A full relativistic thin disc – the physics of the plunging region and the value of the stress at the ISCO
ABSTRACT The widely used Novikov–Thorne relativistic thin disc equations are only valid down to the radius of the innermost stable circular orbit (ISCO). This leads to an undetermined boundary condition at the ISCO, known as the inner stress of the disc, which sets the luminosity of the disc at the...
Saved in:
Published in | Monthly notices of the Royal Astronomical Society Vol. 503; no. 4; pp. 5025 - 5045 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Oxford University Press
01.06.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | ABSTRACT
The widely used Novikov–Thorne relativistic thin disc equations are only valid down to the radius of the innermost stable circular orbit (ISCO). This leads to an undetermined boundary condition at the ISCO, known as the inner stress of the disc, which sets the luminosity of the disc at the ISCO and introduces considerable ambiguity in accurately determining the mass, spin, and accretion rate of black holes from observed spectra. We resolve this ambiguity by self-consistently extending the relativistic disc solution through the ISCO to the black hole horizon by calculating the inspiral of an average disc particle subject to turbulent disc forces, using a new particle-in-disc technique. Traditionally it has been assumed that the stress at the ISCO is zero, with material plunging approximately radially into the black hole at close to the speed of light. We demonstrate that in fact the inspiral is less severe, with several (∼4–17) orbits completed before the horizon. This leads to a small non-zero stress and luminosity at and inside the ISCO, with a local surface temperature at the ISCO between ∼0.15 and 0.3 times the maximum surface temperature of the disc, in the case where no dynamically important net magnetic field is present. For a range of disc parameters we calculate the value of the inner stress/surface temperature, which is required when fitting relativistic thin disc models to observations. We resolve a problem in relativistic slim disc models in which turbulent heating becomes inaccurate and falls to zero inside the plunging region. |
---|---|
AbstractList | ABSTRACT
The widely used Novikov–Thorne relativistic thin disc equations are only valid down to the radius of the innermost stable circular orbit (ISCO). This leads to an undetermined boundary condition at the ISCO, known as the inner stress of the disc, which sets the luminosity of the disc at the ISCO and introduces considerable ambiguity in accurately determining the mass, spin, and accretion rate of black holes from observed spectra. We resolve this ambiguity by self-consistently extending the relativistic disc solution through the ISCO to the black hole horizon by calculating the inspiral of an average disc particle subject to turbulent disc forces, using a new particle-in-disc technique. Traditionally it has been assumed that the stress at the ISCO is zero, with material plunging approximately radially into the black hole at close to the speed of light. We demonstrate that in fact the inspiral is less severe, with several (∼4–17) orbits completed before the horizon. This leads to a small non-zero stress and luminosity at and inside the ISCO, with a local surface temperature at the ISCO between ∼0.15 and 0.3 times the maximum surface temperature of the disc, in the case where no dynamically important net magnetic field is present. For a range of disc parameters we calculate the value of the inner stress/surface temperature, which is required when fitting relativistic thin disc models to observations. We resolve a problem in relativistic slim disc models in which turbulent heating becomes inaccurate and falls to zero inside the plunging region. The widely used Novikov–Thorne relativistic thin disc equations are only valid down to the radius of the innermost stable circular orbit (ISCO). This leads to an undetermined boundary condition at the ISCO, known as the inner stress of the disc, which sets the luminosity of the disc at the ISCO and introduces considerable ambiguity in accurately determining the mass, spin, and accretion rate of black holes from observed spectra. We resolve this ambiguity by self-consistently extending the relativistic disc solution through the ISCO to the black hole horizon by calculating the inspiral of an average disc particle subject to turbulent disc forces, using a new particle-in-disc technique. Traditionally it has been assumed that the stress at the ISCO is zero, with material plunging approximately radially into the black hole at close to the speed of light. We demonstrate that in fact the inspiral is less severe, with several (∼4–17) orbits completed before the horizon. This leads to a small non-zero stress and luminosity at and inside the ISCO, with a local surface temperature at the ISCO between ∼0.15 and 0.3 times the maximum surface temperature of the disc, in the case where no dynamically important net magnetic field is present. For a range of disc parameters we calculate the value of the inner stress/surface temperature, which is required when fitting relativistic thin disc models to observations. We resolve a problem in relativistic slim disc models in which turbulent heating becomes inaccurate and falls to zero inside the plunging region. |
Author | Potter, William J |
Author_xml | – sequence: 1 givenname: William J orcidid: 0000-0001-9155-6976 surname: Potter fullname: Potter, William J email: willpotter37@gmail.com |
BookMark | eNqFkM1KAzEURoNUsK0u3WfpZuzNpMlklqX4Uyi4UNdDJpO0kTRTkkyhO9_BN_RJHNu6EcTV5buc7144IzTwrdcIXRO4JVDSycYHGScxyZpTfoaGhHKW5SXnAzQEoCwTBSEXaBTjGwBMac6HyM2w6ZzDQTuZ7M7GZBVOa-txY6PCn-8ffdJ4u95HqyJuzTG6zq-sX_W1lW09lr457HfSdfoHiinoGLFMh7R4nj9donMjXdRXpzlGr_d3L_PHbPn0sJjPlpmiUKbMCMYVCAGNMbyWLBeKClaWNZOiLCCHqSgkqNIAYUyJaWFAibxgquaNII2iY5Qd76rQxhi0qbbBbmTYVwSqb1XVQVV1UtXz9BevbOp1tD4Fad2frZtjq-22_zz4Aq8Mgb4 |
CitedBy_id | crossref_primary_10_1093_mnras_stad641 crossref_primary_10_1051_0004_6361_202142847 crossref_primary_10_1103_PhysRevLett_129_161101 |
Cites_doi | 10.1146/annurev.astro.44.051905.092532 10.3847/1538-4357/aa6a52 10.1086/304956 10.1093/mnras/233.2.489 10.1046/j.1365-8711.1998.01774.x 10.1111/j.1365-2966.2012.21074.x 10.1051/0004-6361:20077943 10.1111/j.1365-2966.2006.10256.x 10.1111/j.1745-3933.2011.01147.x 10.1016/0003-4916(79)90130-1 10.1088/0004-637X/707/1/833 10.1086/312207 10.1086/500385 10.3847/2041-8213/ab0ec7 10.1086/178004 10.1086/175311 10.1017/CBO9781139164245 10.1086/305521 10.1093/mnras/168.3.603 10.1111/j.1365-2966.2011.20084.x 10.1086/164534 10.1093/pasj/55.6.L69 10.1051/0004-6361/201014467 10.1086/169847 10.1086/533492 10.1093/mnras/286.3.681 10.1111/j.1365-2966.2008.13710.x 10.1086/308177 10.1051/0004-6361:20077942 10.1093/mnras/stv2815 10.1051/0004-6361/201015256 10.1086/303869 10.1086/166683 10.1093/mnras/stz834 10.1007/BFb0084028 10.1111/j.1745-3933.2009.00625.x 10.1088/0004-637X/692/1/411 10.1088/0004-637X/743/2/115 10.1088/0067-0049/183/2/171 10.1093/mnras/stv2286 10.1086/427278 10.1086/306054 10.1103/PhysRev.36.1791 10.1086/152990 10.1007/s00159-007-0006-1 10.1086/426071 10.1086/374594 10.1086/527346 10.1103/PhysRev.58.919 10.1086/593148 10.1111/j.1365-2966.2010.17170.x 10.1146/annurev-astro-082812-141003 10.1086/428089 10.1088/0004-637X/711/2/959 10.1086/373949 10.1093/mnras/179.3.433 10.1103/PhysRev.35.904 10.1093/mnras/268.1.29 |
ContentType | Journal Article |
Copyright | 2021 The Author(s). Published by Oxford University Press on behalf of Royal Astronomical Society. 2021 |
Copyright_xml | – notice: 2021 The Author(s). Published by Oxford University Press on behalf of Royal Astronomical Society. 2021 |
DBID | TOX AAYXX CITATION |
DOI | 10.1093/mnras/stab636 |
DatabaseName | Oxford Journals Open Access Collection CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: TOX name: Oxford University Press Journals Open Access url: https://academic.oup.com/journals/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology Astronomy & Astrophysics |
EISSN | 1365-2966 |
EndPage | 5045 |
ExternalDocumentID | 10_1093_mnras_stab636 10.1093/mnras/stab636 |
GroupedDBID | -DZ -~X .2P .3N .GA .I3 .Y3 0R~ 10A 123 1OC 1TH 29M 2WC 31~ 4.4 48X 51W 51X 52M 52N 52O 52P 52S 52T 52W 52X 5HH 5LA 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8UM AAHHS AAHTB AAIJN AAJKP AAJQQ AAKDD AAMVS AAOGV AAPQZ AAPXW AARHZ AASNB AAUQX AAVAP ABCQN ABCQX ABEML ABEUO ABFSI ABIXL ABJNI ABNKS ABPEJ ABPTD ABQLI ABSAR ABSMQ ABTAH ABXVV ABZBJ ACBNA ACBWZ ACCFJ ACFRR ACGFO ACGFS ACGOD ACNCT ACSCC ACUFI ACUTJ ACXQS ACYRX ACYTK ADEYI ADGZP ADHKW ADHZD ADOCK ADQBN ADRDM ADRIX ADRTK ADVEK ADYVW ADZXQ AECKG AEEZP AEGPL AEJOX AEKKA AEKSI AEMDU AENEX AENZO AEPUE AEQDE AETBJ AETEA AEWNT AFBPY AFEBI AFFNX AFFZL AFIYH AFOFC AFXEN AFZJQ AGINJ AGMDO AGSYK AHXPO AIWBW AJAOE AJBDE AJEEA AJEUX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC APIBT ASAOO ASPBG ATDFG AVWKF AXUDD AZFZN AZVOD BAYMD BCRHZ BDRZF BEFXN BEYMZ BFFAM BFHJK BGNUA BHONS BKEBE BPEOZ BQUQU BTQHN BY8 CAG CDBKE CO8 COF CXTWN D-E D-F DAKXR DCZOG DFGAJ DILTD DR2 DU5 D~K E.L E3Z EAD EAP EBS EE~ EJD ESX F00 F04 F5P F9B FEDTE FLIZI FLUFQ FOEOM FRJ GAUVT GJXCC GROUPED_DOAJ H13 H5~ HAR HF~ HOLLA HVGLF HW0 HZI HZ~ IHE IX1 J21 JAVBF K48 KBUDW KOP KQ8 KSI KSN L7B LC2 LC3 LH4 LP6 LP7 LW6 M43 MBTAY MK4 NGC NMDNZ NOMLY O0~ O9- OCL ODMLO OHT OIG OJQWA OK1 P2P P2X P4D PAFKI PB- PEELM PQQKQ Q1. Q11 Q5Y QB0 RHF RNP RNS ROL ROX ROZ RUSNO RW1 RX1 RXO TJP TN5 TOX UB1 UQL V8K VOH W8V W99 WH7 WQJ WRC WYUIH X5Q X5S XG1 YAYTL YKOAZ YXANX ZY4 AAYXX ABAZT ABEJV ABGNP ABVLG ACUXJ AHGBF ALXQX AMNDL ANAKG CITATION JXSIZ |
ID | FETCH-LOGICAL-c309t-f856c0880dff6ba528c38599b5a897020487a0c9f0155c847f0c8275cb6d81dc3 |
IEDL.DBID | TOX |
ISSN | 0035-8711 |
IngestDate | Tue Jul 01 01:23:26 EDT 2025 Thu Apr 24 22:50:50 EDT 2025 Wed Aug 28 03:17:31 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | relativistic processes black hole physics X-rays: binaries galaxies: active accretion, accretion discs |
Language | English |
License | This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c309t-f856c0880dff6ba528c38599b5a897020487a0c9f0155c847f0c8275cb6d81dc3 |
ORCID | 0000-0001-9155-6976 |
OpenAccessLink | https://dx.doi.org/10.1093/mnras/stab636 |
PageCount | 21 |
ParticipantIDs | crossref_primary_10_1093_mnras_stab636 crossref_citationtrail_10_1093_mnras_stab636 oup_primary_10_1093_mnras_stab636 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-06-01 |
PublicationDateYYYYMMDD | 2021-06-01 |
PublicationDate_xml | – month: 06 year: 2021 text: 2021-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Monthly notices of the Royal Astronomical Society |
PublicationYear | 2021 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | McKinney (2021051108385297200_bib37) 2009; 394 Novikov (2021051108385297200_bib46) 1973 Lynden-Bell (2021051108385297200_bib34) 1974; 168 Abramowicz (2021051108385297200_bib1) 1990; 245 Paczyński (2021051108385297200_bib47) 2000 Anderson (2021051108385297200_bib7) 1988; 233 Makishima (2021051108385297200_bib35) 1986; 308 Narayan (2021051108385297200_bib42) 2003; 55 Papaloizou (2021051108385297200_bib50) 1994; 268 Blandford (2021051108385297200_bib1_907_1616845545030) 1977; 179 Gammie (2021051108385297200_bib24) 2003; 589 Frank (2021051108385297200_bib19) 2002 Davis (2021051108385297200_bib13) 2005; 621 Fromang (2021051108385297200_bib21) 2007; 476 Shakura (2021051108385297200_bib62) 1973; 24 Sądowski (2021051108385297200_bib65) 2009; 183 Li (2021051108385297200_bib31) 2005; 157 Remillard (2021051108385297200_bib57) 2006; 44 Penna (2021051108385297200_bib52) 2010; 408 Simon (2021051108385297200_bib64) 2009; 707 De Villiers (2021051108385297200_bib14) 2003; 589 Shafee (2021051108385297200_bib60) 2008; 676 Event Horizon Telescope Collaboration (2021051108385297200_bib17) 2019; 875 Press (2021051108385297200_bib56) 1992 Paczynski (2021051108385297200_bib48) 1981; 31 Israel (2021051108385297200_bib29) 1979; 118 Noble (2021051108385297200_bib45) 2011; 743 Ginzburg (2021051108385297200_bib25) 1967 McKinney (2021051108385297200_bib38) 2012; 423 Fromang (2021051108385297200_bib20) 2007; 476 Frank (2021051108385297200_bib18) 1992 Zimmerman (2021051108385297200_bib71) 2005; 618 Shi (2021051108385297200_bib63) 2016; 456 Eckart (2021051108385297200_bib16) 1940; 58 Abramowicz (2021051108385297200_bib2) 1988; 332 Tolman (2021051108385297200_bib69) 1930; 36 Hawley (2021051108385297200_bib27) 1995; 440 Page (2021051108385297200_bib49) 1974; 191 Lopez-Monsalvo (2021051108385297200_bib33) 2011 Penna (2021051108385297200_bib53) 2012; 420 Popham (2021051108385297200_bib55) 1991; 370 Abramowicz (2021051108385297200_bib5) 2010; 521 Beckwith (2021051108385297200_bib9) 2008; 390 Agol (2021051108385297200_bib6) 2000; 528 Gammie (2021051108385297200_bib22) 1999; 522 Lasota (2021051108385297200_bib30) 1994 Done (2021051108385297200_bib15) 2007; 15 Igumenshchev (2021051108385297200_bib28) 1998; 298 Muchotrzeb (2021051108385297200_bib41) 1982; 32 Tolman (2021051108385297200_bib68) 1930; 35 Mitsuda (2021051108385297200_bib40) 1984; 36 Ryan (2021051108385297200_bib59) 2017; 840 Carter (2021051108385297200_bib12) 1989 Popham (2021051108385297200_bib54) 1998; 504 Beloborodov (2021051108385297200_bib11) 1997; 491 Tchekhovskoy (2021051108385297200_bib67) 2011; 418 Beckwith (2021051108385297200_bib10) 2008; 678 Hawley (2021051108385297200_bib26) 2006; 641 Noble (2021051108385297200_bib43) 2009; 692 Ross (2021051108385297200_bib58) 2016; 455 Shafee (2021051108385297200_bib61) 2008; 687 Misner (2021051108385297200_bib39) 1973 Abramowicz (2021051108385297200_bib3) 1996; 471 Abramowicz (2021051108385297200_bib4) 1997; 479 Yuan (2021051108385297200_bib70) 2014; 52 Liska (2021051108385297200_bib32) 2019; 487 Arnaud (2021051108385297200_bib8) 1996 Gammie (2021051108385297200_bib23) 1998; 498 Noble (2021051108385297200_bib44) 2010; 711 Peitz (2021051108385297200_bib51) 1997; 286 McKinney (2021051108385297200_bib36) 2006; 368 Sądowski (2021051108385297200_bib66) 2011; 527 |
References_xml | – volume: 44 start-page: 49 year: 2006 ident: 2021051108385297200_bib57 publication-title: ARA&A doi: 10.1146/annurev.astro.44.051905.092532 – start-page: 341 volume-title: NATO Advanced Study Institute (ASI) Series C, Vol. 417, Theory of Accretion Disks – 2 year: 1994 ident: 2021051108385297200_bib30 – start-page: 19 volume-title: High Energy Astrophysics year: 1967 ident: 2021051108385297200_bib25 – volume: 840 start-page: 6 year: 2017 ident: 2021051108385297200_bib59 publication-title: ApJ doi: 10.3847/1538-4357/aa6a52 – volume: 491 start-page: 267 year: 1997 ident: 2021051108385297200_bib11 publication-title: ApJ doi: 10.1086/304956 – volume: 233 start-page: 489 year: 1988 ident: 2021051108385297200_bib7 publication-title: MNRAS doi: 10.1093/mnras/233.2.489 – volume: 298 start-page: 1069 year: 1998 ident: 2021051108385297200_bib28 publication-title: MNRAS doi: 10.1046/j.1365-8711.1998.01774.x – volume: 423 start-page: 3083 year: 2012 ident: 2021051108385297200_bib38 publication-title: MNRAS doi: 10.1111/j.1365-2966.2012.21074.x – volume: 476 start-page: 1123 year: 2007 ident: 2021051108385297200_bib21 publication-title: A&A doi: 10.1051/0004-6361:20077943 – volume: 368 start-page: 1561 year: 2006 ident: 2021051108385297200_bib36 publication-title: MNRAS doi: 10.1111/j.1365-2966.2006.10256.x – volume: 418 start-page: L79 year: 2011 ident: 2021051108385297200_bib67 publication-title: MNRAS doi: 10.1111/j.1745-3933.2011.01147.x – volume: 118 start-page: 341 year: 1979 ident: 2021051108385297200_bib29 publication-title: Ann. Phys. doi: 10.1016/0003-4916(79)90130-1 – volume: 707 start-page: 833 year: 2009 ident: 2021051108385297200_bib64 publication-title: ApJ doi: 10.1088/0004-637X/707/1/833 – start-page: 343 volume-title: Black Holes (Les Astres Occlus) year: 1973 ident: 2021051108385297200_bib46 – volume: 522 start-page: L57 year: 1999 ident: 2021051108385297200_bib22 publication-title: ApJ doi: 10.1086/312207 – volume: 641 start-page: 103 year: 2006 ident: 2021051108385297200_bib26 publication-title: ApJ doi: 10.1086/500385 – volume: 24 start-page: 337 year: 1973 ident: 2021051108385297200_bib62 publication-title: A&A – volume: 875 start-page: L1 year: 2019 ident: 2021051108385297200_bib17 publication-title: ApJ doi: 10.3847/2041-8213/ab0ec7 – volume: 32 start-page: 1 year: 1982 ident: 2021051108385297200_bib41 publication-title: Acta Astron. – year: 1992 ident: 2021051108385297200_bib56 publication-title: Numerical Recipes in FORTRAN. The Art of Scientific Computing – volume: 471 start-page: 762 year: 1996 ident: 2021051108385297200_bib3 publication-title: ApJ doi: 10.1086/178004 – start-page: 17 volume-title: ASP Conf. Ser. Vol. 101, Astronomical Data Analysis Software and Systems V year: 1996 ident: 2021051108385297200_bib8 – volume: 440 start-page: 742 year: 1995 ident: 2021051108385297200_bib27 publication-title: ApJ doi: 10.1086/175311 – year: 2002 ident: 2021051108385297200_bib19 publication-title: Accretion Power in Astrophysics doi: 10.1017/CBO9781139164245 – volume: 498 start-page: 313 year: 1998 ident: 2021051108385297200_bib23 publication-title: ApJ doi: 10.1086/305521 – volume: 168 start-page: 603 year: 1974 ident: 2021051108385297200_bib34 publication-title: MNRAS doi: 10.1093/mnras/168.3.603 – volume: 420 start-page: 684 year: 2012 ident: 2021051108385297200_bib53 publication-title: MNRAS doi: 10.1111/j.1365-2966.2011.20084.x – volume: 308 start-page: 635 year: 1986 ident: 2021051108385297200_bib35 publication-title: ApJ doi: 10.1086/164534 – volume: 55 start-page: L69 year: 2003 ident: 2021051108385297200_bib42 publication-title: PASJ doi: 10.1093/pasj/55.6.L69 – volume: 521 start-page: A15 year: 2010 ident: 2021051108385297200_bib5 publication-title: A&A doi: 10.1051/0004-6361/201014467 – volume: 370 start-page: 604 year: 1991 ident: 2021051108385297200_bib55 publication-title: ApJ doi: 10.1086/169847 – volume: 678 start-page: 1180 year: 2008 ident: 2021051108385297200_bib10 publication-title: ApJ doi: 10.1086/533492 – volume: 286 start-page: 681 year: 1997 ident: 2021051108385297200_bib51 publication-title: MNRAS doi: 10.1093/mnras/286.3.681 – volume: 390 start-page: 21 year: 2008 ident: 2021051108385297200_bib9 publication-title: MNRAS doi: 10.1111/j.1365-2966.2008.13710.x – volume: 528 start-page: 161 year: 2000 ident: 2021051108385297200_bib6 publication-title: ApJ doi: 10.1086/308177 – volume: 476 start-page: 1113 year: 2007 ident: 2021051108385297200_bib20 publication-title: A&A doi: 10.1051/0004-6361:20077942 – volume: 31 start-page: 283 year: 1981 ident: 2021051108385297200_bib48 publication-title: Acta Astron. – volume: 456 start-page: 2273 year: 2016 ident: 2021051108385297200_bib63 publication-title: MNRAS doi: 10.1093/mnras/stv2815 – volume: 527 start-page: A17 year: 2011 ident: 2021051108385297200_bib66 publication-title: A&A doi: 10.1051/0004-6361/201015256 – volume: 479 start-page: 179 year: 1997 ident: 2021051108385297200_bib4 publication-title: ApJ doi: 10.1086/303869 – year: 2011 ident: 2021051108385297200_bib33 publication-title: PhD thesis, School of Mathematics – volume: 332 start-page: 646 year: 1988 ident: 2021051108385297200_bib2 publication-title: ApJ doi: 10.1086/166683 – volume: 487 start-page: 550 year: 2019 ident: 2021051108385297200_bib32 publication-title: MNRAS doi: 10.1093/mnras/stz834 – start-page: 1 volume-title: Lecture Notes in Mathematics Vol. 1385, Relativistic Fluid Dynamics year: 1989 ident: 2021051108385297200_bib12 doi: 10.1007/BFb0084028 – volume: 394 start-page: L126 year: 2009 ident: 2021051108385297200_bib37 publication-title: MNRAS doi: 10.1111/j.1745-3933.2009.00625.x – volume: 692 start-page: 411 year: 2009 ident: 2021051108385297200_bib43 publication-title: ApJ doi: 10.1088/0004-637X/692/1/411 – year: 1992 ident: 2021051108385297200_bib18 publication-title: Accretion Power in Astrophysics – volume: 743 start-page: 115 year: 2011 ident: 2021051108385297200_bib45 publication-title: ApJ doi: 10.1088/0004-637X/743/2/115 – volume: 183 start-page: 171 year: 2009 ident: 2021051108385297200_bib65 publication-title: ApJS doi: 10.1088/0067-0049/183/2/171 – volume: 245 start-page: 720 year: 1990 ident: 2021051108385297200_bib1 publication-title: MNRAS – year: 2000 ident: 2021051108385297200_bib47 – volume: 36 start-page: 741 year: 1984 ident: 2021051108385297200_bib40 publication-title: PASJ – volume: 455 start-page: 526 year: 2016 ident: 2021051108385297200_bib58 publication-title: MNRAS doi: 10.1093/mnras/stv2286 – volume: 621 start-page: 372 year: 2005 ident: 2021051108385297200_bib13 publication-title: ApJ doi: 10.1086/427278 – volume: 504 start-page: 419 year: 1998 ident: 2021051108385297200_bib54 publication-title: ApJ doi: 10.1086/306054 – volume: 36 start-page: 1791 year: 1930 ident: 2021051108385297200_bib69 publication-title: Phys. Rev. doi: 10.1103/PhysRev.36.1791 – volume: 191 start-page: 499 year: 1974 ident: 2021051108385297200_bib49 publication-title: ApJ doi: 10.1086/152990 – volume: 15 start-page: 1 year: 2007 ident: 2021051108385297200_bib15 publication-title: A&AR doi: 10.1007/s00159-007-0006-1 – volume: 618 start-page: 832 year: 2005 ident: 2021051108385297200_bib71 publication-title: ApJ doi: 10.1086/426071 – volume: 589 start-page: 444 year: 2003 ident: 2021051108385297200_bib24 publication-title: ApJ doi: 10.1086/374594 – volume: 676 start-page: 549 year: 2008 ident: 2021051108385297200_bib60 publication-title: ApJ doi: 10.1086/527346 – volume: 58 start-page: 919 year: 1940 ident: 2021051108385297200_bib16 publication-title: Phys. Rev. doi: 10.1103/PhysRev.58.919 – volume: 687 start-page: L25 year: 2008 ident: 2021051108385297200_bib61 publication-title: ApJ doi: 10.1086/593148 – volume: 408 start-page: 752 year: 2010 ident: 2021051108385297200_bib52 publication-title: MNRAS doi: 10.1111/j.1365-2966.2010.17170.x – volume: 52 start-page: 529 year: 2014 ident: 2021051108385297200_bib70 publication-title: ARA&A doi: 10.1146/annurev-astro-082812-141003 – volume: 157 start-page: 335 year: 2005 ident: 2021051108385297200_bib31 publication-title: ApJS doi: 10.1086/428089 – volume: 711 start-page: 959 year: 2010 ident: 2021051108385297200_bib44 publication-title: ApJ doi: 10.1088/0004-637X/711/2/959 – volume: 589 start-page: 458 year: 2003 ident: 2021051108385297200_bib14 publication-title: ApJ doi: 10.1086/373949 – volume: 179 start-page: 433 year: 1977 ident: 2021051108385297200_bib1_907_1616845545030 publication-title: MNRAS doi: 10.1093/mnras/179.3.433 – volume: 35 start-page: 904 year: 1930 ident: 2021051108385297200_bib68 publication-title: Phys. Rev. doi: 10.1103/PhysRev.35.904 – year: 1973 ident: 2021051108385297200_bib39 publication-title: Gravitation – volume: 268 start-page: 29 year: 1994 ident: 2021051108385297200_bib50 publication-title: MNRAS doi: 10.1093/mnras/268.1.29 |
SSID | ssj0004326 |
Score | 2.4005837 |
Snippet | ABSTRACT
The widely used Novikov–Thorne relativistic thin disc equations are only valid down to the radius of the innermost stable circular orbit (ISCO). This... The widely used Novikov–Thorne relativistic thin disc equations are only valid down to the radius of the innermost stable circular orbit (ISCO). This leads to... |
SourceID | crossref oup |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 5025 |
Title | A full relativistic thin disc – the physics of the plunging region and the value of the stress at the ISCO |
Volume | 503 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA7iky-iU9m8jAiyJ8tq27TJ4xiOKehAN9hbSdJEB10rayf45n_wH_pLzEk7L3jBt572pA85pefLSb7vIHTiuVpHrps4VKjECYgmjjDLBIfrhDGpBEiqwWmL63A4CS6nZFrXO4oftvCZ351nC150DVYSoQ_a2iYBg0j-eDT9IED6tq-a1V80K4CzWkzz2-gvyQcIbZ9yyWALbdYgEPeqqG2jNZU1ULNXQFk6nz_hDrbXVdWhaKDWlYG2-cJWwM3DfjozONNaOyjtYSih44qU8mh1l3F5P8swEG7x6_OLsRSu34VzXZnpEoQI7zA0ZsgzzLPE3gftb7VyqngkmJfWurjtj3bRZHA-7g-duoWCI32XlY6mJJTmR-ImWoeCE49KnxLGBOGURUCMpRF3JdMAnaTJVNqV1IuIFGFikKz099B6lmeqibBSnAdKRAy6-8ok5FS6gQgjM0RFWqkWOl3NbSxrfXFoc5HG1T63H9tQxHUoWqjz7v5QCWv85nhsAvW3z_4_fA7QhgfnUWwF5RCtl4ulOjKAohRtA6VvvLb9pN4AIHfO6g |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+full+relativistic+thin+disc+%E2%80%93+the+physics+of+the+plunging+region+and+the+value+of+the+stress+at+the+ISCO&rft.jtitle=Monthly+notices+of+the+Royal+Astronomical+Society&rft.au=Potter%2C+William+J&rft.date=2021-06-01&rft.pub=Oxford+University+Press&rft.issn=0035-8711&rft.eissn=1365-2966&rft.volume=503&rft.issue=4&rft.spage=5025&rft.epage=5045&rft_id=info:doi/10.1093%2Fmnras%2Fstab636&rft.externalDocID=10.1093%2Fmnras%2Fstab636 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0035-8711&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0035-8711&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0035-8711&client=summon |