Blood Glucose Level Prediction of Diabetic Type 1 Patients Using Nonlinear Autoregressive Neural Networks

Diabetes type 1 is a chronic disease which is increasing at an alarming rate throughout the world. Studies reveal that the complications associated with diabetes can be reduced by proper management of the disease by continuously monitoring and forecasting the blood glucose level of patients. Objecti...

Full description

Saved in:
Bibliographic Details
Published inJournal of healthcare engineering Vol. 2021; pp. 1 - 7
Main Authors Asad, Muhammad, Qamar, Usman, Abbas, Muhammad
Format Journal Article
LanguageEnglish
Published Hindawi 26.02.2021
Online AccessGet full text

Cover

Loading…
Abstract Diabetes type 1 is a chronic disease which is increasing at an alarming rate throughout the world. Studies reveal that the complications associated with diabetes can be reduced by proper management of the disease by continuously monitoring and forecasting the blood glucose level of patients. Objective. The prior prediction of blood glucose level is necessary to overcome the lag time for insulin absorption in diabetic type 1 patients. Method. In this research, we use continuous glucose monitoring (CGM) data to predict future blood glucose level using the previous data points. We compare two neural network techniques. We apply the optimal feedforward neural network and then propose optimal nonlinear autoregressive neural networks for blood glucose prediction 15–30 minutes earlier for diabetic type 1 patients. We validate the proposed model with 2 virtual subjects using their 24-hour blood glucose level data. These two case studies have been compiled from AIDA, i.e., the freeware mathematical diabetes simulator. Results. In the prediction horizon (PH) of 15 and 30 minutes, improved results have been shown for minimal inputs for blood glucose level of a particular subject. Root mean square error (RMSE) is used for performance calculation. For the optimal feedforward neural network, the RMSE is 0.9984 and 3.78 ml/dl, and for the optimal nonlinear autoregressive neural network, it reduces the RMSE to 0.60 and 1.12 ml/dl for 15 min and 30 min prediction horizons, respectively, for subject 1. Similarly, for subject 2 for the optimal feedforward neural network, RMSE is 1.43 and 3.51 ml/dl which is improved using the optimal autoregressive neural network to 0.7911 and 1.6756 ml/dl for 15 min and 30 min prediction horizons, respectively. Validation. We further validate our proposed model using UCI machine learning datasets (Abalone and Servo), and it shows improved results on that as well. Conclusion and Future Work. The proposed optimal nonlinear autoregressive neural network model performs better than the feedforward neural network model for these time series data. In the future, we intend to investigate a greater collection of AIDA scenarios and data that are real and influence other factors of BGLs.
AbstractList Diabetes type 1 is a chronic disease which is increasing at an alarming rate throughout the world. Studies reveal that the complications associated with diabetes can be reduced by proper management of the disease by continuously monitoring and forecasting the blood glucose level of patients. Objective. The prior prediction of blood glucose level is necessary to overcome the lag time for insulin absorption in diabetic type 1 patients. Method. In this research, we use continuous glucose monitoring (CGM) data to predict future blood glucose level using the previous data points. We compare two neural network techniques. We apply the optimal feedforward neural network and then propose optimal nonlinear autoregressive neural networks for blood glucose prediction 15–30 minutes earlier for diabetic type 1 patients. We validate the proposed model with 2 virtual subjects using their 24-hour blood glucose level data. These two case studies have been compiled from AIDA, i.e., the freeware mathematical diabetes simulator. Results. In the prediction horizon (PH) of 15 and 30 minutes, improved results have been shown for minimal inputs for blood glucose level of a particular subject. Root mean square error (RMSE) is used for performance calculation. For the optimal feedforward neural network, the RMSE is 0.9984 and 3.78 ml/dl, and for the optimal nonlinear autoregressive neural network, it reduces the RMSE to 0.60 and 1.12 ml/dl for 15 min and 30 min prediction horizons, respectively, for subject 1. Similarly, for subject 2 for the optimal feedforward neural network, RMSE is 1.43 and 3.51 ml/dl which is improved using the optimal autoregressive neural network to 0.7911 and 1.6756 ml/dl for 15 min and 30 min prediction horizons, respectively. Validation. We further validate our proposed model using UCI machine learning datasets (Abalone and Servo), and it shows improved results on that as well. Conclusion and Future Work. The proposed optimal nonlinear autoregressive neural network model performs better than the feedforward neural network model for these time series data. In the future, we intend to investigate a greater collection of AIDA scenarios and data that are real and influence other factors of BGLs.
Author Asad, Muhammad
Qamar, Usman
Abbas, Muhammad
Author_xml – sequence: 1
  givenname: Muhammad
  orcidid: 0000-0003-4003-1322
  surname: Asad
  fullname: Asad, Muhammad
  organization: Department of Computer EngineeringCEMENational University of Sciences and Technology (NUST)IslamabadPakistannust.edu.pk
– sequence: 2
  givenname: Usman
  surname: Qamar
  fullname: Qamar, Usman
  organization: Department of Computer EngineeringCEMENational University of Sciences and Technology (NUST)IslamabadPakistannust.edu.pk
– sequence: 3
  givenname: Muhammad
  surname: Abbas
  fullname: Abbas, Muhammad
  organization: Department of Computer EngineeringCEMENational University of Sciences and Technology (NUST)IslamabadPakistannust.edu.pk
BookMark eNp9kEtPAjEUhRuDiYjs_AHd60hv58UsERFNCLKA9aTTucXq2JK2QPj3DgE3Jno35y7OuY_vmnSMNUjILbAHgDQdcMZhkGUArIAL0uUsYRGPWdH56XmRXpG-9x-srbiIE4i7RD821tZ02myl9UhnuMOGLhzWWgZtDbWKPmlRYdCSLg8bpEAXImg0wdOV12ZN59Y02qBwdLQN1uHaofd6h3SOWyeaVsLeuk9_Qy6VaDz2z9ojq-fJcvwSzd6mr-PRLJLtsSFSULCKZTkwmeS8giQvEqxBDqESKeQ1k3GmUKlMZsM8TXIla8WlxJyzQiTA4x65P82VznrvUJUbp7-EO5TAyiOp8kiqPJNq7fyXXeogjr8HJ3TzV-juFHrXphZ7_f-Kb6dlemA
CitedBy_id crossref_primary_10_1371_journal_pone_0306090
crossref_primary_10_1002_idm2_12069
crossref_primary_10_1038_s41597_023_02737_4
crossref_primary_10_3390_bioengineering9110664
crossref_primary_10_1109_JBHI_2023_3236822
crossref_primary_10_1109_ACCESS_2023_3318324
crossref_primary_10_1016_j_medengphy_2024_104241
crossref_primary_10_1007_s41635_023_00140_4
crossref_primary_10_1515_pjbr_2022_0108
Cites_doi 10.1109/MCS.2017.2766314
10.1109/SIU.2017.7960507
10.1109/IEMBS.2011.6091368
10.1177/193229680800200507
10.1016/j.bbe.2018.06.005
10.1016/j.ins.2012.03.013
10.1109/ICRERA.2015.7418477
10.1016/j.knosys.2018.06.015
10.1007/s11517-015-1320-9
10.1155/2011/681786
10.1016/j.enconman.2013.07.003
10.1109/SM2C.2017.8071825
10.1109/tbme.2006.889774
10.1109/BIHTEL.2016.7775713
10.1089/152091503322250668
10.1109/HealthCom.2017.8210817
10.1089/152091503765691938
10.1016/j.fcij.2017.05.001
ContentType Journal Article
Copyright Copyright © 2021 Muhammad Asad et al.
Copyright_xml – notice: Copyright © 2021 Muhammad Asad et al.
DBID RHU
RHW
RHX
AAYXX
CITATION
DOI 10.1155/2021/6611091
DatabaseName Hindawi Publishing Complete
Hindawi Publishing Subscription Journals
Hindawi Publishing Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: RHX
  name: Hindawi Publishing Open Access
  url: http://www.hindawi.com/journals/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2040-2309
Editor Maietta, Saverio
Editor_xml – sequence: 1
  givenname: Saverio
  surname: Maietta
  fullname: Maietta, Saverio
EndPage 7
ExternalDocumentID 10_1155_2021_6611091
GrantInformation_xml – fundername: National University of Sciences and Technology
GroupedDBID 4.4
53G
5VS
AAFWJ
AAJEY
ADBBV
ADRAZ
AENEX
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
EBD
EBS
EMOBN
GROUPED_DOAJ
HYE
IAO
IEA
IHR
INH
INR
ITC
KQ8
M48
MET
MV1
OK1
P2P
RHU
RHW
RHX
RPM
SV3
0R~
24P
AAYXX
ACCMX
CITATION
H13
PGMZT
ID FETCH-LOGICAL-c309t-f190b06710c472b14794ed1c81ba517d0c36feff6c687547fcdf2cce7209a4123
IEDL.DBID M48
ISSN 2040-2295
IngestDate Thu Apr 24 23:02:56 EDT 2025
Tue Jul 01 03:10:19 EDT 2025
Sun Jun 02 19:17:55 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c309t-f190b06710c472b14794ed1c81ba517d0c36feff6c687547fcdf2cce7209a4123
ORCID 0000-0003-4003-1322
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1155/2021/6611091
PageCount 7
ParticipantIDs crossref_primary_10_1155_2021_6611091
crossref_citationtrail_10_1155_2021_6611091
hindawi_primary_10_1155_2021_6611091
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-02-26
PublicationDateYYYYMMDD 2021-02-26
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-26
  day: 26
PublicationDecade 2020
PublicationTitle Journal of healthcare engineering
PublicationYear 2021
Publisher Hindawi
Publisher_xml – name: Hindawi
References 12
S. Karasu (16)
D. Association (2) 2018; 40
S. Bamgbose (11)
13
N. Fan (15)
L. Magni (8) 2018; 38
14
Z. A. Hamzic (17)
19
C. Zecchin (7)
S. Bahremand (21) 2018; 57
K. Gairaa (18)
3
4
5
6
T. Hamdi (1)
9
20
10
References_xml – volume: 38
  start-page: 86
  issue: 1
  year: 2018
  ident: 8
  article-title: Individualized model predictive control for the artificial pancreas: in silico evaluation of closed-loop glucose control
  publication-title: IEEE Control Systems
  doi: 10.1109/MCS.2017.2766314
– ident: 16
  article-title: Prediction of wind speed with non-linear autoregressive (nar) neural networks
  doi: 10.1109/SIU.2017.7960507
– ident: 15
  article-title: Wheel wear prediction of high-speed train using NAR and BP neural networks
– ident: 7
  article-title: A new neural network approach for short-term glucose prediction using continuous glucose monitoring time-series and meal information
  doi: 10.1109/IEMBS.2011.6091368
– ident: 12
  doi: 10.1177/193229680800200507
– ident: 5
  doi: 10.1016/j.bbe.2018.06.005
– ident: 13
  doi: 10.1016/j.ins.2012.03.013
– ident: 18
  article-title: Daily global solar radiation forecasting over a desert area using nar neural networks comparison with conventional methods
  doi: 10.1109/ICRERA.2015.7418477
– ident: 14
  doi: 10.1016/j.knosys.2018.06.015
– volume: 57
  year: 2018
  ident: 21
  article-title: Neural network-based model predictive control for type 1 diabetic rats on artificial pancreas system
  publication-title: Medical & Biological Engineering & Computing
– ident: 9
  doi: 10.1007/s11517-015-1320-9
– volume: 40
  start-page: S1
  issue: 1
  year: 2018
  ident: 2
  article-title: Standards of medical care in diabetes-2017
  publication-title: Diabetes Care
– ident: 6
  doi: 10.1155/2011/681786
– ident: 4
  doi: 10.1016/j.enconman.2013.07.003
– ident: 1
  article-title: Artificial neural network for blood glucose level prediction
  doi: 10.1109/SM2C.2017.8071825
– ident: 10
  doi: 10.1109/tbme.2006.889774
– ident: 17
  article-title: A sequential approach for short-term water level prediction using nonlinear autoregressive neural networks
  doi: 10.1109/BIHTEL.2016.7775713
– ident: 20
  doi: 10.1089/152091503322250668
– ident: 11
  article-title: Closed-loop control of blood glucose level with neural network predictor for diabetic patients
  doi: 10.1109/HealthCom.2017.8210817
– ident: 19
  doi: 10.1089/152091503765691938
– ident: 3
  doi: 10.1016/j.fcij.2017.05.001
SSID ssj0000393413
Score 2.2346208
Snippet Diabetes type 1 is a chronic disease which is increasing at an alarming rate throughout the world. Studies reveal that the complications associated with...
SourceID crossref
hindawi
SourceType Enrichment Source
Index Database
Publisher
StartPage 1
SummonAdditionalLinks – databaseName: Hindawi Publishing Open Access
  dbid: RHX
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NSwMxEA22IOhB_MT6RQ71JMHNbpJ1j1WsRbT0YKG3JZkmWJC2tBX_vplkW6qieFyYZWGS3Tdv5-UNIc08TZzgWjOZc8mETYGZTCumkgIKmZkMQkf3uas6ffE4kIPKJGn-s4Xv0Q7pOb_2MIIWljVS8xsMSXlnsPqVgsdLRRiEnKI-DgdULyXu327_Aj6br8h6P0ZreNLeJTtVIUhbceX2yIYd75PtNXvAAzK6RVU5fYiqcvqE-h7am2FrBdNJJ45GQcsIKPJJymkv2qTOaZAC0G40wtAz2kKvAhvItf--UfTk8E_vRhH4_JD02_cvdx1WjUZgkCXFgjmP48YDDU9A5Knh6BNvhxx8Eaolz4cJZMpZ5xQoT0hE7mDoUgDrl6bQwqPVEamPJ2N7TCja7XBtZZLJXIAxJrGp1f5F93W3sHDTIFfLnJVQ-Ybj-Iq3MvAHKUvMcFlluEEuV9HT6JfxS1yzSv-fYSf_CzslW3gZjpqrM1JfzN7tuS8WFuYibJVPo_S0tw
  priority: 102
  providerName: Hindawi Publishing
Title Blood Glucose Level Prediction of Diabetic Type 1 Patients Using Nonlinear Autoregressive Neural Networks
URI https://dx.doi.org/10.1155/2021/6611091
Volume 2021
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1dS8MwFL3MiaAP4ifOL_Iwn6TatElrH0SmOIe4McTB3kqSJVgYm3YT9d-bm3YyRcWXQiGkcNPccw85ORegHge-YVQIj8eUe0wHypOhiLzIT1TCQxkqd6Lb7kStHrvt834FZt1GywBOfqR22E-qlw9P3p7fL-yGP3cbnnPk7_TU4gx6XC7AosWkGHsZtMtC3-XkMMF0jZ3mUEKHPaxnKvhvE3zBp6VHJMav2RzkNNdgtawVSaNY3HWo6NEGrMw5CG5CdonCc3JTCM_JHUqASDfH0xeMOBkbUmheMkWQchJKuoWT6oQ4tQDpFF4ZIicNtDPQjn_bFEjQtsN-vVPoxCdb0GteP1y1vLJ7gqdCP5l6xkK9tFhEfcXiQFK0ktcDqmydKjiNB74KI6ONiVRkOQuLjRqYQCltVy8RzALaNlRH45HeAYKOPFRo7oc8ZkpK6etAC5sLbGnOtDqrwfEsZqkqrcWxw8UwdRSD8xQjnJYRrsHR5-inwlLjl3H1Mvx_Dtv953R7sIyv7jp6tA_Vaf6iD2xBMZWH7l-xz_tW_wMhL8PF
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Blood+Glucose+Level+Prediction+of+Diabetic+Type+1+Patients+Using+Nonlinear+Autoregressive+Neural+Networks&rft.jtitle=Journal+of+healthcare+engineering&rft.au=Asad%2C+Muhammad&rft.au=Qamar%2C+Usman&rft.au=Abbas%2C+Muhammad&rft.date=2021-02-26&rft.issn=2040-2295&rft.eissn=2040-2309&rft.volume=2021&rft.spage=1&rft.epage=7&rft_id=info:doi/10.1155%2F2021%2F6611091&rft.externalDBID=n%2Fa&rft.externalDocID=10_1155_2021_6611091
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2040-2295&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2040-2295&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2040-2295&client=summon