Visualizing hypothesis tests in survival analysis under anticipated delayed effects

What can be considered an appropriate statistical method for the primary analysis of a randomized clinical trial (RCT) with a time‐to‐event endpoint when we anticipate non‐proportional hazards owing to a delayed effect? This question has been the subject of much recent debate. The standard approach...

Full description

Saved in:
Bibliographic Details
Published inPharmaceutical statistics : the journal of the pharmaceutical industry Vol. 23; no. 6; pp. 870 - 883
Main Authors Jiménez, José L., Barrott, Isobel, Gasperoni, Francesca, Magirr, Dominic
Format Journal Article
LanguageEnglish
Published Chichester, UK John Wiley & Sons, Inc 01.11.2024
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN1539-1604
1539-1612
1539-1612
DOI10.1002/pst.2393

Cover

Abstract What can be considered an appropriate statistical method for the primary analysis of a randomized clinical trial (RCT) with a time‐to‐event endpoint when we anticipate non‐proportional hazards owing to a delayed effect? This question has been the subject of much recent debate. The standard approach is a log‐rank test and/or a Cox proportional hazards model. Alternative methods have been explored in the statistical literature, such as weighted log‐rank tests and tests based on the Restricted Mean Survival Time (RMST). While weighted log‐rank tests can achieve high power compared to the standard log‐rank test, some choices of weights may lead to type‐I error inflation under particular conditions. In addition, they are not linked to a mathematically unambiguous summary measure. Test statistics based on the RMST, on the other hand, allow one to investigate the average difference between two survival curves up to a pre‐specified time point τ—a mathematically unambiguous summary measure. However, by emphasizing differences prior to τ, such test statistics may not fully capture the benefit of a new treatment in terms of long‐term survival. In this article, we introduce a graphical approach for direct comparison of weighted log‐rank tests and tests based on the RMST. This new perspective allows a more informed choice of the analysis method, going beyond power and type I error comparison.
AbstractList What can be considered an appropriate statistical method for the primary analysis of a randomized clinical trial (RCT) with a time‐to‐event endpoint when we anticipate non‐proportional hazards owing to a delayed effect? This question has been the subject of much recent debate. The standard approach is a log‐rank test and/or a Cox proportional hazards model. Alternative methods have been explored in the statistical literature, such as weighted log‐rank tests and tests based on the Restricted Mean Survival Time (RMST). While weighted log‐rank tests can achieve high power compared to the standard log‐rank test, some choices of weights may lead to type‐I error inflation under particular conditions. In addition, they are not linked to a mathematically unambiguous summary measure. Test statistics based on the RMST, on the other hand, allow one to investigate the average difference between two survival curves up to a pre‐specified time point τ—a mathematically unambiguous summary measure. However, by emphasizing differences prior to τ, such test statistics may not fully capture the benefit of a new treatment in terms of long‐term survival. In this article, we introduce a graphical approach for direct comparison of weighted log‐rank tests and tests based on the RMST. This new perspective allows a more informed choice of the analysis method, going beyond power and type I error comparison.
What can be considered an appropriate statistical method for the primary analysis of a randomized clinical trial (RCT) with a time‐to‐event endpoint when we anticipate non‐proportional hazards owing to a delayed effect? This question has been the subject of much recent debate. The standard approach is a log‐rank test and/or a Cox proportional hazards model. Alternative methods have been explored in the statistical literature, such as weighted log‐rank tests and tests based on the Restricted Mean Survival Time (RMST). While weighted log‐rank tests can achieve high power compared to the standard log‐rank test, some choices of weights may lead to type‐I error inflation under particular conditions. In addition, they are not linked to a mathematically unambiguous summary measure. Test statistics based on the RMST, on the other hand, allow one to investigate the average difference between two survival curves up to a pre‐specified time point —a mathematically unambiguous summary measure. However, by emphasizing differences prior to , such test statistics may not fully capture the benefit of a new treatment in terms of long‐term survival. In this article, we introduce a graphical approach for direct comparison of weighted log‐rank tests and tests based on the RMST. This new perspective allows a more informed choice of the analysis method, going beyond power and type I error comparison.
What can be considered an appropriate statistical method for the primary analysis of a randomized clinical trial (RCT) with a time-to-event endpoint when we anticipate non-proportional hazards owing to a delayed effect? This question has been the subject of much recent debate. The standard approach is a log-rank test and/or a Cox proportional hazards model. Alternative methods have been explored in the statistical literature, such as weighted log-rank tests and tests based on the Restricted Mean Survival Time (RMST). While weighted log-rank tests can achieve high power compared to the standard log-rank test, some choices of weights may lead to type-I error inflation under particular conditions. In addition, they are not linked to a mathematically unambiguous summary measure. Test statistics based on the RMST, on the other hand, allow one to investigate the average difference between two survival curves up to a pre-specified time point τ -a mathematically unambiguous summary measure. However, by emphasizing differences prior to τ , such test statistics may not fully capture the benefit of a new treatment in terms of long-term survival. In this article, we introduce a graphical approach for direct comparison of weighted log-rank tests and tests based on the RMST. This new perspective allows a more informed choice of the analysis method, going beyond power and type I error comparison.What can be considered an appropriate statistical method for the primary analysis of a randomized clinical trial (RCT) with a time-to-event endpoint when we anticipate non-proportional hazards owing to a delayed effect? This question has been the subject of much recent debate. The standard approach is a log-rank test and/or a Cox proportional hazards model. Alternative methods have been explored in the statistical literature, such as weighted log-rank tests and tests based on the Restricted Mean Survival Time (RMST). While weighted log-rank tests can achieve high power compared to the standard log-rank test, some choices of weights may lead to type-I error inflation under particular conditions. In addition, they are not linked to a mathematically unambiguous summary measure. Test statistics based on the RMST, on the other hand, allow one to investigate the average difference between two survival curves up to a pre-specified time point τ -a mathematically unambiguous summary measure. However, by emphasizing differences prior to τ , such test statistics may not fully capture the benefit of a new treatment in terms of long-term survival. In this article, we introduce a graphical approach for direct comparison of weighted log-rank tests and tests based on the RMST. This new perspective allows a more informed choice of the analysis method, going beyond power and type I error comparison.
What can be considered an appropriate statistical method for the primary analysis of a randomized clinical trial (RCT) with a time-to-event endpoint when we anticipate non-proportional hazards owing to a delayed effect? This question has been the subject of much recent debate. The standard approach is a log-rank test and/or a Cox proportional hazards model. Alternative methods have been explored in the statistical literature, such as weighted log-rank tests and tests based on the Restricted Mean Survival Time (RMST). While weighted log-rank tests can achieve high power compared to the standard log-rank test, some choices of weights may lead to type-I error inflation under particular conditions. In addition, they are not linked to a mathematically unambiguous summary measure. Test statistics based on the RMST, on the other hand, allow one to investigate the average difference between two survival curves up to a pre-specified time point -a mathematically unambiguous summary measure. However, by emphasizing differences prior to , such test statistics may not fully capture the benefit of a new treatment in terms of long-term survival. In this article, we introduce a graphical approach for direct comparison of weighted log-rank tests and tests based on the RMST. This new perspective allows a more informed choice of the analysis method, going beyond power and type I error comparison.
Author Gasperoni, Francesca
Magirr, Dominic
Jiménez, José L.
Barrott, Isobel
Author_xml – sequence: 1
  givenname: José L.
  orcidid: 0000-0002-8809-2717
  surname: Jiménez
  fullname: Jiménez, José L.
  organization: Novartis Pharma A.G
– sequence: 2
  givenname: Isobel
  orcidid: 0009-0009-6196-9804
  surname: Barrott
  fullname: Barrott, Isobel
  organization: Janssen Research & Development L.L.C
– sequence: 3
  givenname: Francesca
  orcidid: 0000-0002-1713-9477
  surname: Gasperoni
  fullname: Gasperoni, Francesca
  organization: Novartis Pharma A.G
– sequence: 4
  givenname: Dominic
  orcidid: 0000-0002-3959-7057
  surname: Magirr
  fullname: Magirr, Dominic
  email: dominic.magirr@novartis.com
  organization: Novartis Pharma A.G
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38708672$$D View this record in MEDLINE/PubMed
BookMark eNp10V1LwzAUBuAgirop-Auk4I03nfls2ksRv2CgsOltSZNTl9G1tWkn9debujlB8Ook5CHnJO8I7ZdVCQidETwhGNOr2rUTyhK2h46JYElIIkL3d2vMj9DIuSXGRMaJOERHLJY4jiQ9RrNX6zpV2E9bvgWLvq7aBTjrghZc6wJbBq5r1natikCVquiHo6400Phta7WtVQsmMFCo3lfIc9CtO0EHuSocnG7rGL3c3c5vHsLp0_3jzfU01IxgFmoqjCJCG5kxk4GhPMqVkoSxjMeADbBMJFJRInAkdUIhF1wTKrLYgOQ8YmN0ubm3bqr3zg-crqzTUBSqhKpzKcOCcMqpGOjFH7qsusa_yCvfUESSS-bV-VZ12QpMWjd2pZo-_fmu3466qZxrIN8RgtMhidQnkQ5JeBpu6IctoP_Xpc-z-bf_AtWMiYc
Cites_doi 10.1002/sim.9651
10.1177/17407745211072848
10.1111/sjos.12212
10.1200/JCO.19.03097
10.1080/02664763.2020.1815673
10.1177/1740774520928614
10.1002/sim.9138
10.1200/JCO.19.03111
10.1093/biostatistics/kxt050
10.1002/sim.2864
10.1007/s12561-020-09276-1
10.1002/sim.9444
10.1081/STA-100002138
10.1093/biomet/90.1.15
10.1002/sim.8586
10.32614/CRAN.package.nphRCT
10.1002/pst.1923
10.18637/jss.v070.i08
10.1111/biom.13237
10.1002/sim.9662
10.1001/jamaoncol.2022.2666
10.1002/pst.2267
10.1002/sim.8186
10.1016/j.conctc.2017.09.004
10.1007/s10985-008-9107-z
10.1214/16-AOS1516
10.1016/S0140-6736(16)00587-0
10.1038/s41591-018-0134-3
10.1002/sim.4274
10.1200/JCO.19.01681
10.1200/JCO.20.00015
10.1080/19466315.2019.1697738
10.1002/pst.2091
10.1002/sim.8565
10.1186/s13063-020-4153-2
ContentType Journal Article
Copyright 2024 John Wiley & Sons Ltd.
2024 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2024 John Wiley & Sons Ltd.
– notice: 2024 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
K9.
7X8
DOI 10.1002/pst.2393
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitleList
CrossRef
MEDLINE - Academic
ProQuest Health & Medical Complete (Alumni)
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
EISSN 1539-1612
EndPage 883
ExternalDocumentID 38708672
10_1002_pst_2393
PST2393
Genre article
Journal Article
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
1L6
1OC
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HF~
HGLYW
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
SUPJJ
SV3
UB1
W8V
W99
WBKPD
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XBAML
XG1
XV2
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
K9.
7X8
ID FETCH-LOGICAL-c3103-c25da15cd7b3dbed246faa7133b48e0de3b597a215067c92ef54c125b8de74463
IEDL.DBID DR2
ISSN 1539-1604
1539-1612
IngestDate Fri Jul 11 04:03:10 EDT 2025
Fri Jul 25 22:39:47 EDT 2025
Wed Feb 19 02:16:02 EST 2025
Tue Jul 01 02:54:03 EDT 2025
Wed Jan 22 17:14:30 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords score
visualization
pseudo‐value
delayed effects
survival test
Language English
License 2024 John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3103-c25da15cd7b3dbed246faa7133b48e0de3b597a215067c92ef54c125b8de74463
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0009-0009-6196-9804
0000-0002-8809-2717
0000-0002-3959-7057
0000-0002-1713-9477
PMID 38708672
PQID 3133567473
PQPubID 1036354
PageCount 14
ParticipantIDs proquest_miscellaneous_3051424256
proquest_journals_3133567473
pubmed_primary_38708672
crossref_primary_10_1002_pst_2393
wiley_primary_10_1002_pst_2393_PST2393
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November/December 2024
2024-11-00
2024 Nov-Dec
20241101
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: November/December 2024
PublicationDecade 2020
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
– name: England
– name: Macclesfield
PublicationTitle Pharmaceutical statistics : the journal of the pharmaceutical industry
PublicationTitleAlternate Pharm Stat
PublicationYear 2024
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2017; 8
2021; 20
2011
2009; 80
2019; 37
2017; 45
2020; 17
2020; 39
1998
2020; 38
2019; 38
2016; 387
2011; 30
2019; 18
2022; 41
2020; 12
2016; 70
2020; 76
2022; 49
2018; 24
2023; 42
2021; 15
2003; 90
2023; 22
2023
2022; 8
2016; 43
2014; 15
2019
2020; 21
2021; 40
2001; 30
2009; 15
2007; 26
2022; 19
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
Roychoudhury S (e_1_2_8_11_1) 2021; 15
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_23_1
e_1_2_8_44_1
Hernan MA (e_1_2_8_14_1) 2023
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_19_1
Fleming TR (e_1_2_8_21_1) 2011
e_1_2_8_13_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_16_1
e_1_2_8_37_1
The International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use (e_1_2_8_41_1) 2019
Fedorov V (e_1_2_8_36_1) 2009; 80
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
Snapinn S (e_1_2_8_40_1) 2021; 15
The International Council for Harmonisation of technical requirements for Pharmaceuticals for Human use (e_1_2_8_42_1) 1998
e_1_2_8_30_1
References_xml – year: 2011
– volume: 45
  start-page: 1988
  issue: 5
  year: 2017
  end-page: 2015
  article-title: Asymptotic theory of generalized estimating equations based on jack‐knife pseudo‐observations
  publication-title: Ann Stat
– volume: 41
  start-page: 3720
  issue: 19
  year: 2022
  end-page: 3736
  article-title: Versatile tests for window mean survival time
  publication-title: Stat Med
– volume: 8
  start-page: 1294
  year: 2022
  end-page: 1300
  article-title: Log‐rank test vs maxcombo and difference in restricted mean survival time tests for comparing survival under nonproportional hazards in immuno‐oncology trials: a systematic review and meta‐analysis
  publication-title: JAMA Oncol
– volume: 38
  start-page: 2003
  issue: 17
  year: 2020
  end-page: 2004
  article-title: Reply to H. Uno et al and B. Huang et al
  publication-title: J Clin Oncol
– volume: 30
  start-page: 2409
  issue: 19
  year: 2011
  end-page: 2421
  article-title: The use of restricted mean survival time to estimate the treatment effect in randomized clinical trials when the proportional hazards assumption is in doubt
  publication-title: Stat Med
– volume: 90
  start-page: 15
  issue: 1
  year: 2003
  end-page: 27
  article-title: Generalised linear models for correlated pseudo‐observations, with applications to multi‐state models
  publication-title: Biometrika
– volume: 18
  start-page: 287
  issue: 3
  year: 2019
  end-page: 303
  article-title: Properties of the weighted log‐rank test in the design of confirmatory studies with delayed effects
  publication-title: Pharm Stat
– volume: 70
  year: 2016
  article-title: Flexsurv: a platform for parametric survival modeling in r
  publication-title: J Stat Softw
– volume: 15
  start-page: 241
  issue: 2
  year: 2009
  end-page: 255
  article-title: On pseudo‐values for regression analysis in competing risks models
  publication-title: Lifetime Data Anal
– volume: 15
  start-page: 1
  year: 2021
  end-page: 3
  article-title: Comment on “Robust design and analysis of clinical trials with nonproportional hazards: a straw man guidance from a cross‐pharma working group”: the test statistic should estimate some reasonable measure of treatment benefit
  publication-title: Stat Biopharm Res
– volume: 37
  start-page: 3455
  issue: 35
  year: 2019
  article-title: Methods for accommodating nonproportional hazards in clinical trials: ready for the primary analysis?
  publication-title: J Clin Oncol
– volume: 40
  start-page: 5521
  issue: 25
  year: 2021
  end-page: 5533
  article-title: Window mean survival time
  publication-title: Stat Med
– volume: 38
  start-page: 2000
  issue: 17
  year: 2020
  end-page: 2001
  article-title: Is the log‐rank and hazard ratio test/estimation the best approach for primary analysis for all trials?
  publication-title: J Clin Oncol Off J Am Soc Clin Oncol
– volume: 17
  start-page: 507
  issue: 5
  year: 2020
  end-page: 521
  article-title: Comparison of survival distributions in clinical trials: a practical guidance
  publication-title: Clin Trials
– volume: 30
  start-page: 591
  issue: 4
  year: 2001
  end-page: 608
  article-title: Equivalence between score and weighted tests for survival curves
  publication-title: Commun Stat Theory Methods
– volume: 43
  start-page: 845
  issue: 3
  year: 2016
  end-page: 862
  article-title: A note on the large sample properties of estimators based on generalized linear models for correlated pseudo‐observations
  publication-title: Scand J Stat
– volume: 15
  start-page: 1
  year: 2021
  end-page: 15
  article-title: Robust design and analysis of clinical trials with nonproportional hazards: a straw man guidance from a cross‐pharma working group
  publication-title: Stat Biopharm Res
– volume: 21
  start-page: 1
  issue: 1
  year: 2020
  end-page: 17
  article-title: A simulation study comparing the power of nine tests of the treatment effect in randomized controlled trials with a time‐to‐event outcome
  publication-title: Trials
– volume: 387
  start-page: 1837
  issue: 10030
  year: 2016
  end-page: 1846
  article-title: Atezolizumab versus docetaxel for patients with previously treated non‐small‐cell lung cancer (poplar): a multicentre, open‐label, phase 2 randomised controlled trial
  publication-title: The Lancet
– volume: 24
  start-page: 1441
  issue: 9
  year: 2018
  end-page: 1448
  article-title: Blood‐based tumor mutational burden as a predictor of clinical benefit in non‐small‐cell lung cancer patients treated with atezolizumab
  publication-title: Nat Med
– volume: 19
  start-page: 201
  issue: 2
  year: 2022
  end-page: 210
  article-title: Design and analysis of group‐sequential clinical trials based on a modestly‐weighted log‐rank test in anticipation of a delayed separation of survival curves: a practical guidance
  publication-title: Clin Trials
– year: 1998
– volume: 80
  start-page: 50
  issue: 1
  year: 2009
  end-page: 61
  article-title: Consequences of dichotomization
  publication-title: Pharm Stat J Appl Stat Pharm Ind
– volume: 42
  start-page: 936
  year: 2023
  end-page: 952
  article-title: Ratio and difference of average hazard with survival weight: new measures to quantify survival benefit of new therapy
  publication-title: Stat Med
– volume: 15
  start-page: 222
  issue: 2
  year: 2014
  end-page: 233
  article-title: Predicting the restricted mean event time with the subject's baseline covariates in survival analysis
  publication-title: Biostatistics
– volume: 12
  start-page: 187
  issue: 2
  year: 2020
  end-page: 198
  article-title: Alternative analysis methods for time to event endpoints under nonproportional hazards: a comparative analysis
  publication-title: Stat Biopharm Res
– volume: 39
  start-page: 2655
  issue: 20
  year: 2020
  end-page: 2670
  article-title: On permutation tests for comparing restricted mean survival time with small sample from randomized trials
  publication-title: Stat Med
– year: 2023
– volume: 42
  start-page: 1139
  year: 2023
  end-page: 1155
  article-title: On assessing survival benefit of immunotherapy using long‐term restricted mean survival time
  publication-title: Stat Med
– volume: 26
  start-page: 4505
  issue: 24
  year: 2007
  end-page: 4519
  article-title: Analyzing survival curves at a fixed point in time
  publication-title: Stat Med
– volume: 38
  start-page: 2001
  issue: 17
  year: 2020
  end-page: 2002
  article-title: Estimating treatment effect as the primary analysis in a comparative study: moving beyond p value
  publication-title: J Clin Oncol Off J Am Soc Clin Oncol
– volume: 38
  start-page: 3782
  issue: 20
  year: 2019
  end-page: 3790
  article-title: Modestly weighted logrank tests
  publication-title: Stat Med
– volume: 12
  start-page: 225
  year: 2020
  end-page: 245
  article-title: On weighted log‐rank combination tests and companion cox model estimators
  publication-title: Stat Biosci
– volume: 8
  start-page: 147
  year: 2017
  end-page: 155
  article-title: Estimation of treatment effects in weighted log‐rank tests
  publication-title: Contem Clin Trials Commun
– volume: 76
  start-page: 1157
  issue: 4
  year: 2020
  end-page: 1166
  article-title: On the empirical choice of the time window for restricted mean survival time
  publication-title: Biometrics
– volume: 39
  start-page: 2949
  issue: 22
  year: 2020
  end-page: 2961
  article-title: Regression models using parametric pseudo‐observations
  publication-title: Stat Med
– year: 2019
– volume: 49
  start-page: 466
  issue: 2
  year: 2022
  end-page: 484
  article-title: Quantifying treatment differences in confirmatory trials under non‐proportional hazards
  publication-title: J Appl Stat
– volume: 22
  start-page: 181
  issue: 1
  year: 2023
  end-page: 193
  article-title: Treatment effect measures under nonproportional hazards
  publication-title: Pharm Stat
– volume: 20
  start-page: 512
  issue: 3
  year: 2021
  end-page: 527
  article-title: Non‐proportional hazards in immuno‐oncology: is an old perspective needed?
  publication-title: Pharm Stat
– ident: e_1_2_8_33_1
  doi: 10.1002/sim.9651
– volume: 80
  start-page: 50
  issue: 1
  year: 2009
  ident: e_1_2_8_36_1
  article-title: Consequences of dichotomization
  publication-title: Pharm Stat J Appl Stat Pharm Ind
– ident: e_1_2_8_22_1
  doi: 10.1177/17407745211072848
– ident: e_1_2_8_37_1
– ident: e_1_2_8_28_1
  doi: 10.1111/sjos.12212
– ident: e_1_2_8_5_1
  doi: 10.1200/JCO.19.03097
– ident: e_1_2_8_10_1
  doi: 10.1080/02664763.2020.1815673
– ident: e_1_2_8_8_1
  doi: 10.1177/1740774520928614
– ident: e_1_2_8_31_1
  doi: 10.1002/sim.9138
– ident: e_1_2_8_4_1
  doi: 10.1200/JCO.19.03111
– ident: e_1_2_8_25_1
  doi: 10.1093/biostatistics/kxt050
– ident: e_1_2_8_26_1
  doi: 10.1002/sim.2864
– ident: e_1_2_8_15_1
  doi: 10.1007/s12561-020-09276-1
– ident: e_1_2_8_39_1
  doi: 10.1002/sim.9444
– ident: e_1_2_8_23_1
  doi: 10.1081/STA-100002138
– ident: e_1_2_8_18_1
  doi: 10.1093/biomet/90.1.15
– ident: e_1_2_8_35_1
  doi: 10.1002/sim.8586
– volume: 15
  start-page: 1
  year: 2021
  ident: e_1_2_8_40_1
  article-title: Comment on “Robust design and analysis of clinical trials with nonproportional hazards: a straw man guidance from a cross‐pharma working group”: the test statistic should estimate some reasonable measure of treatment benefit
  publication-title: Stat Biopharm Res
– ident: e_1_2_8_45_1
  doi: 10.32614/CRAN.package.nphRCT
– ident: e_1_2_8_43_1
– ident: e_1_2_8_9_1
  doi: 10.1002/pst.1923
– ident: e_1_2_8_38_1
  doi: 10.18637/jss.v070.i08
– volume-title: Causal Inference. Chapman & Hall/CRC Monographs on Statistics & Applied Probab
  year: 2023
  ident: e_1_2_8_14_1
– volume-title: Addendum on Estimands and Sensitivity Analysis in Clinical Trials to the Guideline on Statistical Principles for Clinical Trials
  year: 2019
  ident: e_1_2_8_41_1
– ident: e_1_2_8_44_1
  doi: 10.1111/biom.13237
– volume-title: Counting Processes and Survival Analysis
  year: 2011
  ident: e_1_2_8_21_1
– ident: e_1_2_8_32_1
  doi: 10.1002/sim.9662
– volume-title: Statistical Principles for Clinical Trials (e9
  year: 1998
  ident: e_1_2_8_42_1
– ident: e_1_2_8_12_1
  doi: 10.1001/jamaoncol.2022.2666
– ident: e_1_2_8_34_1
  doi: 10.1002/pst.2267
– ident: e_1_2_8_17_1
  doi: 10.1002/sim.8186
– ident: e_1_2_8_16_1
  doi: 10.1016/j.conctc.2017.09.004
– ident: e_1_2_8_27_1
  doi: 10.1007/s10985-008-9107-z
– ident: e_1_2_8_29_1
  doi: 10.1214/16-AOS1516
– ident: e_1_2_8_19_1
  doi: 10.1016/S0140-6736(16)00587-0
– ident: e_1_2_8_20_1
  doi: 10.1038/s41591-018-0134-3
– ident: e_1_2_8_24_1
  doi: 10.1002/sim.4274
– volume: 15
  start-page: 1
  year: 2021
  ident: e_1_2_8_11_1
  article-title: Robust design and analysis of clinical trials with nonproportional hazards: a straw man guidance from a cross‐pharma working group
  publication-title: Stat Biopharm Res
– ident: e_1_2_8_2_1
  doi: 10.1200/JCO.19.01681
– ident: e_1_2_8_3_1
  doi: 10.1200/JCO.20.00015
– ident: e_1_2_8_6_1
  doi: 10.1080/19466315.2019.1697738
– ident: e_1_2_8_13_1
  doi: 10.1002/pst.2091
– ident: e_1_2_8_30_1
  doi: 10.1002/sim.8565
– ident: e_1_2_8_7_1
  doi: 10.1186/s13063-020-4153-2
SSID ssj0017895
Score 2.3388884
Snippet What can be considered an appropriate statistical method for the primary analysis of a randomized clinical trial (RCT) with a time‐to‐event endpoint when we...
What can be considered an appropriate statistical method for the primary analysis of a randomized clinical trial (RCT) with a time-to-event endpoint when we...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage 870
SubjectTerms Data Interpretation, Statistical
delayed effects
Humans
Models, Statistical
Proportional Hazards Models
pseudo‐value
Randomized Controlled Trials as Topic - methods
Randomized Controlled Trials as Topic - statistics & numerical data
Research Design
score
Survival Analysis
survival test
Time Factors
visualization
Title Visualizing hypothesis tests in survival analysis under anticipated delayed effects
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpst.2393
https://www.ncbi.nlm.nih.gov/pubmed/38708672
https://www.proquest.com/docview/3133567473
https://www.proquest.com/docview/3051424256
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6yJy--H_VFBNnTdrdN09dRfCCCsuiuCB5Kkqa4CN3FtIf11zvTxy4qgngKJSlJM5nJN-nMF0LOPBbpOJCR7cdxhqdV0haRy21wxKSjVMacKkns7j64GfPbZ_-5iarEXJiaH2Jx4IaaUdlrVHAhzWBJGjozRR_5u8D8ul6AtPmXDwvmKDeMqgtXQJ9j2w0c3vLOOmzQvvh1J_oBL7-i1Wq7uV4nL-1A6yiTt35ZyL76-Mbh-L8v2SBrDQql5_Wy2SQrOt8i3WFNYz3v0dEyK8v0aJcOlwTX823y-DQxmIv5AdsefZ3PMInLTAwF1FoYOsmpKcEAwRKmoqE8oZiq9g6PTQy3TimyU86hbAJKdsj4-mp0cWM3lzPYCq8msxXzU-H6Kg2ll0qdMh5kQqDLK3mknVR7EnwVwZDBMFQx05nPFaApGaU6BB_U2yWdfJrrfUKFH7NIpU4ms4xzxgTnMvYyAH6uxD3cIqetoJJZzcGR1GzLLIG5S3DuLHLUSjBptNAkHozGD8BhgurTRTXoD_4UEbmeltAGCeDR7wossldLftGJB8YsCkJmkW4lv197T4aPIywP_trwkKwyQEd1UuMR6RTvpT4GdFPIk2odfwIjd_hL
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwEB7xOMCFZXl2FxYjoZ5ISRznJU4IFpWnKiiIA1JkO46okEJF0kP59TuTRytAKyFOVmRHdjwezzeO5xuAPZeHJvJVaHlRlNJplbJk6AgLHTFla51yuwwSu7r2u3fi_MF7mIHDJham4oeYHLiRZpT7NSk4HUgfTFlDh3nRIQKvWZgXiDPI8zq5mXBHOUFYplxBjY4sx7dFwzxr84Pmzfe26BPAfI9XS4Nz-gMem6FW90yeO6NCdfTbBxbHb37LMizVQJQdVSvnJ8yYbAXavYrJerzP-tPArHyftVlvynE9XoXb-0FO4ZhvaPnY03hIcVz5IGcIXIucDTKWj3APwlXMZM16wiha7RUf62vcJmFEUDnGsr5TsgZ3p3_7x12rzs9gacpOZmnuJdLxdBIoN1Em4cJPpSSvV4nQ2IlxFborkhOJYaAjblJPaARUKkxMgG6ouw5z2UtmNoFJL-KhTuxUpakQnEshVOSmiP0cRWa8BbuNpOJhRcMRV4TLPMa5i2nuWrDViDCuFTGPXRyN56PPhNW7k2pUIfovIjPzMsI2xAFPrpffgo1K9JNOXNzPQj_gLWiXAvxv73Hvtk_lr6823IGFbv_qMr48u774DYscwVIV47gFc8XryGwj2CnUn3JR_wOhuPxq
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS9xAEB-sgvTFVq16rdoVyj2ZM9lsvh5L62FbK0c9i-BD2E88hHiY3MP513cmH3fYUhCflrAbdrOzs_ObzcxvAT6FPLVZrFIvyjJHp1XKk2kgPHTElK-1436dJPbzIj67Et-vo-s2qpJyYRp-iMWBG2lGvV-Tgk-NO1mShk7LakD8Xa9gTcQIJAgQ_VpQRwVJWt-4ggqdeUHsi4541ucn3ZtPTdE_-PIpXK3tzfAN3HQjbcJM7gazSg30418kji_7lLew0cJQ9rlZN5uwYost6I8aHuv5MRsv07LKY9ZnoyXD9XwbLn9PSkrGfES7x27nU8riKiclQ9halWxSsHKGOxCuYSZbzhNGuWoP-NgGcVvDiJ5yjmUbUfIOroan4y9nXns7g6fpbjJP88jIINImUaFR1nAROynJ51Uitb6xoUJnRXKiMEx0xq2LhEY4pVJjE3RCwx1YLe4LuwdMRhlPtfGdck4IzqUQKgsdIr9AkRHvwVEnqHzakHDkDd0yz3Hucpq7Hux3EsxbNSzzEEcTxegxYfXRohoViP6KyMLez7ANMcCT4xX3YLeR_KKTEHezNE54D_q1_P7bez66HFP5_rkNP8L66OswP_928eMDvOaIlJoEx31YrR5m9gCRTqUO6yX9B72m-xk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Visualizing+hypothesis+tests+in+survival+analysis+under+anticipated+delayed+effects&rft.jtitle=Pharmaceutical+statistics+%3A+the+journal+of+the+pharmaceutical+industry&rft.au=Jim%C3%A9nez%2C+Jos%C3%A9+L&rft.au=Barrott%2C+Isobel&rft.au=Gasperoni%2C+Francesca&rft.au=Magirr%2C+Dominic&rft.date=2024-11-01&rft.issn=1539-1612&rft.eissn=1539-1612&rft.volume=23&rft.issue=6&rft.spage=870&rft_id=info:doi/10.1002%2Fpst.2393&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1539-1604&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1539-1604&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1539-1604&client=summon