Physics-informed Karhunen-Loéve and neural network approximations for solving inverse differential equation problems

•Unknown parameters are modeled with conditional Karhunen-Loéve (CKL) expansions to enforce known correlation structures.•State variable is approximated with a neural network, which is trained jointly with CKLs subject to differential equation constraints (DEC).•The proposed method is more accurate...

Full description

Saved in:
Bibliographic Details
Published inJournal of computational physics Vol. 462; no. C; p. 111230
Main Authors Li, Jing, Tartakovsky, Alexandre M.
Format Journal Article
LanguageEnglish
Published Cambridge Elsevier Inc 01.08.2022
Elsevier Science Ltd
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Unknown parameters are modeled with conditional Karhunen-Loéve (CKL) expansions to enforce known correlation structures.•State variable is approximated with a neural network, which is trained jointly with CKLs subject to differential equation constraints (DEC).•The proposed method is more accurate than the physics-informed neural network (PINN) method, which only enforces DEC. We present the PI-CKL-NN method for parameter estimation in differential equation (DE) models given sparse measurements of the parameters and states. In the proposed approach, the space- or time-dependent parameters are approximated by Karhunen-Loéve (KL) expansions that are conditioned on the parameters' measurements, and the states are approximated by deep neural networks (DNNs). The unknown weights in the KL expansions and DNNs are found by minimizing the cost function that enforces the measurements of the states and the DE constraint. Regularization is achieved by adding the l2 norm of the conditional KL coefficients into the loss function. Our approach assumes that the parameter fields are correlated in space or time and enforces the statistical knowledge (the mean and the covariance function) in addition to the DE constraints and measurements as opposed to the physics-informed neural network (PINN) and other similar physics-informed machine learning methods where only DE constraints and data are used for parameter estimation. We use the PI-CKL-NN method for parameter estimation in an ordinary differential equation with an unknown time-dependent parameter and the one- and two-dimensional partial differential diffusion equations with unknown space-dependent diffusion coefficients. We also demonstrate that PI-CKL-NN is more accurate than the PINN method, especially when the observations of the parameters are very sparse.
AbstractList •Unknown parameters are modeled with conditional Karhunen-Loéve (CKL) expansions to enforce known correlation structures.•State variable is approximated with a neural network, which is trained jointly with CKLs subject to differential equation constraints (DEC).•The proposed method is more accurate than the physics-informed neural network (PINN) method, which only enforces DEC. We present the PI-CKL-NN method for parameter estimation in differential equation (DE) models given sparse measurements of the parameters and states. In the proposed approach, the space- or time-dependent parameters are approximated by Karhunen-Loéve (KL) expansions that are conditioned on the parameters' measurements, and the states are approximated by deep neural networks (DNNs). The unknown weights in the KL expansions and DNNs are found by minimizing the cost function that enforces the measurements of the states and the DE constraint. Regularization is achieved by adding the l2 norm of the conditional KL coefficients into the loss function. Our approach assumes that the parameter fields are correlated in space or time and enforces the statistical knowledge (the mean and the covariance function) in addition to the DE constraints and measurements as opposed to the physics-informed neural network (PINN) and other similar physics-informed machine learning methods where only DE constraints and data are used for parameter estimation. We use the PI-CKL-NN method for parameter estimation in an ordinary differential equation with an unknown time-dependent parameter and the one- and two-dimensional partial differential diffusion equations with unknown space-dependent diffusion coefficients. We also demonstrate that PI-CKL-NN is more accurate than the PINN method, especially when the observations of the parameters are very sparse.
We present the PI-CKL-NN method for parameter estimation in differential equation (DE) models given sparse measurements of the parameters and states. In the proposed approach, the space- or time-dependent parameters are approximated by Karhunen-Loéve (KL) expansions that are conditioned on the parameters' measurements, and the states are approximated by deep neural networks (DNNs). The unknown weights in the KL expansions and DNNs are found by minimizing the cost function that enforces the measurements of the states and the DE constraint. Regularization is achieved by adding the l2 norm of the conditional KL coefficients into the loss function. Our approach assumes that the parameter fields are correlated in space or time and enforces the statistical knowledge (the mean and the covariance function) in addition to the DE constraints and measurements as opposed to the physics-informed neural network (PINN) and other similar physics-informed machine learning methods where only DE constraints and data are used for parameter estimation. We use the PI-CKL-NN method for parameter estimation in an ordinary differential equation with an unknown time-dependent parameter and the one- and two-dimensional partial differential diffusion equations with unknown space-dependent diffusion coefficients. We also demonstrate that PI-CKL-NN is more accurate than the PINN method, especially when the observations of the parameters are very sparse.
ArticleNumber 111230
Author Tartakovsky, Alexandre M.
Li, Jing
Author_xml – sequence: 1
  givenname: Jing
  surname: Li
  fullname: Li, Jing
  email: lij1023@gmail.com
  organization: Pacific Northwest National Laboratory, Richland, WA 99352, United States of America
– sequence: 2
  givenname: Alexandre M.
  orcidid: 0000-0003-2375-318X
  surname: Tartakovsky
  fullname: Tartakovsky, Alexandre M.
  email: amt1998@illinois.edu
  organization: Pacific Northwest National Laboratory, Richland, WA 99352, United States of America
BackLink https://www.osti.gov/biblio/1864907$$D View this record in Osti.gov
BookMark eNp9kc1u1DAUhS1UJKaFB2BnwTrTayexY7FCFT8VI9FFu7Y89g3jkLGndjLQR-I5-mJ4GlYsurqb77s6OuecnIUYkJC3DNYMmLgc1oM9rDlwvmaM8RpekBUDBRWXTJyRFQBnlVKKvSLnOQ8A0LVNtyLzze4he5srH_qY9ujoN5N2c8BQbeLjnyNSExwNOCczljP9iuknNYdDir_93kw-hkyLSHMcjz78oD4cMWWkzvc9JgyTLx7ez08oLdp2xH1-TV72Zsz45t-9IHefP91efa02379cX33cVLZmAJVQtTDKtlsnHVeG1wKUcEJ22DSib401jUMJrbANbOWWMcF6EKZpe8sdCldfkHfL35gnr7P1E9qdjSGgnTTrRKNAFuj9ApV09zPmSQ9xTqHk0lx0sqvrTvJCsYWyKeacsNeHVBpID5qBPk2gB10m0KcJ9DJBceR_Tknw1MSUjB-fNT8sJpZ2jh7TKTwGi86nU3YX_TP2X4O_pPg
CitedBy_id crossref_primary_10_1016_j_jhydrol_2024_131703
crossref_primary_10_1029_2023WR034939
crossref_primary_10_1016_j_jcp_2023_112723
crossref_primary_10_3390_bdcc6040140
crossref_primary_10_1016_j_jhydrol_2024_131504
crossref_primary_10_1016_j_est_2023_109604
Cites_doi 10.1016/S0022-1694(03)00042-8
10.1016/j.jcp.2019.06.010
10.1029/2019WR026731
10.1029/2006WR005193
10.1137/S1064827503427741
10.1088/0266-5611/13/1/007
10.1016/j.advwatres.2020.103610
10.1016/j.jcp.2019.05.024
10.4208/cicp.2009.v6.p826
10.1155/2014/652594
10.1016/0893-6080(89)90020-8
10.1109/72.712178
10.1016/j.jcp.2020.109904
10.1016/j.jcp.2008.11.024
10.1002/ima.1850020203
10.4208/cicp.090513.040414a
10.1029/96WR00160
10.1016/j.jcp.2020.109520
10.1016/j.jcp.2018.04.018
10.1016/j.jcp.2018.10.045
10.1016/j.jcp.2020.109604
ContentType Journal Article
Copyright 2022 Elsevier Inc.
Copyright Elsevier Science Ltd. Aug 1, 2022
Copyright_xml – notice: 2022 Elsevier Inc.
– notice: Copyright Elsevier Science Ltd. Aug 1, 2022
DBID AAYXX
CITATION
7SC
7SP
7U5
8FD
JQ2
L7M
L~C
L~D
OTOTI
DOI 10.1016/j.jcp.2022.111230
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
OSTI.GOV
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Physics
EISSN 1090-2716
ExternalDocumentID 1864907
10_1016_j_jcp_2022_111230
S0021999122002923
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
6OB
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABFRF
ABJNI
ABMAC
ABNEU
ABYKQ
ACBEA
ACDAQ
ACFVG
ACGFO
ACGFS
ACNCT
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
IHE
J1W
K-O
KOM
LG5
LX9
LZ4
M37
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SSQ
SSV
SSZ
T5K
TN5
UPT
YQT
ZMT
ZU3
~02
~G-
29K
6TJ
8WZ
A6W
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADFGL
ADIYS
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CAG
CITATION
COF
D-I
EJD
FGOYB
G-2
HME
HMV
HZ~
NDZJH
R2-
RIG
SBC
SEW
SHN
SPG
SSH
T9H
UQL
WUQ
ZY4
7SC
7SP
7U5
8FD
EFKBS
JQ2
L7M
L~C
L~D
AALMO
ABPIF
ABPTK
ABQIS
EFJIC
OTOTI
ID FETCH-LOGICAL-c3100-6936a9c5bd7d29a236096d678e446f5aca4de7056c40b7b1161f06a45fc2de6d3
IEDL.DBID .~1
ISSN 0021-9991
IngestDate Thu May 18 22:34:05 EDT 2023
Fri Jul 25 03:38:53 EDT 2025
Tue Jul 01 01:54:55 EDT 2025
Thu Apr 24 23:05:26 EDT 2025
Fri Feb 23 02:38:29 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue C
Keywords Physics-informed machine learning
Conditional Karhunen-Loéve expansions
Parameter estimation
Inverse problems
Deep neural networks
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3100-6936a9c5bd7d29a236096d678e446f5aca4de7056c40b7b1161f06a45fc2de6d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
USDOE Office of Science (SC), Advanced Scientific Computing Research (ASCR)
AC05-76RL01830
ORCID 0000-0003-2375-318X
000000032375318X
OpenAccessLink https://www.osti.gov/biblio/1864907
PQID 2687833872
PQPubID 2047462
ParticipantIDs osti_scitechconnect_1864907
proquest_journals_2687833872
crossref_primary_10_1016_j_jcp_2022_111230
crossref_citationtrail_10_1016_j_jcp_2022_111230
elsevier_sciencedirect_doi_10_1016_j_jcp_2022_111230
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-08-01
2022-08-00
20220801
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
– name: United States
PublicationTitle Journal of computational physics
PublicationYear 2022
Publisher Elsevier Inc
Elsevier Science Ltd
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier Science Ltd
– name: Elsevier
References Chen, Hosseini, Owhadi, Stuart (br0040) 2021
Marzouk, Xiu (br0160) 10 2009; 6
Tartakovsky, Lu, Guadagnini, Tartakovsky (br0240) 2003; 275
Li (br0130) 2014; 16
Zhu, Zabaras (br0280) 2018; 366
Wang, Yu, Perdikaris (br0270) 2020
Dagan, Neuman (br0060) 2005
Debusschere, Najm, Pébay, Knio, Ghanem, Le Maître (br0070) 2004; 26
Goodfellow, Bengio, Courville (br0080) 2016
Hornik, Stinchcombe, White (br0110) 1989; 2
Liu, Lu, Zhang (br0150) 2007; 43
Tong (br0260) 1990
Cheney, Isaacson, Newell, Simske, Noser (br0050) 1990; 2
Barajas-Solano, Tartakovsky (br0010) 2019; 395
McLaughlin, Townley (br0180) 1996; 32
Beck, Blackwell, Clair (br0030) 1985
Ossiander, Peszynska, Vasylkivska (br0190) 2014; 2014
Raissi, Perdikaris, Karniadakis (br0200) 2019; 378
Zhu, Zabaras, Koutsourelakis, Perdikaris (br0290) 2019; 394
Marzouk, Najm (br0170) 2009; 228
Lagaris, Likas, Fotiadis (br0120) 1998; 9
Baydin, Pearlmutter, Radul, Siskind (br0020) 2018; 18
Tipireddy, Barajas-Solano, Tartakovsky (br0250) 2020; 418
Tartakovsky, Barajas-Solano, He (br0230) 2021; 426
Hanke (br0090) Feb. 1997; 13
Li, Tartakovsky (br0140) 2020; 416
Tartakovsky, Ortiz Marrero, Perdikaris, Tartakovsky, Barajas-Solano (br0220) 2020; 56
He, Barajas-Solano, Tartakovsky, Tartakovsky (br0100) 2020
Rasmussen (br0210) 2003
Liu (10.1016/j.jcp.2022.111230_br0150) 2007; 43
Ossiander (10.1016/j.jcp.2022.111230_br0190) 2014; 2014
Debusschere (10.1016/j.jcp.2022.111230_br0070) 2004; 26
Hornik (10.1016/j.jcp.2022.111230_br0110) 1989; 2
Tong (10.1016/j.jcp.2022.111230_br0260) 1990
Marzouk (10.1016/j.jcp.2022.111230_br0160) 2009; 6
He (10.1016/j.jcp.2022.111230_br0100) 2020
Beck (10.1016/j.jcp.2022.111230_br0030) 1985
Li (10.1016/j.jcp.2022.111230_br0130) 2014; 16
Tartakovsky (10.1016/j.jcp.2022.111230_br0230) 2021; 426
Zhu (10.1016/j.jcp.2022.111230_br0280) 2018; 366
Dagan (10.1016/j.jcp.2022.111230_br0060) 2005
McLaughlin (10.1016/j.jcp.2022.111230_br0180) 1996; 32
Raissi (10.1016/j.jcp.2022.111230_br0200) 2019; 378
Zhu (10.1016/j.jcp.2022.111230_br0290) 2019; 394
Tipireddy (10.1016/j.jcp.2022.111230_br0250) 2020; 418
Baydin (10.1016/j.jcp.2022.111230_br0020) 2018; 18
Chen (10.1016/j.jcp.2022.111230_br0040)
Tartakovsky (10.1016/j.jcp.2022.111230_br0240) 2003; 275
Marzouk (10.1016/j.jcp.2022.111230_br0170) 2009; 228
Hanke (10.1016/j.jcp.2022.111230_br0090) 1997; 13
Li (10.1016/j.jcp.2022.111230_br0140) 2020; 416
Rasmussen (10.1016/j.jcp.2022.111230_br0210) 2003
Cheney (10.1016/j.jcp.2022.111230_br0050) 1990; 2
Wang (10.1016/j.jcp.2022.111230_br0270)
Goodfellow (10.1016/j.jcp.2022.111230_br0080) 2016
Barajas-Solano (10.1016/j.jcp.2022.111230_br0010) 2019; 395
Tartakovsky (10.1016/j.jcp.2022.111230_br0220) 2020; 56
Lagaris (10.1016/j.jcp.2022.111230_br0120) 1998; 9
References_xml – year: 2021
  ident: br0040
  article-title: Solving and learning nonlinear pdes with gaussian processes
– volume: 9
  start-page: 987
  year: 1998
  end-page: 1000
  ident: br0120
  article-title: Artificial neural networks for solving ordinary and partial differential equations
  publication-title: IEEE Trans. Neural Netw.
– volume: 416
  start-page: 109
  year: 2020
  end-page: 520
  ident: br0140
  article-title: Gaussian process regression and conditional polynomial chaos for parameter estimation
  publication-title: J. Comput. Phys.
– volume: 16
  start-page: 1010
  year: 2014
  end-page: 1030
  ident: br0130
  article-title: Conditional simulation of flow in heterogeneous porous media with the probabilistic collocation method
  publication-title: Commun. Comput. Phys.
– volume: 18
  year: 2018
  ident: br0020
  article-title: Automatic differentiation in machine learning: a survey
  publication-title: J. Mach. Learn. Res.
– volume: 2
  start-page: 359
  year: 1989
  end-page: 366
  ident: br0110
  article-title: Multilayer feedforward networks are universal approximators
  publication-title: Neural Netw.
– volume: 2014
  start-page: 21
  year: 2014
  ident: br0190
  article-title: Conditional stochastic simulations of flow and transport with Karhunen-Loe've expansions, stochastic collocation, and sequential gaussian simulation
  publication-title: J. Appl. Math.
– volume: 378
  start-page: 686
  year: 2019
  end-page: 707
  ident: br0200
  article-title: Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations
  publication-title: J. Comput. Phys.
– year: 2020
  ident: br0270
  article-title: When and why pinns fail to train: a neural tangent kernel perspective
– volume: 6
  start-page: 826
  year: 10 2009
  end-page: 847
  ident: br0160
  article-title: A stochastic collocation approach to Bayesian inference in inverse problems
  publication-title: Commun. Comput. Phys.
– year: 1985
  ident: br0030
  article-title: Inverse Heat Conduction: Ill-Posed Problems
– volume: 13
  start-page: 79
  year: Feb. 1997
  end-page: 95
  ident: br0090
  article-title: A regularizing Levenberg - Marquardt scheme, with applications to inverse groundwater filtration problems
  publication-title: Inverse Probl.
– volume: 395
  start-page: 247
  year: 2019
  end-page: 262
  ident: br0010
  article-title: Approximate Bayesian model inversion for PDEs with heterogeneous and state-dependent coefficients
  publication-title: J. Comput. Phys.
– year: 1990
  ident: br0260
  article-title: The Multivariate Normal Distribution
– volume: 366
  start-page: 415
  year: 2018
  end-page: 447
  ident: br0280
  article-title: Bayesian deep convolutional encoder–decoder networks for surrogate modeling and uncertainty quantification
  publication-title: J. Comput. Phys.
– year: 2005
  ident: br0060
  article-title: Subsurface Flow and Transport: a Stochastic Approach
– start-page: 63
  year: 2003
  end-page: 71
  ident: br0210
  article-title: Gaussian processes in machine learning
  publication-title: Summer School on Machine Learning
– volume: 56
  year: 2020
  ident: br0220
  article-title: Physics-informed deep neural networks for learning parameters and constitutive relationships in subsurface flow problems
  publication-title: Water Resour. Res.
– year: 2016
  ident: br0080
  article-title: Deep Learning
– year: 2020
  ident: br0100
  article-title: Physics-informed neural networks for multiphysics data assimilation with application to subsurface transport
  publication-title: Adv. Water Resour.
– volume: 26
  start-page: 698
  year: 2004
  end-page: 719
  ident: br0070
  article-title: Numerical challenges in the use of polynomial chaos representations for stochastic processes
  publication-title: SIAM J. Sci. Comput.
– volume: 426
  year: 2021
  ident: br0230
  article-title: Physics-informed machine learning with conditional Karhunen-Loève expansions
  publication-title: J. Comput. Phys.
– volume: 2
  start-page: 66
  year: 1990
  end-page: 75
  ident: br0050
  article-title: An algorithm for solving the inverse conductivity problem
  publication-title: Int. J. Imaging Syst. Technol.
– volume: 43
  year: 2007
  ident: br0150
  article-title: Stochastic uncertainty analysis for solute transport in randomly heterogeneous media using a Karhunen-Loéve-based moment equation approach
  publication-title: Water Resour. Res.
– volume: 275
  start-page: 182
  year: 2003
  end-page: 193
  ident: br0240
  article-title: Unsaturated flow in heterogeneous soils with spatially distributed uncertain hydraulic parameters
  publication-title: J. Hydrol.
– volume: 418
  year: 2020
  ident: br0250
  article-title: Conditional Karhunen-Loève expansion for uncertainty quantification and active learning in partial differential equation models
  publication-title: J. Comput. Phys.
– volume: 32
  start-page: 1131
  year: 1996
  end-page: 1161
  ident: br0180
  article-title: A reassessment of the groundwater inverse problem
  publication-title: Water Resour. Res.
– volume: 228
  start-page: 1862
  year: 2009
  end-page: 1902
  ident: br0170
  article-title: Dimensionality reduction and polynomial chaos acceleration of Bayesian inference in inverse problems
  publication-title: J. Comput. Phys.
– volume: 394
  start-page: 56
  year: 2019
  end-page: 81
  ident: br0290
  article-title: Physics-constrained deep learning for high-dimensional surrogate modeling and uncertainty quantification without labeled data
  publication-title: J. Comput. Phys.
– volume: 18
  issue: 153
  year: 2018
  ident: 10.1016/j.jcp.2022.111230_br0020
  article-title: Automatic differentiation in machine learning: a survey
  publication-title: J. Mach. Learn. Res.
– volume: 275
  start-page: 182
  issue: 3
  year: 2003
  ident: 10.1016/j.jcp.2022.111230_br0240
  article-title: Unsaturated flow in heterogeneous soils with spatially distributed uncertain hydraulic parameters
  publication-title: J. Hydrol.
  doi: 10.1016/S0022-1694(03)00042-8
– year: 2005
  ident: 10.1016/j.jcp.2022.111230_br0060
– volume: 395
  start-page: 247
  year: 2019
  ident: 10.1016/j.jcp.2022.111230_br0010
  article-title: Approximate Bayesian model inversion for PDEs with heterogeneous and state-dependent coefficients
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2019.06.010
– volume: 56
  issue: 5
  year: 2020
  ident: 10.1016/j.jcp.2022.111230_br0220
  article-title: Physics-informed deep neural networks for learning parameters and constitutive relationships in subsurface flow problems
  publication-title: Water Resour. Res.
  doi: 10.1029/2019WR026731
– ident: 10.1016/j.jcp.2022.111230_br0040
– volume: 43
  issue: 7
  year: 2007
  ident: 10.1016/j.jcp.2022.111230_br0150
  article-title: Stochastic uncertainty analysis for solute transport in randomly heterogeneous media using a Karhunen-Loéve-based moment equation approach
  publication-title: Water Resour. Res.
  doi: 10.1029/2006WR005193
– volume: 26
  start-page: 698
  issue: 2
  year: 2004
  ident: 10.1016/j.jcp.2022.111230_br0070
  article-title: Numerical challenges in the use of polynomial chaos representations for stochastic processes
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/S1064827503427741
– volume: 13
  start-page: 79
  issue: 1
  year: 1997
  ident: 10.1016/j.jcp.2022.111230_br0090
  article-title: A regularizing Levenberg - Marquardt scheme, with applications to inverse groundwater filtration problems
  publication-title: Inverse Probl.
  doi: 10.1088/0266-5611/13/1/007
– year: 2020
  ident: 10.1016/j.jcp.2022.111230_br0100
  article-title: Physics-informed neural networks for multiphysics data assimilation with application to subsurface transport
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2020.103610
– start-page: 63
  year: 2003
  ident: 10.1016/j.jcp.2022.111230_br0210
  article-title: Gaussian processes in machine learning
– volume: 394
  start-page: 56
  year: 2019
  ident: 10.1016/j.jcp.2022.111230_br0290
  article-title: Physics-constrained deep learning for high-dimensional surrogate modeling and uncertainty quantification without labeled data
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2019.05.024
– year: 1985
  ident: 10.1016/j.jcp.2022.111230_br0030
– volume: 6
  start-page: 826
  issue: 4
  year: 2009
  ident: 10.1016/j.jcp.2022.111230_br0160
  article-title: A stochastic collocation approach to Bayesian inference in inverse problems
  publication-title: Commun. Comput. Phys.
  doi: 10.4208/cicp.2009.v6.p826
– volume: 2014
  start-page: 21
  year: 2014
  ident: 10.1016/j.jcp.2022.111230_br0190
  article-title: Conditional stochastic simulations of flow and transport with Karhunen-Loe've expansions, stochastic collocation, and sequential gaussian simulation
  publication-title: J. Appl. Math.
  doi: 10.1155/2014/652594
– volume: 2
  start-page: 359
  issue: 5
  year: 1989
  ident: 10.1016/j.jcp.2022.111230_br0110
  article-title: Multilayer feedforward networks are universal approximators
  publication-title: Neural Netw.
  doi: 10.1016/0893-6080(89)90020-8
– volume: 9
  start-page: 987
  issue: 5
  year: 1998
  ident: 10.1016/j.jcp.2022.111230_br0120
  article-title: Artificial neural networks for solving ordinary and partial differential equations
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.712178
– ident: 10.1016/j.jcp.2022.111230_br0270
– volume: 426
  year: 2021
  ident: 10.1016/j.jcp.2022.111230_br0230
  article-title: Physics-informed machine learning with conditional Karhunen-Loève expansions
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2020.109904
– volume: 228
  start-page: 1862
  issue: 6
  year: 2009
  ident: 10.1016/j.jcp.2022.111230_br0170
  article-title: Dimensionality reduction and polynomial chaos acceleration of Bayesian inference in inverse problems
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2008.11.024
– volume: 2
  start-page: 66
  issue: 2
  year: 1990
  ident: 10.1016/j.jcp.2022.111230_br0050
  article-title: An algorithm for solving the inverse conductivity problem
  publication-title: Int. J. Imaging Syst. Technol.
  doi: 10.1002/ima.1850020203
– volume: 16
  start-page: 1010
  issue: 4
  year: 2014
  ident: 10.1016/j.jcp.2022.111230_br0130
  article-title: Conditional simulation of flow in heterogeneous porous media with the probabilistic collocation method
  publication-title: Commun. Comput. Phys.
  doi: 10.4208/cicp.090513.040414a
– year: 1990
  ident: 10.1016/j.jcp.2022.111230_br0260
– volume: 32
  start-page: 1131
  issue: 5
  year: 1996
  ident: 10.1016/j.jcp.2022.111230_br0180
  article-title: A reassessment of the groundwater inverse problem
  publication-title: Water Resour. Res.
  doi: 10.1029/96WR00160
– year: 2016
  ident: 10.1016/j.jcp.2022.111230_br0080
– volume: 416
  start-page: 109
  year: 2020
  ident: 10.1016/j.jcp.2022.111230_br0140
  article-title: Gaussian process regression and conditional polynomial chaos for parameter estimation
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2020.109520
– volume: 366
  start-page: 415
  year: 2018
  ident: 10.1016/j.jcp.2022.111230_br0280
  article-title: Bayesian deep convolutional encoder–decoder networks for surrogate modeling and uncertainty quantification
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2018.04.018
– volume: 378
  start-page: 686
  year: 2019
  ident: 10.1016/j.jcp.2022.111230_br0200
  article-title: Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2018.10.045
– volume: 418
  year: 2020
  ident: 10.1016/j.jcp.2022.111230_br0250
  article-title: Conditional Karhunen-Loève expansion for uncertainty quantification and active learning in partial differential equation models
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2020.109604
SSID ssj0008548
Score 2.4417765
Snippet •Unknown parameters are modeled with conditional Karhunen-Loéve (CKL) expansions to enforce known correlation structures.•State variable is approximated with a...
We present the PI-CKL-NN method for parameter estimation in differential equation (DE) models given sparse measurements of the parameters and states. In the...
SourceID osti
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 111230
SubjectTerms Approximation
Artificial neural networks
Computational physics
Conditional Karhunen-Loéve expansions
Cost function
Deep neural networks
Differential equations
Inverse problems
Machine learning
Neural networks
Parameter estimation
Physics
Physics-informed machine learning
Regularization
Time dependence
Title Physics-informed Karhunen-Loéve and neural network approximations for solving inverse differential equation problems
URI https://dx.doi.org/10.1016/j.jcp.2022.111230
https://www.proquest.com/docview/2687833872
https://www.osti.gov/biblio/1864907
Volume 462
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZQWVh4I0oL8sCEFEgcx0nGCoHKqxOV2CzHdkQRSoG0iIn_w-_gj3EXOyAEYmBM4nMi3_keznd3hOxzxoxQeFAFtj3gIlZBkXIViLJMNFOR0QITha9GYjjm5zfJzQI5bnNhEFbpdb_T6Y229neO_GoePUwmmOPLMIc-YogzAD8FM9h5ilJ--PoF88gS7rQxQhFgdPtns8F43WksWckYKg6GQOjfbVNnCtvth7JuLNDpKln2riMduK9bIwu2Wicr3o2kfpPWG2TeoDp1HbiiqPDsQj3dzitbBZfT97dnS1VlKBayhNkqBwOnTW3xl4lLZKwpEFKQSjxtoJMKoRuWtr1UQCfcU_voaoRT35Gm3iTj05Pr42HguysEGg_1A5HHQuU6KUxqWK5YLCCaMWC7LESIZaK04sam4B9pHhZpEYFrWIbA1qTUzFhh4i3SqaaV3SaUoytRQGgWQ4wb45S5BUcsF7nhEQuzLgnbdZXalx7HDhj3ssWY3UlghURWSMeKLjn4JHlwdTf-GsxbZslvwiPBLvxF1kPGIgkWzNWILAKaKBM8D9Mu6bf8ln5f15KJLM0gqk_Zzv_e2SNLeOUghH3SmT3N7S64NbNir5HbPbI4OLsYjj4A7bj3CA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTtwwEB7R5UAvpRSqLrstPnBCCiSO4yRHhEDbsnACiZvl2I5YhLKUsBUn3ofn4MWYiZ0iRMWh19jjRB7Pn_PNDMC24NxKTRdVaNsjIVMdVbnQkazrzHCdWCMpUfjkVE7Oxa-L7GIJDvpcGIJVBt3vdXqnrcOTvbCbezezGeX4csqhTzjhDNBP-QDLAsWX2hjsPrzgPIpMeHVMWASc3v_a7EBeV4ZqVnJOmoMTEvrfxmkwR3l7o607E3T0GT4F35Ht-89bgyXXfIHV4EeyIKXtOiw6WKdpI18VFceO9e3lonFNNJ0_Pf5xTDeWUSVLXK3xOHDWFRe_n_lMxpYhIcNjSdcNbNYQdsOxvpkKKoVr5n77IuEstKRpN-D86PDsYBKF9gqRoVv9SJap1KXJKptbXmqeSgxnLBovhyFinWmjhXU5OkhGxFVeJegb1jHyNasNt07a9CsMmnnjvgET5EtUGJulGOSmtGTp0BMrZWlFwuNiCHG_r8qE2uPUAuNa9SCzK4WsUMQK5VkxhJ2_JDe-8MZ7k0XPLPXq9Cg0DO-RjYixREIVcw1Bi5AmKaQo43wI457fKgh2q7gs8gLD-pxv_t87t2BlcnYyVdOfp8cj-EgjHk84hsHd7cJ9Rx_nrvrRneFnjyD4lg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Physics-informed+Karhunen-Lo%C3%A9ve+and+neural+network+approximations+for+solving+inverse+differential+equation+problems&rft.jtitle=Journal+of+computational+physics&rft.au=Li%2C+Jing&rft.au=Tartakovsky%2C+Alexandre+M.&rft.date=2022-08-01&rft.issn=0021-9991&rft.volume=462&rft.spage=111230&rft_id=info:doi/10.1016%2Fj.jcp.2022.111230&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jcp_2022_111230
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9991&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9991&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9991&client=summon