE2uBs8gQERHVAqims-M5kpxk0tyfIhj1M9FYpSIjVA4F2Z5nBnUm1yjhDCCC21ErGIbvoS5clzaV8CIw0xGUdC3PON-4iuT4DgUYQVc2j7PurDVdlt66Sg5Uke-HKTYkim1ZBc22v5MG6Os0oDIArlApcRXzB6jOdEeiSrteIoyXFI4Mbq9XVh1ejCrJAwjgQAVS7-te_PR2tPPh0O6rv2r4CYsnLwfpEeHx5_WYTGgYzM1QewGzE2upvY14p6JflMr-B-8QP2b
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generalized+linear+mixed+hidden+semi-Markov+models+in+longitudinal+settings%3A+A+Bayesian+approach&rft.jtitle=Statistics+in+medicine&rft.au=Haji-Maghsoudi%2C+Saiedeh&rft.au=Bulla%2C+Jan&rft.au=Sadeghifar%2C+Majid&rft.au=Roshanaei%2C+Ghodratollah&rft.date=2021-05-10&rft.eissn=1097-0258&rft.volume=40&rft.issue=10&rft.spage=2373&rft_id=info:doi/10.1002%2Fsim.8908&rft_id=info%3Apmid%2F33588516&rft.externalDocID=33588516
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0277-6715&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0277-6715&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0277-6715&client=summon