Accelerated 2D radial Look‐Locker T1 mapping using a deep learning‐based rapid inversion recovery sampling technique

Efficient abdominal coverage with T1‐mapping methods currently available in the clinic is limited by the breath hold period (BHP) and the time needed for T1 recovery. This work develops a T1‐mapping framework for efficient abdominal coverage based on rapid T1 recovery curve (T1RC) sampling, slice‐se...

Full description

Saved in:
Bibliographic Details
Published inNMR in biomedicine Vol. 37; no. 12; pp. e5266 - n/a
Main Authors Ahanonu, Eze, Goerke, Ute, Johnson, Kevin, Toner, Brian, Martin, Diego R., Deshpande, Vibhas, Bilgin, Ali, Altbach, Maria
Format Journal Article
LanguageEnglish
Published England Wiley Subscription Services, Inc 01.12.2024
Subjects
Online AccessGet full text
ISSN0952-3480
1099-1492
1099-1492
DOI10.1002/nbm.5266

Cover

Abstract Efficient abdominal coverage with T1‐mapping methods currently available in the clinic is limited by the breath hold period (BHP) and the time needed for T1 recovery. This work develops a T1‐mapping framework for efficient abdominal coverage based on rapid T1 recovery curve (T1RC) sampling, slice‐selective inversion, optimized slice interleaving, and a convolutional neural network (CNN)‐based T1 estimation. The effect of reducing the T1RC sampling was evaluated by comparing T1 estimates from T1RC ranging from 0.63 to 2.0 s with reference T1 values obtained from T1RC = 2.5–5 s. Slice interleaving methodologies were evaluated by comparing the T1 variation in abdominal organs across slices. The repeatability of the proposed framework was demonstrated by performing acquisition on test subjects across imaging sessions. Analysis of in vivo data based on retrospectively shortening the T1RC showed that with the CNN framework, a T1RC = 0.84 s yielded T1 estimates without significant changes in mean T1 (p > 0.05) or significant increase in T1 variability (p > 0.48) compared to the reference. Prospectively acquired data using T1RC = 0.84 s, an optimized slice interleaving scheme, and the CNN framework enabled 21 slices in a 20 s BHP. Analyses across abdominal organs produced T1 values within 2% of the reference. Repeatability experiments yielded Pearson's correlation, repeatability coefficient, and coefficient of variation of 0.99, 2.5%, and 0.12%, respectively. The proposed T1 mapping framework provides full abdominal coverage within a single BHP. Abdominal coverage in T1‐mapping methods typically used clinically is limited by the breath hold period (BHP) and the time needed for T1 inversion recovery sampling. We propose a slice‐selective radial Look‐Locker T1‐mapping framework utilizing rapid inversion recovery sampling, optimized slice interleaving, and deep learning to allow accurate T1 estimation of 21 slices within a 20 s BHP.
AbstractList Efficient abdominal coverage with T1‐mapping methods currently available in the clinic is limited by the breath hold period (BHP) and the time needed for T1 recovery. This work develops a T1‐mapping framework for efficient abdominal coverage based on rapid T1 recovery curve (T1RC) sampling, slice‐selective inversion, optimized slice interleaving, and a convolutional neural network (CNN)‐based T1 estimation. The effect of reducing the T1RC sampling was evaluated by comparing T1 estimates from T1RC ranging from 0.63 to 2.0 s with reference T1 values obtained from T1RC = 2.5–5 s. Slice interleaving methodologies were evaluated by comparing the T1 variation in abdominal organs across slices. The repeatability of the proposed framework was demonstrated by performing acquisition on test subjects across imaging sessions. Analysis of in vivo data based on retrospectively shortening the T1RC showed that with the CNN framework, a T1RC = 0.84 s yielded T1 estimates without significant changes in mean T1 (p > 0.05) or significant increase in T1 variability (p > 0.48) compared to the reference. Prospectively acquired data using T1RC = 0.84 s, an optimized slice interleaving scheme, and the CNN framework enabled 21 slices in a 20 s BHP. Analyses across abdominal organs produced T1 values within 2% of the reference. Repeatability experiments yielded Pearson's correlation, repeatability coefficient, and coefficient of variation of 0.99, 2.5%, and 0.12%, respectively. The proposed T1 mapping framework provides full abdominal coverage within a single BHP. Abdominal coverage in T1‐mapping methods typically used clinically is limited by the breath hold period (BHP) and the time needed for T1 inversion recovery sampling. We propose a slice‐selective radial Look‐Locker T1‐mapping framework utilizing rapid inversion recovery sampling, optimized slice interleaving, and deep learning to allow accurate T1 estimation of 21 slices within a 20 s BHP.
Efficient abdominal coverage with T1‐mapping methods currently available in the clinic is limited by the breath hold period (BHP) and the time needed for T1 recovery. This work develops a T1‐mapping framework for efficient abdominal coverage based on rapid T1 recovery curve (T1RC) sampling, slice‐selective inversion, optimized slice interleaving, and a convolutional neural network (CNN)‐based T1 estimation. The effect of reducing the T1RC sampling was evaluated by comparing T1 estimates from T1RC ranging from 0.63 to 2.0 s with reference T1 values obtained from T1RC = 2.5–5 s. Slice interleaving methodologies were evaluated by comparing the T1 variation in abdominal organs across slices. The repeatability of the proposed framework was demonstrated by performing acquisition on test subjects across imaging sessions. Analysis of in vivo data based on retrospectively shortening the T1RC showed that with the CNN framework, a T1RC = 0.84 s yielded T1 estimates without significant changes in mean T1 ( p  > 0.05) or significant increase in T1 variability ( p  > 0.48) compared to the reference. Prospectively acquired data using T1RC = 0.84 s, an optimized slice interleaving scheme, and the CNN framework enabled 21 slices in a 20 s BHP. Analyses across abdominal organs produced T1 values within 2% of the reference. Repeatability experiments yielded Pearson's correlation, repeatability coefficient, and coefficient of variation of 0.99, 2.5%, and 0.12%, respectively. The proposed T1 mapping framework provides full abdominal coverage within a single BHP.
Efficient abdominal coverage with T1-mapping methods currently available in the clinic is limited by the breath hold period (BHP) and the time needed for T1 recovery. This work develops a T1-mapping framework for efficient abdominal coverage based on rapid T1 recovery curve (T1RC) sampling, slice-selective inversion, optimized slice interleaving, and a convolutional neural network (CNN)-based T1 estimation. The effect of reducing the T1RC sampling was evaluated by comparing T1 estimates from T1RC ranging from 0.63 to 2.0 s with reference T1 values obtained from T1RC = 2.5-5 s. Slice interleaving methodologies were evaluated by comparing the T1 variation in abdominal organs across slices. The repeatability of the proposed framework was demonstrated by performing acquisition on test subjects across imaging sessions. Analysis of in vivo data based on retrospectively shortening the T1RC showed that with the CNN framework, a T1RC = 0.84 s yielded T1 estimates without significant changes in mean T1 (p > 0.05) or significant increase in T1 variability (p > 0.48) compared to the reference. Prospectively acquired data using T1RC = 0.84 s, an optimized slice interleaving scheme, and the CNN framework enabled 21 slices in a 20 s BHP. Analyses across abdominal organs produced T1 values within 2% of the reference. Repeatability experiments yielded Pearson's correlation, repeatability coefficient, and coefficient of variation of 0.99, 2.5%, and 0.12%, respectively. The proposed T1 mapping framework provides full abdominal coverage within a single BHP.
Efficient abdominal coverage with T1‐mapping methods currently available in the clinic is limited by the breath hold period (BHP) and the time needed for T1 recovery. This work develops a T1‐mapping framework for efficient abdominal coverage based on rapid T1 recovery curve (T1RC) sampling, slice‐selective inversion, optimized slice interleaving, and a convolutional neural network (CNN)‐based T1 estimation. The effect of reducing the T1RC sampling was evaluated by comparing T1 estimates from T1RC ranging from 0.63 to 2.0 s with reference T1 values obtained from T1RC = 2.5–5 s. Slice interleaving methodologies were evaluated by comparing the T1 variation in abdominal organs across slices. The repeatability of the proposed framework was demonstrated by performing acquisition on test subjects across imaging sessions. Analysis of in vivo data based on retrospectively shortening the T1RC showed that with the CNN framework, a T1RC = 0.84 s yielded T1 estimates without significant changes in mean T1 (p > 0.05) or significant increase in T1 variability (p > 0.48) compared to the reference. Prospectively acquired data using T1RC = 0.84 s, an optimized slice interleaving scheme, and the CNN framework enabled 21 slices in a 20 s BHP. Analyses across abdominal organs produced T1 values within 2% of the reference. Repeatability experiments yielded Pearson's correlation, repeatability coefficient, and coefficient of variation of 0.99, 2.5%, and 0.12%, respectively. The proposed T1 mapping framework provides full abdominal coverage within a single BHP.
Efficient abdominal coverage with T1-mapping methods currently available in the clinic is limited by the breath hold period (BHP) and the time needed for T1 recovery. This work develops a T1-mapping framework for efficient abdominal coverage based on rapid T1 recovery curve (T1RC) sampling, slice-selective inversion, optimized slice interleaving, and a convolutional neural network (CNN)-based T1 estimation. The effect of reducing the T1RC sampling was evaluated by comparing T1 estimates from T1RC ranging from 0.63 to 2.0 s with reference T1 values obtained from T1RC = 2.5-5 s. Slice interleaving methodologies were evaluated by comparing the T1 variation in abdominal organs across slices. The repeatability of the proposed framework was demonstrated by performing acquisition on test subjects across imaging sessions. Analysis of in vivo data based on retrospectively shortening the T1RC showed that with the CNN framework, a T1RC = 0.84 s yielded T1 estimates without significant changes in mean T1 (p > 0.05) or significant increase in T1 variability (p > 0.48) compared to the reference. Prospectively acquired data using T1RC = 0.84 s, an optimized slice interleaving scheme, and the CNN framework enabled 21 slices in a 20 s BHP. Analyses across abdominal organs produced T1 values within 2% of the reference. Repeatability experiments yielded Pearson's correlation, repeatability coefficient, and coefficient of variation of 0.99, 2.5%, and 0.12%, respectively. The proposed T1 mapping framework provides full abdominal coverage within a single BHP.Efficient abdominal coverage with T1-mapping methods currently available in the clinic is limited by the breath hold period (BHP) and the time needed for T1 recovery. This work develops a T1-mapping framework for efficient abdominal coverage based on rapid T1 recovery curve (T1RC) sampling, slice-selective inversion, optimized slice interleaving, and a convolutional neural network (CNN)-based T1 estimation. The effect of reducing the T1RC sampling was evaluated by comparing T1 estimates from T1RC ranging from 0.63 to 2.0 s with reference T1 values obtained from T1RC = 2.5-5 s. Slice interleaving methodologies were evaluated by comparing the T1 variation in abdominal organs across slices. The repeatability of the proposed framework was demonstrated by performing acquisition on test subjects across imaging sessions. Analysis of in vivo data based on retrospectively shortening the T1RC showed that with the CNN framework, a T1RC = 0.84 s yielded T1 estimates without significant changes in mean T1 (p > 0.05) or significant increase in T1 variability (p > 0.48) compared to the reference. Prospectively acquired data using T1RC = 0.84 s, an optimized slice interleaving scheme, and the CNN framework enabled 21 slices in a 20 s BHP. Analyses across abdominal organs produced T1 values within 2% of the reference. Repeatability experiments yielded Pearson's correlation, repeatability coefficient, and coefficient of variation of 0.99, 2.5%, and 0.12%, respectively. The proposed T1 mapping framework provides full abdominal coverage within a single BHP.
Author Johnson, Kevin
Goerke, Ute
Deshpande, Vibhas
Martin, Diego R.
Altbach, Maria
Ahanonu, Eze
Toner, Brian
Bilgin, Ali
Author_xml – sequence: 1
  givenname: Eze
  surname: Ahanonu
  fullname: Ahanonu, Eze
  organization: The University of Arizona
– sequence: 2
  givenname: Ute
  surname: Goerke
  fullname: Goerke, Ute
  organization: Siemens Medical Solutions USA
– sequence: 3
  givenname: Kevin
  surname: Johnson
  fullname: Johnson, Kevin
  organization: The University of Arizona
– sequence: 4
  givenname: Brian
  surname: Toner
  fullname: Toner, Brian
  organization: The University of Arizona
– sequence: 5
  givenname: Diego R.
  surname: Martin
  fullname: Martin, Diego R.
  organization: Department of Radiology, Houston Methodist Hospital
– sequence: 6
  givenname: Vibhas
  surname: Deshpande
  fullname: Deshpande, Vibhas
  organization: Siemens Medical Solutions USA
– sequence: 7
  givenname: Ali
  surname: Bilgin
  fullname: Bilgin, Ali
  organization: The University of Arizona
– sequence: 8
  givenname: Maria
  surname: Altbach
  fullname: Altbach, Maria
  email: maltbach@arizona.edu
  organization: The University of Arizona
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39358992$$D View this record in MEDLINE/PubMed
BookMark eNp10UFvFSEQAGBiauxrNfEXGBIvXrYOsLvAsdaqTZ56qecNsLNKuwsrvG37bv0J_kZ_iby2amLiBYbkY2ZgDsheiAEJec7giAHw18FORw1v20dkxUDritWa75EV6IZXolawTw5yvgAAVQv-hOwLLRqlNV-Rm2PncMRkNthT_pYm03sz0nWMlz9vf6yju8REzxmdzDz78JUuebca2iPOdESTQjkXaU0uCZKZfU99uMKUfQw0oYsl3tJspnnc3dyg-xb89wWfkseDGTM-e9gPyZd3p-cnH6r15_dnJ8frygkGbaVcwwVYOUgLA9OuBMxaV6ME1jBQg1NC2rqXdc-4Vdq2tah7kGCgVaqx4pC8us87p1jK5k03-VyePJqAccmdYIw3XAnWFvryH3oRlxRKd0VxKVWjlSzqxYNa7IR9Nyc_mbTtfv_p34ouxZwTDn8Ig243rq6Mq9uNq9Dqnl77Ebf_dd2nNx_v_C834JZf
Cites_doi 10.1016/j.mri.2012.06.026
10.1002/mrm.28679
10.1002/mrm.28497
10.1002/mrm.22497
10.1016/j.jhep.2015.10.009
10.1002/mrm.20110
10.1002/mrm.26580
10.1371/journal.pone.0085658
10.1002/jmri.26170
10.1038/nature11971
10.1148/rycan.230036
10.1002/nbm.3299
10.1016/j.ejro.2020.100312
10.1002/mrm.25421
10.1002/mrm.26009
10.1002/nbm.5097
10.1136/gutjnl‐2017‐314561
10.1002/jmri.22543
10.1109/TMI.2017.2659742
10.1002/mrm.29672
10.1007/s10334‐019‐00762‐2
10.1186/1532‐429X‐12‐69
10.1002/mrm.20791
10.1002/mrm.10171
10.1002/jmri.23620
10.1002/mrm.25693
10.1002/jmri.25428
10.1148/radiol.2016152037
10.1002/nbm.4803
10.1109/CVPR.2016.90
ContentType Journal Article
Copyright 2024 John Wiley & Sons Ltd.
2024 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2024 John Wiley & Sons Ltd.
– notice: 2024 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
FR3
K9.
P64
7X8
DOI 10.1002/nbm.5266
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList
CrossRef
MEDLINE
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Chemistry
Physics
EISSN 1099-1492
EndPage n/a
ExternalDocumentID 39358992
10_1002_nbm_5266
NBM5266
Genre article
Journal Article
GrantInformation_xml – fundername: National Institutes of Health
  funderid: CA245920; EB031894; HL4038940; AG070987
– fundername: Arizona Biomedical Research Centre
  funderid: CTR056039
– fundername: Technology and Research Initiative Fund (TRIF) Improving Health Initiative
– fundername: Arizona Biomedical Research Centre
  grantid: CTR056039
– fundername: NCI NIH HHS
  grantid: R01 CA245920
– fundername: NIH HHS
  grantid: CA245920
– fundername: NIH HHS
  grantid: AG070987
– fundername: NIA NIH HHS
  grantid: R01 AG070987
– fundername: NHLBI NIH HHS
  grantid: R01 HL159200
– fundername: NIH HHS
  grantid: HL4038940
– fundername: NIH HHS
  grantid: EB031894
– fundername: NIBIB NIH HHS
  grantid: U01 EB031894
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52V
52W
52X
53G
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
DUUFO
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KBYEO
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P2Z
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
SAMSI
SUPJJ
SV3
UB1
V2E
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXSBR
XG1
XPP
XV2
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
FR3
K9.
P64
7X8
ID FETCH-LOGICAL-c3106-8c5230b7f7b0f19c7f71bbc4e7015108fc837b4d74d12b89b6434d070a06885b3
IEDL.DBID DR2
ISSN 0952-3480
1099-1492
IngestDate Fri Jul 11 12:21:33 EDT 2025
Fri Jul 25 09:59:27 EDT 2025
Thu Apr 03 06:54:58 EDT 2025
Tue Jul 01 02:45:50 EDT 2025
Wed Jan 22 17:12:47 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords deep learning
Look‐Locker
abdominal imaging
radial sampling
single‐shot inversion recovery
T1 mapping
Language English
License 2024 John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3106-8c5230b7f7b0f19c7f71bbc4e7015108fc837b4d74d12b89b6434d070a06885b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 39358992
PQID 3127785987
PQPubID 2029982
PageCount 15
ParticipantIDs proquest_miscellaneous_3112528316
proquest_journals_3127785987
pubmed_primary_39358992
crossref_primary_10_1002_nbm_5266
wiley_primary_10_1002_nbm_5266_NBM5266
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2024
2024-12-00
2024-Dec
20241201
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: December 2024
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle NMR in biomedicine
PublicationTitleAlternate NMR Biomed
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2010; 12
2023; 31
2021; 8
2021; 86
2023; 5
2006; 55
2019; 32
2015; 74
2017; 45
2016; 76
2016; 75
2011; 33
2024; 32
2018; 67
2012; 36
2013; 8
2024; 37
2014; 22
2004; 52
2002; 47
2010; 64
2015; 28
2017; 36
2013; 31
2017; 78
2016; 64
2019; 49
2022; 35
2022; 30
2016
2015
2013; 495
2016; 279
2023; 90
2021; 85
e_1_2_9_30_1
Ahanonu E (e_1_2_9_38_1) 2024
Ahanonu E (e_1_2_9_37_1) 2023
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_10_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_12_1
e_1_2_9_33_1
Goerke U (e_1_2_9_27_1) 2022
Kingma DP (e_1_2_9_35_1)
e_1_2_9_15_1
Knoll F (e_1_2_9_31_1) 2014
e_1_2_9_14_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_16_1
e_1_2_9_19_1
e_1_2_9_18_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_21_1
e_1_2_9_24_1
e_1_2_9_23_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
e_1_2_9_9_1
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_29_1
References_xml – volume: 12
  issue: 1
  year: 2010
  article-title: Shortened modified Look‐Locker inversion recovery (ShMOLLI) for clinical myocardial T1‐mapping at 1.5 and 3 T within a 9 heartbeat breathhold
  publication-title: J Cardiovasc Magn Reson
– volume: 90
  start-page: 569
  issue: 2
  year: 2023
  end-page: 582
  article-title: Rapid 3D T mapping using deep learning‐assisted Look‐Locker inversion recovery MRI
  publication-title: Magn Reson Med
– volume: 30
  start-page: 107
  year: 2022
– volume: 32
  start-page: 559
  issue: 5
  year: 2019
  end-page: 566
  article-title: Evaluation of variable flip angle, MOLLI, SASHA, and IR‐SNAPSHOT pulse sequences for T1 relaxometry and extracellular volume imaging of the pancreas and liver
  publication-title: Magn Res Mater Phys Biol Med
– volume: 32
  start-page: 146
  year: 2024
– start-page: 770
  year: 2016
  end-page: 778
– volume: 22
  start-page: 4297
  year: 2014
– volume: 52
  start-page: 141
  issue: 1
  year: 2004
  end-page: 146
  article-title: Modified Look‐Locker inversion recovery (MOLLI) for high‐resolution T mapping of the heart
  publication-title: Magn Reson Med
– volume: 31
  start-page: 664
  year: 2023
– volume: 47
  start-page: 1202
  issue: 6
  year: 2002
  end-page: 1210
  article-title: Generalized autocalibrating partially parallel acquisitions (GRAPPA)
  publication-title: Magn Reson Med
– volume: 45
  start-page: 1171
  issue: 4
  year: 2017
  end-page: 1176
  article-title: T mapping for diagnosis of mild chronic pancreatitis
  publication-title: J Magn Reson Imaging
– volume: 78
  start-page: 1781
  issue: 5
  year: 2017
  end-page: 1789
  article-title: Slice profile and B corrections in 2D magnetic resonance fingerprinting
  publication-title: Magn Reson Med
– volume: 8
  issue: 12
  year: 2013
  article-title: Assessment of clinical signs of liver cirrhosis using T1 mapping on Gd‐EOB‐DTPA‐enhanced 3T MRI
  publication-title: PLoS ONE
– volume: 67
  start-page: 593
  issue: 3
  year: 2018
  end-page: 594
  article-title: Quantitative liver MRI including extracellular volume fraction for non‐invasive quantification of liver fibrosis: a prospective proof‐of‐concept study
  publication-title: Gut
– volume: 28
  start-page: 706
  issue: 6
  year: 2015
  end-page: 714
  article-title: A study of T₁ relaxation time as a measure of liver fibrosis and the influence of confounding histological factors
  publication-title: NMR Biomed
– volume: 75
  start-page: 1457
  issue: 4
  year: 2016
  end-page: 1465
  article-title: Rapid volumetric T1 mapping of the abdomen using three‐dimensional through‐time spiral GRAPPA
  publication-title: Magn Reson Med
– volume: 33
  start-page: 1241
  issue: 5
  year: 2011
  end-page: 1247
  article-title: Measurement and comparison of T1 relaxation times in native and transplanted kidney cortex and medulla
  publication-title: J Magn Reson Imaging
– volume: 85
  start-page: 1258
  issue: 3
  year: 2021
  end-page: 1271
  article-title: Model‐based reconstruction for simultaneous multi‐slice T1 mapping using single‐shot inversion‐recovery radial FLASH
  publication-title: Magn Reson Med
– volume: 31
  start-page: 23
  issue: 1
  year: 2013
  end-page: 27
  article-title: Distinguishing hepatic hemangiomas from metastatic tumors using T1 mapping on gadoxetic‐acid‐enhanced MRI
  publication-title: Magn Reson Imaging
– volume: 64
  start-page: 308
  issue: 2
  year: 2016
  end-page: 315
  article-title: Multiparametric magnetic resonance imaging predicts clinical outcomes in patients with chronic liver disease
  publication-title: J Hepatol
– volume: 35
  issue: 12
  year: 2022
  article-title: Rapid fat‐water separated T mapping using a single‐shot radial inversion‐recovery spoiled gradient recalled pulse sequence
  publication-title: NMR Biomed
– volume: 36
  start-page: 405
  issue: 2
  year: 2012
  end-page: 410
  article-title: Quantitative evaluation of liver cirrhosis using T1 relaxation time with 3 tesla MRI before and after oxygen inhalation
  publication-title: J Magn Reson Imaging
– volume: 495
  start-page: 187
  issue: 7440
  year: 2013
  end-page: 192
  article-title: Magnetic resonance fingerprinting
  publication-title: Nature
– volume: 36
  start-page: 1209
  issue: 6
  year: 2017
  end-page: 1220
  article-title: Improved computational efficiency of locally low rank MRI reconstruction using iterative random patch adjustments
  publication-title: IEEE Tran Med Imaging
– volume: 64
  start-page: 1057
  issue: 4
  year: 2010
  end-page: 1067
  article-title: A robust methodology for in vivo T mapping
  publication-title: Magn Reson Med
– volume: 49
  start-page: 239
  issue: 1
  year: 2019
  end-page: 252
  article-title: Rapid high‐resolution T mapping using a highly accelerated radial steady‐state free‐precession technique
  publication-title: J Magn Reson Imaging
– volume: 5
  issue: 6
  year: 2023
  article-title: MR fingerprinting for contrast agent‐free and quantitative characterization of focal liver lesions
  publication-title: Radiol Imaging Cancer
– volume: 55
  start-page: 566
  issue: 3
  year: 2006
  end-page: 574
  article-title: Rapid high‐resolution T mapping by variable flip angles: accurate and precise measurements in the presence of radiofrequency field inhomogeneity
  publication-title: Magn Reson Med
– volume: 279
  start-page: 278
  issue: 1
  year: 2016
  end-page: 286
  article-title: MR fingerprinting for rapid quantitative abdominal imaging
  publication-title: Radiology
– volume: 76
  start-page: 1127
  issue: 4
  year: 2016
  end-page: 1135
  article-title: MR fingerprinting with simultaneous B1 estimation
  publication-title: Magn Reson Med
– volume: 86
  start-page: 97
  issue: 1
  year: 2021
  end-page: 114
  article-title: Magnetization‐prepared GRASP MRI for rapid 3D T1 mapping and fat/water‐separated T1 mapping
  publication-title: Magn Reson Med
– volume: 8
  year: 2021
  article-title: Quantitative evaluation of focal liver lesions with T1 mapping using a phase‐sensitive inversion recovery sequence on gadoxetic acid‐enhanced MRI
  publication-title: Eur J Radiol
– year: 2015
– volume: 74
  start-page: 489
  issue: 2
  year: 2015
  end-page: 498
  article-title: Accelerated MR parameter mapping with low‐rank and sparsity constraints
  publication-title: Magn Reson Med
– volume: 37
  issue: 5
  year: 2024
  article-title: Accelerated liver water T mapping using single‐shot continuous inversion‐recovery spiral imaging
  publication-title: NMR Biomed
– ident: e_1_2_9_2_1
  doi: 10.1016/j.mri.2012.06.026
– start-page: 664
  volume-title: Proc Intl Soc Mag Reson Med
  year: 2023
  ident: e_1_2_9_37_1
– ident: e_1_2_9_22_1
  doi: 10.1002/mrm.28679
– ident: e_1_2_9_23_1
  doi: 10.1002/mrm.28497
– ident: e_1_2_9_32_1
  doi: 10.1002/mrm.22497
– ident: e_1_2_9_4_1
  doi: 10.1016/j.jhep.2015.10.009
– ident: e_1_2_9_11_1
  doi: 10.1002/mrm.20110
– ident: e_1_2_9_19_1
  doi: 10.1002/mrm.26580
– ident: e_1_2_9_8_1
  doi: 10.1371/journal.pone.0085658
– ident: e_1_2_9_24_1
  doi: 10.1002/jmri.26170
– ident: e_1_2_9_15_1
  doi: 10.1038/nature11971
– ident: e_1_2_9_17_1
  doi: 10.1148/rycan.230036
– start-page: 146
  volume-title: Proc Intl Soc Mag Reson Med
  year: 2024
  ident: e_1_2_9_38_1
– ident: e_1_2_9_6_1
  doi: 10.1002/nbm.3299
– ident: e_1_2_9_3_1
  doi: 10.1016/j.ejro.2020.100312
– start-page: 107
  volume-title: Proc Intl Soc Mag Reson Med
  year: 2022
  ident: e_1_2_9_27_1
– ident: e_1_2_9_28_1
  doi: 10.1002/mrm.25421
– ident: e_1_2_9_18_1
  doi: 10.1002/mrm.26009
– ident: e_1_2_9_26_1
  doi: 10.1002/nbm.5097
– ident: e_1_2_9_5_1
  doi: 10.1136/gutjnl‐2017‐314561
– start-page: 4297
  volume-title: Proc Intl Soc Mag Reson Med
  year: 2014
  ident: e_1_2_9_31_1
– ident: e_1_2_9_10_1
  doi: 10.1002/jmri.22543
– ident: e_1_2_9_29_1
  doi: 10.1109/TMI.2017.2659742
– ident: e_1_2_9_36_1
  doi: 10.1002/mrm.29672
– volume-title: International Conference on Learning Representations (ICLR)
  ident: e_1_2_9_35_1
– ident: e_1_2_9_14_1
  doi: 10.1007/s10334‐019‐00762‐2
– ident: e_1_2_9_12_1
  doi: 10.1186/1532‐429X‐12‐69
– ident: e_1_2_9_13_1
  doi: 10.1002/mrm.20791
– ident: e_1_2_9_21_1
  doi: 10.1002/mrm.10171
– ident: e_1_2_9_7_1
  doi: 10.1002/jmri.23620
– ident: e_1_2_9_33_1
– ident: e_1_2_9_30_1
– ident: e_1_2_9_20_1
  doi: 10.1002/mrm.25693
– ident: e_1_2_9_9_1
  doi: 10.1002/jmri.25428
– ident: e_1_2_9_16_1
  doi: 10.1148/radiol.2016152037
– ident: e_1_2_9_25_1
  doi: 10.1002/nbm.4803
– ident: e_1_2_9_34_1
  doi: 10.1109/CVPR.2016.90
SSID ssj0008432
Score 2.4279752
Snippet Efficient abdominal coverage with T1‐mapping methods currently available in the clinic is limited by the breath hold period (BHP) and the time needed for T1...
Efficient abdominal coverage with T1-mapping methods currently available in the clinic is limited by the breath hold period (BHP) and the time needed for T1...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage e5266
SubjectTerms Abdomen
Abdomen - anatomy & histology
Abdomen - diagnostic imaging
abdominal imaging
Adult
Artificial neural networks
Coefficient of variation
Data acquisition
Deep Learning
Estimates
Female
Humans
Image Processing, Computer-Assisted - methods
In vivo methods and tests
Look‐Locker
Machine learning
Magnetic Resonance Imaging - methods
Male
Mapping
Neural networks
Organs
radial sampling
Recovery
Reproducibility
Reproducibility of Results
Sampling
Sampling methods
single‐shot inversion recovery
T1 mapping
Title Accelerated 2D radial Look‐Locker T1 mapping using a deep learning‐based rapid inversion recovery sampling technique
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnbm.5266
https://www.ncbi.nlm.nih.gov/pubmed/39358992
https://www.proquest.com/docview/3127785987
https://www.proquest.com/docview/3112528316
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6hSjwuPJbXQkFGQtyyjR1nbR9LS1Whbg-olSpxiDyOs6pKs6vublU48RP4jfwSZvJYKAgJcYql2E5ie2Y-jyffALxGRyg55J7kO88SbVEn3keXVNZj7vXYy5L9HZPD8f6xfn-Sn3RRlfwvTMsPsXa4sWQ0-poF3ONi6xfSUDwf5WReSP3KbMy0-bsffjJHWd3kJiMAoZJM27TnnU3VVt_wuiX6A15eR6uNudm7Bx_7F22jTM5GqyWOwpffOBz_70vuw90OhYrtdtk8gBuxHsDtnT752wBuTboz9wHcbIJEw-IhXG2HQFaKySVKoXbFBfMafBIHhNO_f_12MOMIDXEkxbln0oep4Jj6qfCijHEuuvQUU6rJlrOk1vPTUpzWl63HTvDWnMqfxcJzlDu1XPPLPoLjvXdHO_tJl7khCQQXx4kN7GxGUxlMK-kCFSRi0NEQ-pCprQLti1GXRpdSoXVIuEiXpH0858DJMXsMG_Wsjk9BmGBjZQl1OERtg3dpGtGoKhoVSbfgEF71s1jMW4KOoqViVgUNbMEDO4TNfnqLTkQXRSaVMTZ31lAX69s0zHxi4us4W3Edwn8EwCR18aRdFuuHNNRxzqkhvGkm969PLw7fTvj67F8rPoc7iqBTGzSzCRvLi1V8QdBniS-bRf4DDQ0BDA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxEB6VIigXHqGUQAEjIW6b7jre2CtOpaUKkOSAUqkHpJXH640q2k3UJAg49Sf0N_aXdGYfgYKQEKe1tH6t7fF8Hs9-A_AKE0LJLrYk33E3UAZVYK1PgtxYjK3q2Shje8dw1Osfqg9H8dEavGn-han4IVYGN5aMcr9mAWeD9M4vrKF42olJv9yAm4pwBp-89j_95I4yqoxORhBCBl1lwoZ5NpQ7TcnruugPgHkdr5YK5-AefG66WvmZfOksF9hxP35jcfzPb7kPd2sgKnarlfMA1nzRgo29Jv5bC24P62v3Ftwq_UTd_CF823WOFBXzS2RC7oszpjY4EQOC6pfnF4MpO2mIcSROLfM-TAS71U-EFZn3M1FHqJhQTlaeGZWeHWfiuPhaGe0En84p_V3MLTu6U8kVxewmHB68G-_1gzp4Q-AIMfYC49jejDrXGOZR4igRITrlNQGQKDS5o6MxqkyrLJJoEiRopDLagCyHwYmx-wjWi2nhH4PQzvjcEPBIEJVxNglDj1rmXktP2wu24WUzjems4uhIKzZmmdLApjywbdhu5jetpXSediOptYkTo6mK1WsaZr40sYWfLjkPQUDCYBFVsVWti1UjJXtcksg2vC5n96-tp6O3Q34--deML2CjPx4O0sH70cencEcSkqp8aLZhfXG29M8ICS3webnirwAYZAUr
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1bb9MwFMePYIjBC5cCozDASIi3dInr1Pbj2KgGtBVCmzSJh8jHcaqJLa3WFgFPfAQ-I5-Ec3IpDISEeIql2E7i2_nFOfkfgGdoiZJ96mh-p_1IGVSRc8FGhXGYOjVwSc77HePJ4OBIvT5OjxuvSv4XptaHWG-48cyo1mue4PO82PlFNBTPeimZl8twRQ0IJBiI3v2UjjKqCk5GBCGjvjJxKzwby5225EVT9AdfXsTVyt4Mb8L79k5rN5MPvdUSe_7LbyKO__cot-BGg6Fitx43t-FSKDtwba-N_taBzXHz0b0DVysvUb-4A592vSczxeoSuZD74pyFDU7FiED9-9dvoxm7aIjDRJw5Vn2YCnaqnwon8hDmoolPMaWcbDpzKj0_ycVJ-bHeshP8bk7pz2Lh2M2dSq4FZu_C0fDl4d5B1IRuiDzx4iAynnebURca4yKxnhIJoldBE34ksSk8vRijyrXKE4nGIoGRymn5cRwEJ8X-PdgoZ2W4D0J7EwpD2GERlfHOxnFALYugZaDFBbvwtO3FbF4rdGS1FrPMqGEzbtgubLfdmzVzdJH1E6m1Sa3RVMX6NDUzfzJxZZitOA8BIBFYQlVs1cNifZFKO85a2YXnVef-9erZ5MWYjw_-NeMT2Hy7P8xGryZvHsJ1SRhVO9Bsw8byfBUeEQYt8XE13n8ADr0D2g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accelerated+2D+radial+Look%E2%80%90Locker+T1+mapping+using+a+deep+learning%E2%80%90based+rapid+inversion+recovery+sampling+technique&rft.jtitle=NMR+in+biomedicine&rft.au=Ahanonu%2C+Eze&rft.au=Goerke%2C+Ute&rft.au=Johnson%2C+Kevin&rft.au=Toner%2C+Brian&rft.date=2024-12-01&rft.issn=0952-3480&rft.eissn=1099-1492&rft.volume=37&rft.issue=12&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fnbm.5266&rft.externalDBID=10.1002%252Fnbm.5266&rft.externalDocID=NBM5266
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-3480&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-3480&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-3480&client=summon