Specific Hepatic Sphingolipids Relate to Insulin Resistance, Oxidative Stress, and Inflammation in Nonalcoholic Steatohepatitis
Insulin resistance and nonalcoholic fatty liver disease have been linked to several lipid metabolites in animals, but their role in humans remains unclear. This study examined the relationship of sphingolipids with hepatic and peripheral metabolism in 21 insulin-resistant obese patients without (NAF...
Saved in:
Published in | Diabetes care Vol. 41; no. 6; pp. 1235 - 1243 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Diabetes Association
01.06.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Insulin resistance and nonalcoholic fatty liver disease have been linked to several lipid metabolites in animals, but their role in humans remains unclear. This study examined the relationship of sphingolipids with hepatic and peripheral metabolism in 21 insulin-resistant obese patients without (NAFL-) or with (NAFL+) nonalcoholic fatty liver and nonalcoholic steatohepatitis (NASH) and 7 healthy lean individuals undergoing tissue biopsies during bariatric or elective abdominal surgery.
Hyperinsulinemic-euglycemic clamps with d-[6,6-
H
]glucose were performed to quantify tissue-specific insulin sensitivity. Hepatic oxidative capacity, lipid peroxidation, and the phosphorylated-to-total c-Jun N-terminal kinase (pJNK-to-tJNK) ratio were measured to assess mitochondrial function, oxidative stress, and inflammatory activity.
Hepatic total ceramides were higher by 50% and 33% in NASH compared with NAFL+ and NAFL-, respectively. Only in NASH were hepatic dihydroceramides (16:0, 22:0, and 24:1) and lactosylceramides increased. Serum total ceramides and dihydroceramides (hepatic dihydroceramides 22:0 and 24:1) correlated negatively with whole-body but not with hepatic insulin sensitivity. Hepatic maximal respiration related positively to serum lactosylceramide subspecies, hepatic sphinganine, and lactosylceramide 14:0. Liver lipid peroxides (total ceramides, sphingomyelin 22:0) and the pJNK-to-tJNK ratio (ceramide 24:0; hexosylceramides 22:0, 24:0, and 24:1) all positively correlated with the respective hepatic sphingolipids.
Sphingolipid species are not only increased in insulin-resistant humans with NASH but also correlate with hepatic oxidative stress and inflammation, suggesting that these lipids may play a role during progression of simple steatosis to NASH in humans. |
---|---|
AbstractList | Insulin resistance and nonalcoholic fatty liver disease have been linked to several lipid metabolites in animals, but their role in humans remains unclear. This study examined the relationship of sphingolipids with hepatic and peripheral metabolism in 21 insulin-resistant obese patients without (NAFL-) or with (NAFL+) nonalcoholic fatty liver and nonalcoholic steatohepatitis (NASH) and 7 healthy lean individuals undergoing tissue biopsies during bariatric or elective abdominal surgery.OBJECTIVEInsulin resistance and nonalcoholic fatty liver disease have been linked to several lipid metabolites in animals, but their role in humans remains unclear. This study examined the relationship of sphingolipids with hepatic and peripheral metabolism in 21 insulin-resistant obese patients without (NAFL-) or with (NAFL+) nonalcoholic fatty liver and nonalcoholic steatohepatitis (NASH) and 7 healthy lean individuals undergoing tissue biopsies during bariatric or elective abdominal surgery.Hyperinsulinemic-euglycemic clamps with d-[6,6-2H2]glucose were performed to quantify tissue-specific insulin sensitivity. Hepatic oxidative capacity, lipid peroxidation, and the phosphorylated-to-total c-Jun N-terminal kinase (pJNK-to-tJNK) ratio were measured to assess mitochondrial function, oxidative stress, and inflammatory activity.RESEARCH DESIGN AND METHODSHyperinsulinemic-euglycemic clamps with d-[6,6-2H2]glucose were performed to quantify tissue-specific insulin sensitivity. Hepatic oxidative capacity, lipid peroxidation, and the phosphorylated-to-total c-Jun N-terminal kinase (pJNK-to-tJNK) ratio were measured to assess mitochondrial function, oxidative stress, and inflammatory activity.Hepatic total ceramides were higher by 50% and 33% in NASH compared with NAFL+ and NAFL-, respectively. Only in NASH were hepatic dihydroceramides (16:0, 22:0, and 24:1) and lactosylceramides increased. Serum total ceramides and dihydroceramides (hepatic dihydroceramides 22:0 and 24:1) correlated negatively with whole-body but not with hepatic insulin sensitivity. Hepatic maximal respiration related positively to serum lactosylceramide subspecies, hepatic sphinganine, and lactosylceramide 14:0. Liver lipid peroxides (total ceramides, sphingomyelin 22:0) and the pJNK-to-tJNK ratio (ceramide 24:0; hexosylceramides 22:0, 24:0, and 24:1) all positively correlated with the respective hepatic sphingolipids.RESULTSHepatic total ceramides were higher by 50% and 33% in NASH compared with NAFL+ and NAFL-, respectively. Only in NASH were hepatic dihydroceramides (16:0, 22:0, and 24:1) and lactosylceramides increased. Serum total ceramides and dihydroceramides (hepatic dihydroceramides 22:0 and 24:1) correlated negatively with whole-body but not with hepatic insulin sensitivity. Hepatic maximal respiration related positively to serum lactosylceramide subspecies, hepatic sphinganine, and lactosylceramide 14:0. Liver lipid peroxides (total ceramides, sphingomyelin 22:0) and the pJNK-to-tJNK ratio (ceramide 24:0; hexosylceramides 22:0, 24:0, and 24:1) all positively correlated with the respective hepatic sphingolipids.Sphingolipid species are not only increased in insulin-resistant humans with NASH but also correlate with hepatic oxidative stress and inflammation, suggesting that these lipids may play a role during progression of simple steatosis to NASH in humans.CONCLUSIONSSphingolipid species are not only increased in insulin-resistant humans with NASH but also correlate with hepatic oxidative stress and inflammation, suggesting that these lipids may play a role during progression of simple steatosis to NASH in humans. Insulin resistance and nonalcoholic fatty liver disease have been linked to several lipid metabolites in animals, but their role in humans remains unclear. This study examined the relationship of sphingolipids with hepatic and peripheral metabolism in 21 insulin-resistant obese patients without (NAFL-) or with (NAFL+) nonalcoholic fatty liver and nonalcoholic steatohepatitis (NASH) and 7 healthy lean individuals undergoing tissue biopsies during bariatric or elective abdominal surgery. Hyperinsulinemic-euglycemic clamps with d-[6,6- H ]glucose were performed to quantify tissue-specific insulin sensitivity. Hepatic oxidative capacity, lipid peroxidation, and the phosphorylated-to-total c-Jun N-terminal kinase (pJNK-to-tJNK) ratio were measured to assess mitochondrial function, oxidative stress, and inflammatory activity. Hepatic total ceramides were higher by 50% and 33% in NASH compared with NAFL+ and NAFL-, respectively. Only in NASH were hepatic dihydroceramides (16:0, 22:0, and 24:1) and lactosylceramides increased. Serum total ceramides and dihydroceramides (hepatic dihydroceramides 22:0 and 24:1) correlated negatively with whole-body but not with hepatic insulin sensitivity. Hepatic maximal respiration related positively to serum lactosylceramide subspecies, hepatic sphinganine, and lactosylceramide 14:0. Liver lipid peroxides (total ceramides, sphingomyelin 22:0) and the pJNK-to-tJNK ratio (ceramide 24:0; hexosylceramides 22:0, 24:0, and 24:1) all positively correlated with the respective hepatic sphingolipids. Sphingolipid species are not only increased in insulin-resistant humans with NASH but also correlate with hepatic oxidative stress and inflammation, suggesting that these lipids may play a role during progression of simple steatosis to NASH in humans. OBJECTIVE Insulin resistance and nonalcoholic fatty liver disease have been linked to several lipid metabolites in animals, but their role in humans remains unclear. This study examined the relationship of sphingolipids with hepatic and peripheral metabolism in 21 insulin-resistant obese patients without (NAFL−) or with (NAFL+) nonalcoholic fatty liver and nonalcoholic steatohepatitis (NASH) and 7 healthy lean individuals undergoing tissue biopsies during bariatric or elective abdominal surgery. RESEARCH DESIGN AND METHODS Hyperinsulinemic-euglycemic clamps with d-[6,6-2H2]glucose were performed to quantify tissue-specific insulin sensitivity. Hepatic oxidative capacity, lipid peroxidation, and the phosphorylated-to-total c-Jun N-terminal kinase (pJNK-to-tJNK) ratio were measured to assess mitochondrial function, oxidative stress, and inflammatory activity. RESULTS Hepatic total ceramides were higher by 50% and 33% in NASH compared with NAFL+ and NAFL−, respectively. Only in NASH were hepatic dihydroceramides (16:0, 22:0, and 24:1) and lactosylceramides increased. Serum total ceramides and dihydroceramides (hepatic dihydroceramides 22:0 and 24:1) correlated negatively with whole-body but not with hepatic insulin sensitivity. Hepatic maximal respiration related positively to serum lactosylceramide subspecies, hepatic sphinganine, and lactosylceramide 14:0. Liver lipid peroxides (total ceramides, sphingomyelin 22:0) and the pJNK-to-tJNK ratio (ceramide 24:0; hexosylceramides 22:0, 24:0, and 24:1) all positively correlated with the respective hepatic sphingolipids. CONCLUSIONS Sphingolipid species are not only increased in insulin-resistant humans with NASH but also correlate with hepatic oxidative stress and inflammation, suggesting that these lipids may play a role during progression of simple steatosis to NASH in humans. |
Author | Gancheva, Sofia Roden, Michael Schlensak, Matthias Esposito, Irene Scherer, Philipp E. Jelenik, Tomas Markgraf, Daniel Koliaki, Chrysi De Filippo, Elisabetta Jankowiak, Frank Apostolopoulou, Maria Gordillo, Ruth Herder, Christian |
Author_xml | – sequence: 1 givenname: Maria surname: Apostolopoulou fullname: Apostolopoulou, Maria organization: Division of Endocrinology and Diabetology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany, Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany, German Center for Diabetes Research, München-Neuherberg, Germany – sequence: 2 givenname: Ruth surname: Gordillo fullname: Gordillo, Ruth organization: Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX – sequence: 3 givenname: Chrysi surname: Koliaki fullname: Koliaki, Chrysi organization: Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany, German Center for Diabetes Research, München-Neuherberg, Germany – sequence: 4 givenname: Sofia surname: Gancheva fullname: Gancheva, Sofia organization: Division of Endocrinology and Diabetology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany, Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany, German Center for Diabetes Research, München-Neuherberg, Germany – sequence: 5 givenname: Tomas orcidid: 0000-0002-2061-1162 surname: Jelenik fullname: Jelenik, Tomas organization: Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany, German Center for Diabetes Research, München-Neuherberg, Germany – sequence: 6 givenname: Elisabetta surname: De Filippo fullname: De Filippo, Elisabetta organization: Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany, German Center for Diabetes Research, München-Neuherberg, Germany – sequence: 7 givenname: Christian orcidid: 0000-0002-2050-093X surname: Herder fullname: Herder, Christian organization: Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany, German Center for Diabetes Research, München-Neuherberg, Germany – sequence: 8 givenname: Daniel surname: Markgraf fullname: Markgraf, Daniel organization: Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany, German Center for Diabetes Research, München-Neuherberg, Germany – sequence: 9 givenname: Frank surname: Jankowiak fullname: Jankowiak, Frank organization: Institute of Pathology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany – sequence: 10 givenname: Irene surname: Esposito fullname: Esposito, Irene organization: Institute of Pathology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany – sequence: 11 givenname: Matthias surname: Schlensak fullname: Schlensak, Matthias organization: General Surgery Department, Schön Clinic, Düsseldorf, Germany – sequence: 12 givenname: Philipp E. orcidid: 0000-0002-5336-1358 surname: Scherer fullname: Scherer, Philipp E. organization: Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX – sequence: 13 givenname: Michael orcidid: 0000-0001-8200-6382 surname: Roden fullname: Roden, Michael organization: Division of Endocrinology and Diabetology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany, Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany, German Center for Diabetes Research, München-Neuherberg, Germany |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29602794$$D View this record in MEDLINE/PubMed |
BookMark | eNpt0U1P3DAQBmCrWlQW2kP_AIrUS5EIjO14Ex_RigISAoltz5HjTLpeOXaInao98dfr8HVAPY1kP-9YnjkgC-cdEvKFwinjvDxrNS1zymn1gSyp5CIXoqgWZAm0kLmQku2TgxB2AFAUVfWR7DO5AlbKYkkeNwNq0xmdXeGgYqqbYWvcL2_NYNqQ3aNVEbPos2sXJmtcOgkmROU0nmR3f0ybQr8x28QRQzjJlGuT7Kzq-3ThXZYSt94pq_029UztI6rot0-PRRM-kb1O2YCfX-oh-fn94sf6Kr-5u7xen9_kmoOMOSpZVZUqWMPahqFU0DRtUwJ0WPGuKRsQvEAEVSKWjIJaIV0JFEy0mmuK_JB8e-47jP5hwhDr3gSN1iqHfgo1AwaFZELQRL--ozs_jekLs5KwYmViSR29qKnpsa2H0fRq_Fu_jjaB42egRx_CiN0boVDPa6vntdXz2pI9e2e1iU_zi6My9j-Jf-WKmwI |
CitedBy_id | crossref_primary_10_3390_nu12113240 crossref_primary_10_3390_foods11121747 crossref_primary_10_3390_membranes12040410 crossref_primary_10_1016_j_jhep_2020_11_030 crossref_primary_10_3390_life13041048 crossref_primary_10_3390_nu15143173 crossref_primary_10_1016_j_metabol_2024_155937 crossref_primary_10_1038_s41592_021_01198_0 crossref_primary_10_1152_physrev_00015_2017 crossref_primary_10_1186_s12944_020_01425_1 crossref_primary_10_1016_j_molmet_2020_101134 crossref_primary_10_3390_jcm11195613 crossref_primary_10_1007_s12072_019_09972_1 crossref_primary_10_1016_j_jlr_2025_100767 crossref_primary_10_3345_cep_2022_01312 crossref_primary_10_1016_j_tips_2021_10_001 crossref_primary_10_1111_dme_14494 crossref_primary_10_1016_j_fbio_2025_105861 crossref_primary_10_1016_j_isci_2024_111051 crossref_primary_10_1186_s12944_024_02380_x crossref_primary_10_1016_j_cmet_2019_06_017 crossref_primary_10_1016_j_nano_2021_102430 crossref_primary_10_1210_endrev_bnae032 crossref_primary_10_1016_j_jhep_2021_04_013 crossref_primary_10_3390_atmos15010032 crossref_primary_10_1074_jbc_RA119_010393 crossref_primary_10_1016_j_jep_2024_118922 crossref_primary_10_1089_dna_2020_5402 crossref_primary_10_1021_acsomega_9b04402 crossref_primary_10_1111_liv_15575 crossref_primary_10_2337_dbi18_0018 crossref_primary_10_1016_j_apsb_2025_02_008 crossref_primary_10_1097_MPG_0000000000002875 crossref_primary_10_1152_ajpregu_00316_2021 crossref_primary_10_1002_hep_32778 crossref_primary_10_1016_j_metabol_2021_154892 crossref_primary_10_1016_j_biopha_2019_108868 crossref_primary_10_1016_j_tem_2022_08_001 crossref_primary_10_1007_s00125_020_05310_5 crossref_primary_10_1016_j_coph_2020_10_016 crossref_primary_10_1016_j_diabres_2024_111846 crossref_primary_10_1152_ajpgi_00186_2021 crossref_primary_10_32604_biocell_2024_048551 crossref_primary_10_1016_j_cmet_2022_09_022 crossref_primary_10_1007_s00216_021_03853_z crossref_primary_10_1038_s42003_020_01513_z crossref_primary_10_1007_s42995_023_00168_z crossref_primary_10_1016_j_envint_2024_108820 crossref_primary_10_1016_j_lfs_2020_117678 crossref_primary_10_1016_j_envpol_2023_122238 crossref_primary_10_1016_j_jacl_2019_03_005 crossref_primary_10_3390_molecules27186117 crossref_primary_10_1038_s41467_020_16274_w crossref_primary_10_1016_j_molmet_2020_101122 crossref_primary_10_15252_embr_202255664 crossref_primary_10_54005_geneltip_1415989 crossref_primary_10_3390_nu16203571 crossref_primary_10_1002_mnfr_202000034 crossref_primary_10_1152_ajpendo_00330_2020 crossref_primary_10_1038_s41366_023_01457_4 crossref_primary_10_1016_j_kint_2023_12_009 crossref_primary_10_1016_j_diabres_2022_109829 crossref_primary_10_2337_dc21_1758 crossref_primary_10_3389_fendo_2019_00665 crossref_primary_10_1039_D3FO00723E crossref_primary_10_3390_md18060318 crossref_primary_10_3389_fendo_2021_684448 crossref_primary_10_1016_j_fbio_2024_105046 crossref_primary_10_3390_biology12040595 crossref_primary_10_3390_ijms232315442 crossref_primary_10_3390_nu15061359 crossref_primary_10_1111_apt_16066 crossref_primary_10_1016_j_xcrm_2020_100154 crossref_primary_10_2174_0113816128283153231226103218 crossref_primary_10_2174_1871520619666181224161255 crossref_primary_10_1016_j_ajcnut_2024_04_010 crossref_primary_10_1111_liv_14846 crossref_primary_10_1016_j_envint_2020_105880 crossref_primary_10_3389_fendo_2020_569250 crossref_primary_10_1016_j_ajpath_2019_09_011 crossref_primary_10_3748_wjg_v28_i43_6131 crossref_primary_10_1016_j_metabol_2020_154299 crossref_primary_10_3389_fcell_2019_00210 crossref_primary_10_2337_dc20_0329 crossref_primary_10_1016_j_biochi_2018_07_021 crossref_primary_10_3390_cells8030277 crossref_primary_10_2147_DDDT_S468147 crossref_primary_10_1152_ajpendo_00065_2019 crossref_primary_10_1007_s13534_024_00442_8 crossref_primary_10_1016_j_psj_2022_102428 crossref_primary_10_3748_wjg_v27_i25_3815 crossref_primary_10_1016_j_bbrc_2020_02_104 crossref_primary_10_1016_j_biopha_2021_112298 crossref_primary_10_1016_j_cmet_2021_12_012 crossref_primary_10_1371_journal_pone_0318557 crossref_primary_10_3390_metabo14010012 crossref_primary_10_1016_j_molmet_2022_101487 crossref_primary_10_1186_s12967_020_02296_x crossref_primary_10_1002_jbt_23809 crossref_primary_10_3390_cells9051197 crossref_primary_10_1038_s41467_022_28496_1 crossref_primary_10_1016_j_metabol_2024_156063 crossref_primary_10_1016_j_heliyon_2024_e35491 crossref_primary_10_1007_s00018_022_04401_3 crossref_primary_10_1073_pnas_2007856117 crossref_primary_10_3390_jcm8122197 crossref_primary_10_1155_2020_3920196 crossref_primary_10_1016_j_bbrc_2019_08_111 crossref_primary_10_1038_s41591_019_0414_6 crossref_primary_10_1016_j_jep_2020_112999 crossref_primary_10_3390_molecules25184122 crossref_primary_10_1016_j_trsl_2020_07_008 crossref_primary_10_1016_j_jnutbio_2021_108808 crossref_primary_10_1038_s42255_019_0124_x crossref_primary_10_1055_a_1417_5784 crossref_primary_10_1186_s41110_023_00206_x crossref_primary_10_1016_j_jlr_2023_100366 crossref_primary_10_1016_j_xcrm_2024_101853 crossref_primary_10_1186_s43556_022_00088_x crossref_primary_10_1186_s12933_023_01845_0 crossref_primary_10_58858_010102 crossref_primary_10_1038_s41575_021_00472_y crossref_primary_10_3389_fnut_2024_1258570 crossref_primary_10_1080_01480545_2021_1962692 crossref_primary_10_3389_fendo_2020_00483 crossref_primary_10_1016_j_isci_2021_103549 crossref_primary_10_1371_journal_pone_0303296 crossref_primary_10_3390_nu16020274 crossref_primary_10_1111_obr_12820 crossref_primary_10_1016_j_jhep_2024_08_012 crossref_primary_10_3390_ijms241814015 crossref_primary_10_1111_1471_0528_17026 crossref_primary_10_1002_prp2_1094 crossref_primary_10_1055_s_0041_1732354 crossref_primary_10_3390_nu14112179 crossref_primary_10_1016_j_scitotenv_2024_178219 crossref_primary_10_1210_endocr_bqad084 crossref_primary_10_3389_fendo_2023_1193373 crossref_primary_10_1038_s41575_023_00888_8 crossref_primary_10_1038_s41598_022_11219_3 crossref_primary_10_1002_lipd_12244 crossref_primary_10_1111_liv_15059 crossref_primary_10_1111_dom_15466 crossref_primary_10_1016_j_jcyt_2021_12_009 crossref_primary_10_1038_s41586_019_1797_8 crossref_primary_10_1016_j_bcp_2022_115157 crossref_primary_10_1097_MED_0000000000000704 crossref_primary_10_2337_db19_0589 crossref_primary_10_1002_hep_31843 crossref_primary_10_1016_j_bbalip_2023_159318 crossref_primary_10_1136_bmjdrc_2020_001860 crossref_primary_10_1038_s41574_023_00898_1 crossref_primary_10_3390_ijms241612717 crossref_primary_10_1016_j_tem_2021_04_008 crossref_primary_10_1073_pnas_2117113119 crossref_primary_10_1210_er_2019_00034 crossref_primary_10_1038_s41575_020_00366_5 crossref_primary_10_1113_JP286955 crossref_primary_10_1194_jlr_M085613 crossref_primary_10_3390_metabo12100934 crossref_primary_10_1016_j_jhepr_2022_100479 crossref_primary_10_1038_s41575_021_00502_9 crossref_primary_10_1186_s12944_019_1114_4 crossref_primary_10_1042_BST20210508 crossref_primary_10_1016_j_jhep_2022_09_020 crossref_primary_10_3390_ijms22126332 crossref_primary_10_1016_j_molmet_2023_101851 crossref_primary_10_1126_science_aax6594 crossref_primary_10_1016_j_jep_2022_115427 crossref_primary_10_1111_fcp_12530 crossref_primary_10_1016_j_jdiacomp_2020_107734 crossref_primary_10_1210_jc_2019_00160 crossref_primary_10_1016_j_jlr_2024_100726 crossref_primary_10_1016_j_jhepr_2024_101185 crossref_primary_10_1016_j_jhep_2019_09_018 crossref_primary_10_1186_s12933_023_02049_2 crossref_primary_10_1249_MSS_0000000000003388 crossref_primary_10_3390_jcm10040792 crossref_primary_10_1038_s41575_021_00448_y crossref_primary_10_1128_AAC_01755_20 crossref_primary_10_3390_jcm11051308 crossref_primary_10_1007_s10653_023_01794_3 crossref_primary_10_2337_dsi23_0013 crossref_primary_10_1530_JOE_19_0007 crossref_primary_10_1152_ajpcell_00123_2022 crossref_primary_10_1007_s00018_018_2984_8 crossref_primary_10_1111_eci_13695 crossref_primary_10_1002_mnfr_201900942 crossref_primary_10_1021_acsomega_2c00693 crossref_primary_10_1038_s41598_019_56715_1 crossref_primary_10_1111_obr_13248 crossref_primary_10_1038_s41401_019_0310_0 crossref_primary_10_1111_1753_0407_13120 crossref_primary_10_3390_cells9051106 crossref_primary_10_1016_j_prmcm_2021_100015 crossref_primary_10_3390_cancers15010023 crossref_primary_10_1016_S2213_8587_19_30076_2 crossref_primary_10_1053_j_gastro_2023_02_023 crossref_primary_10_3390_antiox11091727 crossref_primary_10_1038_s42255_021_00501_9 crossref_primary_10_3390_metabo11110779 crossref_primary_10_1053_j_gastro_2020_06_031 crossref_primary_10_1016_j_scitotenv_2020_143466 crossref_primary_10_1016_j_numecd_2023_06_004 crossref_primary_10_1139_cjpp_2019_0487 crossref_primary_10_1038_s41594_024_01414_3 crossref_primary_10_3389_fendo_2024_1400961 crossref_primary_10_1016_j_atherosclerosis_2020_08_006 crossref_primary_10_1007_s00125_018_4777_x |
Cites_doi | 10.1016/j.cmet.2011.11.004 10.2337/db08-1228 10.1073/pnas.1409229111 10.1038/nature21900 10.1038/nature13475 10.1194/jlr.M060061 10.1038/nm.2277 10.1210/me.2015-1069 10.1073/pnas.1113359108 10.1002/hep.23093 10.1038/nrgastro.2016.147 10.1007/s00125-009-1482-9 10.1096/fasebj.14.7.847 10.1016/S0168-8278(02)00073-9 10.1016/j.celrep.2017.05.035 10.2337/dc13-0382 10.1016/j.celrep.2017.02.019 10.1016/j.tem.2015.07.006 10.1007/s00125-016-4038-9 10.3748/wjg.v16.i42.5286 10.1053/j.gastro.2012.03.003 10.1007/s00216-011-4764-2 10.2337/db08-1074 10.1089/ars.2010.3815 10.1016/j.jhep.2016.01.002 10.1186/s12933-016-0374-9 10.1111/j.1440-1746.2010.06246.x 10.1016/j.cmet.2013.03.019 10.1016/j.cmet.2015.04.004 10.1152/ajpendo.00492.2015 10.1038/nrendo.2011.138 10.1016/j.biochi.2013.08.013 10.1111/j.1365-2036.2010.04405.x 10.2337/db13-1794 10.2337/db09-1293 10.1002/hep.20701 10.1002/dmrr.2662 |
ContentType | Journal Article |
Copyright | 2018 by the American Diabetes Association. Copyright American Diabetes Association Jun 1, 2018 |
Copyright_xml | – notice: 2018 by the American Diabetes Association. – notice: Copyright American Diabetes Association Jun 1, 2018 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM K9. NAPCQ 7X8 |
DOI | 10.2337/dc17-1318 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE ProQuest Health & Medical Complete (Alumni) |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1935-5548 |
EndPage | 1243 |
ExternalDocumentID | 29602794 10_2337_dc17_1318 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -ET ..I .XZ 08P 0R~ 18M 29F 2WC 4.4 53G 5GY 5RE 5RS 5VS 6PF 8R4 8R5 AAFWJ AAIKC AAMNW AAWTL AAYEP AAYXX ABOCM ABPPZ ACGFO ACGOD ADBBV AEGXH AENEX AERZD AFOSN AFRAH AHMBA AIAGR ALIPV ALMA_UNASSIGNED_HOLDINGS BAWUL BENPR BTFSW CITATION CS3 DIK DU5 E3Z EBS EDB EJD EMOBN EX3 F5P GX1 H13 HZ~ IAO IEA IHR INH INR IOF IPO KQ8 L7B M0K M5~ O5R O5S O9- OK1 OVD P2P PCD Q2X RHI SV3 TDI TEORI TR2 TWZ VVN W8F WH7 WOQ WOW YHG YOC ~KM .55 .GJ 3O- 41~ 7RV 7X2 7X7 88E 88I 8AF 8AO 8C1 8F7 8FE 8FH 8FI 8FJ 8G5 AAKAS AAQOH AAQQT AAYJJ ABUWG ADZCM AFFNX AFKRA AI. AN0 AQUVI ATCPS AZQEC BCR BCU BEC BHPHI BKEYQ BKNYI BLC BNQBC BPHCQ BVXVI C1A CCPQU CGR CUY CVF DWQXO ECM EIF FYUFA GNUQQ GUQSH HCIFZ HMCUK IAG ITC J5H K9- M0R M0T M1P M2O M2P M2Q N4W NAPCQ NPM PEA PHGZT PQQKQ PROAC PSQYO S0X SJFOW UKHRP VH1 WHG X7M ZCG ZGI ZXP K9. 7X8 |
ID | FETCH-LOGICAL-c309t-ea9888a42b2db2e9a0bbdb700fe83fb7b0534ee0a7ee7210a6e165e525dc3c1e3 |
ISSN | 0149-5992 1935-5548 |
IngestDate | Thu Jul 10 21:15:24 EDT 2025 Mon Jun 30 12:06:41 EDT 2025 Thu Apr 03 07:03:25 EDT 2025 Tue Jul 01 04:11:54 EDT 2025 Thu Apr 24 23:10:33 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | 2018 by the American Diabetes Association. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c309t-ea9888a42b2db2e9a0bbdb700fe83fb7b0534ee0a7ee7210a6e165e525dc3c1e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-5336-1358 0000-0002-2050-093X 0000-0001-8200-6382 0000-0002-2061-1162 |
PMID | 29602794 |
PQID | 2090627255 |
PQPubID | 47715 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2020492551 proquest_journals_2090627255 pubmed_primary_29602794 crossref_primary_10_2337_dc17_1318 crossref_citationtrail_10_2337_dc17_1318 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-06-01 |
PublicationDateYYYYMMDD | 2018-06-01 |
PublicationDate_xml | – month: 06 year: 2018 text: 2018-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Alexandria |
PublicationTitle | Diabetes care |
PublicationTitleAlternate | Diabetes Care |
PublicationYear | 2018 |
Publisher | American Diabetes Association |
Publisher_xml | – name: American Diabetes Association |
References | Szendroedi (2022031301165910400_B3) 2014; 111 Luukkonen (2022031301165910400_B8) 2016; 64 Szendroedi (2022031301165910400_B9) 2011; 8 Wigger (2022031301165910400_B16) 2017; 18 Seki (2022031301165910400_B13) 2002; 37 Warshauer (2022031301165910400_B30) 2015; 31 Koliaki (2022031301165910400_B10) 2015; 21 Chaurasia (2022031301165910400_B2) 2015; 26 Gornicka (2022031301165910400_B12) 2011; 15 Herder (2022031301165910400_B23) 2013; 36 Xia (2022031301165910400_B29) 2014; 96 Novgorodov (2022031301165910400_B14) 2016; 57 Holland (2022031301165910400_B34) 2017; 544 Maceyka (2022031301165910400_B35) 2014; 510 Trevino (2022031301165910400_B27) 2015; 29 Haus (2022031301165910400_B36) 2009; 58 Lee (2022031301165910400_B37) 2010; 25 Kotronen (2022031301165910400_B7) 2009; 58 Gastaldelli (2022031301165910400_B33) 2010; 32 Jelenik (2022031301165910400_B22) 2014; 63 Ter Horst (2022031301165910400_B6) 2017; 19 Kuznetsov (2022031301165910400_B21) 2011; 400 García-Ruiz (2022031301165910400_B32) 2000; 14 Kleiner (2022031301165910400_B18) 2005; 41 Ussher (2022031301165910400_B28) 2010; 59 Magkos (2022031301165910400_B4) 2012; 142 Tilg (2022031301165910400_B1) 2017; 14 de Mello (2022031301165910400_B15) 2009; 52 Brunt (2022031301165910400_B17) 2010; 16 Szendroedi (2022031301165910400_B24) 2016; 15 Apostolopoulou (2022031301165910400_B19) 2016; 59 Holland (2022031301165910400_B25) 2013; 17 Holland (2022031301165910400_B26) 2011; 17 Patterson (2022031301165910400_B31) 2016; 310 Sunny (2022031301165910400_B11) 2011; 14 Szendroedi (2022031301165910400_B20) 2009; 50 Kumashiro (2022031301165910400_B5) 2011; 108 |
References_xml | – volume: 14 start-page: 804 year: 2011 ident: 2022031301165910400_B11 article-title: Excessive hepatic mitochondrial TCA cycle and gluconeogenesis in humans with nonalcoholic fatty liver disease publication-title: Cell Metab doi: 10.1016/j.cmet.2011.11.004 – volume: 58 start-page: 337 year: 2009 ident: 2022031301165910400_B36 article-title: Plasma ceramides are elevated in obese subjects with type 2 diabetes and correlate with the severity of insulin resistance publication-title: Diabetes doi: 10.2337/db08-1228 – volume: 111 start-page: 9597 year: 2014 ident: 2022031301165910400_B3 article-title: Role of diacylglycerol activation of PKCθ in lipid-induced muscle insulin resistance in humans publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1409229111 – volume: 544 start-page: 42 year: 2017 ident: 2022031301165910400_B34 article-title: Structural biology: receptors grease the metabolic wheels publication-title: Nature doi: 10.1038/nature21900 – volume: 510 start-page: 58 year: 2014 ident: 2022031301165910400_B35 article-title: Sphingolipid metabolites in inflammatory disease publication-title: Nature doi: 10.1038/nature13475 – volume: 57 start-page: 546 year: 2016 ident: 2022031301165910400_B14 article-title: Lactosylceramide contributes to mitochondrial dysfunction in diabetes publication-title: J Lipid Res doi: 10.1194/jlr.M060061 – volume: 17 start-page: 55 year: 2011 ident: 2022031301165910400_B26 article-title: Receptor-mediated activation of ceramidase activity initiates the pleiotropic actions of adiponectin publication-title: Nat Med doi: 10.1038/nm.2277 – volume: 29 start-page: 1414 year: 2015 ident: 2022031301165910400_B27 article-title: Liver perilipin 5 expression worsens hepatosteatosis but not insulin resistance in high fat-fed mice publication-title: Mol Endocrinol doi: 10.1210/me.2015-1069 – volume: 108 start-page: 16381 year: 2011 ident: 2022031301165910400_B5 article-title: Cellular mechanism of insulin resistance in nonalcoholic fatty liver disease publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1113359108 – volume: 50 start-page: 1079 year: 2009 ident: 2022031301165910400_B20 article-title: Abnormal hepatic energy homeostasis in type 2 diabetes publication-title: Hepatology doi: 10.1002/hep.23093 – volume: 14 start-page: 32 year: 2017 ident: 2022031301165910400_B1 article-title: NAFLD and diabetes mellitus publication-title: Nat Rev Gastroenterol Hepatol doi: 10.1038/nrgastro.2016.147 – volume: 52 start-page: 2612 year: 2009 ident: 2022031301165910400_B15 article-title: Link between plasma ceramides, inflammation and insulin resistance: association with serum IL-6 concentration in patients with coronary heart disease publication-title: Diabetologia doi: 10.1007/s00125-009-1482-9 – volume: 14 start-page: 847 year: 2000 ident: 2022031301165910400_B32 article-title: Direct interaction of GD3 ganglioside with mitochondria generates reactive oxygen species followed by mitochondrial permeability transition, cytochrome c release, and caspase activation publication-title: FASEB J doi: 10.1096/fasebj.14.7.847 – volume: 37 start-page: 56 year: 2002 ident: 2022031301165910400_B13 article-title: In situ detection of lipid peroxidation and oxidative DNA damage in non-alcoholic fatty liver diseases publication-title: J Hepatol doi: 10.1016/S0168-8278(02)00073-9 – volume: 19 start-page: 1997 year: 2017 ident: 2022031301165910400_B6 article-title: Hepatic diacylglycerol-associated protein kinase Cε translocation links hepatic steatosis to hepatic insulin resistance in humans publication-title: Cell Reports doi: 10.1016/j.celrep.2017.05.035 – volume: 36 start-page: 3663 year: 2013 ident: 2022031301165910400_B23 article-title: Association of subclinical inflammation with polyneuropathy in the older population: KORA F4 study publication-title: Diabetes Care doi: 10.2337/dc13-0382 – volume: 18 start-page: 2269 year: 2017 ident: 2022031301165910400_B16 article-title: Plasma dihydroceramides are diabetes susceptibility biomarker candidates in mice and humans publication-title: Cell Reports doi: 10.1016/j.celrep.2017.02.019 – volume: 26 start-page: 538 year: 2015 ident: 2022031301165910400_B2 article-title: Ceramides—lipotoxic inducers of metabolic disorders [published correction appears in publication-title: Trends Endocrinol Metab doi: 10.1016/j.tem.2015.07.006 – volume: 59 start-page: 2203 year: 2016 ident: 2022031301165910400_B19 article-title: Metabolic flexibility and oxidative capacity independently associate with insulin sensitivity in individuals with newly diagnosed type 2 diabetes publication-title: Diabetologia doi: 10.1007/s00125-016-4038-9 – volume: 16 start-page: 5286 year: 2010 ident: 2022031301165910400_B17 article-title: Histopathology of nonalcoholic fatty liver disease publication-title: World J Gastroenterol doi: 10.3748/wjg.v16.i42.5286 – volume: 142 start-page: 1444 year: 2012 ident: 2022031301165910400_B4 article-title: Intrahepatic diacylglycerol content is associated with hepatic insulin resistance in obese subjects publication-title: Gastroenterology doi: 10.1053/j.gastro.2012.03.003 – volume: 400 start-page: 2383 year: 2011 ident: 2022031301165910400_B21 article-title: Mitochondrial ROS production under cellular stress: comparison of different detection methods publication-title: Anal Bioanal Chem doi: 10.1007/s00216-011-4764-2 – volume: 58 start-page: 203 year: 2009 ident: 2022031301165910400_B7 article-title: Hepatic stearoyl-CoA desaturase (SCD)-1 activity and diacylglycerol but not ceramide concentrations are increased in the nonalcoholic human fatty liver publication-title: Diabetes doi: 10.2337/db08-1074 – volume: 15 start-page: 437 year: 2011 ident: 2022031301165910400_B12 article-title: Transcriptional profile of genes involved in oxidative stress and antioxidant defense in a dietary murine model of steatohepatitis publication-title: Antioxid Redox Signal doi: 10.1089/ars.2010.3815 – volume: 64 start-page: 1167 year: 2016 ident: 2022031301165910400_B8 article-title: Hepatic ceramides dissociate steatosis and insulin resistance in patients with non-alcoholic fatty liver disease publication-title: J Hepatol doi: 10.1016/j.jhep.2016.01.002 – volume: 15 start-page: 59 year: 2016 ident: 2022031301165910400_B24 article-title: Cohort profile: the German Diabetes Study (GDS) publication-title: Cardiovasc Diabetol doi: 10.1186/s12933-016-0374-9 – volume: 25 start-page: 1105 year: 2010 ident: 2022031301165910400_B37 article-title: Effects of sphingolipid synthesis inhibition on cholesterol gallstone formation in C57BL/6J mice publication-title: J Gastroenterol Hepatol doi: 10.1111/j.1440-1746.2010.06246.x – volume: 17 start-page: 790 year: 2013 ident: 2022031301165910400_B25 article-title: An FGF21-adiponectin-ceramide axis controls energy expenditure and insulin action in mice publication-title: Cell Metab doi: 10.1016/j.cmet.2013.03.019 – volume: 21 start-page: 739 year: 2015 ident: 2022031301165910400_B10 article-title: Adaptation of hepatic mitochondrial function in humans with non-alcoholic fatty liver is lost in steatohepatitis publication-title: Cell Metab doi: 10.1016/j.cmet.2015.04.004 – volume: 310 start-page: E484 year: 2016 ident: 2022031301165910400_B31 article-title: Lipotoxicity in steatohepatitis occurs despite an increase in tricarboxylic acid cycle activity publication-title: Am J Physiol Endocrinol Metab doi: 10.1152/ajpendo.00492.2015 – volume: 8 start-page: 92 year: 2011 ident: 2022031301165910400_B9 article-title: The role of mitochondria in insulin resistance and type 2 diabetes mellitus publication-title: Nat Rev Endocrinol doi: 10.1038/nrendo.2011.138 – volume: 96 start-page: 130 year: 2014 ident: 2022031301165910400_B29 article-title: The adipokine/ceramide axis: key aspects of insulin sensitization publication-title: Biochimie doi: 10.1016/j.biochi.2013.08.013 – volume: 32 start-page: 769 year: 2010 ident: 2022031301165910400_B33 article-title: Pioglitazone in the treatment of NASH: the role of adiponectin publication-title: Aliment Pharmacol Ther doi: 10.1111/j.1365-2036.2010.04405.x – volume: 63 start-page: 3856 year: 2014 ident: 2022031301165910400_B22 article-title: Tissue-specific differences in the development of insulin resistance in a mouse model for type 1 diabetes publication-title: Diabetes doi: 10.2337/db13-1794 – volume: 59 start-page: 2453 year: 2010 ident: 2022031301165910400_B28 article-title: Inhibition of de novo ceramide synthesis reverses diet-induced insulin resistance and enhances whole-body oxygen consumption publication-title: Diabetes doi: 10.2337/db09-1293 – volume: 41 start-page: 1313 year: 2005 ident: 2022031301165910400_B18 article-title: Design and validation of a histological scoring system for nonalcoholic fatty liver disease publication-title: Hepatology doi: 10.1002/hep.20701 – volume: 31 start-page: 734 year: 2015 ident: 2022031301165910400_B30 article-title: Effect of pioglitazone on plasma ceramides in adults with metabolic syndrome publication-title: Diabetes Metab Res Rev doi: 10.1002/dmrr.2662 |
SSID | ssj0004488 |
Score | 2.628325 |
Snippet | Insulin resistance and nonalcoholic fatty liver disease have been linked to several lipid metabolites in animals, but their role in humans remains unclear.... OBJECTIVE Insulin resistance and nonalcoholic fatty liver disease have been linked to several lipid metabolites in animals, but their role in humans remains... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 1235 |
SubjectTerms | Abdominal surgery Adult Animals c-Jun protein Ceramide Clamps Correlation Disease Progression Fatty liver Female Glucose Clamp Technique Humans Inflammation Inflammation - blood Inflammation - metabolism Inflammation - physiopathology Insulin Insulin resistance Insulin Resistance - physiology JNK protein Lipid metabolism Lipid peroxidation Lipid Peroxidation - physiology Lipids Liver Liver - chemistry Liver - metabolism Liver - pathology Liver diseases Male Metabolism Metabolites Middle Aged Mitochondria Non-alcoholic Fatty Liver Disease - blood Non-alcoholic Fatty Liver Disease - metabolism Non-alcoholic Fatty Liver Disease - physiopathology Obesity - blood Obesity - metabolism Obesity - physiopathology Obesity - surgery Oxidation resistance Oxidation-Reduction Oxidative stress Oxidative Stress - physiology Peroxidation Peroxides Prospective Studies Research design Sensitivity Sphinganine Sphingolipids Sphingolipids - analysis Sphingolipids - blood Sphingolipids - metabolism Sphingomyelin Steatosis Surgery Transcription factors |
Title | Specific Hepatic Sphingolipids Relate to Insulin Resistance, Oxidative Stress, and Inflammation in Nonalcoholic Steatohepatitis |
URI | https://www.ncbi.nlm.nih.gov/pubmed/29602794 https://www.proquest.com/docview/2090627255 https://www.proquest.com/docview/2020492551 |
Volume | 41 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKkBAviG8KAxnEAw8LJE7SJI_TxmgZKx_dpL1FduyokaqkWlOEeOEf4I_mzna8dCoIeImq1LEt3y_nO-fud4S8zMJRIgLGPRkz6UWRjD2hSuEFKowKJZM45pgofDIdjc-i9-fx-WDwsxe1tG7F6-L71ryS_5Eq3AO5YpbsP0jWdQo34DfIF64gYbj-lYx18fiyKmDzWGrm1dkSD5SaRbWs5MoEuunSGBMbcf5FrdBerM3J-cdvlTS83zOdMdJFck7qEnBichrxPGSK1rqupItDtOinz_WAbbXqG7eH3TkuhpM5JC2RumPRLJv1olnb9KDKbQbvwPmt7PcfjLZ3GwAMxk1J7YP5BWDJPQCzn6uv2uadwerx_rlFkF7GV_VSBUCHubldxWN34Jl5cZZtaGxDlWWR2Ve_mPi7bV9goWYWkAVsyUFoFf4G9_Z4f5Z_OjzKP0ymx9fIdQZOB9bDOP7c456PdBVTNyPDU4Vdv3Edb1o3v3FZtOlyepvcsj4H3TcAukMGqr5LbpzYqIp75EeHI2pxRDdwRA2OaNtQiyN6iaM96lBEDYr2KGCI9jFE4Yk-hugVDN0nZ0dvTw_Gni3M4RWhn7We4lmapjxigknBVMZ9IaRIfL9UaViKRIBmj5TyeaJUwgKfj1QwilXMYlmEBaiBB2Snbmr1iFCRId9QIjOsdBAkJS9gQXnqcylEXKZqSF51C5oXlrUei6cscvBece1zXPsc135IXrimS0PVsq3RbieV3L7Jq5z5mq0bvOshee7-Bj2LH894rZo1tmE-EnnGwZA8NNJ0o7Bs5DOY_-M_d_6E3OxehNDfJTvtxVo9BZO2Fc800n4B_1SqsA |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Specific+Hepatic+Sphingolipids+Relate+to+Insulin+Resistance%2C+Oxidative+Stress%2C+and+Inflammation+in+Nonalcoholic+Steatohepatitis&rft.jtitle=Diabetes+care&rft.au=Apostolopoulou%2C+Maria&rft.au=Gordillo%2C+Ruth&rft.au=Koliaki%2C+Chrysi&rft.au=Gancheva%2C+Sofia&rft.date=2018-06-01&rft.pub=American+Diabetes+Association&rft.issn=0149-5992&rft.volume=41&rft.issue=6&rft.spage=1235&rft_id=info:doi/10.2337%2Fdc17-1318&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0149-5992&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0149-5992&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0149-5992&client=summon |