Physics-informed Karhunen-Loéve and neural network approximations for solving inverse differential equation problems
•Unknown parameters are modeled with conditional Karhunen-Loéve (CKL) expansions to enforce known correlation structures.•State variable is approximated with a neural network, which is trained jointly with CKLs subject to differential equation constraints (DEC).•The proposed method is more accurate...
Saved in:
Published in | Journal of computational physics Vol. 462; no. C; p. 111230 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Elsevier Inc
01.08.2022
Elsevier Science Ltd Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Unknown parameters are modeled with conditional Karhunen-Loéve (CKL) expansions to enforce known correlation structures.•State variable is approximated with a neural network, which is trained jointly with CKLs subject to differential equation constraints (DEC).•The proposed method is more accurate than the physics-informed neural network (PINN) method, which only enforces DEC.
We present the PI-CKL-NN method for parameter estimation in differential equation (DE) models given sparse measurements of the parameters and states. In the proposed approach, the space- or time-dependent parameters are approximated by Karhunen-Loéve (KL) expansions that are conditioned on the parameters' measurements, and the states are approximated by deep neural networks (DNNs). The unknown weights in the KL expansions and DNNs are found by minimizing the cost function that enforces the measurements of the states and the DE constraint. Regularization is achieved by adding the l2 norm of the conditional KL coefficients into the loss function. Our approach assumes that the parameter fields are correlated in space or time and enforces the statistical knowledge (the mean and the covariance function) in addition to the DE constraints and measurements as opposed to the physics-informed neural network (PINN) and other similar physics-informed machine learning methods where only DE constraints and data are used for parameter estimation. We use the PI-CKL-NN method for parameter estimation in an ordinary differential equation with an unknown time-dependent parameter and the one- and two-dimensional partial differential diffusion equations with unknown space-dependent diffusion coefficients. We also demonstrate that PI-CKL-NN is more accurate than the PINN method, especially when the observations of the parameters are very sparse. |
---|---|
AbstractList | •Unknown parameters are modeled with conditional Karhunen-Loéve (CKL) expansions to enforce known correlation structures.•State variable is approximated with a neural network, which is trained jointly with CKLs subject to differential equation constraints (DEC).•The proposed method is more accurate than the physics-informed neural network (PINN) method, which only enforces DEC.
We present the PI-CKL-NN method for parameter estimation in differential equation (DE) models given sparse measurements of the parameters and states. In the proposed approach, the space- or time-dependent parameters are approximated by Karhunen-Loéve (KL) expansions that are conditioned on the parameters' measurements, and the states are approximated by deep neural networks (DNNs). The unknown weights in the KL expansions and DNNs are found by minimizing the cost function that enforces the measurements of the states and the DE constraint. Regularization is achieved by adding the l2 norm of the conditional KL coefficients into the loss function. Our approach assumes that the parameter fields are correlated in space or time and enforces the statistical knowledge (the mean and the covariance function) in addition to the DE constraints and measurements as opposed to the physics-informed neural network (PINN) and other similar physics-informed machine learning methods where only DE constraints and data are used for parameter estimation. We use the PI-CKL-NN method for parameter estimation in an ordinary differential equation with an unknown time-dependent parameter and the one- and two-dimensional partial differential diffusion equations with unknown space-dependent diffusion coefficients. We also demonstrate that PI-CKL-NN is more accurate than the PINN method, especially when the observations of the parameters are very sparse. We present the PI-CKL-NN method for parameter estimation in differential equation (DE) models given sparse measurements of the parameters and states. In the proposed approach, the space- or time-dependent parameters are approximated by Karhunen-Loéve (KL) expansions that are conditioned on the parameters' measurements, and the states are approximated by deep neural networks (DNNs). The unknown weights in the KL expansions and DNNs are found by minimizing the cost function that enforces the measurements of the states and the DE constraint. Regularization is achieved by adding the l2 norm of the conditional KL coefficients into the loss function. Our approach assumes that the parameter fields are correlated in space or time and enforces the statistical knowledge (the mean and the covariance function) in addition to the DE constraints and measurements as opposed to the physics-informed neural network (PINN) and other similar physics-informed machine learning methods where only DE constraints and data are used for parameter estimation. We use the PI-CKL-NN method for parameter estimation in an ordinary differential equation with an unknown time-dependent parameter and the one- and two-dimensional partial differential diffusion equations with unknown space-dependent diffusion coefficients. We also demonstrate that PI-CKL-NN is more accurate than the PINN method, especially when the observations of the parameters are very sparse. |
ArticleNumber | 111230 |
Author | Tartakovsky, Alexandre M. Li, Jing |
Author_xml | – sequence: 1 givenname: Jing surname: Li fullname: Li, Jing email: lij1023@gmail.com organization: Pacific Northwest National Laboratory, Richland, WA 99352, United States of America – sequence: 2 givenname: Alexandre M. orcidid: 0000-0003-2375-318X surname: Tartakovsky fullname: Tartakovsky, Alexandre M. email: amt1998@illinois.edu organization: Pacific Northwest National Laboratory, Richland, WA 99352, United States of America |
BackLink | https://www.osti.gov/biblio/1864907$$D View this record in Osti.gov |
BookMark | eNp9kc1u1DAUhS1UJKaFB2BnwTrTayexY7FCFT8VI9FFu7Y89g3jkLGndjLQR-I5-mJ4GlYsurqb77s6OuecnIUYkJC3DNYMmLgc1oM9rDlwvmaM8RpekBUDBRWXTJyRFQBnlVKKvSLnOQ8A0LVNtyLzze4he5srH_qY9ujoN5N2c8BQbeLjnyNSExwNOCczljP9iuknNYdDir_93kw-hkyLSHMcjz78oD4cMWWkzvc9JgyTLx7ez08oLdp2xH1-TV72Zsz45t-9IHefP91efa02379cX33cVLZmAJVQtTDKtlsnHVeG1wKUcEJ22DSib401jUMJrbANbOWWMcF6EKZpe8sdCldfkHfL35gnr7P1E9qdjSGgnTTrRKNAFuj9ApV09zPmSQ9xTqHk0lx0sqvrTvJCsYWyKeacsNeHVBpID5qBPk2gB10m0KcJ9DJBceR_Tknw1MSUjB-fNT8sJpZ2jh7TKTwGi86nU3YX_TP2X4O_pPg |
CitedBy_id | crossref_primary_10_1016_j_jhydrol_2024_131703 crossref_primary_10_1029_2023WR034939 crossref_primary_10_1016_j_jcp_2023_112723 crossref_primary_10_3390_bdcc6040140 crossref_primary_10_1016_j_jhydrol_2024_131504 crossref_primary_10_1016_j_est_2023_109604 |
Cites_doi | 10.1016/S0022-1694(03)00042-8 10.1016/j.jcp.2019.06.010 10.1029/2019WR026731 10.1029/2006WR005193 10.1137/S1064827503427741 10.1088/0266-5611/13/1/007 10.1016/j.advwatres.2020.103610 10.1016/j.jcp.2019.05.024 10.4208/cicp.2009.v6.p826 10.1155/2014/652594 10.1016/0893-6080(89)90020-8 10.1109/72.712178 10.1016/j.jcp.2020.109904 10.1016/j.jcp.2008.11.024 10.1002/ima.1850020203 10.4208/cicp.090513.040414a 10.1029/96WR00160 10.1016/j.jcp.2020.109520 10.1016/j.jcp.2018.04.018 10.1016/j.jcp.2018.10.045 10.1016/j.jcp.2020.109604 |
ContentType | Journal Article |
Copyright | 2022 Elsevier Inc. Copyright Elsevier Science Ltd. Aug 1, 2022 |
Copyright_xml | – notice: 2022 Elsevier Inc. – notice: Copyright Elsevier Science Ltd. Aug 1, 2022 |
DBID | AAYXX CITATION 7SC 7SP 7U5 8FD JQ2 L7M L~C L~D OTOTI |
DOI | 10.1016/j.jcp.2022.111230 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional OSTI.GOV |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Physics |
EISSN | 1090-2716 |
ExternalDocumentID | 1864907 10_1016_j_jcp_2022_111230 S0021999122002923 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 6OB 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABBOA ABFRF ABJNI ABMAC ABNEU ABYKQ ACBEA ACDAQ ACFVG ACGFO ACGFS ACNCT ACRLP ACZNC ADBBV ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AIVDX AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BKOJK BLXMC CS3 DM4 DU5 EBS EFBJH EFLBG EO8 EO9 EP2 EP3 F5P FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HLZ HVGLF IHE J1W K-O KOM LG5 LX9 LZ4 M37 M41 MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SPD SSQ SSV SSZ T5K TN5 UPT YQT ZMT ZU3 ~02 ~G- 29K 6TJ 8WZ A6W AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADFGL ADIYS ADJOM ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CAG CITATION COF D-I EJD FGOYB G-2 HME HMV HZ~ NDZJH R2- RIG SBC SEW SHN SPG SSH T9H UQL WUQ ZY4 7SC 7SP 7U5 8FD EFKBS JQ2 L7M L~C L~D AALMO ABPIF ABPTK ABQIS EFJIC OTOTI |
ID | FETCH-LOGICAL-c3100-6936a9c5bd7d29a236096d678e446f5aca4de7056c40b7b1161f06a45fc2de6d3 |
IEDL.DBID | .~1 |
ISSN | 0021-9991 |
IngestDate | Thu May 18 22:34:05 EDT 2023 Fri Jul 25 03:38:53 EDT 2025 Tue Jul 01 01:54:55 EDT 2025 Thu Apr 24 23:05:26 EDT 2025 Fri Feb 23 02:38:29 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | C |
Keywords | Physics-informed machine learning Conditional Karhunen-Loéve expansions Parameter estimation Inverse problems Deep neural networks |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3100-6936a9c5bd7d29a236096d678e446f5aca4de7056c40b7b1161f06a45fc2de6d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 USDOE Office of Science (SC), Advanced Scientific Computing Research (ASCR) AC05-76RL01830 |
ORCID | 0000-0003-2375-318X 000000032375318X |
OpenAccessLink | https://www.osti.gov/biblio/1864907 |
PQID | 2687833872 |
PQPubID | 2047462 |
ParticipantIDs | osti_scitechconnect_1864907 proquest_journals_2687833872 crossref_primary_10_1016_j_jcp_2022_111230 crossref_citationtrail_10_1016_j_jcp_2022_111230 elsevier_sciencedirect_doi_10_1016_j_jcp_2022_111230 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-08-01 2022-08-00 20220801 |
PublicationDateYYYYMMDD | 2022-08-01 |
PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge – name: United States |
PublicationTitle | Journal of computational physics |
PublicationYear | 2022 |
Publisher | Elsevier Inc Elsevier Science Ltd Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Science Ltd – name: Elsevier |
References | Chen, Hosseini, Owhadi, Stuart (br0040) 2021 Marzouk, Xiu (br0160) 10 2009; 6 Tartakovsky, Lu, Guadagnini, Tartakovsky (br0240) 2003; 275 Li (br0130) 2014; 16 Zhu, Zabaras (br0280) 2018; 366 Wang, Yu, Perdikaris (br0270) 2020 Dagan, Neuman (br0060) 2005 Debusschere, Najm, Pébay, Knio, Ghanem, Le Maître (br0070) 2004; 26 Goodfellow, Bengio, Courville (br0080) 2016 Hornik, Stinchcombe, White (br0110) 1989; 2 Liu, Lu, Zhang (br0150) 2007; 43 Tong (br0260) 1990 Cheney, Isaacson, Newell, Simske, Noser (br0050) 1990; 2 Barajas-Solano, Tartakovsky (br0010) 2019; 395 McLaughlin, Townley (br0180) 1996; 32 Beck, Blackwell, Clair (br0030) 1985 Ossiander, Peszynska, Vasylkivska (br0190) 2014; 2014 Raissi, Perdikaris, Karniadakis (br0200) 2019; 378 Zhu, Zabaras, Koutsourelakis, Perdikaris (br0290) 2019; 394 Marzouk, Najm (br0170) 2009; 228 Lagaris, Likas, Fotiadis (br0120) 1998; 9 Baydin, Pearlmutter, Radul, Siskind (br0020) 2018; 18 Tipireddy, Barajas-Solano, Tartakovsky (br0250) 2020; 418 Tartakovsky, Barajas-Solano, He (br0230) 2021; 426 Hanke (br0090) Feb. 1997; 13 Li, Tartakovsky (br0140) 2020; 416 Tartakovsky, Ortiz Marrero, Perdikaris, Tartakovsky, Barajas-Solano (br0220) 2020; 56 He, Barajas-Solano, Tartakovsky, Tartakovsky (br0100) 2020 Rasmussen (br0210) 2003 Liu (10.1016/j.jcp.2022.111230_br0150) 2007; 43 Ossiander (10.1016/j.jcp.2022.111230_br0190) 2014; 2014 Debusschere (10.1016/j.jcp.2022.111230_br0070) 2004; 26 Hornik (10.1016/j.jcp.2022.111230_br0110) 1989; 2 Tong (10.1016/j.jcp.2022.111230_br0260) 1990 Marzouk (10.1016/j.jcp.2022.111230_br0160) 2009; 6 He (10.1016/j.jcp.2022.111230_br0100) 2020 Beck (10.1016/j.jcp.2022.111230_br0030) 1985 Li (10.1016/j.jcp.2022.111230_br0130) 2014; 16 Tartakovsky (10.1016/j.jcp.2022.111230_br0230) 2021; 426 Zhu (10.1016/j.jcp.2022.111230_br0280) 2018; 366 Dagan (10.1016/j.jcp.2022.111230_br0060) 2005 McLaughlin (10.1016/j.jcp.2022.111230_br0180) 1996; 32 Raissi (10.1016/j.jcp.2022.111230_br0200) 2019; 378 Zhu (10.1016/j.jcp.2022.111230_br0290) 2019; 394 Tipireddy (10.1016/j.jcp.2022.111230_br0250) 2020; 418 Baydin (10.1016/j.jcp.2022.111230_br0020) 2018; 18 Chen (10.1016/j.jcp.2022.111230_br0040) Tartakovsky (10.1016/j.jcp.2022.111230_br0240) 2003; 275 Marzouk (10.1016/j.jcp.2022.111230_br0170) 2009; 228 Hanke (10.1016/j.jcp.2022.111230_br0090) 1997; 13 Li (10.1016/j.jcp.2022.111230_br0140) 2020; 416 Rasmussen (10.1016/j.jcp.2022.111230_br0210) 2003 Cheney (10.1016/j.jcp.2022.111230_br0050) 1990; 2 Wang (10.1016/j.jcp.2022.111230_br0270) Goodfellow (10.1016/j.jcp.2022.111230_br0080) 2016 Barajas-Solano (10.1016/j.jcp.2022.111230_br0010) 2019; 395 Tartakovsky (10.1016/j.jcp.2022.111230_br0220) 2020; 56 Lagaris (10.1016/j.jcp.2022.111230_br0120) 1998; 9 |
References_xml | – year: 2021 ident: br0040 article-title: Solving and learning nonlinear pdes with gaussian processes – volume: 9 start-page: 987 year: 1998 end-page: 1000 ident: br0120 article-title: Artificial neural networks for solving ordinary and partial differential equations publication-title: IEEE Trans. Neural Netw. – volume: 416 start-page: 109 year: 2020 end-page: 520 ident: br0140 article-title: Gaussian process regression and conditional polynomial chaos for parameter estimation publication-title: J. Comput. Phys. – volume: 16 start-page: 1010 year: 2014 end-page: 1030 ident: br0130 article-title: Conditional simulation of flow in heterogeneous porous media with the probabilistic collocation method publication-title: Commun. Comput. Phys. – volume: 18 year: 2018 ident: br0020 article-title: Automatic differentiation in machine learning: a survey publication-title: J. Mach. Learn. Res. – volume: 2 start-page: 359 year: 1989 end-page: 366 ident: br0110 article-title: Multilayer feedforward networks are universal approximators publication-title: Neural Netw. – volume: 2014 start-page: 21 year: 2014 ident: br0190 article-title: Conditional stochastic simulations of flow and transport with Karhunen-Loe've expansions, stochastic collocation, and sequential gaussian simulation publication-title: J. Appl. Math. – volume: 378 start-page: 686 year: 2019 end-page: 707 ident: br0200 article-title: Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations publication-title: J. Comput. Phys. – year: 2020 ident: br0270 article-title: When and why pinns fail to train: a neural tangent kernel perspective – volume: 6 start-page: 826 year: 10 2009 end-page: 847 ident: br0160 article-title: A stochastic collocation approach to Bayesian inference in inverse problems publication-title: Commun. Comput. Phys. – year: 1985 ident: br0030 article-title: Inverse Heat Conduction: Ill-Posed Problems – volume: 13 start-page: 79 year: Feb. 1997 end-page: 95 ident: br0090 article-title: A regularizing Levenberg - Marquardt scheme, with applications to inverse groundwater filtration problems publication-title: Inverse Probl. – volume: 395 start-page: 247 year: 2019 end-page: 262 ident: br0010 article-title: Approximate Bayesian model inversion for PDEs with heterogeneous and state-dependent coefficients publication-title: J. Comput. Phys. – year: 1990 ident: br0260 article-title: The Multivariate Normal Distribution – volume: 366 start-page: 415 year: 2018 end-page: 447 ident: br0280 article-title: Bayesian deep convolutional encoder–decoder networks for surrogate modeling and uncertainty quantification publication-title: J. Comput. Phys. – year: 2005 ident: br0060 article-title: Subsurface Flow and Transport: a Stochastic Approach – start-page: 63 year: 2003 end-page: 71 ident: br0210 article-title: Gaussian processes in machine learning publication-title: Summer School on Machine Learning – volume: 56 year: 2020 ident: br0220 article-title: Physics-informed deep neural networks for learning parameters and constitutive relationships in subsurface flow problems publication-title: Water Resour. Res. – year: 2016 ident: br0080 article-title: Deep Learning – year: 2020 ident: br0100 article-title: Physics-informed neural networks for multiphysics data assimilation with application to subsurface transport publication-title: Adv. Water Resour. – volume: 26 start-page: 698 year: 2004 end-page: 719 ident: br0070 article-title: Numerical challenges in the use of polynomial chaos representations for stochastic processes publication-title: SIAM J. Sci. Comput. – volume: 426 year: 2021 ident: br0230 article-title: Physics-informed machine learning with conditional Karhunen-Loève expansions publication-title: J. Comput. Phys. – volume: 2 start-page: 66 year: 1990 end-page: 75 ident: br0050 article-title: An algorithm for solving the inverse conductivity problem publication-title: Int. J. Imaging Syst. Technol. – volume: 43 year: 2007 ident: br0150 article-title: Stochastic uncertainty analysis for solute transport in randomly heterogeneous media using a Karhunen-Loéve-based moment equation approach publication-title: Water Resour. Res. – volume: 275 start-page: 182 year: 2003 end-page: 193 ident: br0240 article-title: Unsaturated flow in heterogeneous soils with spatially distributed uncertain hydraulic parameters publication-title: J. Hydrol. – volume: 418 year: 2020 ident: br0250 article-title: Conditional Karhunen-Loève expansion for uncertainty quantification and active learning in partial differential equation models publication-title: J. Comput. Phys. – volume: 32 start-page: 1131 year: 1996 end-page: 1161 ident: br0180 article-title: A reassessment of the groundwater inverse problem publication-title: Water Resour. Res. – volume: 228 start-page: 1862 year: 2009 end-page: 1902 ident: br0170 article-title: Dimensionality reduction and polynomial chaos acceleration of Bayesian inference in inverse problems publication-title: J. Comput. Phys. – volume: 394 start-page: 56 year: 2019 end-page: 81 ident: br0290 article-title: Physics-constrained deep learning for high-dimensional surrogate modeling and uncertainty quantification without labeled data publication-title: J. Comput. Phys. – volume: 18 issue: 153 year: 2018 ident: 10.1016/j.jcp.2022.111230_br0020 article-title: Automatic differentiation in machine learning: a survey publication-title: J. Mach. Learn. Res. – volume: 275 start-page: 182 issue: 3 year: 2003 ident: 10.1016/j.jcp.2022.111230_br0240 article-title: Unsaturated flow in heterogeneous soils with spatially distributed uncertain hydraulic parameters publication-title: J. Hydrol. doi: 10.1016/S0022-1694(03)00042-8 – year: 2005 ident: 10.1016/j.jcp.2022.111230_br0060 – volume: 395 start-page: 247 year: 2019 ident: 10.1016/j.jcp.2022.111230_br0010 article-title: Approximate Bayesian model inversion for PDEs with heterogeneous and state-dependent coefficients publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2019.06.010 – volume: 56 issue: 5 year: 2020 ident: 10.1016/j.jcp.2022.111230_br0220 article-title: Physics-informed deep neural networks for learning parameters and constitutive relationships in subsurface flow problems publication-title: Water Resour. Res. doi: 10.1029/2019WR026731 – ident: 10.1016/j.jcp.2022.111230_br0040 – volume: 43 issue: 7 year: 2007 ident: 10.1016/j.jcp.2022.111230_br0150 article-title: Stochastic uncertainty analysis for solute transport in randomly heterogeneous media using a Karhunen-Loéve-based moment equation approach publication-title: Water Resour. Res. doi: 10.1029/2006WR005193 – volume: 26 start-page: 698 issue: 2 year: 2004 ident: 10.1016/j.jcp.2022.111230_br0070 article-title: Numerical challenges in the use of polynomial chaos representations for stochastic processes publication-title: SIAM J. Sci. Comput. doi: 10.1137/S1064827503427741 – volume: 13 start-page: 79 issue: 1 year: 1997 ident: 10.1016/j.jcp.2022.111230_br0090 article-title: A regularizing Levenberg - Marquardt scheme, with applications to inverse groundwater filtration problems publication-title: Inverse Probl. doi: 10.1088/0266-5611/13/1/007 – year: 2020 ident: 10.1016/j.jcp.2022.111230_br0100 article-title: Physics-informed neural networks for multiphysics data assimilation with application to subsurface transport publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2020.103610 – start-page: 63 year: 2003 ident: 10.1016/j.jcp.2022.111230_br0210 article-title: Gaussian processes in machine learning – volume: 394 start-page: 56 year: 2019 ident: 10.1016/j.jcp.2022.111230_br0290 article-title: Physics-constrained deep learning for high-dimensional surrogate modeling and uncertainty quantification without labeled data publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2019.05.024 – year: 1985 ident: 10.1016/j.jcp.2022.111230_br0030 – volume: 6 start-page: 826 issue: 4 year: 2009 ident: 10.1016/j.jcp.2022.111230_br0160 article-title: A stochastic collocation approach to Bayesian inference in inverse problems publication-title: Commun. Comput. Phys. doi: 10.4208/cicp.2009.v6.p826 – volume: 2014 start-page: 21 year: 2014 ident: 10.1016/j.jcp.2022.111230_br0190 article-title: Conditional stochastic simulations of flow and transport with Karhunen-Loe've expansions, stochastic collocation, and sequential gaussian simulation publication-title: J. Appl. Math. doi: 10.1155/2014/652594 – volume: 2 start-page: 359 issue: 5 year: 1989 ident: 10.1016/j.jcp.2022.111230_br0110 article-title: Multilayer feedforward networks are universal approximators publication-title: Neural Netw. doi: 10.1016/0893-6080(89)90020-8 – volume: 9 start-page: 987 issue: 5 year: 1998 ident: 10.1016/j.jcp.2022.111230_br0120 article-title: Artificial neural networks for solving ordinary and partial differential equations publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.712178 – ident: 10.1016/j.jcp.2022.111230_br0270 – volume: 426 year: 2021 ident: 10.1016/j.jcp.2022.111230_br0230 article-title: Physics-informed machine learning with conditional Karhunen-Loève expansions publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2020.109904 – volume: 228 start-page: 1862 issue: 6 year: 2009 ident: 10.1016/j.jcp.2022.111230_br0170 article-title: Dimensionality reduction and polynomial chaos acceleration of Bayesian inference in inverse problems publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2008.11.024 – volume: 2 start-page: 66 issue: 2 year: 1990 ident: 10.1016/j.jcp.2022.111230_br0050 article-title: An algorithm for solving the inverse conductivity problem publication-title: Int. J. Imaging Syst. Technol. doi: 10.1002/ima.1850020203 – volume: 16 start-page: 1010 issue: 4 year: 2014 ident: 10.1016/j.jcp.2022.111230_br0130 article-title: Conditional simulation of flow in heterogeneous porous media with the probabilistic collocation method publication-title: Commun. Comput. Phys. doi: 10.4208/cicp.090513.040414a – year: 1990 ident: 10.1016/j.jcp.2022.111230_br0260 – volume: 32 start-page: 1131 issue: 5 year: 1996 ident: 10.1016/j.jcp.2022.111230_br0180 article-title: A reassessment of the groundwater inverse problem publication-title: Water Resour. Res. doi: 10.1029/96WR00160 – year: 2016 ident: 10.1016/j.jcp.2022.111230_br0080 – volume: 416 start-page: 109 year: 2020 ident: 10.1016/j.jcp.2022.111230_br0140 article-title: Gaussian process regression and conditional polynomial chaos for parameter estimation publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2020.109520 – volume: 366 start-page: 415 year: 2018 ident: 10.1016/j.jcp.2022.111230_br0280 article-title: Bayesian deep convolutional encoder–decoder networks for surrogate modeling and uncertainty quantification publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2018.04.018 – volume: 378 start-page: 686 year: 2019 ident: 10.1016/j.jcp.2022.111230_br0200 article-title: Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2018.10.045 – volume: 418 year: 2020 ident: 10.1016/j.jcp.2022.111230_br0250 article-title: Conditional Karhunen-Loève expansion for uncertainty quantification and active learning in partial differential equation models publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2020.109604 |
SSID | ssj0008548 |
Score | 2.4417765 |
Snippet | •Unknown parameters are modeled with conditional Karhunen-Loéve (CKL) expansions to enforce known correlation structures.•State variable is approximated with a... We present the PI-CKL-NN method for parameter estimation in differential equation (DE) models given sparse measurements of the parameters and states. In the... |
SourceID | osti proquest crossref elsevier |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 111230 |
SubjectTerms | Approximation Artificial neural networks Computational physics Conditional Karhunen-Loéve expansions Cost function Deep neural networks Differential equations Inverse problems Machine learning Neural networks Parameter estimation Physics Physics-informed machine learning Regularization Time dependence |
Title | Physics-informed Karhunen-Loéve and neural network approximations for solving inverse differential equation problems |
URI | https://dx.doi.org/10.1016/j.jcp.2022.111230 https://www.proquest.com/docview/2687833872 https://www.osti.gov/biblio/1864907 |
Volume | 462 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZQWVh4I0oL8sCEFEgcx0nGCoHKqxOV2CzHdkQRSoG0iIn_w-_gj3EXOyAEYmBM4nMi3_keznd3hOxzxoxQeFAFtj3gIlZBkXIViLJMNFOR0QITha9GYjjm5zfJzQI5bnNhEFbpdb_T6Y229neO_GoePUwmmOPLMIc-YogzAD8FM9h5ilJ--PoF88gS7rQxQhFgdPtns8F43WksWckYKg6GQOjfbVNnCtvth7JuLNDpKln2riMduK9bIwu2Wicr3o2kfpPWG2TeoDp1HbiiqPDsQj3dzitbBZfT97dnS1VlKBayhNkqBwOnTW3xl4lLZKwpEFKQSjxtoJMKoRuWtr1UQCfcU_voaoRT35Gm3iTj05Pr42HguysEGg_1A5HHQuU6KUxqWK5YLCCaMWC7LESIZaK04sam4B9pHhZpEYFrWIbA1qTUzFhh4i3SqaaV3SaUoytRQGgWQ4wb45S5BUcsF7nhEQuzLgnbdZXalx7HDhj3ssWY3UlghURWSMeKLjn4JHlwdTf-GsxbZslvwiPBLvxF1kPGIgkWzNWILAKaKBM8D9Mu6bf8ln5f15KJLM0gqk_Zzv_e2SNLeOUghH3SmT3N7S64NbNir5HbPbI4OLsYjj4A7bj3CA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTtwwEB7R5UAvpRSqLrstPnBCCiSO4yRHhEDbsnACiZvl2I5YhLKUsBUn3ofn4MWYiZ0iRMWh19jjRB7Pn_PNDMC24NxKTRdVaNsjIVMdVbnQkazrzHCdWCMpUfjkVE7Oxa-L7GIJDvpcGIJVBt3vdXqnrcOTvbCbezezGeX4csqhTzjhDNBP-QDLAsWX2hjsPrzgPIpMeHVMWASc3v_a7EBeV4ZqVnJOmoMTEvrfxmkwR3l7o607E3T0GT4F35Ht-89bgyXXfIHV4EeyIKXtOiw6WKdpI18VFceO9e3lonFNNJ0_Pf5xTDeWUSVLXK3xOHDWFRe_n_lMxpYhIcNjSdcNbNYQdsOxvpkKKoVr5n77IuEstKRpN-D86PDsYBKF9gqRoVv9SJap1KXJKptbXmqeSgxnLBovhyFinWmjhXU5OkhGxFVeJegb1jHyNasNt07a9CsMmnnjvgET5EtUGJulGOSmtGTp0BMrZWlFwuNiCHG_r8qE2uPUAuNa9SCzK4WsUMQK5VkxhJ2_JDe-8MZ7k0XPLPXq9Cg0DO-RjYixREIVcw1Bi5AmKaQo43wI457fKgh2q7gs8gLD-pxv_t87t2BlcnYyVdOfp8cj-EgjHk84hsHd7cJ9Rx_nrvrRneFnjyD4lg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Physics-informed+Karhunen-Lo%C3%A9ve+and+neural+network+approximations+for+solving+inverse+differential+equation+problems&rft.jtitle=Journal+of+computational+physics&rft.au=Li%2C+Jing&rft.au=Tartakovsky%2C+Alexandre+M.&rft.date=2022-08-01&rft.issn=0021-9991&rft.volume=462&rft.spage=111230&rft_id=info:doi/10.1016%2Fj.jcp.2022.111230&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jcp_2022_111230 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9991&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9991&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9991&client=summon |