Mining information from sentences through Semantic Web data and Information Extraction tasks

The Semantic Web provides guidelines for the representation of information about real-world objects (entities) and their relations (properties). This is helpful for the dissemination and consumption of information by people and applications. However, the information is mainly contained within natura...

Full description

Saved in:
Bibliographic Details
Published inJournal of information science Vol. 48; no. 1; pp. 3 - 20
Main Authors Martinez-Rodriguez, Jose L., Lopez-Arevalo, Ivan, Rios-Alvarado, Ana B.
Format Journal Article
LanguageEnglish
Published London, England SAGE Publications 01.02.2022
Bowker-Saur Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The Semantic Web provides guidelines for the representation of information about real-world objects (entities) and their relations (properties). This is helpful for the dissemination and consumption of information by people and applications. However, the information is mainly contained within natural language sentences, which do not have a structure or linguistic descriptions ready to be directly processed by computers. Thus, the challenge is to identify and extract the elements of information that can be represented. Hence, this article presents a strategy to extract information from sentences and its representation with Semantic Web standards. Our strategy involves Information Extraction tasks and a hybrid semantic similarity measure to get entities and relations that are later associated with individuals and properties from a Knowledge Base to create RDF triples (Subject–Predicate–Object structures). The experiments demonstrate the feasibility of our method and that it outperforms the accuracy provided by a pattern-based method from the literature.
AbstractList The Semantic Web provides guidelines for the representation of information about real-world objects (entities) and their relations (properties). This is helpful for the dissemination and consumption of information by people and applications. However, the information is mainly contained within natural language sentences, which do not have a structure or linguistic descriptions ready to be directly processed by computers. Thus, the challenge is to identify and extract the elements of information that can be represented. Hence, this article presents a strategy to extract information from sentences and its representation with Semantic Web standards. Our strategy involves Information Extraction tasks and a hybrid semantic similarity measure to get entities and relations that are later associated with individuals and properties from a Knowledge Base to create RDF triples (Subject–Predicate–Object structures). The experiments demonstrate the feasibility of our method and that it outperforms the accuracy provided by a pattern-based method from the literature.
Author Lopez-Arevalo, Ivan
Rios-Alvarado, Ana B.
Martinez-Rodriguez, Jose L.
Author_xml – sequence: 1
  givenname: Jose L.
  orcidid: 0000-0002-1276-6957
  surname: Martinez-Rodriguez
  fullname: Martinez-Rodriguez, Jose L.
  organization: Cinvestav-Tamaulipas, Mexico; Computer Systems Laboratory, Multidisciplinary Academic Unit Reynosa-Rodhe, Autonomous University of Tamaulipas, Mexico
– sequence: 2
  givenname: Ivan
  surname: Lopez-Arevalo
  fullname: Lopez-Arevalo, Ivan
  organization: Cinvestav-Tamaulipas, Mexico
– sequence: 3
  givenname: Ana B.
  surname: Rios-Alvarado
  fullname: Rios-Alvarado, Ana B.
  organization: Faculty of Engineering and Science, Autonomous University of Tamaulipas, Mexico
BookMark eNp9kMFLwzAUxoNMcJvePQY8V5OmSdOjjKmDiQcVL0JJ09ctc01mkoH-97aboAz09B583--9j2-EBtZZQOickktK8_yKUME5pzwlBcuYzI_QkOYZTUQm-QANeznp9RM0CmFFCOGdb4he7401doGNbZxvVTTO4sa7FgewEayGgOPSu-1iiR-hVTYajV-gwrWKCitb49kvcPoRvdK7NarwFk7RcaPWAc6-5xg930yfJnfJ_OF2NrmeJ5qRIiYgmahkzutUC5JKmuZEcKjrStSaK6K5KBqpM0mrWjLQIDlljANklVBCVISN0cX-7sa79y2EWK7c1tvuZZmKtGCEkzztXGLv0t6F4KEptYm74F1qsy4pKfsmy8MmO5AcgBtvWuU__0OSPRLUAn7S_On_AiTlg-c
CitedBy_id crossref_primary_10_2478_amns_2023_2_00221
crossref_primary_10_1108_EL_06_2023_0165
crossref_primary_10_1080_19393555_2022_2080614
crossref_primary_10_1007_s40747_022_00805_7
crossref_primary_10_1109_ACCESS_2023_3296141
Cites_doi 10.7551/mitpress/7287.003.0018
10.3233/SW-170269
10.3233/SW-150180
10.1145/2838931.2838936
10.3115/v1/P14-5010
10.1016/j.ins.2019.09.006
10.3115/1690219.1690287
10.1177/001316447003000308
10.1007/978-3-642-45068-6_28
10.1145/2629489
10.1145/1409360.1409378
10.1162/tacl_a_00179
10.1162/coli.2006.32.1.13
10.1109/MCI.2018.2840738
10.1145/2736277.2741139
10.1007/978-3-642-41335-3_9
10.3115/1614025.1614037
10.1007/978-3-540-85836-2_29
10.1145/2633211.2634350
10.3233/SW-160221
10.1007/978-1-4471-2458-0_2
10.3115/981732.981751
10.1016/j.eswa.2018.07.017
ContentType Journal Article
Copyright The Author(s) 2020
Copyright_xml – notice: The Author(s) 2020
DBID AAYXX
CITATION
7SC
8FD
E3H
F2A
JQ2
L7M
L~C
L~D
DOI 10.1177/0165551520934387
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Library & Information Sciences Abstracts (LISA)
Library & Information Science Abstracts (LISA)
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Library and Information Science Abstracts (LISA)
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList CrossRef
Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Library & Information Science
EISSN 1741-6485
EndPage 20
ExternalDocumentID 10_1177_0165551520934387
10.1177_0165551520934387
GrantInformation_xml – fundername: Fondo SEP-Cinvestav
  grantid: Project No 229
GroupedDBID -TM
-~X
.2G
.2L
.DC
01A
09Z
0R~
1OL
1~K
29K
31S
31V
31W
31X
4.4
54M
56W
5GY
5VS
77K
AABOD
AACKU
AADIR
AADUE
AAGGD
AAGLT
AAJPV
AAKTJ
AAMFR
AANSI
AAPEO
AAQDB
AAQXI
AARIX
AATAA
AAWLO
ABAWP
ABCCA
ABCJG
ABEIX
ABFXH
ABHQH
ABIDT
ABJNI
ABKRH
ABPNF
ABQKF
ABQPY
ABQXT
ABRHV
ABUJY
ABYTW
ACAEP
ACDXX
ACFUR
ACFZE
ACGFS
ACHQT
ACJER
ACLZU
ACOFE
ACOXC
ACROE
ACRPL
ACSIQ
ACUFS
ACUIR
ADDLC
ADEBD
ADEIA
ADMHG
ADNMO
ADNON
ADPEE
ADRRZ
ADSTG
ADTOS
ADUKL
ADYCS
AEDXQ
AEILP
AENEX
AEOBU
AESMA
AESZF
AEUHG
AEVPJ
AEWDL
AEWHI
AEXNY
AFEET
AFKBI
AFKRG
AFMOU
AFQAA
AFUIA
AFWMB
AGDVU
AGKLV
AGNHF
AGNWV
AGQPQ
AGWNL
AHDMH
AHHFK
AHWHD
AJUZI
ALFTD
ALMA_UNASSIGNED_HOLDINGS
ANDLU
ARTOV
ASPBG
AUTPY
AUVAJ
AVWKF
AYPQM
AZFZN
B8O
B8S
B8T
B8Z
BDZRT
BMVBW
BPACV
BYIEH
CAG
CBRKF
CCGJY
CEADM
COF
CS3
D-I
DD0
DD~
DG~
DOPDO
DU5
DV7
DV8
EBS
EJD
FEDTE
FHBDP
GROUPED_SAGE_PREMIER_JOURNAL_COLLECTION
H13
HF~
HVGLF
HZ~
J8X
LPU
MS~
N9A
O9-
P.B
P2P
PQQKQ
Q1R
Q7O
Q7P
Q7X
RIG
ROL
S01
SASJQ
SAUOL
SBI
SCNPE
SFB
SFC
SFK
SFT
SGP
SGU
SGV
SHB
SHF
SHM
SPJ
SPK
SPP
SQCSI
SSDHQ
TN5
ZPLXX
ZPPRI
~32
~A~
AAYXX
ACCVC
AJGYC
AMNSR
CITATION
7SC
8FD
AAPII
AJVBE
E3H
F2A
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c309t-e836b875d2c6028127065eddb6dc5a0c569f8c481bd83ece851335ee4b6a66b03
ISSN 0165-5515
IngestDate Fri Jul 25 06:23:57 EDT 2025
Tue Jul 01 05:30:43 EDT 2025
Thu Apr 24 23:12:43 EDT 2025
Tue Jun 17 22:29:24 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords RDF representation
Semantic Web
Information Extraction
information representation
linked data
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c309t-e836b875d2c6028127065eddb6dc5a0c569f8c481bd83ece851335ee4b6a66b03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1276-6957
PQID 2629305072
PQPubID 43525
PageCount 18
ParticipantIDs proquest_journals_2629305072
crossref_citationtrail_10_1177_0165551520934387
crossref_primary_10_1177_0165551520934387
sage_journals_10_1177_0165551520934387
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220200
2022-02-00
20220201
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 2
  year: 2022
  text: 20220200
PublicationDecade 2020
PublicationPlace London, England
PublicationPlace_xml – name: London, England
– name: Amsterdam
PublicationTitle Journal of information science
PublicationYear 2022
Publisher SAGE Publications
Bowker-Saur Ltd
Publisher_xml – name: SAGE Publications
– name: Bowker-Saur Ltd
References Presutti, Nuzzolese, Consoli 2016; 7
Martinez-Rodriguez, Lopez-Arevalo, Rios-Alvarado 2018; 113
Augenstein, Maynard, Ciravegna 2016; 7
Leacock, Chodorow 1998; 49
Geng, Chen, Han 2020; 509
Budanitsky, Hirst 2006; 32
Landis, Koch; 1977
Martinez-Rodriguez, Hogan, Lopez-Arevalo 2018; 1
Fossati, Dorigatti, Giuliano 2018; 9
Etzioni, Banko, Soderland 2008; 51
Moro, Raganato, Navigli 2014; 2
Krejcie, Morgan 1970; 30
Vrandecic, Krötzsch 2014; 57
Young, Hazarika, Poria 2018; 13
bibr9-0165551520934387
bibr21-0165551520934387
Cimiano P (bibr33-0165551520934387) 2006
Nguyen TVT (bibr10-0165551520934387)
Del Corro L (bibr31-0165551520934387)
bibr39-0165551520934387
bibr13-0165551520934387
bibr4-0165551520934387
Kusner MJ (bibr28-0165551520934387) 2015
Rehurec R (bibr29-0165551520934387)
bibr18-0165551520934387
bibr35-0165551520934387
Landis JR (bibr41-0165551520934387); 1977
bibr38-0165551520934387
bibr22-0165551520934387
bibr25-0165551520934387
Kertkeidkachorn N (bibr42-0165551520934387)
bibr17-0165551520934387
bibr30-0165551520934387
Mihalcea R (bibr23-0165551520934387)
Dutta A (bibr19-0165551520934387) 2014
Cer DM (bibr34-0165551520934387)
bibr40-0165551520934387
Wang Z (bibr12-0165551520934387) 2015
Leacock C (bibr27-0165551520934387) 1998; 49
bibr7-0165551520934387
bibr24-0165551520934387
bibr16-0165551520934387
bibr37-0165551520934387
Mendes PN (bibr2-0165551520934387)
Feng Niu (bibr15-0165551520934387) 2012
bibr14-0165551520934387
Ferragina P (bibr3-0165551520934387)
Randolph JJ (bibr36-0165551520934387) 2005
bibr20-0165551520934387
Martinez-Rodriguez JL (bibr8-0165551520934387) 2018; 1
Lin D (bibr26-0165551520934387) 1998
bibr5-0165551520934387
bibr11-0165551520934387
bibr6-0165551520934387
bibr1-0165551520934387
bibr32-0165551520934387
References_xml – volume: 2
  start-page: 231
  year: 2014
  end-page: 244
  article-title: Entity linking meets word sense disambiguation: a unified approach
  publication-title: Trans Assoc Comput Linguist
– volume: 49
  start-page: 265
  issue: 2
  year: 1998
  end-page: 283
  article-title: Combining local context and wordnet similarity for word sense identification
  publication-title: Wordnet: Electron Lex Data
– volume: 57
  start-page: 78
  issue: 10
  year: 2014
  end-page: 85
  article-title: Wikidata: a free collaborative knowledgebase
  publication-title: Commun ACM
– volume: 13
  start-page: 55
  issue: 3
  year: 2018
  end-page: 75
  article-title: Recent trends in deep learning based natural language processing
  publication-title: IEEE Comput Intel Mag
– volume: 113
  start-page: 339
  year: 2018
  end-page: 355
  article-title: OpenIE-based approach for knowledge graph construction from text
  publication-title: Exp Syst Appl
– volume: 32
  start-page: 13
  issue: 1
  year: 2006
  end-page: 47
  article-title: Evaluating WordNet-based measures of lexical semantic relatedness
  publication-title: Comput Linguist
– volume: 7
  start-page: 335
  issue: 4
  year: 2016
  end-page: 349
  article-title: Distantly supervised Web relation extraction for knowledge base population
  publication-title: Semantic Web
– volume: 1
  start-page: 255
  year: 2018
  end-page: 335
  article-title: Information extraction meets the semantic web: a survey
  publication-title: Semantic Web J
– volume: 51
  start-page: 68
  issue: 12
  year: 2008
  end-page: 74
  article-title: Open information extraction from the web
  publication-title: Commun ACM
– volume: 1977
  start-page: 159
  end-page: 174
  article-title: The measurement of observer agreement for categorical data
  publication-title: Biometrics
– volume: 30
  start-page: 607
  issue: 3
  year: 1970
  end-page: 610
  article-title: Determining sample size for research activities
  publication-title: Edu Psychol Meas
– volume: 7
  start-page: 351
  issue: 4
  year: 2016
  end-page: 378
  article-title: From hyperlinks to Semantic Web properties using open knowledge extraction
  publication-title: Semantic Web
– volume: 509
  start-page: 183
  year: 2020
  end-page: 192
  article-title: Semantic relation extraction using sequential and tree-structured LSTM with attention
  publication-title: Inform Sci
– volume: 9
  start-page: 413
  issue: 4
  year: 2018
  end-page: 439
  article-title: N-ary relation extraction for simultaneous T-Box and A-Box knowledge base augmentation
  publication-title: Semantic Web
– volume: 49
  start-page: 265
  issue: 2
  year: 1998
  ident: bibr27-0165551520934387
  publication-title: Wordnet: Electron Lex Data
  doi: 10.7551/mitpress/7287.003.0018
– ident: bibr9-0165551520934387
  doi: 10.3233/SW-170269
– ident: bibr11-0165551520934387
  doi: 10.3233/SW-150180
– volume-title: Joensuu Learning and Instruction Symposium, Joensuu
  year: 2005
  ident: bibr36-0165551520934387
– ident: bibr38-0165551520934387
  doi: 10.1145/2838931.2838936
– start-page: 253
  volume-title: Chinese computational linguistics
  year: 2015
  ident: bibr12-0165551520934387
– start-page: 296
  volume-title: International conference on machine learning
  year: 1998
  ident: bibr26-0165551520934387
– ident: bibr30-0165551520934387
  doi: 10.3115/v1/P14-5010
– ident: bibr13-0165551520934387
  doi: 10.1016/j.ins.2019.09.006
– start-page: 111
  volume-title: European starting AI researcher symposium
  year: 2014
  ident: bibr19-0165551520934387
– ident: bibr6-0165551520934387
  doi: 10.3115/1690219.1690287
– start-page: 277
  volume-title: Proceedings of the annual meeting of the association for computational linguistics: human language technologies
  ident: bibr10-0165551520934387
– ident: bibr40-0165551520934387
  doi: 10.1177/001316447003000308
– ident: bibr18-0165551520934387
– start-page: 355
  volume-title: Proceedings of the international conference on world wide web
  ident: bibr31-0165551520934387
– ident: bibr17-0165551520934387
  doi: 10.1007/978-3-642-45068-6_28
– ident: bibr1-0165551520934387
  doi: 10.1145/2629489
– ident: bibr16-0165551520934387
  doi: 10.1145/1409360.1409378
– ident: bibr4-0165551520934387
  doi: 10.1162/tacl_a_00179
– volume-title: Proceedings of the workshops on thirty-first AAAI conference on artificial intelligence
  ident: bibr42-0165551520934387
– start-page: 775
  volume-title: Proceedings of the national conference on artificial intelligence and the eighteenth innovative applications of artificial intelligence conference
  ident: bibr23-0165551520934387
– volume-title: Ontology learning and population from text: algorithms, evaluation and applications
  year: 2006
  ident: bibr33-0165551520934387
– volume: 1977
  start-page: 159
  ident: bibr41-0165551520934387
  publication-title: Biometrics
– ident: bibr39-0165551520934387
  doi: 10.1162/coli.2006.32.1.13
– ident: bibr32-0165551520934387
  doi: 10.1109/MCI.2018.2840738
– ident: bibr7-0165551520934387
  doi: 10.1145/2736277.2741139
– ident: bibr21-0165551520934387
  doi: 10.1007/978-3-642-41335-3_9
– ident: bibr37-0165551520934387
  doi: 10.3115/1614025.1614037
– ident: bibr24-0165551520934387
  doi: 10.1007/978-3-540-85836-2_29
– start-page: 957
  volume-title: International conference on machine learning
  year: 2015
  ident: bibr28-0165551520934387
– ident: bibr5-0165551520934387
  doi: 10.1145/2633211.2634350
– ident: bibr20-0165551520934387
  doi: 10.3233/SW-160221
– start-page: 1
  volume-title: Proceedings of the 11th international workshop on semantic evaluation
  ident: bibr34-0165551520934387
– ident: bibr35-0165551520934387
  doi: 10.1007/978-1-4471-2458-0_2
– start-page: 46
  volume-title: Proceedings of LREC 2010 workshop new challenges for NLP frameworks
  ident: bibr29-0165551520934387
– start-page: 25
  volume-title: Proceedings of the Second International Workshop on Searching and Integrating New Web Data Sources
  year: 2012
  ident: bibr15-0165551520934387
– ident: bibr25-0165551520934387
  doi: 10.3115/981732.981751
– ident: bibr14-0165551520934387
– start-page: 1
  volume-title: Proceedings of the international conference on semantic systems
  ident: bibr2-0165551520934387
– start-page: 1625
  volume-title: Proceedings of the conference on information and knowledge management
  ident: bibr3-0165551520934387
– volume: 1
  start-page: 255
  year: 2018
  ident: bibr8-0165551520934387
  publication-title: Semantic Web J
– ident: bibr22-0165551520934387
  doi: 10.1016/j.eswa.2018.07.017
SSID ssj0005934
Score 2.345091
Snippet The Semantic Web provides guidelines for the representation of information about real-world objects (entities) and their relations (properties). This is...
SourceID proquest
crossref
sage
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3
SubjectTerms Information retrieval
Knowledge bases (artificial intelligence)
Natural language (computers)
Representations
Semantic web
Semantics
Sentences
Title Mining information from sentences through Semantic Web data and Information Extraction tasks
URI https://journals.sagepub.com/doi/full/10.1177/0165551520934387
https://www.proquest.com/docview/2629305072
Volume 48
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bT9swFLa68rKXCcamlZv8gJCmKiWNHTd5LAjE0DptDDQmTYp8q4TGWtSmCPE7-MEcx06cdgWxvURV6tiKz5fjcz8I7aphFHMB3C_lDBQUwmXAhUqBGUqaagEqhTamgcEXdnJBTy_jy0bjoRa1NMtFR94vzSv5H6rCPaCryZL9B8pWk8IN-A30hStQGK4vovGg6O7QdsVPbdSgSRcxCUVFfHTVhue7_gNbeCXbP0xqIs-5iwP2Dx7d5RPXNzzn09_TJ6TW-lru9PRGbVORQN8HZ2MFOv_M2qaNi6H9uVMF_oxvYER_YqqMF1baT7cen2dX42nQv77lE65s-s2Itw86dcsEKLXhXJSHdYktNz52WRyArGb92dqyXpBtAkZtA5-SN9PkLwxaRktqJ3aRTbfkLCi80WYps1IUpoQSd7jPV9h2g7PFoa_QSgTKR9REK_2fX78NfOhQSlzNePsW3v29vzjHvLjjdZha2GAhyZyvojeOmLhv8bSGGnr0Fm27BBa8h2uowI71r6NfFmu4Rn9ssIYrrGGHNVxiDQPWsMEaBqzNzeqxhgusvUMXx0fnhyeB68wRSBKmeaATwgRouiqSDARUE73AYq2UYErGPJQxS4eJpKASqYRo0xm3S0isNRWMMyZC8h41R-OR_oBwjw0ZF0T3eoRRyRQHLhElMh3GSY8nVLfQfrmBmXRl6033lOusW1aqX9jyFvpYPXFjS7Y8M3arpEnmPuxpFjGQgUNQlKIW2jN08n89Nc_GSwduotf-U9lCzXwy09sg1uZix6HsEWmxnQ4
linkProvider SAGE Publications
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8QwFH7oeNCLuziuOYjgoTo2TZoeB1HGpaI4gwtCyTYgahWnA-KvN2nT6YyiiOcspHlZvtd833sAW6rrEy7M6RdxahwUzKXHhYrMYSiDSAvjUmj7ayA-p61OcHJDboZSfbkZ7O1aWpUZUX5YD3a3jZS0T4m55S17AweYheMwwawYoQYTzduLy7jid0TYBfYmnm1QvVF-62P0TqqA5hC3K79ujmbgrhxowTJ53O1nZowfX2I4_utLZmHagVDULFbNHIzpdB7WnYQBbSOnUbI2Q27zL8B9nOeSQA9DhVacgqx8KWdjI5f0B13pZ2OwB4mutUCWg4p4qkZ6PXzP3gpJBcp477G3CJ2jw_ZBy3O5GTyJG1HmaYapML6O8iU1EMW-X1OilRJUScIbktCoy2RgQLFiWNvcqMYZJloHgnJKRQMvQS19SfUyoJB2KRdYhyGmgaSKm3XiMxl1CQs5C3Qd9krrJNIFLrf5M56S_TJW-ZeZrMPOoMVrEbTjl7prpcGT0mSJTw0Kahio7Ndh29qvKvqpn5W_VtyEyVY7PkvOjs9PV2HKt3KKnAW-BrXsra_XDcjJxIZbzp9nwO7i
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8NAEB60gvjiLdZzH0TwIbZmk03yWLSlHi2KigpC2CsgahWbgvjrnUm3tiqK-LwHm53dObLfNwOwZTI_lAq1XyIFBihcak8qk6Ay1EFiFYYUln4NtNqieRkcXYfXDptDXBi3g91dglXhigplTbf72WQV98ZYIQoOWnpCcPCAx9E4TKCd8v0STNRuTs9aQ4xHwl1y79CjAcN3ym9zfLZLQ2dzBN9VmJzGTL-uarfIVEhIk_vdXo7rfPuSx_HfXzML084ZZbX-6ZmDMduZh3VHZWDbzHGVSHbMKYEFuG0VNSXY3UgjkVQY0ZgKVDZzxX_YuX1Ewd1pdmUVIywqkx3zadb6a_7Sp1awXHbvu4tw2ahf7Dc9V6PB07ya5J6NuVAY8xhfC3RV6B1bhNYYJYwOZVWHIsliHaBzbGJuqUYqBsWhtYESUghV5UtQ6jx17DKwSGRCKm6jiItACyPxvPixTrIwjmQc2DJUBhJKtUtgTnU0HtK9Qc7yLztZhp2PEc_95B2_9F0bCD0diC31BXpDVXSZ_TJskwyHTT_Ns_LXjpsweXrQSE8O28erMOUTq6IAg69BKX_p2XX0dXK14U70O1Pz8Vc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mining+information+from+sentences+through+Semantic+Web+data+and+Information+Extraction+tasks&rft.jtitle=Journal+of+information+science&rft.au=Martinez-Rodriguez%2C+Jose+L.&rft.au=Lopez-Arevalo%2C+Ivan&rft.au=Rios-Alvarado%2C+Ana+B.&rft.date=2022-02-01&rft.pub=SAGE+Publications&rft.issn=0165-5515&rft.eissn=1741-6485&rft.volume=48&rft.issue=1&rft.spage=3&rft.epage=20&rft_id=info:doi/10.1177%2F0165551520934387&rft.externalDocID=10.1177_0165551520934387
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-5515&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-5515&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-5515&client=summon