Blood Glucose Level Prediction of Diabetic Type 1 Patients Using Nonlinear Autoregressive Neural Networks
Diabetes type 1 is a chronic disease which is increasing at an alarming rate throughout the world. Studies reveal that the complications associated with diabetes can be reduced by proper management of the disease by continuously monitoring and forecasting the blood glucose level of patients. Objecti...
Saved in:
Published in | Journal of healthcare engineering Vol. 2021; pp. 1 - 7 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Hindawi
26.02.2021
|
Online Access | Get full text |
Cover
Loading…
Abstract | Diabetes type 1 is a chronic disease which is increasing at an alarming rate throughout the world. Studies reveal that the complications associated with diabetes can be reduced by proper management of the disease by continuously monitoring and forecasting the blood glucose level of patients. Objective. The prior prediction of blood glucose level is necessary to overcome the lag time for insulin absorption in diabetic type 1 patients. Method. In this research, we use continuous glucose monitoring (CGM) data to predict future blood glucose level using the previous data points. We compare two neural network techniques. We apply the optimal feedforward neural network and then propose optimal nonlinear autoregressive neural networks for blood glucose prediction 15–30 minutes earlier for diabetic type 1 patients. We validate the proposed model with 2 virtual subjects using their 24-hour blood glucose level data. These two case studies have been compiled from AIDA, i.e., the freeware mathematical diabetes simulator. Results. In the prediction horizon (PH) of 15 and 30 minutes, improved results have been shown for minimal inputs for blood glucose level of a particular subject. Root mean square error (RMSE) is used for performance calculation. For the optimal feedforward neural network, the RMSE is 0.9984 and 3.78 ml/dl, and for the optimal nonlinear autoregressive neural network, it reduces the RMSE to 0.60 and 1.12 ml/dl for 15 min and 30 min prediction horizons, respectively, for subject 1. Similarly, for subject 2 for the optimal feedforward neural network, RMSE is 1.43 and 3.51 ml/dl which is improved using the optimal autoregressive neural network to 0.7911 and 1.6756 ml/dl for 15 min and 30 min prediction horizons, respectively. Validation. We further validate our proposed model using UCI machine learning datasets (Abalone and Servo), and it shows improved results on that as well. Conclusion and Future Work. The proposed optimal nonlinear autoregressive neural network model performs better than the feedforward neural network model for these time series data. In the future, we intend to investigate a greater collection of AIDA scenarios and data that are real and influence other factors of BGLs. |
---|---|
AbstractList | Diabetes type 1 is a chronic disease which is increasing at an alarming rate throughout the world. Studies reveal that the complications associated with diabetes can be reduced by proper management of the disease by continuously monitoring and forecasting the blood glucose level of patients. Objective. The prior prediction of blood glucose level is necessary to overcome the lag time for insulin absorption in diabetic type 1 patients. Method. In this research, we use continuous glucose monitoring (CGM) data to predict future blood glucose level using the previous data points. We compare two neural network techniques. We apply the optimal feedforward neural network and then propose optimal nonlinear autoregressive neural networks for blood glucose prediction 15–30 minutes earlier for diabetic type 1 patients. We validate the proposed model with 2 virtual subjects using their 24-hour blood glucose level data. These two case studies have been compiled from AIDA, i.e., the freeware mathematical diabetes simulator. Results. In the prediction horizon (PH) of 15 and 30 minutes, improved results have been shown for minimal inputs for blood glucose level of a particular subject. Root mean square error (RMSE) is used for performance calculation. For the optimal feedforward neural network, the RMSE is 0.9984 and 3.78 ml/dl, and for the optimal nonlinear autoregressive neural network, it reduces the RMSE to 0.60 and 1.12 ml/dl for 15 min and 30 min prediction horizons, respectively, for subject 1. Similarly, for subject 2 for the optimal feedforward neural network, RMSE is 1.43 and 3.51 ml/dl which is improved using the optimal autoregressive neural network to 0.7911 and 1.6756 ml/dl for 15 min and 30 min prediction horizons, respectively. Validation. We further validate our proposed model using UCI machine learning datasets (Abalone and Servo), and it shows improved results on that as well. Conclusion and Future Work. The proposed optimal nonlinear autoregressive neural network model performs better than the feedforward neural network model for these time series data. In the future, we intend to investigate a greater collection of AIDA scenarios and data that are real and influence other factors of BGLs. |
Author | Asad, Muhammad Qamar, Usman Abbas, Muhammad |
Author_xml | – sequence: 1 givenname: Muhammad orcidid: 0000-0003-4003-1322 surname: Asad fullname: Asad, Muhammad organization: Department of Computer EngineeringCEMENational University of Sciences and Technology (NUST)IslamabadPakistannust.edu.pk – sequence: 2 givenname: Usman surname: Qamar fullname: Qamar, Usman organization: Department of Computer EngineeringCEMENational University of Sciences and Technology (NUST)IslamabadPakistannust.edu.pk – sequence: 3 givenname: Muhammad surname: Abbas fullname: Abbas, Muhammad organization: Department of Computer EngineeringCEMENational University of Sciences and Technology (NUST)IslamabadPakistannust.edu.pk |
BookMark | eNp9kEtPAjEUhRuDiYjs_AHd60hv58UsERFNCLKA9aTTucXq2JK2QPj3DgE3Jno35y7OuY_vmnSMNUjILbAHgDQdcMZhkGUArIAL0uUsYRGPWdH56XmRXpG-9x-srbiIE4i7RD821tZ02myl9UhnuMOGLhzWWgZtDbWKPmlRYdCSLg8bpEAXImg0wdOV12ZN59Y02qBwdLQN1uHaofd6h3SOWyeaVsLeuk9_Qy6VaDz2z9ojq-fJcvwSzd6mr-PRLJLtsSFSULCKZTkwmeS8giQvEqxBDqESKeQ1k3GmUKlMZsM8TXIla8WlxJyzQiTA4x65P82VznrvUJUbp7-EO5TAyiOp8kiqPJNq7fyXXeogjr8HJ3TzV-juFHrXphZ7_f-Kb6dlemA |
CitedBy_id | crossref_primary_10_1371_journal_pone_0306090 crossref_primary_10_1002_idm2_12069 crossref_primary_10_1038_s41597_023_02737_4 crossref_primary_10_3390_bioengineering9110664 crossref_primary_10_1109_JBHI_2023_3236822 crossref_primary_10_1109_ACCESS_2023_3318324 crossref_primary_10_1016_j_medengphy_2024_104241 crossref_primary_10_1007_s41635_023_00140_4 crossref_primary_10_1515_pjbr_2022_0108 |
Cites_doi | 10.1109/MCS.2017.2766314 10.1109/SIU.2017.7960507 10.1109/IEMBS.2011.6091368 10.1177/193229680800200507 10.1016/j.bbe.2018.06.005 10.1016/j.ins.2012.03.013 10.1109/ICRERA.2015.7418477 10.1016/j.knosys.2018.06.015 10.1007/s11517-015-1320-9 10.1155/2011/681786 10.1016/j.enconman.2013.07.003 10.1109/SM2C.2017.8071825 10.1109/tbme.2006.889774 10.1109/BIHTEL.2016.7775713 10.1089/152091503322250668 10.1109/HealthCom.2017.8210817 10.1089/152091503765691938 10.1016/j.fcij.2017.05.001 |
ContentType | Journal Article |
Copyright | Copyright © 2021 Muhammad Asad et al. |
Copyright_xml | – notice: Copyright © 2021 Muhammad Asad et al. |
DBID | RHU RHW RHX AAYXX CITATION |
DOI | 10.1155/2021/6611091 |
DatabaseName | Hindawi Publishing Complete Hindawi Publishing Subscription Journals Hindawi Publishing Open Access CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: RHX name: Hindawi Publishing Open Access url: http://www.hindawi.com/journals/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2040-2309 |
Editor | Maietta, Saverio |
Editor_xml | – sequence: 1 givenname: Saverio surname: Maietta fullname: Maietta, Saverio |
EndPage | 7 |
ExternalDocumentID | 10_1155_2021_6611091 |
GrantInformation_xml | – fundername: National University of Sciences and Technology |
GroupedDBID | 4.4 53G 5VS AAFWJ AAJEY ADBBV ADRAZ AENEX ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV EBD EBS EMOBN GROUPED_DOAJ HYE IAO IEA IHR INH INR ITC KQ8 M48 MET MV1 OK1 P2P RHU RHW RHX RPM SV3 0R~ 24P AAYXX ACCMX CITATION H13 PGMZT |
ID | FETCH-LOGICAL-c309t-f190b06710c472b14794ed1c81ba517d0c36feff6c687547fcdf2cce7209a4123 |
IEDL.DBID | M48 |
ISSN | 2040-2295 |
IngestDate | Thu Apr 24 23:02:56 EDT 2025 Tue Jul 01 03:10:19 EDT 2025 Sun Jun 02 19:17:55 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c309t-f190b06710c472b14794ed1c81ba517d0c36feff6c687547fcdf2cce7209a4123 |
ORCID | 0000-0003-4003-1322 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1155/2021/6611091 |
PageCount | 7 |
ParticipantIDs | crossref_primary_10_1155_2021_6611091 crossref_citationtrail_10_1155_2021_6611091 hindawi_primary_10_1155_2021_6611091 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-02-26 |
PublicationDateYYYYMMDD | 2021-02-26 |
PublicationDate_xml | – month: 02 year: 2021 text: 2021-02-26 day: 26 |
PublicationDecade | 2020 |
PublicationTitle | Journal of healthcare engineering |
PublicationYear | 2021 |
Publisher | Hindawi |
Publisher_xml | – name: Hindawi |
References | 12 S. Karasu (16) D. Association (2) 2018; 40 S. Bamgbose (11) 13 N. Fan (15) L. Magni (8) 2018; 38 14 Z. A. Hamzic (17) 19 C. Zecchin (7) S. Bahremand (21) 2018; 57 K. Gairaa (18) 3 4 5 6 T. Hamdi (1) 9 20 10 |
References_xml | – volume: 38 start-page: 86 issue: 1 year: 2018 ident: 8 article-title: Individualized model predictive control for the artificial pancreas: in silico evaluation of closed-loop glucose control publication-title: IEEE Control Systems doi: 10.1109/MCS.2017.2766314 – ident: 16 article-title: Prediction of wind speed with non-linear autoregressive (nar) neural networks doi: 10.1109/SIU.2017.7960507 – ident: 15 article-title: Wheel wear prediction of high-speed train using NAR and BP neural networks – ident: 7 article-title: A new neural network approach for short-term glucose prediction using continuous glucose monitoring time-series and meal information doi: 10.1109/IEMBS.2011.6091368 – ident: 12 doi: 10.1177/193229680800200507 – ident: 5 doi: 10.1016/j.bbe.2018.06.005 – ident: 13 doi: 10.1016/j.ins.2012.03.013 – ident: 18 article-title: Daily global solar radiation forecasting over a desert area using nar neural networks comparison with conventional methods doi: 10.1109/ICRERA.2015.7418477 – ident: 14 doi: 10.1016/j.knosys.2018.06.015 – volume: 57 year: 2018 ident: 21 article-title: Neural network-based model predictive control for type 1 diabetic rats on artificial pancreas system publication-title: Medical & Biological Engineering & Computing – ident: 9 doi: 10.1007/s11517-015-1320-9 – volume: 40 start-page: S1 issue: 1 year: 2018 ident: 2 article-title: Standards of medical care in diabetes-2017 publication-title: Diabetes Care – ident: 6 doi: 10.1155/2011/681786 – ident: 4 doi: 10.1016/j.enconman.2013.07.003 – ident: 1 article-title: Artificial neural network for blood glucose level prediction doi: 10.1109/SM2C.2017.8071825 – ident: 10 doi: 10.1109/tbme.2006.889774 – ident: 17 article-title: A sequential approach for short-term water level prediction using nonlinear autoregressive neural networks doi: 10.1109/BIHTEL.2016.7775713 – ident: 20 doi: 10.1089/152091503322250668 – ident: 11 article-title: Closed-loop control of blood glucose level with neural network predictor for diabetic patients doi: 10.1109/HealthCom.2017.8210817 – ident: 19 doi: 10.1089/152091503765691938 – ident: 3 doi: 10.1016/j.fcij.2017.05.001 |
SSID | ssj0000393413 |
Score | 2.2346208 |
Snippet | Diabetes type 1 is a chronic disease which is increasing at an alarming rate throughout the world. Studies reveal that the complications associated with... |
SourceID | crossref hindawi |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 1 |
SummonAdditionalLinks | – databaseName: Hindawi Publishing Open Access dbid: RHX link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NSwMxEA22IOhB_MT6RQ71JMHNbpJ1j1WsRbT0YKG3JZkmWJC2tBX_vplkW6qieFyYZWGS3Tdv5-UNIc08TZzgWjOZc8mETYGZTCumkgIKmZkMQkf3uas6ffE4kIPKJGn-s4Xv0Q7pOb_2MIIWljVS8xsMSXlnsPqVgsdLRRiEnKI-DgdULyXu327_Aj6br8h6P0ZreNLeJTtVIUhbceX2yIYd75PtNXvAAzK6RVU5fYiqcvqE-h7am2FrBdNJJ45GQcsIKPJJymkv2qTOaZAC0G40wtAz2kKvAhvItf--UfTk8E_vRhH4_JD02_cvdx1WjUZgkCXFgjmP48YDDU9A5Knh6BNvhxx8Eaolz4cJZMpZ5xQoT0hE7mDoUgDrl6bQwqPVEamPJ2N7TCja7XBtZZLJXIAxJrGp1f5F93W3sHDTIFfLnJVQ-Ybj-Iq3MvAHKUvMcFlluEEuV9HT6JfxS1yzSv-fYSf_CzslW3gZjpqrM1JfzN7tuS8WFuYibJVPo_S0tw priority: 102 providerName: Hindawi Publishing |
Title | Blood Glucose Level Prediction of Diabetic Type 1 Patients Using Nonlinear Autoregressive Neural Networks |
URI | https://dx.doi.org/10.1155/2021/6611091 |
Volume | 2021 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1dS8MwFL3MiaAP4ifOL_Iwn6TatElrH0SmOIe4McTB3kqSJVgYm3YT9d-bm3YyRcWXQiGkcNPccw85ORegHge-YVQIj8eUe0wHypOhiLzIT1TCQxkqd6Lb7kStHrvt834FZt1GywBOfqR22E-qlw9P3p7fL-yGP3cbnnPk7_TU4gx6XC7AosWkGHsZtMtC3-XkMMF0jZ3mUEKHPaxnKvhvE3zBp6VHJMav2RzkNNdgtawVSaNY3HWo6NEGrMw5CG5CdonCc3JTCM_JHUqASDfH0xeMOBkbUmheMkWQchJKuoWT6oQ4tQDpFF4ZIicNtDPQjn_bFEjQtsN-vVPoxCdb0GteP1y1vLJ7gqdCP5l6xkK9tFhEfcXiQFK0ktcDqmydKjiNB74KI6ONiVRkOQuLjRqYQCltVy8RzALaNlRH45HeAYKOPFRo7oc8ZkpK6etAC5sLbGnOtDqrwfEsZqkqrcWxw8UwdRSD8xQjnJYRrsHR5-inwlLjl3H1Mvx_Dtv953R7sIyv7jp6tA_Vaf6iD2xBMZWH7l-xz_tW_wMhL8PF |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Blood+Glucose+Level+Prediction+of+Diabetic+Type+1+Patients+Using+Nonlinear+Autoregressive+Neural+Networks&rft.jtitle=Journal+of+healthcare+engineering&rft.au=Asad%2C+Muhammad&rft.au=Qamar%2C+Usman&rft.au=Abbas%2C+Muhammad&rft.date=2021-02-26&rft.issn=2040-2295&rft.eissn=2040-2309&rft.volume=2021&rft.spage=1&rft.epage=7&rft_id=info:doi/10.1155%2F2021%2F6611091&rft.externalDBID=n%2Fa&rft.externalDocID=10_1155_2021_6611091 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2040-2295&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2040-2295&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2040-2295&client=summon |