A full relativistic thin disc – the physics of the plunging region and the value of the stress at the ISCO

ABSTRACT The widely used Novikov–Thorne relativistic thin disc equations are only valid down to the radius of the innermost stable circular orbit (ISCO). This leads to an undetermined boundary condition at the ISCO, known as the inner stress of the disc, which sets the luminosity of the disc at the...

Full description

Saved in:
Bibliographic Details
Published inMonthly notices of the Royal Astronomical Society Vol. 503; no. 4; pp. 5025 - 5045
Main Author Potter, William J
Format Journal Article
LanguageEnglish
Published Oxford University Press 01.06.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract ABSTRACT The widely used Novikov–Thorne relativistic thin disc equations are only valid down to the radius of the innermost stable circular orbit (ISCO). This leads to an undetermined boundary condition at the ISCO, known as the inner stress of the disc, which sets the luminosity of the disc at the ISCO and introduces considerable ambiguity in accurately determining the mass, spin, and accretion rate of black holes from observed spectra. We resolve this ambiguity by self-consistently extending the relativistic disc solution through the ISCO to the black hole horizon by calculating the inspiral of an average disc particle subject to turbulent disc forces, using a new particle-in-disc technique. Traditionally it has been assumed that the stress at the ISCO is zero, with material plunging approximately radially into the black hole at close to the speed of light. We demonstrate that in fact the inspiral is less severe, with several (∼4–17) orbits completed before the horizon. This leads to a small non-zero stress and luminosity at and inside the ISCO, with a local surface temperature at the ISCO between ∼0.15 and 0.3 times the maximum surface temperature of the disc, in the case where no dynamically important net magnetic field is present. For a range of disc parameters we calculate the value of the inner stress/surface temperature, which is required when fitting relativistic thin disc models to observations. We resolve a problem in relativistic slim disc models in which turbulent heating becomes inaccurate and falls to zero inside the plunging region.
AbstractList ABSTRACT The widely used Novikov–Thorne relativistic thin disc equations are only valid down to the radius of the innermost stable circular orbit (ISCO). This leads to an undetermined boundary condition at the ISCO, known as the inner stress of the disc, which sets the luminosity of the disc at the ISCO and introduces considerable ambiguity in accurately determining the mass, spin, and accretion rate of black holes from observed spectra. We resolve this ambiguity by self-consistently extending the relativistic disc solution through the ISCO to the black hole horizon by calculating the inspiral of an average disc particle subject to turbulent disc forces, using a new particle-in-disc technique. Traditionally it has been assumed that the stress at the ISCO is zero, with material plunging approximately radially into the black hole at close to the speed of light. We demonstrate that in fact the inspiral is less severe, with several (∼4–17) orbits completed before the horizon. This leads to a small non-zero stress and luminosity at and inside the ISCO, with a local surface temperature at the ISCO between ∼0.15 and 0.3 times the maximum surface temperature of the disc, in the case where no dynamically important net magnetic field is present. For a range of disc parameters we calculate the value of the inner stress/surface temperature, which is required when fitting relativistic thin disc models to observations. We resolve a problem in relativistic slim disc models in which turbulent heating becomes inaccurate and falls to zero inside the plunging region.
The widely used Novikov–Thorne relativistic thin disc equations are only valid down to the radius of the innermost stable circular orbit (ISCO). This leads to an undetermined boundary condition at the ISCO, known as the inner stress of the disc, which sets the luminosity of the disc at the ISCO and introduces considerable ambiguity in accurately determining the mass, spin, and accretion rate of black holes from observed spectra. We resolve this ambiguity by self-consistently extending the relativistic disc solution through the ISCO to the black hole horizon by calculating the inspiral of an average disc particle subject to turbulent disc forces, using a new particle-in-disc technique. Traditionally it has been assumed that the stress at the ISCO is zero, with material plunging approximately radially into the black hole at close to the speed of light. We demonstrate that in fact the inspiral is less severe, with several (∼4–17) orbits completed before the horizon. This leads to a small non-zero stress and luminosity at and inside the ISCO, with a local surface temperature at the ISCO between ∼0.15 and 0.3 times the maximum surface temperature of the disc, in the case where no dynamically important net magnetic field is present. For a range of disc parameters we calculate the value of the inner stress/surface temperature, which is required when fitting relativistic thin disc models to observations. We resolve a problem in relativistic slim disc models in which turbulent heating becomes inaccurate and falls to zero inside the plunging region.
Author Potter, William J
Author_xml – sequence: 1
  givenname: William J
  orcidid: 0000-0001-9155-6976
  surname: Potter
  fullname: Potter, William J
  email: willpotter37@gmail.com
BookMark eNqFkM1KAzEURoNUsK0u3WfpZuzNpMlklqX4Uyi4UNdDJpO0kTRTkkyhO9_BN_RJHNu6EcTV5buc7144IzTwrdcIXRO4JVDSycYHGScxyZpTfoaGhHKW5SXnAzQEoCwTBSEXaBTjGwBMac6HyM2w6ZzDQTuZ7M7GZBVOa-txY6PCn-8ffdJ4u95HqyJuzTG6zq-sX_W1lW09lr457HfSdfoHiinoGLFMh7R4nj9donMjXdRXpzlGr_d3L_PHbPn0sJjPlpmiUKbMCMYVCAGNMbyWLBeKClaWNZOiLCCHqSgkqNIAYUyJaWFAibxgquaNII2iY5Qd76rQxhi0qbbBbmTYVwSqb1XVQVV1UtXz9BevbOp1tD4Fad2frZtjq-22_zz4Aq8Mgb4
CitedBy_id crossref_primary_10_1093_mnras_stad641
crossref_primary_10_1051_0004_6361_202142847
crossref_primary_10_1103_PhysRevLett_129_161101
Cites_doi 10.1146/annurev.astro.44.051905.092532
10.3847/1538-4357/aa6a52
10.1086/304956
10.1093/mnras/233.2.489
10.1046/j.1365-8711.1998.01774.x
10.1111/j.1365-2966.2012.21074.x
10.1051/0004-6361:20077943
10.1111/j.1365-2966.2006.10256.x
10.1111/j.1745-3933.2011.01147.x
10.1016/0003-4916(79)90130-1
10.1088/0004-637X/707/1/833
10.1086/312207
10.1086/500385
10.3847/2041-8213/ab0ec7
10.1086/178004
10.1086/175311
10.1017/CBO9781139164245
10.1086/305521
10.1093/mnras/168.3.603
10.1111/j.1365-2966.2011.20084.x
10.1086/164534
10.1093/pasj/55.6.L69
10.1051/0004-6361/201014467
10.1086/169847
10.1086/533492
10.1093/mnras/286.3.681
10.1111/j.1365-2966.2008.13710.x
10.1086/308177
10.1051/0004-6361:20077942
10.1093/mnras/stv2815
10.1051/0004-6361/201015256
10.1086/303869
10.1086/166683
10.1093/mnras/stz834
10.1007/BFb0084028
10.1111/j.1745-3933.2009.00625.x
10.1088/0004-637X/692/1/411
10.1088/0004-637X/743/2/115
10.1088/0067-0049/183/2/171
10.1093/mnras/stv2286
10.1086/427278
10.1086/306054
10.1103/PhysRev.36.1791
10.1086/152990
10.1007/s00159-007-0006-1
10.1086/426071
10.1086/374594
10.1086/527346
10.1103/PhysRev.58.919
10.1086/593148
10.1111/j.1365-2966.2010.17170.x
10.1146/annurev-astro-082812-141003
10.1086/428089
10.1088/0004-637X/711/2/959
10.1086/373949
10.1093/mnras/179.3.433
10.1103/PhysRev.35.904
10.1093/mnras/268.1.29
ContentType Journal Article
Copyright 2021 The Author(s). Published by Oxford University Press on behalf of Royal Astronomical Society. 2021
Copyright_xml – notice: 2021 The Author(s). Published by Oxford University Press on behalf of Royal Astronomical Society. 2021
DBID TOX
AAYXX
CITATION
DOI 10.1093/mnras/stab636
DatabaseName Oxford Journals Open Access Collection
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: TOX
  name: Oxford University Press Journals Open Access
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Astronomy & Astrophysics
EISSN 1365-2966
EndPage 5045
ExternalDocumentID 10_1093_mnras_stab636
10.1093/mnras/stab636
GroupedDBID -DZ
-~X
.2P
.3N
.GA
.I3
.Y3
0R~
10A
123
1OC
1TH
29M
2WC
31~
4.4
48X
51W
51X
52M
52N
52O
52P
52S
52T
52W
52X
5HH
5LA
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8UM
AAHHS
AAHTB
AAIJN
AAJKP
AAJQQ
AAKDD
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AASNB
AAUQX
AAVAP
ABCQN
ABCQX
ABEML
ABEUO
ABFSI
ABIXL
ABJNI
ABNKS
ABPEJ
ABPTD
ABQLI
ABSAR
ABSMQ
ABTAH
ABXVV
ABZBJ
ACBNA
ACBWZ
ACCFJ
ACFRR
ACGFO
ACGFS
ACGOD
ACNCT
ACSCC
ACUFI
ACUTJ
ACXQS
ACYRX
ACYTK
ADEYI
ADGZP
ADHKW
ADHZD
ADOCK
ADQBN
ADRDM
ADRIX
ADRTK
ADVEK
ADYVW
ADZXQ
AECKG
AEEZP
AEGPL
AEJOX
AEKKA
AEKSI
AEMDU
AENEX
AENZO
AEPUE
AEQDE
AETBJ
AETEA
AEWNT
AFBPY
AFEBI
AFFNX
AFFZL
AFIYH
AFOFC
AFXEN
AFZJQ
AGINJ
AGMDO
AGSYK
AHXPO
AIWBW
AJAOE
AJBDE
AJEEA
AJEUX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
APIBT
ASAOO
ASPBG
ATDFG
AVWKF
AXUDD
AZFZN
AZVOD
BAYMD
BCRHZ
BDRZF
BEFXN
BEYMZ
BFFAM
BFHJK
BGNUA
BHONS
BKEBE
BPEOZ
BQUQU
BTQHN
BY8
CAG
CDBKE
CO8
COF
CXTWN
D-E
D-F
DAKXR
DCZOG
DFGAJ
DILTD
DR2
DU5
D~K
E.L
E3Z
EAD
EAP
EBS
EE~
EJD
ESX
F00
F04
F5P
F9B
FEDTE
FLIZI
FLUFQ
FOEOM
FRJ
GAUVT
GJXCC
GROUPED_DOAJ
H13
H5~
HAR
HF~
HOLLA
HVGLF
HW0
HZI
HZ~
IHE
IX1
J21
JAVBF
K48
KBUDW
KOP
KQ8
KSI
KSN
L7B
LC2
LC3
LH4
LP6
LP7
LW6
M43
MBTAY
MK4
NGC
NMDNZ
NOMLY
O0~
O9-
OCL
ODMLO
OHT
OIG
OJQWA
OK1
P2P
P2X
P4D
PAFKI
PB-
PEELM
PQQKQ
Q1.
Q11
Q5Y
QB0
RHF
RNP
RNS
ROL
ROX
ROZ
RUSNO
RW1
RX1
RXO
TJP
TN5
TOX
UB1
UQL
V8K
VOH
W8V
W99
WH7
WQJ
WRC
WYUIH
X5Q
X5S
XG1
YAYTL
YKOAZ
YXANX
ZY4
AAYXX
ABAZT
ABEJV
ABGNP
ABVLG
ACUXJ
AHGBF
ALXQX
AMNDL
ANAKG
CITATION
JXSIZ
ID FETCH-LOGICAL-c309t-f856c0880dff6ba528c38599b5a897020487a0c9f0155c847f0c8275cb6d81dc3
IEDL.DBID TOX
ISSN 0035-8711
IngestDate Tue Jul 01 01:23:26 EDT 2025
Thu Apr 24 22:50:50 EDT 2025
Wed Aug 28 03:17:31 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords relativistic processes
black hole physics
X-rays: binaries
galaxies: active
accretion, accretion discs
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c309t-f856c0880dff6ba528c38599b5a897020487a0c9f0155c847f0c8275cb6d81dc3
ORCID 0000-0001-9155-6976
OpenAccessLink https://dx.doi.org/10.1093/mnras/stab636
PageCount 21
ParticipantIDs crossref_primary_10_1093_mnras_stab636
crossref_citationtrail_10_1093_mnras_stab636
oup_primary_10_1093_mnras_stab636
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-06-01
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-06-01
  day: 01
PublicationDecade 2020
PublicationTitle Monthly notices of the Royal Astronomical Society
PublicationYear 2021
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References McKinney (2021051108385297200_bib37) 2009; 394
Novikov (2021051108385297200_bib46) 1973
Lynden-Bell (2021051108385297200_bib34) 1974; 168
Abramowicz (2021051108385297200_bib1) 1990; 245
Paczyński (2021051108385297200_bib47) 2000
Anderson (2021051108385297200_bib7) 1988; 233
Makishima (2021051108385297200_bib35) 1986; 308
Narayan (2021051108385297200_bib42) 2003; 55
Papaloizou (2021051108385297200_bib50) 1994; 268
Blandford (2021051108385297200_bib1_907_1616845545030) 1977; 179
Gammie (2021051108385297200_bib24) 2003; 589
Frank (2021051108385297200_bib19) 2002
Davis (2021051108385297200_bib13) 2005; 621
Fromang (2021051108385297200_bib21) 2007; 476
Shakura (2021051108385297200_bib62) 1973; 24
Sądowski (2021051108385297200_bib65) 2009; 183
Li (2021051108385297200_bib31) 2005; 157
Remillard (2021051108385297200_bib57) 2006; 44
Penna (2021051108385297200_bib52) 2010; 408
Simon (2021051108385297200_bib64) 2009; 707
De Villiers (2021051108385297200_bib14) 2003; 589
Shafee (2021051108385297200_bib60) 2008; 676
Event Horizon Telescope Collaboration (2021051108385297200_bib17) 2019; 875
Press (2021051108385297200_bib56) 1992
Paczynski (2021051108385297200_bib48) 1981; 31
Israel (2021051108385297200_bib29) 1979; 118
Noble (2021051108385297200_bib45) 2011; 743
Ginzburg (2021051108385297200_bib25) 1967
McKinney (2021051108385297200_bib38) 2012; 423
Fromang (2021051108385297200_bib20) 2007; 476
Frank (2021051108385297200_bib18) 1992
Zimmerman (2021051108385297200_bib71) 2005; 618
Shi (2021051108385297200_bib63) 2016; 456
Eckart (2021051108385297200_bib16) 1940; 58
Abramowicz (2021051108385297200_bib2) 1988; 332
Tolman (2021051108385297200_bib69) 1930; 36
Hawley (2021051108385297200_bib27) 1995; 440
Page (2021051108385297200_bib49) 1974; 191
Lopez-Monsalvo (2021051108385297200_bib33) 2011
Penna (2021051108385297200_bib53) 2012; 420
Popham (2021051108385297200_bib55) 1991; 370
Abramowicz (2021051108385297200_bib5) 2010; 521
Beckwith (2021051108385297200_bib9) 2008; 390
Agol (2021051108385297200_bib6) 2000; 528
Gammie (2021051108385297200_bib22) 1999; 522
Lasota (2021051108385297200_bib30) 1994
Done (2021051108385297200_bib15) 2007; 15
Igumenshchev (2021051108385297200_bib28) 1998; 298
Muchotrzeb (2021051108385297200_bib41) 1982; 32
Tolman (2021051108385297200_bib68) 1930; 35
Mitsuda (2021051108385297200_bib40) 1984; 36
Ryan (2021051108385297200_bib59) 2017; 840
Carter (2021051108385297200_bib12) 1989
Popham (2021051108385297200_bib54) 1998; 504
Beloborodov (2021051108385297200_bib11) 1997; 491
Tchekhovskoy (2021051108385297200_bib67) 2011; 418
Beckwith (2021051108385297200_bib10) 2008; 678
Hawley (2021051108385297200_bib26) 2006; 641
Noble (2021051108385297200_bib43) 2009; 692
Ross (2021051108385297200_bib58) 2016; 455
Shafee (2021051108385297200_bib61) 2008; 687
Misner (2021051108385297200_bib39) 1973
Abramowicz (2021051108385297200_bib3) 1996; 471
Abramowicz (2021051108385297200_bib4) 1997; 479
Yuan (2021051108385297200_bib70) 2014; 52
Liska (2021051108385297200_bib32) 2019; 487
Arnaud (2021051108385297200_bib8) 1996
Gammie (2021051108385297200_bib23) 1998; 498
Noble (2021051108385297200_bib44) 2010; 711
Peitz (2021051108385297200_bib51) 1997; 286
McKinney (2021051108385297200_bib36) 2006; 368
Sądowski (2021051108385297200_bib66) 2011; 527
References_xml – volume: 44
  start-page: 49
  year: 2006
  ident: 2021051108385297200_bib57
  publication-title: ARA&A
  doi: 10.1146/annurev.astro.44.051905.092532
– start-page: 341
  volume-title: NATO Advanced Study Institute (ASI) Series C, Vol. 417, Theory of Accretion Disks – 2
  year: 1994
  ident: 2021051108385297200_bib30
– start-page: 19
  volume-title: High Energy Astrophysics
  year: 1967
  ident: 2021051108385297200_bib25
– volume: 840
  start-page: 6
  year: 2017
  ident: 2021051108385297200_bib59
  publication-title: ApJ
  doi: 10.3847/1538-4357/aa6a52
– volume: 491
  start-page: 267
  year: 1997
  ident: 2021051108385297200_bib11
  publication-title: ApJ
  doi: 10.1086/304956
– volume: 233
  start-page: 489
  year: 1988
  ident: 2021051108385297200_bib7
  publication-title: MNRAS
  doi: 10.1093/mnras/233.2.489
– volume: 298
  start-page: 1069
  year: 1998
  ident: 2021051108385297200_bib28
  publication-title: MNRAS
  doi: 10.1046/j.1365-8711.1998.01774.x
– volume: 423
  start-page: 3083
  year: 2012
  ident: 2021051108385297200_bib38
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2012.21074.x
– volume: 476
  start-page: 1123
  year: 2007
  ident: 2021051108385297200_bib21
  publication-title: A&A
  doi: 10.1051/0004-6361:20077943
– volume: 368
  start-page: 1561
  year: 2006
  ident: 2021051108385297200_bib36
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2006.10256.x
– volume: 418
  start-page: L79
  year: 2011
  ident: 2021051108385297200_bib67
  publication-title: MNRAS
  doi: 10.1111/j.1745-3933.2011.01147.x
– volume: 118
  start-page: 341
  year: 1979
  ident: 2021051108385297200_bib29
  publication-title: Ann. Phys.
  doi: 10.1016/0003-4916(79)90130-1
– volume: 707
  start-page: 833
  year: 2009
  ident: 2021051108385297200_bib64
  publication-title: ApJ
  doi: 10.1088/0004-637X/707/1/833
– start-page: 343
  volume-title: Black Holes (Les Astres Occlus)
  year: 1973
  ident: 2021051108385297200_bib46
– volume: 522
  start-page: L57
  year: 1999
  ident: 2021051108385297200_bib22
  publication-title: ApJ
  doi: 10.1086/312207
– volume: 641
  start-page: 103
  year: 2006
  ident: 2021051108385297200_bib26
  publication-title: ApJ
  doi: 10.1086/500385
– volume: 24
  start-page: 337
  year: 1973
  ident: 2021051108385297200_bib62
  publication-title: A&A
– volume: 875
  start-page: L1
  year: 2019
  ident: 2021051108385297200_bib17
  publication-title: ApJ
  doi: 10.3847/2041-8213/ab0ec7
– volume: 32
  start-page: 1
  year: 1982
  ident: 2021051108385297200_bib41
  publication-title: Acta Astron.
– year: 1992
  ident: 2021051108385297200_bib56
  publication-title: Numerical Recipes in FORTRAN. The Art of Scientific Computing
– volume: 471
  start-page: 762
  year: 1996
  ident: 2021051108385297200_bib3
  publication-title: ApJ
  doi: 10.1086/178004
– start-page: 17
  volume-title: ASP Conf. Ser. Vol. 101, Astronomical Data Analysis Software and Systems V
  year: 1996
  ident: 2021051108385297200_bib8
– volume: 440
  start-page: 742
  year: 1995
  ident: 2021051108385297200_bib27
  publication-title: ApJ
  doi: 10.1086/175311
– year: 2002
  ident: 2021051108385297200_bib19
  publication-title: Accretion Power in Astrophysics
  doi: 10.1017/CBO9781139164245
– volume: 498
  start-page: 313
  year: 1998
  ident: 2021051108385297200_bib23
  publication-title: ApJ
  doi: 10.1086/305521
– volume: 168
  start-page: 603
  year: 1974
  ident: 2021051108385297200_bib34
  publication-title: MNRAS
  doi: 10.1093/mnras/168.3.603
– volume: 420
  start-page: 684
  year: 2012
  ident: 2021051108385297200_bib53
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2011.20084.x
– volume: 308
  start-page: 635
  year: 1986
  ident: 2021051108385297200_bib35
  publication-title: ApJ
  doi: 10.1086/164534
– volume: 55
  start-page: L69
  year: 2003
  ident: 2021051108385297200_bib42
  publication-title: PASJ
  doi: 10.1093/pasj/55.6.L69
– volume: 521
  start-page: A15
  year: 2010
  ident: 2021051108385297200_bib5
  publication-title: A&A
  doi: 10.1051/0004-6361/201014467
– volume: 370
  start-page: 604
  year: 1991
  ident: 2021051108385297200_bib55
  publication-title: ApJ
  doi: 10.1086/169847
– volume: 678
  start-page: 1180
  year: 2008
  ident: 2021051108385297200_bib10
  publication-title: ApJ
  doi: 10.1086/533492
– volume: 286
  start-page: 681
  year: 1997
  ident: 2021051108385297200_bib51
  publication-title: MNRAS
  doi: 10.1093/mnras/286.3.681
– volume: 390
  start-page: 21
  year: 2008
  ident: 2021051108385297200_bib9
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2008.13710.x
– volume: 528
  start-page: 161
  year: 2000
  ident: 2021051108385297200_bib6
  publication-title: ApJ
  doi: 10.1086/308177
– volume: 476
  start-page: 1113
  year: 2007
  ident: 2021051108385297200_bib20
  publication-title: A&A
  doi: 10.1051/0004-6361:20077942
– volume: 31
  start-page: 283
  year: 1981
  ident: 2021051108385297200_bib48
  publication-title: Acta Astron.
– volume: 456
  start-page: 2273
  year: 2016
  ident: 2021051108385297200_bib63
  publication-title: MNRAS
  doi: 10.1093/mnras/stv2815
– volume: 527
  start-page: A17
  year: 2011
  ident: 2021051108385297200_bib66
  publication-title: A&A
  doi: 10.1051/0004-6361/201015256
– volume: 479
  start-page: 179
  year: 1997
  ident: 2021051108385297200_bib4
  publication-title: ApJ
  doi: 10.1086/303869
– year: 2011
  ident: 2021051108385297200_bib33
  publication-title: PhD thesis, School of Mathematics
– volume: 332
  start-page: 646
  year: 1988
  ident: 2021051108385297200_bib2
  publication-title: ApJ
  doi: 10.1086/166683
– volume: 487
  start-page: 550
  year: 2019
  ident: 2021051108385297200_bib32
  publication-title: MNRAS
  doi: 10.1093/mnras/stz834
– start-page: 1
  volume-title: Lecture Notes in Mathematics Vol. 1385, Relativistic Fluid Dynamics
  year: 1989
  ident: 2021051108385297200_bib12
  doi: 10.1007/BFb0084028
– volume: 394
  start-page: L126
  year: 2009
  ident: 2021051108385297200_bib37
  publication-title: MNRAS
  doi: 10.1111/j.1745-3933.2009.00625.x
– volume: 692
  start-page: 411
  year: 2009
  ident: 2021051108385297200_bib43
  publication-title: ApJ
  doi: 10.1088/0004-637X/692/1/411
– year: 1992
  ident: 2021051108385297200_bib18
  publication-title: Accretion Power in Astrophysics
– volume: 743
  start-page: 115
  year: 2011
  ident: 2021051108385297200_bib45
  publication-title: ApJ
  doi: 10.1088/0004-637X/743/2/115
– volume: 183
  start-page: 171
  year: 2009
  ident: 2021051108385297200_bib65
  publication-title: ApJS
  doi: 10.1088/0067-0049/183/2/171
– volume: 245
  start-page: 720
  year: 1990
  ident: 2021051108385297200_bib1
  publication-title: MNRAS
– year: 2000
  ident: 2021051108385297200_bib47
– volume: 36
  start-page: 741
  year: 1984
  ident: 2021051108385297200_bib40
  publication-title: PASJ
– volume: 455
  start-page: 526
  year: 2016
  ident: 2021051108385297200_bib58
  publication-title: MNRAS
  doi: 10.1093/mnras/stv2286
– volume: 621
  start-page: 372
  year: 2005
  ident: 2021051108385297200_bib13
  publication-title: ApJ
  doi: 10.1086/427278
– volume: 504
  start-page: 419
  year: 1998
  ident: 2021051108385297200_bib54
  publication-title: ApJ
  doi: 10.1086/306054
– volume: 36
  start-page: 1791
  year: 1930
  ident: 2021051108385297200_bib69
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.36.1791
– volume: 191
  start-page: 499
  year: 1974
  ident: 2021051108385297200_bib49
  publication-title: ApJ
  doi: 10.1086/152990
– volume: 15
  start-page: 1
  year: 2007
  ident: 2021051108385297200_bib15
  publication-title: A&AR
  doi: 10.1007/s00159-007-0006-1
– volume: 618
  start-page: 832
  year: 2005
  ident: 2021051108385297200_bib71
  publication-title: ApJ
  doi: 10.1086/426071
– volume: 589
  start-page: 444
  year: 2003
  ident: 2021051108385297200_bib24
  publication-title: ApJ
  doi: 10.1086/374594
– volume: 676
  start-page: 549
  year: 2008
  ident: 2021051108385297200_bib60
  publication-title: ApJ
  doi: 10.1086/527346
– volume: 58
  start-page: 919
  year: 1940
  ident: 2021051108385297200_bib16
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.58.919
– volume: 687
  start-page: L25
  year: 2008
  ident: 2021051108385297200_bib61
  publication-title: ApJ
  doi: 10.1086/593148
– volume: 408
  start-page: 752
  year: 2010
  ident: 2021051108385297200_bib52
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2010.17170.x
– volume: 52
  start-page: 529
  year: 2014
  ident: 2021051108385297200_bib70
  publication-title: ARA&A
  doi: 10.1146/annurev-astro-082812-141003
– volume: 157
  start-page: 335
  year: 2005
  ident: 2021051108385297200_bib31
  publication-title: ApJS
  doi: 10.1086/428089
– volume: 711
  start-page: 959
  year: 2010
  ident: 2021051108385297200_bib44
  publication-title: ApJ
  doi: 10.1088/0004-637X/711/2/959
– volume: 589
  start-page: 458
  year: 2003
  ident: 2021051108385297200_bib14
  publication-title: ApJ
  doi: 10.1086/373949
– volume: 179
  start-page: 433
  year: 1977
  ident: 2021051108385297200_bib1_907_1616845545030
  publication-title: MNRAS
  doi: 10.1093/mnras/179.3.433
– volume: 35
  start-page: 904
  year: 1930
  ident: 2021051108385297200_bib68
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.35.904
– year: 1973
  ident: 2021051108385297200_bib39
  publication-title: Gravitation
– volume: 268
  start-page: 29
  year: 1994
  ident: 2021051108385297200_bib50
  publication-title: MNRAS
  doi: 10.1093/mnras/268.1.29
SSID ssj0004326
Score 2.4005837
Snippet ABSTRACT The widely used Novikov–Thorne relativistic thin disc equations are only valid down to the radius of the innermost stable circular orbit (ISCO). This...
The widely used Novikov–Thorne relativistic thin disc equations are only valid down to the radius of the innermost stable circular orbit (ISCO). This leads to...
SourceID crossref
oup
SourceType Enrichment Source
Index Database
Publisher
StartPage 5025
Title A full relativistic thin disc – the physics of the plunging region and the value of the stress at the ISCO
Volume 503
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA7iky-iU9m8jAiyJ8tq27TJ4xiOKehAN9hbSdJEB10rayf45n_wH_pLzEk7L3jBt572pA85pefLSb7vIHTiuVpHrps4VKjECYgmjjDLBIfrhDGpBEiqwWmL63A4CS6nZFrXO4oftvCZ351nC150DVYSoQ_a2iYBg0j-eDT9IED6tq-a1V80K4CzWkzz2-gvyQcIbZ9yyWALbdYgEPeqqG2jNZU1ULNXQFk6nz_hDrbXVdWhaKDWlYG2-cJWwM3DfjozONNaOyjtYSih44qU8mh1l3F5P8swEG7x6_OLsRSu34VzXZnpEoQI7zA0ZsgzzLPE3gftb7VyqngkmJfWurjtj3bRZHA-7g-duoWCI32XlY6mJJTmR-ImWoeCE49KnxLGBOGURUCMpRF3JdMAnaTJVNqV1IuIFGFikKz099B6lmeqibBSnAdKRAy6-8ok5FS6gQgjM0RFWqkWOl3NbSxrfXFoc5HG1T63H9tQxHUoWqjz7v5QCWv85nhsAvW3z_4_fA7QhgfnUWwF5RCtl4ulOjKAohRtA6VvvLb9pN4AIHfO6g
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+full+relativistic+thin+disc+%E2%80%93+the+physics+of+the+plunging+region+and+the+value+of+the+stress+at+the+ISCO&rft.jtitle=Monthly+notices+of+the+Royal+Astronomical+Society&rft.au=Potter%2C+William+J&rft.date=2021-06-01&rft.pub=Oxford+University+Press&rft.issn=0035-8711&rft.eissn=1365-2966&rft.volume=503&rft.issue=4&rft.spage=5025&rft.epage=5045&rft_id=info:doi/10.1093%2Fmnras%2Fstab636&rft.externalDocID=10.1093%2Fmnras%2Fstab636
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0035-8711&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0035-8711&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0035-8711&client=summon