Mining information from sentences through Semantic Web data and Information Extraction tasks
The Semantic Web provides guidelines for the representation of information about real-world objects (entities) and their relations (properties). This is helpful for the dissemination and consumption of information by people and applications. However, the information is mainly contained within natura...
Saved in:
Published in | Journal of information science Vol. 48; no. 1; pp. 3 - 20 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
London, England
SAGE Publications
01.02.2022
Bowker-Saur Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The Semantic Web provides guidelines for the representation of information about real-world objects (entities) and their relations (properties). This is helpful for the dissemination and consumption of information by people and applications. However, the information is mainly contained within natural language sentences, which do not have a structure or linguistic descriptions ready to be directly processed by computers. Thus, the challenge is to identify and extract the elements of information that can be represented. Hence, this article presents a strategy to extract information from sentences and its representation with Semantic Web standards. Our strategy involves Information Extraction tasks and a hybrid semantic similarity measure to get entities and relations that are later associated with individuals and properties from a Knowledge Base to create RDF triples (Subject–Predicate–Object structures). The experiments demonstrate the feasibility of our method and that it outperforms the accuracy provided by a pattern-based method from the literature. |
---|---|
AbstractList | The Semantic Web provides guidelines for the representation of information about real-world objects (entities) and their relations (properties). This is helpful for the dissemination and consumption of information by people and applications. However, the information is mainly contained within natural language sentences, which do not have a structure or linguistic descriptions ready to be directly processed by computers. Thus, the challenge is to identify and extract the elements of information that can be represented. Hence, this article presents a strategy to extract information from sentences and its representation with Semantic Web standards. Our strategy involves Information Extraction tasks and a hybrid semantic similarity measure to get entities and relations that are later associated with individuals and properties from a Knowledge Base to create RDF triples (Subject–Predicate–Object structures). The experiments demonstrate the feasibility of our method and that it outperforms the accuracy provided by a pattern-based method from the literature. |
Author | Lopez-Arevalo, Ivan Rios-Alvarado, Ana B. Martinez-Rodriguez, Jose L. |
Author_xml | – sequence: 1 givenname: Jose L. orcidid: 0000-0002-1276-6957 surname: Martinez-Rodriguez fullname: Martinez-Rodriguez, Jose L. organization: Cinvestav-Tamaulipas, Mexico; Computer Systems Laboratory, Multidisciplinary Academic Unit Reynosa-Rodhe, Autonomous University of Tamaulipas, Mexico – sequence: 2 givenname: Ivan surname: Lopez-Arevalo fullname: Lopez-Arevalo, Ivan organization: Cinvestav-Tamaulipas, Mexico – sequence: 3 givenname: Ana B. surname: Rios-Alvarado fullname: Rios-Alvarado, Ana B. organization: Faculty of Engineering and Science, Autonomous University of Tamaulipas, Mexico |
BookMark | eNp9kMFLwzAUxoNMcJvePQY8V5OmSdOjjKmDiQcVL0JJ09ctc01mkoH-97aboAz09B583--9j2-EBtZZQOickktK8_yKUME5pzwlBcuYzI_QkOYZTUQm-QANeznp9RM0CmFFCOGdb4he7401doGNbZxvVTTO4sa7FgewEayGgOPSu-1iiR-hVTYajV-gwrWKCitb49kvcPoRvdK7NarwFk7RcaPWAc6-5xg930yfJnfJ_OF2NrmeJ5qRIiYgmahkzutUC5JKmuZEcKjrStSaK6K5KBqpM0mrWjLQIDlljANklVBCVISN0cX-7sa79y2EWK7c1tvuZZmKtGCEkzztXGLv0t6F4KEptYm74F1qsy4pKfsmy8MmO5AcgBtvWuU__0OSPRLUAn7S_On_AiTlg-c |
CitedBy_id | crossref_primary_10_2478_amns_2023_2_00221 crossref_primary_10_1108_EL_06_2023_0165 crossref_primary_10_1080_19393555_2022_2080614 crossref_primary_10_1007_s40747_022_00805_7 crossref_primary_10_1109_ACCESS_2023_3296141 |
Cites_doi | 10.7551/mitpress/7287.003.0018 10.3233/SW-170269 10.3233/SW-150180 10.1145/2838931.2838936 10.3115/v1/P14-5010 10.1016/j.ins.2019.09.006 10.3115/1690219.1690287 10.1177/001316447003000308 10.1007/978-3-642-45068-6_28 10.1145/2629489 10.1145/1409360.1409378 10.1162/tacl_a_00179 10.1162/coli.2006.32.1.13 10.1109/MCI.2018.2840738 10.1145/2736277.2741139 10.1007/978-3-642-41335-3_9 10.3115/1614025.1614037 10.1007/978-3-540-85836-2_29 10.1145/2633211.2634350 10.3233/SW-160221 10.1007/978-1-4471-2458-0_2 10.3115/981732.981751 10.1016/j.eswa.2018.07.017 |
ContentType | Journal Article |
Copyright | The Author(s) 2020 |
Copyright_xml | – notice: The Author(s) 2020 |
DBID | AAYXX CITATION 7SC 8FD E3H F2A JQ2 L7M L~C L~D |
DOI | 10.1177/0165551520934387 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database Library & Information Sciences Abstracts (LISA) Library & Information Science Abstracts (LISA) ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Library and Information Science Abstracts (LISA) ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | CrossRef Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Library & Information Science |
EISSN | 1741-6485 |
EndPage | 20 |
ExternalDocumentID | 10_1177_0165551520934387 10.1177_0165551520934387 |
GrantInformation_xml | – fundername: Fondo SEP-Cinvestav grantid: Project No 229 |
GroupedDBID | -TM -~X .2G .2L .DC 01A 09Z 0R~ 1OL 1~K 29K 31S 31V 31W 31X 4.4 54M 56W 5GY 5VS 77K AABOD AACKU AADIR AADUE AAGGD AAGLT AAJPV AAKTJ AAMFR AANSI AAPEO AAQDB AAQXI AARIX AATAA AAWLO ABAWP ABCCA ABCJG ABEIX ABFXH ABHQH ABIDT ABJNI ABKRH ABPNF ABQKF ABQPY ABQXT ABRHV ABUJY ABYTW ACAEP ACDXX ACFUR ACFZE ACGFS ACHQT ACJER ACLZU ACOFE ACOXC ACROE ACRPL ACSIQ ACUFS ACUIR ADDLC ADEBD ADEIA ADMHG ADNMO ADNON ADPEE ADRRZ ADSTG ADTOS ADUKL ADYCS AEDXQ AEILP AENEX AEOBU AESMA AESZF AEUHG AEVPJ AEWDL AEWHI AEXNY AFEET AFKBI AFKRG AFMOU AFQAA AFUIA AFWMB AGDVU AGKLV AGNHF AGNWV AGQPQ AGWNL AHDMH AHHFK AHWHD AJUZI ALFTD ALMA_UNASSIGNED_HOLDINGS ANDLU ARTOV ASPBG AUTPY AUVAJ AVWKF AYPQM AZFZN B8O B8S B8T B8Z BDZRT BMVBW BPACV BYIEH CAG CBRKF CCGJY CEADM COF CS3 D-I DD0 DD~ DG~ DOPDO DU5 DV7 DV8 EBS EJD FEDTE FHBDP GROUPED_SAGE_PREMIER_JOURNAL_COLLECTION H13 HF~ HVGLF HZ~ J8X LPU MS~ N9A O9- P.B P2P PQQKQ Q1R Q7O Q7P Q7X RIG ROL S01 SASJQ SAUOL SBI SCNPE SFB SFC SFK SFT SGP SGU SGV SHB SHF SHM SPJ SPK SPP SQCSI SSDHQ TN5 ZPLXX ZPPRI ~32 ~A~ AAYXX ACCVC AJGYC AMNSR CITATION 7SC 8FD AAPII AJVBE E3H F2A JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c309t-e836b875d2c6028127065eddb6dc5a0c569f8c481bd83ece851335ee4b6a66b03 |
ISSN | 0165-5515 |
IngestDate | Fri Jul 25 06:23:57 EDT 2025 Tue Jul 01 05:30:43 EDT 2025 Thu Apr 24 23:12:43 EDT 2025 Tue Jun 17 22:29:24 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | RDF representation Semantic Web Information Extraction information representation linked data |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c309t-e836b875d2c6028127065eddb6dc5a0c569f8c481bd83ece851335ee4b6a66b03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-1276-6957 |
PQID | 2629305072 |
PQPubID | 43525 |
PageCount | 18 |
ParticipantIDs | proquest_journals_2629305072 crossref_citationtrail_10_1177_0165551520934387 crossref_primary_10_1177_0165551520934387 sage_journals_10_1177_0165551520934387 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220200 2022-02-00 20220201 |
PublicationDateYYYYMMDD | 2022-02-01 |
PublicationDate_xml | – month: 2 year: 2022 text: 20220200 |
PublicationDecade | 2020 |
PublicationPlace | London, England |
PublicationPlace_xml | – name: London, England – name: Amsterdam |
PublicationTitle | Journal of information science |
PublicationYear | 2022 |
Publisher | SAGE Publications Bowker-Saur Ltd |
Publisher_xml | – name: SAGE Publications – name: Bowker-Saur Ltd |
References | Presutti, Nuzzolese, Consoli 2016; 7 Martinez-Rodriguez, Lopez-Arevalo, Rios-Alvarado 2018; 113 Augenstein, Maynard, Ciravegna 2016; 7 Leacock, Chodorow 1998; 49 Geng, Chen, Han 2020; 509 Budanitsky, Hirst 2006; 32 Landis, Koch; 1977 Martinez-Rodriguez, Hogan, Lopez-Arevalo 2018; 1 Fossati, Dorigatti, Giuliano 2018; 9 Etzioni, Banko, Soderland 2008; 51 Moro, Raganato, Navigli 2014; 2 Krejcie, Morgan 1970; 30 Vrandecic, Krötzsch 2014; 57 Young, Hazarika, Poria 2018; 13 bibr9-0165551520934387 bibr21-0165551520934387 Cimiano P (bibr33-0165551520934387) 2006 Nguyen TVT (bibr10-0165551520934387) Del Corro L (bibr31-0165551520934387) bibr39-0165551520934387 bibr13-0165551520934387 bibr4-0165551520934387 Kusner MJ (bibr28-0165551520934387) 2015 Rehurec R (bibr29-0165551520934387) bibr18-0165551520934387 bibr35-0165551520934387 Landis JR (bibr41-0165551520934387); 1977 bibr38-0165551520934387 bibr22-0165551520934387 bibr25-0165551520934387 Kertkeidkachorn N (bibr42-0165551520934387) bibr17-0165551520934387 bibr30-0165551520934387 Mihalcea R (bibr23-0165551520934387) Dutta A (bibr19-0165551520934387) 2014 Cer DM (bibr34-0165551520934387) bibr40-0165551520934387 Wang Z (bibr12-0165551520934387) 2015 Leacock C (bibr27-0165551520934387) 1998; 49 bibr7-0165551520934387 bibr24-0165551520934387 bibr16-0165551520934387 bibr37-0165551520934387 Mendes PN (bibr2-0165551520934387) Feng Niu (bibr15-0165551520934387) 2012 bibr14-0165551520934387 Ferragina P (bibr3-0165551520934387) Randolph JJ (bibr36-0165551520934387) 2005 bibr20-0165551520934387 Martinez-Rodriguez JL (bibr8-0165551520934387) 2018; 1 Lin D (bibr26-0165551520934387) 1998 bibr5-0165551520934387 bibr11-0165551520934387 bibr6-0165551520934387 bibr1-0165551520934387 bibr32-0165551520934387 |
References_xml | – volume: 2 start-page: 231 year: 2014 end-page: 244 article-title: Entity linking meets word sense disambiguation: a unified approach publication-title: Trans Assoc Comput Linguist – volume: 49 start-page: 265 issue: 2 year: 1998 end-page: 283 article-title: Combining local context and wordnet similarity for word sense identification publication-title: Wordnet: Electron Lex Data – volume: 57 start-page: 78 issue: 10 year: 2014 end-page: 85 article-title: Wikidata: a free collaborative knowledgebase publication-title: Commun ACM – volume: 13 start-page: 55 issue: 3 year: 2018 end-page: 75 article-title: Recent trends in deep learning based natural language processing publication-title: IEEE Comput Intel Mag – volume: 113 start-page: 339 year: 2018 end-page: 355 article-title: OpenIE-based approach for knowledge graph construction from text publication-title: Exp Syst Appl – volume: 32 start-page: 13 issue: 1 year: 2006 end-page: 47 article-title: Evaluating WordNet-based measures of lexical semantic relatedness publication-title: Comput Linguist – volume: 7 start-page: 335 issue: 4 year: 2016 end-page: 349 article-title: Distantly supervised Web relation extraction for knowledge base population publication-title: Semantic Web – volume: 1 start-page: 255 year: 2018 end-page: 335 article-title: Information extraction meets the semantic web: a survey publication-title: Semantic Web J – volume: 51 start-page: 68 issue: 12 year: 2008 end-page: 74 article-title: Open information extraction from the web publication-title: Commun ACM – volume: 1977 start-page: 159 end-page: 174 article-title: The measurement of observer agreement for categorical data publication-title: Biometrics – volume: 30 start-page: 607 issue: 3 year: 1970 end-page: 610 article-title: Determining sample size for research activities publication-title: Edu Psychol Meas – volume: 7 start-page: 351 issue: 4 year: 2016 end-page: 378 article-title: From hyperlinks to Semantic Web properties using open knowledge extraction publication-title: Semantic Web – volume: 509 start-page: 183 year: 2020 end-page: 192 article-title: Semantic relation extraction using sequential and tree-structured LSTM with attention publication-title: Inform Sci – volume: 9 start-page: 413 issue: 4 year: 2018 end-page: 439 article-title: N-ary relation extraction for simultaneous T-Box and A-Box knowledge base augmentation publication-title: Semantic Web – volume: 49 start-page: 265 issue: 2 year: 1998 ident: bibr27-0165551520934387 publication-title: Wordnet: Electron Lex Data doi: 10.7551/mitpress/7287.003.0018 – ident: bibr9-0165551520934387 doi: 10.3233/SW-170269 – ident: bibr11-0165551520934387 doi: 10.3233/SW-150180 – volume-title: Joensuu Learning and Instruction Symposium, Joensuu year: 2005 ident: bibr36-0165551520934387 – ident: bibr38-0165551520934387 doi: 10.1145/2838931.2838936 – start-page: 253 volume-title: Chinese computational linguistics year: 2015 ident: bibr12-0165551520934387 – start-page: 296 volume-title: International conference on machine learning year: 1998 ident: bibr26-0165551520934387 – ident: bibr30-0165551520934387 doi: 10.3115/v1/P14-5010 – ident: bibr13-0165551520934387 doi: 10.1016/j.ins.2019.09.006 – start-page: 111 volume-title: European starting AI researcher symposium year: 2014 ident: bibr19-0165551520934387 – ident: bibr6-0165551520934387 doi: 10.3115/1690219.1690287 – start-page: 277 volume-title: Proceedings of the annual meeting of the association for computational linguistics: human language technologies ident: bibr10-0165551520934387 – ident: bibr40-0165551520934387 doi: 10.1177/001316447003000308 – ident: bibr18-0165551520934387 – start-page: 355 volume-title: Proceedings of the international conference on world wide web ident: bibr31-0165551520934387 – ident: bibr17-0165551520934387 doi: 10.1007/978-3-642-45068-6_28 – ident: bibr1-0165551520934387 doi: 10.1145/2629489 – ident: bibr16-0165551520934387 doi: 10.1145/1409360.1409378 – ident: bibr4-0165551520934387 doi: 10.1162/tacl_a_00179 – volume-title: Proceedings of the workshops on thirty-first AAAI conference on artificial intelligence ident: bibr42-0165551520934387 – start-page: 775 volume-title: Proceedings of the national conference on artificial intelligence and the eighteenth innovative applications of artificial intelligence conference ident: bibr23-0165551520934387 – volume-title: Ontology learning and population from text: algorithms, evaluation and applications year: 2006 ident: bibr33-0165551520934387 – volume: 1977 start-page: 159 ident: bibr41-0165551520934387 publication-title: Biometrics – ident: bibr39-0165551520934387 doi: 10.1162/coli.2006.32.1.13 – ident: bibr32-0165551520934387 doi: 10.1109/MCI.2018.2840738 – ident: bibr7-0165551520934387 doi: 10.1145/2736277.2741139 – ident: bibr21-0165551520934387 doi: 10.1007/978-3-642-41335-3_9 – ident: bibr37-0165551520934387 doi: 10.3115/1614025.1614037 – ident: bibr24-0165551520934387 doi: 10.1007/978-3-540-85836-2_29 – start-page: 957 volume-title: International conference on machine learning year: 2015 ident: bibr28-0165551520934387 – ident: bibr5-0165551520934387 doi: 10.1145/2633211.2634350 – ident: bibr20-0165551520934387 doi: 10.3233/SW-160221 – start-page: 1 volume-title: Proceedings of the 11th international workshop on semantic evaluation ident: bibr34-0165551520934387 – ident: bibr35-0165551520934387 doi: 10.1007/978-1-4471-2458-0_2 – start-page: 46 volume-title: Proceedings of LREC 2010 workshop new challenges for NLP frameworks ident: bibr29-0165551520934387 – start-page: 25 volume-title: Proceedings of the Second International Workshop on Searching and Integrating New Web Data Sources year: 2012 ident: bibr15-0165551520934387 – ident: bibr25-0165551520934387 doi: 10.3115/981732.981751 – ident: bibr14-0165551520934387 – start-page: 1 volume-title: Proceedings of the international conference on semantic systems ident: bibr2-0165551520934387 – start-page: 1625 volume-title: Proceedings of the conference on information and knowledge management ident: bibr3-0165551520934387 – volume: 1 start-page: 255 year: 2018 ident: bibr8-0165551520934387 publication-title: Semantic Web J – ident: bibr22-0165551520934387 doi: 10.1016/j.eswa.2018.07.017 |
SSID | ssj0005934 |
Score | 2.345091 |
Snippet | The Semantic Web provides guidelines for the representation of information about real-world objects (entities) and their relations (properties). This is... |
SourceID | proquest crossref sage |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 3 |
SubjectTerms | Information retrieval Knowledge bases (artificial intelligence) Natural language (computers) Representations Semantic web Semantics Sentences |
Title | Mining information from sentences through Semantic Web data and Information Extraction tasks |
URI | https://journals.sagepub.com/doi/full/10.1177/0165551520934387 https://www.proquest.com/docview/2629305072 |
Volume | 48 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bT9swFLa68rKXCcamlZv8gJCmKiWNHTd5LAjE0DptDDQmTYp8q4TGWtSmCPE7-MEcx06cdgWxvURV6tiKz5fjcz8I7aphFHMB3C_lDBQUwmXAhUqBGUqaagEqhTamgcEXdnJBTy_jy0bjoRa1NMtFR94vzSv5H6rCPaCryZL9B8pWk8IN-A30hStQGK4vovGg6O7QdsVPbdSgSRcxCUVFfHTVhue7_gNbeCXbP0xqIs-5iwP2Dx7d5RPXNzzn09_TJ6TW-lru9PRGbVORQN8HZ2MFOv_M2qaNi6H9uVMF_oxvYER_YqqMF1baT7cen2dX42nQv77lE65s-s2Itw86dcsEKLXhXJSHdYktNz52WRyArGb92dqyXpBtAkZtA5-SN9PkLwxaRktqJ3aRTbfkLCi80WYps1IUpoQSd7jPV9h2g7PFoa_QSgTKR9REK_2fX78NfOhQSlzNePsW3v29vzjHvLjjdZha2GAhyZyvojeOmLhv8bSGGnr0Fm27BBa8h2uowI71r6NfFmu4Rn9ssIYrrGGHNVxiDQPWsMEaBqzNzeqxhgusvUMXx0fnhyeB68wRSBKmeaATwgRouiqSDARUE73AYq2UYErGPJQxS4eJpKASqYRo0xm3S0isNRWMMyZC8h41R-OR_oBwjw0ZF0T3eoRRyRQHLhElMh3GSY8nVLfQfrmBmXRl6033lOusW1aqX9jyFvpYPXFjS7Y8M3arpEnmPuxpFjGQgUNQlKIW2jN08n89Nc_GSwduotf-U9lCzXwy09sg1uZix6HsEWmxnQ4 |
linkProvider | SAGE Publications |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8QwFH7oeNCLuziuOYjgoTo2TZoeB1HGpaI4gwtCyTYgahWnA-KvN2nT6YyiiOcspHlZvtd833sAW6rrEy7M6RdxahwUzKXHhYrMYSiDSAvjUmj7ayA-p61OcHJDboZSfbkZ7O1aWpUZUX5YD3a3jZS0T4m55S17AweYheMwwawYoQYTzduLy7jid0TYBfYmnm1QvVF-62P0TqqA5hC3K79ujmbgrhxowTJ53O1nZowfX2I4_utLZmHagVDULFbNHIzpdB7WnYQBbSOnUbI2Q27zL8B9nOeSQA9DhVacgqx8KWdjI5f0B13pZ2OwB4mutUCWg4p4qkZ6PXzP3gpJBcp477G3CJ2jw_ZBy3O5GTyJG1HmaYapML6O8iU1EMW-X1OilRJUScIbktCoy2RgQLFiWNvcqMYZJloHgnJKRQMvQS19SfUyoJB2KRdYhyGmgaSKm3XiMxl1CQs5C3Qd9krrJNIFLrf5M56S_TJW-ZeZrMPOoMVrEbTjl7prpcGT0mSJTw0Kahio7Ndh29qvKvqpn5W_VtyEyVY7PkvOjs9PV2HKt3KKnAW-BrXsra_XDcjJxIZbzp9nwO7i |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8NAEB60gvjiLdZzH0TwIbZmk03yWLSlHi2KigpC2CsgahWbgvjrnUm3tiqK-LwHm53dObLfNwOwZTI_lAq1XyIFBihcak8qk6Ay1EFiFYYUln4NtNqieRkcXYfXDptDXBi3g91dglXhigplTbf72WQV98ZYIQoOWnpCcPCAx9E4TKCd8v0STNRuTs9aQ4xHwl1y79CjAcN3ym9zfLZLQ2dzBN9VmJzGTL-uarfIVEhIk_vdXo7rfPuSx_HfXzML084ZZbX-6ZmDMduZh3VHZWDbzHGVSHbMKYEFuG0VNSXY3UgjkVQY0ZgKVDZzxX_YuX1Ewd1pdmUVIywqkx3zadb6a_7Sp1awXHbvu4tw2ahf7Dc9V6PB07ya5J6NuVAY8xhfC3RV6B1bhNYYJYwOZVWHIsliHaBzbGJuqUYqBsWhtYESUghV5UtQ6jx17DKwSGRCKm6jiItACyPxvPixTrIwjmQc2DJUBhJKtUtgTnU0HtK9Qc7yLztZhp2PEc_95B2_9F0bCD0diC31BXpDVXSZ_TJskwyHTT_Ns_LXjpsweXrQSE8O28erMOUTq6IAg69BKX_p2XX0dXK14U70O1Pz8Vc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mining+information+from+sentences+through+Semantic+Web+data+and+Information+Extraction+tasks&rft.jtitle=Journal+of+information+science&rft.au=Martinez-Rodriguez%2C+Jose+L.&rft.au=Lopez-Arevalo%2C+Ivan&rft.au=Rios-Alvarado%2C+Ana+B.&rft.date=2022-02-01&rft.pub=SAGE+Publications&rft.issn=0165-5515&rft.eissn=1741-6485&rft.volume=48&rft.issue=1&rft.spage=3&rft.epage=20&rft_id=info:doi/10.1177%2F0165551520934387&rft.externalDocID=10.1177_0165551520934387 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-5515&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-5515&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-5515&client=summon |