Theoretical performance comparison for a regenerator-enhanced three-stage auto-cascade refrigeration system using different zeotropic mixed refrigerants

•A novel three-stage RACR was proposed to improve the performance of ACR.•The R134a/R23/R14 RACR system performed better than the ACR system.•The influence of the refrigerant ratio on RACR performance was investigated.•Different hydrocarbons were provided as alternatives to R134a and R23.•R600/R170/...

Full description

Saved in:
Bibliographic Details
Published inEnergy and buildings Vol. 283; p. 112815
Main Authors He, Yongning, Wu, Huihong, Xu, Ke, Zhang, Yeqiang, Wang, Tao, Wu, Xuehong, Cheng, Chuanxiao, Jin, Tingxiang
Format Journal Article
LanguageEnglish
Published Elsevier B.V 15.03.2023
Subjects
Online AccessGet full text
ISSN0378-7788
DOI10.1016/j.enbuild.2023.112815

Cover

Loading…
Abstract •A novel three-stage RACR was proposed to improve the performance of ACR.•The R134a/R23/R14 RACR system performed better than the ACR system.•The influence of the refrigerant ratio on RACR performance was investigated.•Different hydrocarbons were provided as alternatives to R134a and R23.•R600/R170/R14 performed the optimum performance in the RACR system. Auto-cascade refrigeration (ACR) systems are widely used at low temperatures. The selection and ratio optimization of zeotropic refrigerants in ACR systems have an important impact on system performance and environmental protection. This study proposes a three-stage regenerator-enhanced auto-cascade refrigeration (RACR) system. Under certain working conditions, the theoretical performances of the three-stage R134a/R23/R14 ACR and RACR systems were compared, and the influence of the refrigerant mixture ratio on the RACR system performance was explored. The system performances of replacing R134a and R23 with different hydrocarbons were compared under different working conditions. The results demonstrated that RACR performed better than ACR alone. A reasonable adjustment to the mixed refrigerant ratio improved the energy efficiency of the RACR system. Water-cooling conditions for the RACR system were suggested, under which the coefficient of performance, thermodynamic perfectness, and exergy efficiency of R600/R170/R14 were 13.8 %, 12.4 %, and 8.4 % higher than those of R600/R23/R14, respectively. The environmental policy, safety requirements, and energy efficiency were considered to obtain −100 °C, R600/R170/R14 with mass fractions of 0.24/0.12/0.64 was the best choice in a water-cooled RACR system.
AbstractList •A novel three-stage RACR was proposed to improve the performance of ACR.•The R134a/R23/R14 RACR system performed better than the ACR system.•The influence of the refrigerant ratio on RACR performance was investigated.•Different hydrocarbons were provided as alternatives to R134a and R23.•R600/R170/R14 performed the optimum performance in the RACR system. Auto-cascade refrigeration (ACR) systems are widely used at low temperatures. The selection and ratio optimization of zeotropic refrigerants in ACR systems have an important impact on system performance and environmental protection. This study proposes a three-stage regenerator-enhanced auto-cascade refrigeration (RACR) system. Under certain working conditions, the theoretical performances of the three-stage R134a/R23/R14 ACR and RACR systems were compared, and the influence of the refrigerant mixture ratio on the RACR system performance was explored. The system performances of replacing R134a and R23 with different hydrocarbons were compared under different working conditions. The results demonstrated that RACR performed better than ACR alone. A reasonable adjustment to the mixed refrigerant ratio improved the energy efficiency of the RACR system. Water-cooling conditions for the RACR system were suggested, under which the coefficient of performance, thermodynamic perfectness, and exergy efficiency of R600/R170/R14 were 13.8 %, 12.4 %, and 8.4 % higher than those of R600/R23/R14, respectively. The environmental policy, safety requirements, and energy efficiency were considered to obtain −100 °C, R600/R170/R14 with mass fractions of 0.24/0.12/0.64 was the best choice in a water-cooled RACR system.
ArticleNumber 112815
Author Jin, Tingxiang
Cheng, Chuanxiao
Xu, Ke
Wu, Huihong
He, Yongning
Wang, Tao
Wu, Xuehong
Zhang, Yeqiang
Author_xml – sequence: 1
  givenname: Yongning
  orcidid: 0000-0002-8326-1067
  surname: He
  fullname: He, Yongning
– sequence: 2
  givenname: Huihong
  orcidid: 0000-0002-4721-5469
  surname: Wu
  fullname: Wu, Huihong
– sequence: 3
  givenname: Ke
  surname: Xu
  fullname: Xu, Ke
– sequence: 4
  givenname: Yeqiang
  surname: Zhang
  fullname: Zhang, Yeqiang
  email: zhangyeqiang@zzuli.edu.cn
– sequence: 5
  givenname: Tao
  surname: Wang
  fullname: Wang, Tao
– sequence: 6
  givenname: Xuehong
  surname: Wu
  fullname: Wu, Xuehong
– sequence: 7
  givenname: Chuanxiao
  surname: Cheng
  fullname: Cheng, Chuanxiao
– sequence: 8
  givenname: Tingxiang
  surname: Jin
  fullname: Jin, Tingxiang
BookMark eNqFkMFqGzEQhnVwoXbSRyjoBdaRVt7Vmh5KMWkTMPTinMWsdmTLeCUzkkvTJ-njVhuHHHrJSTD836-Zb8FmIQZk7LMUSylke3dcYugv_jQsa1GrpZR1J5sZmwulu0rrrvvIFikdhRBto-Wc_d0dMBJmb-HEz0gu0gjBIrdxPAP5FAMvMw6ccI8BCXKkCsNhCg08HwixShn2yOGSY2UhWRiwpB35_RT3pSE9p4wjvyQf9nzwziFhyPwPxkzx7C0f_e_S9gaFnG7ZBwenhJ9e3xv29P1-t3motj9_PG6-bSurxDpXuFJ9X9e1rgGhbRQ0WP637cr1ndKNdRahg6HWbb_WypW7hXK6X4GTymol1A37cu21FFMqGxjr88vWmcCfjBRmEmuO5lWsmcSaq9hCN__RZ_Ij0PO73Ncrh-W0Xx7JJOtxUuoJbTZD9O80_APVtaBX
CitedBy_id crossref_primary_10_1016_j_applthermaleng_2023_122116
crossref_primary_10_1016_j_energy_2024_130255
crossref_primary_10_1016_j_energy_2025_135146
crossref_primary_10_1177_09544089241283617
crossref_primary_10_1016_j_enconman_2023_117129
crossref_primary_10_1016_j_psep_2024_11_105
crossref_primary_10_1016_j_applthermaleng_2024_123442
crossref_primary_10_1016_j_applthermaleng_2024_124568
crossref_primary_10_1016_j_ijrefrig_2025_02_004
crossref_primary_10_70030_sjmakeu_1473745
crossref_primary_10_1016_j_applthermaleng_2023_121146
crossref_primary_10_1016_j_csite_2024_104977
crossref_primary_10_1016_j_energy_2024_134197
Cites_doi 10.1016/j.energy.2018.05.205
10.1016/j.cryogenics.2010.07.004
10.15446/ing.investig.v34n2.41621
10.1016/j.ijrefrig.2021.01.028
10.1631/jzus.A1000050
10.1016/j.ijrefrig.2019.11.016
10.1016/j.enbuild.2011.08.037
10.1016/j.enbuild.2021.111609
10.1016/j.ijrefrig.2022.06.008
10.1002/er.1492
10.1016/j.ijrefrig.2004.10.008
10.1016/j.apenergy.2014.10.069
10.3390/en13092254
10.1016/j.ijrefrig.2021.08.021
10.1016/j.ijrefrig.2018.07.025
10.1007/s00231-015-1577-4
10.1016/j.applthermaleng.2019.114149
10.1016/S0140-7007(01)00110-4
10.1016/j.enconman.2016.08.057
10.1016/j.ces.2020.116045
10.1016/j.ijrefrig.2018.11.024
10.1016/j.enbuild.2014.07.083
10.1016/j.ijrefrig.2007.11.016
10.1016/j.applthermaleng.2015.03.047
10.1016/j.cjche.2013.06.001
10.1016/j.ijrefrig.2020.02.017
10.1016/j.ijrefrig.2017.04.021
10.1016/j.applthermaleng.2015.05.016
10.1016/j.enbuild.2010.08.016
10.1016/j.ijrefrig.2020.04.008
10.1016/j.energy.2018.12.055
10.1016/j.expthermflusci.2008.08.006
10.1016/j.rser.2020.110571
10.1016/j.applthermaleng.2022.119570
10.1631/jzus.A0900208
10.1002/er.1396
10.1016/j.enconman.2021.114093
10.1016/j.applthermaleng.2021.117636
10.1016/j.apenergy.2013.01.081
10.1016/j.enbuild.2015.09.061
10.1016/j.energy.2020.117751
10.1360/TB-2021-0648
10.1016/j.energy.2021.122498
10.1016/j.ijrefrig.2020.01.012
10.1016/j.ijrefrig.2021.05.034
10.1016/j.enconman.2014.04.076
10.1016/j.energy.2021.121803
ContentType Journal Article
Copyright 2023 Elsevier B.V.
Copyright_xml – notice: 2023 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.enbuild.2023.112815
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_enbuild_2023_112815
S0378778823000452
GroupedDBID --M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AAEDT
AAEDW
AAHCO
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AATTM
AAXKI
AAXUO
AAYWO
ABFYP
ABJNI
ABLST
ABMAC
ACDAQ
ACGFS
ACIWK
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFRAH
AFTJW
AFXIZ
AGCQF
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AHJVU
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKIFW
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
AXJTR
BELTK
BJAXD
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
JJJVA
KCYFY
KOM
LY6
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
SDF
SDG
SES
SPC
SPCBC
SSJ
SSR
SST
SSZ
T5K
~02
~G-
--K
29G
AAQXK
AAYXX
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ADMUD
ADNMO
AGQPQ
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
RPZ
SAC
SET
SEW
WUQ
ZMT
ZY4
ID FETCH-LOGICAL-c309t-e43bb22272aea653a5ecadc64fb8375cfcea8ad276b973f00003f7b4af13c7303
IEDL.DBID .~1
ISSN 0378-7788
IngestDate Thu Apr 24 23:07:21 EDT 2025
Wed Aug 27 16:27:26 EDT 2025
Sat Aug 30 17:14:16 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Ratio optimization
Performance comparison
Refrigerant substitution
Three-stage RACR system
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c309t-e43bb22272aea653a5ecadc64fb8375cfcea8ad276b973f00003f7b4af13c7303
ORCID 0000-0002-8326-1067
0000-0002-4721-5469
ParticipantIDs crossref_citationtrail_10_1016_j_enbuild_2023_112815
crossref_primary_10_1016_j_enbuild_2023_112815
elsevier_sciencedirect_doi_10_1016_j_enbuild_2023_112815
PublicationCentury 2000
PublicationDate 2023-03-15
PublicationDateYYYYMMDD 2023-03-15
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-03-15
  day: 15
PublicationDecade 2020
PublicationTitle Energy and buildings
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References http://www.gov.cn/xinwen/2020-09/22/content_5546168.htm.
Qin, Li, Zhang, Jin, Liu (b0270) 2022; 240
http://refhub.elsevier.com/S1359-4311(22)01500-9/h0280.
Wang, Cao, Li, Yin, Song, He (b0035) 2021; 66
Xinhua News Agency. Xi Jinping delivered an important speech at the general debate of the 75th session of the United Nations General Assembly.
Qin, Li, Liu, Zhang (b0155) 2020; 117
Tan, Wang, Liang (b0085) 2015; 84
Qin, Li, Zhang, Liu (b0265) 2021; 126
Yu, Xu, Tian (b0070) 2010; 42
161, 114149. 10.1016/j.applthermaleng.2019.114149.
Rui, Zhang, Zhang, Wen (b0275) 2016; 52
138, 133-142. 10.1016/j.apenergy.2014.10.069.
Kumar, Upadhyay (b0245) 2021; 229
Bai, Xie, Liu, Yan, Yu (b0095) 2021; 131
34, 39-43. 10.15446/ing.investig.v34n2.41621.
Zhang, He, Wang, Wu, Jia, Gong (b0015) 2020; 114
Hu, Shi, Zhao, Liu (b0255) 2013
Kim, Kim (b0120) 2002; 25
Wang, Cui, Sun, Chen, Chen (b0260) 2010; 11
Wang, Li, Wang, Sun, Han, Chen (b0135) 2013; 112
Lemmon, Huber, Mclinden (b0225) 2010
87, 669-677. 10.1016/j.applthermaleng.2015.05.016.
Chen, Zhou, Yu (b0080) 2011; 43
Nayak, Venkatarathnam (b0150) 2010; 50
Luo, Chirkov (b0240) 2021; 03
He, Wu, Liu, Wang, Wu, Cheng, Jin (b0190) 2022; 142
Paula, CHD.; Duarte, WM.; Rocha, TTM.; Oliveira, RND.; Maia, AAT. Optimal design and environmental, energy and exergy analysis of a vapor compression refrigeration system using R290, R1234yf, and R744 as alternatives to replace R134a. J.
Qin, Li, Zhang, Liu (b0075) 2021; 236
Wang, Cui, Sun, Chen (b0130) 2011; 12
International Journal of Refrigeration, 113, 10-20. 10.1016/j.ijrefrig.2020.01.012.
propane auto-cascade refrigerator with a fractionation heat exchanger. J. Applied Thermal Engineering.
Salouxa, Sorinb, Teyssedou (b0165) 2016; 112
Dai, Liu, Liu, Wang, Wang, Zou, Zhou (b0175) 2023; 219
Bai, Yu, Yan (b0200) 2016; 126
Zhao, Zheng, Deng (b0065) 2014; 82
Kabul, Kizilkan, Yakut (b0180) 2008; 32
Mota-Babiloni, Joybari, Navarro-Esbri, Mateu-Royo, Barragan-Cervera, Amat-Albuixech, Moles (b0050) 2020; 111
Liu, Liu, Yu, Yan (b0105) 2022; 200
Li, Groll (b0205) 2005; 28
Pan, Zhao, Liang, Zhu, Liang, Bao (b0010) 2020; 13
He, Gao, Chen, Chen (b0025) 2020; 202
Bai, Yan, Yu (b0030) 2018; 157
Sobieraj, M.; Rosínski, M. High phase-separation efficiency auto-cascade system working with a blend of carbon dioxide for low-temperature isothermal refrigeration. J. Applied Thermal Engineering.
Du, Zhang, Xu, Niu (b0140) 2009; 33
Liu, Yu, Yan (b0100) 2018; 94
Rodriguez-Jara, Sanchez-de-la-Flor, Exposito-Carrillo, Salmeron-Lissen (b0110) 2021; 200
Aprea, Maiorino (b0250) 2009; 33
Bai, Yan, Yu (b0145) 2022; 238
Sivakumar, Somasundaram (b0160) 2014; 84
Xu, Liu, Cao (b0020) 2015; 23
Fontalvo, J. Using user models in Matlab® within the Aspen Plus® interface with an Excel® link. J. Ingeniería e Investigación.
ASPEN Plus. Aspen Technology Inc. 200 Wheeler Road Burlington, MA, USA.
http://refhub.elsevier.com/S0140-7007(21)00048-7/sbref0003.
Bai, Yan, Yu (b0090) 2019; 99
Sun, Wang, Xie, Liu, Su, Cui (b0210) 2019; 170
Mehrpooya, Ghorbani, Mousavi, Zaitsev (b0170) 2020; 40
Bychkov (b0220) 2021; 130
Lemmon, EW.; Bell, IH.; Huber ML.; McLinden, MO. NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 10.0, National Institute of Standards and Technology, Standard Reference Data Program, Gaithersburg.
Palm (b0060) 2008; 31
Wu, Hu, Wang (b0045) 2021; 138
Jiang, You, Wu, Zhang, Wang, Wei (b0185) 2022; 254
Zhang, L.; Xu, SM.; Du, P.; Liu, HY. Experimental and theoretical investigation on the performance of CO
Llopis, R.; Śanchez, D.; Sanz-Kock, C.; Cabello, R.; Torrella, E. Energy and environmental comparison of two-stage solutions for commercial refrigeration at low temperature: Fluids and systems. J. Applied Energy.
Bamigbetan, Eikevik, Nekså, Bantle (b0055) 2017; 80
Mehrpooya (10.1016/j.enbuild.2023.112815_b0170) 2020; 40
Aprea (10.1016/j.enbuild.2023.112815_b0250) 2009; 33
Lemmon (10.1016/j.enbuild.2023.112815_b0225) 2010
Qin (10.1016/j.enbuild.2023.112815_b0155) 2020; 117
Bai (10.1016/j.enbuild.2023.112815_b0200) 2016; 126
He (10.1016/j.enbuild.2023.112815_b0025) 2020; 202
Hu (10.1016/j.enbuild.2023.112815_b0255) 2013
Li (10.1016/j.enbuild.2023.112815_b0205) 2005; 28
Xu (10.1016/j.enbuild.2023.112815_b0020) 2015; 23
Salouxa (10.1016/j.enbuild.2023.112815_b0165) 2016; 112
Du (10.1016/j.enbuild.2023.112815_b0140) 2009; 33
Wang (10.1016/j.enbuild.2023.112815_b0135) 2013; 112
10.1016/j.enbuild.2023.112815_b0215
Bychkov (10.1016/j.enbuild.2023.112815_b0220) 2021; 130
Bamigbetan (10.1016/j.enbuild.2023.112815_b0055) 2017; 80
Yu (10.1016/j.enbuild.2023.112815_b0070) 2010; 42
Luo (10.1016/j.enbuild.2023.112815_b0240) 2021; 03
10.1016/j.enbuild.2023.112815_b0040
Nayak (10.1016/j.enbuild.2023.112815_b0150) 2010; 50
Sun (10.1016/j.enbuild.2023.112815_b0210) 2019; 170
10.1016/j.enbuild.2023.112815_b0005
Bai (10.1016/j.enbuild.2023.112815_b0095) 2021; 131
Bai (10.1016/j.enbuild.2023.112815_b0145) 2022; 238
Chen (10.1016/j.enbuild.2023.112815_b0080) 2011; 43
Bai (10.1016/j.enbuild.2023.112815_b0030) 2018; 157
Liu (10.1016/j.enbuild.2023.112815_b0100) 2018; 94
Kim (10.1016/j.enbuild.2023.112815_b0120) 2002; 25
Bai (10.1016/j.enbuild.2023.112815_b0090) 2019; 99
Wu (10.1016/j.enbuild.2023.112815_b0045) 2021; 138
10.1016/j.enbuild.2023.112815_b0125
Mota-Babiloni (10.1016/j.enbuild.2023.112815_b0050) 2020; 111
Dai (10.1016/j.enbuild.2023.112815_b0175) 2023; 219
Sivakumar (10.1016/j.enbuild.2023.112815_b0160) 2014; 84
Qin (10.1016/j.enbuild.2023.112815_b0265) 2021; 126
Qin (10.1016/j.enbuild.2023.112815_b0270) 2022; 240
Rodriguez-Jara (10.1016/j.enbuild.2023.112815_b0110) 2021; 200
Pan (10.1016/j.enbuild.2023.112815_b0010) 2020; 13
Wang (10.1016/j.enbuild.2023.112815_b0130) 2011; 12
Wang (10.1016/j.enbuild.2023.112815_b0260) 2010; 11
10.1016/j.enbuild.2023.112815_b0115
Rui (10.1016/j.enbuild.2023.112815_b0275) 2016; 52
Kabul (10.1016/j.enbuild.2023.112815_b0180) 2008; 32
10.1016/j.enbuild.2023.112815_b0195
10.1016/j.enbuild.2023.112815_b0230
Palm (10.1016/j.enbuild.2023.112815_b0060) 2008; 31
Kumar (10.1016/j.enbuild.2023.112815_b0245) 2021; 229
Zhao (10.1016/j.enbuild.2023.112815_b0065) 2014; 82
10.1016/j.enbuild.2023.112815_b0235
Qin (10.1016/j.enbuild.2023.112815_b0075) 2021; 236
Jiang (10.1016/j.enbuild.2023.112815_b0185) 2022; 254
Liu (10.1016/j.enbuild.2023.112815_b0105) 2022; 200
Wang (10.1016/j.enbuild.2023.112815_b0035) 2021; 66
Tan (10.1016/j.enbuild.2023.112815_b0085) 2015; 84
Zhang (10.1016/j.enbuild.2023.112815_b0015) 2020; 114
He (10.1016/j.enbuild.2023.112815_b0190) 2022; 142
References_xml – volume: 219
  year: 2023
  ident: b0175
  article-title: Life cycle techno-enviro-economic assessment of dual-temperature evaporation transcritical CO
  publication-title: J. Applied Thermal Engineering.
– volume: 240
  year: 2022
  ident: b0270
  article-title: Experimental characterization of an innovative refrigeration system coupled with Linde-Hampson cycle and auto-cascade cycle for multi-stage refrigeration temperature applications
  publication-title: J. Energy.
– volume: 50
  start-page: 720
  year: 2010
  end-page: 727
  ident: b0150
  article-title: Performance of an auto refrigerant cascade refrigerator operating in liquid refrigerant supply (LRS) mode with different cascade heat exchangers
  publication-title: J. Cryogenics.
– volume: 114
  start-page: 175
  year: 2020
  end-page: 180
  ident: b0015
  article-title: Experimental investigation of the performance of an R1270/CO
  publication-title: J. International Journal of Refrigeration.
– volume: 138
  year: 2021
  ident: b0045
  article-title: Vapor compression heat pumps with pure Low-GWP refrigerants
  publication-title: J. Renewable and Sustainable Energy Reviews.
– year: 2013
  ident: b0255
  article-title: The impact of R50 on -100 °C three-stage auto-cascade refrigeration system, Proceedings of the International Conference on Materials for Renewable
  publication-title: Energy and Environment.
– volume: 28
  start-page: 766
  year: 2005
  end-page: 773
  ident: b0205
  article-title: Transcritical CO
  publication-title: J. International Journal of Refrigeration.
– volume: 117
  start-page: 284
  year: 2020
  end-page: 294
  ident: b0155
  article-title: Isothermal measurement and modeling of VLE properties for 2,3,3,3-tetrafluoroprop-1-ene + trifluoromethane plus tetrafluoromethane ternary system at temperatures from 253.15 K to 273.15 K
  publication-title: J International Journal of Refrigeration.
– year: 2010
  ident: b0225
  article-title: NIST Standard Reference Database 23: reference fluid thermodynamic and transport properties - REFPROP, version 9.1
  publication-title: Standard Reference Data Program. National Institute of Standards and Technology.
– volume: 126
  start-page: 850
  year: 2016
  end-page: 861
  ident: b0200
  article-title: Advanced exergy analyses of an ejector expansion transcritical CO
  publication-title: Energy Conversion and Management. J.
– volume: 82
  start-page: 621
  year: 2014
  end-page: 631
  ident: b0065
  article-title: A thermodynamic analysis of an auto-cascade heat pump cycle for heating application in cold regions
  publication-title: J. Energy and Buildings.
– reference: Sobieraj, M.; Rosínski, M. High phase-separation efficiency auto-cascade system working with a blend of carbon dioxide for low-temperature isothermal refrigeration. J. Applied Thermal Engineering.
– volume: 200
  year: 2021
  ident: b0110
  article-title: Thermodynamic analysis of auto-cascade refrigeration cycles, with and without ejector, for ultra low temperature freezing using a mixture of refrigerants R600a and R1150
  publication-title: J. Applied Thermal Engineering.
– reference: Fontalvo, J. Using user models in Matlab® within the Aspen Plus® interface with an Excel® link. J. Ingeniería e Investigación.
– volume: 25
  start-page: 1093
  year: 2002
  end-page: 1101
  ident: b0120
  article-title: Experiment and simulation on the performance of an auto-cascade refrigeration system using carbon dioxide as a refrigerant
  publication-title: J. International Journal of Refrigeration.
– volume: 11
  start-page: 115
  year: 2010
  end-page: 127
  ident: b0260
  article-title: Performance of a single-stage Linde-Hampson refrigerator operating with binary refrigerants at the temperature level of -60 °C
  publication-title: J. Journal of Zhejiang University SCIENCE A.
– volume: 238
  year: 2022
  ident: b0145
  article-title: Influence of internal heat exchanger position on the performance of ejector-enhanced auto-cascade refrigeration cycle for the low-temperature freezer
  publication-title: J. Energy.
– reference: Zhang, L.; Xu, SM.; Du, P.; Liu, HY. Experimental and theoretical investigation on the performance of CO
– volume: 99
  start-page: 145
  year: 2019
  end-page: 152
  ident: b0090
  article-title: Experimental investigation on the concentration distribution behaviors of mixture in an ejector enhanced auto-cascade refrigeration system
  publication-title: J. International Journal of Refrigeration-Revue Internationale Du Froid.
– reference: Xinhua News Agency. Xi Jinping delivered an important speech at the general debate of the 75th session of the United Nations General Assembly.
– volume: 32
  start-page: 824
  year: 2008
  end-page: 836
  ident: b0180
  article-title: Performance and exergetic analysis of vapor compression refrigeration system with an internal heat exchanger using a hydrocarbon, isobutane (R600a)
  publication-title: J. International Journal of Energy Research.
– volume: 13
  start-page: 2254
  year: 2020
  ident: b0010
  article-title: A Review of the Cascade Refrigeration System
  publication-title: Energies. J.
– volume: 12
  start-page: 139
  year: 2011
  end-page: 145
  ident: b0130
  article-title: Performance of a single-stage auto-cascade refrigerator operating with a rectifying column at the temperature level of -60 °C
  publication-title: J. Journal of Zhejiang University-Science A.
– volume: 40
  year: 2020
  ident: b0170
  article-title: Proposal and assessment of a new integrated liquefied natural gas generation process with auto-cascade refrigeration (exergy and economic analyses)
  publication-title: J. Sustainable Energy Technologies and Assessments.
– volume: 142
  start-page: 27
  year: 2022
  end-page: 36
  ident: b0190
  article-title: Theoretical performance comparison for two-stage auto-cascade refrigeration system using hydrocarbon refrigerants
  publication-title: J. International Journal of Refrigeration.
– volume: 131
  start-page: 41
  year: 2021
  end-page: 50
  ident: b0095
  article-title: Experimental investigation on the influence of ejector geometry on the pull-down performance of an ejector-enhanced auto-cascade low-temperature freezer
  publication-title: J. International Journal of Refrigeration.
– reference: , International Journal of Refrigeration, 113, 10-20. 10.1016/j.ijrefrig.2020.01.012.
– volume: 112
  start-page: 69
  year: 2016
  end-page: 79
  ident: b0165
  article-title: Modeling the exergy performance of heat pump systems without using refrigerant thermodynamic properties
  publication-title: J. Energy and Buildings.
– reference: , 138, 133-142. 10.1016/j.apenergy.2014.10.069.
– volume: 80
  start-page: 197
  year: 2017
  end-page: 211
  ident: b0055
  article-title: Review of vapour compression heat pumps for high temperature heating using natural working fluids
  publication-title: J. International Journal of Refrigeration.
– reference: Llopis, R.; Śanchez, D.; Sanz-Kock, C.; Cabello, R.; Torrella, E. Energy and environmental comparison of two-stage solutions for commercial refrigeration at low temperature: Fluids and systems. J. Applied Energy.
– volume: 130
  start-page: 356
  year: 2021
  end-page: 369
  ident: b0220
  article-title: An analytical method for ensuring the optimal circulating composition of the multicomponent refrigerant mixture in a steady-state operation mode of the Joule-Thomson refrigerator operating with mixtures
  publication-title: J. International Journal of Refrigeration.
– volume: 33
  start-page: 565
  year: 2009
  end-page: 575
  ident: b0250
  article-title: Autocascade refrigeration system: Experimental results in achieving ultra low temperature
  publication-title: J. International Journal of Energy Research.
– volume: 43
  start-page: 3331
  year: 2011
  end-page: 3336
  ident: b0080
  article-title: A theoretical study of an innovative ejector enhanced vapor compression heat pump cycle for water heating application
  publication-title: J. Energy and Buildings.
– volume: 202
  year: 2020
  ident: b0025
  article-title: Study on the performance of a novel waste heat recovery system at low temperatures
  publication-title: J. Energy.
– volume: 112
  start-page: 949
  year: 2013
  end-page: 955
  ident: b0135
  article-title: Numerical investigations on the performance of a single-stage auto-cascade refrigerator operating with two vapor-liquid separators and environmentally benign binary refrigerants
  publication-title: J. Applied Energy.
– volume: 236
  year: 2021
  ident: b0075
  article-title: Thermodynamic performance of a modified −150 °C refrigeration system coupled with Linde-Hampson and three-stage auto-cascade using low-GWP refrigerants
  publication-title: J. Energy Conversion and Management.
– volume: 84
  start-page: 268
  year: 2015
  end-page: 275
  ident: b0085
  article-title: Thermodynamic performance of an auto-cascade ejector refrigeration cycle with mixed refrigerant R32 + R236fa
  publication-title: J. Applied Thermal Engineering.
– reference: . http://www.gov.cn/xinwen/2020-09/22/content_5546168.htm.
– volume: 200
  year: 2022
  ident: b0105
  article-title: Thermodynamic analysis of a novel ejector-enhanced auto-cascade refrigeration cycle
  publication-title: J. Applied Thermal Engineering.
– reference: , 161, 114149. 10.1016/j.applthermaleng.2019.114149.
– volume: 84
  start-page: 589
  year: 2014
  end-page: 596
  ident: b0160
  article-title: Exergy and energy analysis of three stage auto refrigerating cascade system using zeotropic mixture for sustainable development
  publication-title: J. Energy Conversion & Management.
– reference: Paula, CHD.; Duarte, WM.; Rocha, TTM.; Oliveira, RND.; Maia, AAT. Optimal design and environmental, energy and exergy analysis of a vapor compression refrigeration system using R290, R1234yf, and R744 as alternatives to replace R134a. J.
– volume: 254
  year: 2022
  ident: b0185
  article-title: Multi-objective optimization of the refrigerant-direct convective-radiant cooling system considering the thermal and economic performances
  publication-title: J. Energy and Buildings.
– reference: /propane auto-cascade refrigerator with a fractionation heat exchanger. J. Applied Thermal Engineering.
– reference: , 87, 669-677. 10.1016/j.applthermaleng.2015.05.016.
– volume: 31
  start-page: 552
  year: 2008
  end-page: 563
  ident: b0060
  article-title: Hydrocarbons as refrigerants in small heat pump and refrigeration systems - a review
  publication-title: J. International Journal of Refrigeration.
– volume: 94
  start-page: 33
  year: 2018
  end-page: 39
  ident: b0100
  article-title: Theoretical analysis of a double ejector-expansion autocascade refrigeration cycle using hydrocarbon mixture R290/R170
  publication-title: J. International Journal of Refrigeration.
– volume: 66
  start-page: 4112
  year: 2021
  end-page: 4128
  ident: b0035
  article-title: Research status and future development of thermal management system for new energy vehicles under the background of carbon neutrality
  publication-title: J. Chinese Science Bulletin.
– volume: 229
  year: 2021
  ident: b0245
  article-title: A new two-parameters cubic equation of state with benefits of three-parameters
  publication-title: J. Chemical Engineering Science.
– volume: 52
  start-page: 11
  year: 2016
  end-page: 20
  ident: b0275
  article-title: Experimental investigation of the performance of a single-stage auto-cascade refrigerator
  publication-title: J. Heat Mass Transfer.
– volume: 111
  start-page: 147
  year: 2020
  end-page: 158
  ident: b0050
  article-title: Ultralow-temperature refrigeration systems: Configurations and refrigerants to reduce the environmental impact
  publication-title: J. International Journal of Refrigeration.
– volume: 42
  start-page: 2431
  year: 2010
  end-page: 2436
  ident: b0070
  article-title: A thermodynamic analysis of a transcritical cycle with refrigerant mixture R32/R290 for a small heat pump water heater
  publication-title: J. Energy and Buildings.
– reference: ASPEN Plus. Aspen Technology Inc. 200 Wheeler Road Burlington, MA, USA.
– reference: . http://refhub.elsevier.com/S0140-7007(21)00048-7/sbref0003.
– reference: Lemmon, EW.; Bell, IH.; Huber ML.; McLinden, MO. NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 10.0, National Institute of Standards and Technology, Standard Reference Data Program, Gaithersburg.
– volume: 170
  start-page: 1170
  year: 2019
  end-page: 1180
  ident: b0210
  article-title: Energy and exergy analysis of low GWP refrigerants in cascade refrigeration system
  publication-title: J. Energy.
– volume: 33
  start-page: 240
  year: 2009
  end-page: 245
  ident: b0140
  article-title: A study on the cycle characteristics of an auto-cascade refrigeration system
  publication-title: J. Experimental Thermal and Fluid Science.
– reference: , 34, 39-43. 10.15446/ing.investig.v34n2.41621.
– volume: 157
  start-page: 647
  year: 2018
  end-page: 657
  ident: b0030
  article-title: Experimental research on the pull-down performance of an ejector enhanced auto-cascade refrigeration system for low-temperature freezer
  publication-title: J. Energy.
– volume: 23
  start-page: 199
  year: 2015
  end-page: 204
  ident: b0020
  article-title: Mixed refrigerant composition shift due to throttle valves opening in auto cascade refrigeration system
  publication-title: J. Chinese Journal of Chemical Engineering.
– volume: 03
  start-page: 108
  year: 2021
  end-page: 121
  ident: b0240
  article-title: Thermodynamic Property Calculation in Vapor-Liquid Equilibrium for Multicomponent Mixtures using Highly Accurate Helmholtz Free Energy Equation of State
  publication-title: J. Series Mechanical Engineering.
– volume: 126
  start-page: 66
  year: 2021
  end-page: 75
  ident: b0265
  article-title: Energy and exergy performance evaluation of a three-stage auto-cascade refrigeration system using low-GWP alternative refrigerants
  publication-title: J. International Journal of Refrigeration.
– reference: . http://refhub.elsevier.com/S1359-4311(22)01500-9/h0280.
– ident: 10.1016/j.enbuild.2023.112815_b0040
– volume: 157
  start-page: 647
  year: 2018
  ident: 10.1016/j.enbuild.2023.112815_b0030
  article-title: Experimental research on the pull-down performance of an ejector enhanced auto-cascade refrigeration system for low-temperature freezer
  publication-title: J. Energy.
  doi: 10.1016/j.energy.2018.05.205
– volume: 50
  start-page: 720
  issue: 11–12
  year: 2010
  ident: 10.1016/j.enbuild.2023.112815_b0150
  article-title: Performance of an auto refrigerant cascade refrigerator operating in liquid refrigerant supply (LRS) mode with different cascade heat exchangers
  publication-title: J. Cryogenics.
  doi: 10.1016/j.cryogenics.2010.07.004
– ident: 10.1016/j.enbuild.2023.112815_b0195
  doi: 10.15446/ing.investig.v34n2.41621
– volume: 126
  start-page: 66
  year: 2021
  ident: 10.1016/j.enbuild.2023.112815_b0265
  article-title: Energy and exergy performance evaluation of a three-stage auto-cascade refrigeration system using low-GWP alternative refrigerants
  publication-title: J. International Journal of Refrigeration.
  doi: 10.1016/j.ijrefrig.2021.01.028
– volume: 12
  start-page: 139
  year: 2011
  ident: 10.1016/j.enbuild.2023.112815_b0130
  article-title: Performance of a single-stage auto-cascade refrigerator operating with a rectifying column at the temperature level of -60 °C
  publication-title: J. Journal of Zhejiang University-Science A.
  doi: 10.1631/jzus.A1000050
– volume: 111
  start-page: 147
  year: 2020
  ident: 10.1016/j.enbuild.2023.112815_b0050
  article-title: Ultralow-temperature refrigeration systems: Configurations and refrigerants to reduce the environmental impact
  publication-title: J. International Journal of Refrigeration.
  doi: 10.1016/j.ijrefrig.2019.11.016
– volume: 43
  start-page: 3331
  year: 2011
  ident: 10.1016/j.enbuild.2023.112815_b0080
  article-title: A theoretical study of an innovative ejector enhanced vapor compression heat pump cycle for water heating application
  publication-title: J. Energy and Buildings.
  doi: 10.1016/j.enbuild.2011.08.037
– volume: 254
  year: 2022
  ident: 10.1016/j.enbuild.2023.112815_b0185
  article-title: Multi-objective optimization of the refrigerant-direct convective-radiant cooling system considering the thermal and economic performances
  publication-title: J. Energy and Buildings.
  doi: 10.1016/j.enbuild.2021.111609
– volume: 142
  start-page: 27
  year: 2022
  ident: 10.1016/j.enbuild.2023.112815_b0190
  article-title: Theoretical performance comparison for two-stage auto-cascade refrigeration system using hydrocarbon refrigerants
  publication-title: J. International Journal of Refrigeration.
  doi: 10.1016/j.ijrefrig.2022.06.008
– volume: 33
  start-page: 565
  year: 2009
  ident: 10.1016/j.enbuild.2023.112815_b0250
  article-title: Autocascade refrigeration system: Experimental results in achieving ultra low temperature
  publication-title: J. International Journal of Energy Research.
  doi: 10.1002/er.1492
– ident: 10.1016/j.enbuild.2023.112815_b0230
– volume: 28
  start-page: 766
  issue: 5
  year: 2005
  ident: 10.1016/j.enbuild.2023.112815_b0205
  article-title: Transcritical CO2 refrigeration cycle with ejector-expansion device
  publication-title: J. International Journal of Refrigeration.
  doi: 10.1016/j.ijrefrig.2004.10.008
– ident: 10.1016/j.enbuild.2023.112815_b0005
  doi: 10.1016/j.apenergy.2014.10.069
– volume: 13
  start-page: 2254
  year: 2020
  ident: 10.1016/j.enbuild.2023.112815_b0010
  article-title: A Review of the Cascade Refrigeration System
  publication-title: Energies. J.
  doi: 10.3390/en13092254
– volume: 131
  start-page: 41
  year: 2021
  ident: 10.1016/j.enbuild.2023.112815_b0095
  article-title: Experimental investigation on the influence of ejector geometry on the pull-down performance of an ejector-enhanced auto-cascade low-temperature freezer
  publication-title: J. International Journal of Refrigeration.
  doi: 10.1016/j.ijrefrig.2021.08.021
– volume: 94
  start-page: 33
  year: 2018
  ident: 10.1016/j.enbuild.2023.112815_b0100
  article-title: Theoretical analysis of a double ejector-expansion autocascade refrigeration cycle using hydrocarbon mixture R290/R170
  publication-title: J. International Journal of Refrigeration.
  doi: 10.1016/j.ijrefrig.2018.07.025
– year: 2010
  ident: 10.1016/j.enbuild.2023.112815_b0225
  article-title: NIST Standard Reference Database 23: reference fluid thermodynamic and transport properties - REFPROP, version 9.1
  publication-title: Standard Reference Data Program. National Institute of Standards and Technology.
– volume: 52
  start-page: 11
  year: 2016
  ident: 10.1016/j.enbuild.2023.112815_b0275
  article-title: Experimental investigation of the performance of a single-stage auto-cascade refrigerator
  publication-title: J. Heat Mass Transfer.
  doi: 10.1007/s00231-015-1577-4
– volume: 40
  year: 2020
  ident: 10.1016/j.enbuild.2023.112815_b0170
  article-title: Proposal and assessment of a new integrated liquefied natural gas generation process with auto-cascade refrigeration (exergy and economic analyses)
  publication-title: J. Sustainable Energy Technologies and Assessments.
– volume: 200
  year: 2021
  ident: 10.1016/j.enbuild.2023.112815_b0110
  article-title: Thermodynamic analysis of auto-cascade refrigeration cycles, with and without ejector, for ultra low temperature freezing using a mixture of refrigerants R600a and R1150
  publication-title: J. Applied Thermal Engineering.
– ident: 10.1016/j.enbuild.2023.112815_b0115
  doi: 10.1016/j.applthermaleng.2019.114149
– volume: 25
  start-page: 1093
  issue: 8
  year: 2002
  ident: 10.1016/j.enbuild.2023.112815_b0120
  article-title: Experiment and simulation on the performance of an auto-cascade refrigeration system using carbon dioxide as a refrigerant
  publication-title: J. International Journal of Refrigeration.
  doi: 10.1016/S0140-7007(01)00110-4
– volume: 126
  start-page: 850
  year: 2016
  ident: 10.1016/j.enbuild.2023.112815_b0200
  article-title: Advanced exergy analyses of an ejector expansion transcritical CO2 refrigeration system
  publication-title: Energy Conversion and Management. J.
  doi: 10.1016/j.enconman.2016.08.057
– volume: 229
  year: 2021
  ident: 10.1016/j.enbuild.2023.112815_b0245
  article-title: A new two-parameters cubic equation of state with benefits of three-parameters
  publication-title: J. Chemical Engineering Science.
  doi: 10.1016/j.ces.2020.116045
– volume: 99
  start-page: 145
  year: 2019
  ident: 10.1016/j.enbuild.2023.112815_b0090
  article-title: Experimental investigation on the concentration distribution behaviors of mixture in an ejector enhanced auto-cascade refrigeration system
  publication-title: J. International Journal of Refrigeration-Revue Internationale Du Froid.
  doi: 10.1016/j.ijrefrig.2018.11.024
– volume: 82
  start-page: 621
  year: 2014
  ident: 10.1016/j.enbuild.2023.112815_b0065
  article-title: A thermodynamic analysis of an auto-cascade heat pump cycle for heating application in cold regions
  publication-title: J. Energy and Buildings.
  doi: 10.1016/j.enbuild.2014.07.083
– volume: 31
  start-page: 552
  issue: 4
  year: 2008
  ident: 10.1016/j.enbuild.2023.112815_b0060
  article-title: Hydrocarbons as refrigerants in small heat pump and refrigeration systems - a review
  publication-title: J. International Journal of Refrigeration.
  doi: 10.1016/j.ijrefrig.2007.11.016
– volume: 84
  start-page: 268
  year: 2015
  ident: 10.1016/j.enbuild.2023.112815_b0085
  article-title: Thermodynamic performance of an auto-cascade ejector refrigeration cycle with mixed refrigerant R32 + R236fa
  publication-title: J. Applied Thermal Engineering.
  doi: 10.1016/j.applthermaleng.2015.03.047
– volume: 23
  start-page: 199
  year: 2015
  ident: 10.1016/j.enbuild.2023.112815_b0020
  article-title: Mixed refrigerant composition shift due to throttle valves opening in auto cascade refrigeration system
  publication-title: J. Chinese Journal of Chemical Engineering.
  doi: 10.1016/j.cjche.2013.06.001
– volume: 114
  start-page: 175
  year: 2020
  ident: 10.1016/j.enbuild.2023.112815_b0015
  article-title: Experimental investigation of the performance of an R1270/CO2 cascade refrigerant system
  publication-title: J. International Journal of Refrigeration.
  doi: 10.1016/j.ijrefrig.2020.02.017
– year: 2013
  ident: 10.1016/j.enbuild.2023.112815_b0255
  article-title: The impact of R50 on -100 °C three-stage auto-cascade refrigeration system, Proceedings of the International Conference on Materials for Renewable
  publication-title: Energy and Environment.
– volume: 80
  start-page: 197
  year: 2017
  ident: 10.1016/j.enbuild.2023.112815_b0055
  article-title: Review of vapour compression heat pumps for high temperature heating using natural working fluids
  publication-title: J. International Journal of Refrigeration.
  doi: 10.1016/j.ijrefrig.2017.04.021
– ident: 10.1016/j.enbuild.2023.112815_b0125
  doi: 10.1016/j.applthermaleng.2015.05.016
– volume: 42
  start-page: 2431
  year: 2010
  ident: 10.1016/j.enbuild.2023.112815_b0070
  article-title: A thermodynamic analysis of a transcritical cycle with refrigerant mixture R32/R290 for a small heat pump water heater
  publication-title: J. Energy and Buildings.
  doi: 10.1016/j.enbuild.2010.08.016
– volume: 117
  start-page: 284
  year: 2020
  ident: 10.1016/j.enbuild.2023.112815_b0155
  article-title: Isothermal measurement and modeling of VLE properties for 2,3,3,3-tetrafluoroprop-1-ene + trifluoromethane plus tetrafluoromethane ternary system at temperatures from 253.15 K to 273.15 K
  publication-title: J International Journal of Refrigeration.
  doi: 10.1016/j.ijrefrig.2020.04.008
– volume: 170
  start-page: 1170
  year: 2019
  ident: 10.1016/j.enbuild.2023.112815_b0210
  article-title: Energy and exergy analysis of low GWP refrigerants in cascade refrigeration system
  publication-title: J. Energy.
  doi: 10.1016/j.energy.2018.12.055
– volume: 33
  start-page: 240
  issue: 2
  year: 2009
  ident: 10.1016/j.enbuild.2023.112815_b0140
  article-title: A study on the cycle characteristics of an auto-cascade refrigeration system
  publication-title: J. Experimental Thermal and Fluid Science.
  doi: 10.1016/j.expthermflusci.2008.08.006
– volume: 138
  year: 2021
  ident: 10.1016/j.enbuild.2023.112815_b0045
  article-title: Vapor compression heat pumps with pure Low-GWP refrigerants
  publication-title: J. Renewable and Sustainable Energy Reviews.
  doi: 10.1016/j.rser.2020.110571
– volume: 219
  year: 2023
  ident: 10.1016/j.enbuild.2023.112815_b0175
  article-title: Life cycle techno-enviro-economic assessment of dual-temperature evaporation transcritical CO2 high-temperature heat pump systems for industrial waste heat recovery
  publication-title: J. Applied Thermal Engineering.
  doi: 10.1016/j.applthermaleng.2022.119570
– volume: 11
  start-page: 115
  year: 2010
  ident: 10.1016/j.enbuild.2023.112815_b0260
  article-title: Performance of a single-stage Linde-Hampson refrigerator operating with binary refrigerants at the temperature level of -60 °C
  publication-title: J. Journal of Zhejiang University SCIENCE A.
  doi: 10.1631/jzus.A0900208
– volume: 32
  start-page: 824
  issue: 9
  year: 2008
  ident: 10.1016/j.enbuild.2023.112815_b0180
  article-title: Performance and exergetic analysis of vapor compression refrigeration system with an internal heat exchanger using a hydrocarbon, isobutane (R600a)
  publication-title: J. International Journal of Energy Research.
  doi: 10.1002/er.1396
– volume: 236
  year: 2021
  ident: 10.1016/j.enbuild.2023.112815_b0075
  article-title: Thermodynamic performance of a modified −150 °C refrigeration system coupled with Linde-Hampson and three-stage auto-cascade using low-GWP refrigerants
  publication-title: J. Energy Conversion and Management.
  doi: 10.1016/j.enconman.2021.114093
– volume: 200
  year: 2022
  ident: 10.1016/j.enbuild.2023.112815_b0105
  article-title: Thermodynamic analysis of a novel ejector-enhanced auto-cascade refrigeration cycle
  publication-title: J. Applied Thermal Engineering.
  doi: 10.1016/j.applthermaleng.2021.117636
– volume: 112
  start-page: 949
  year: 2013
  ident: 10.1016/j.enbuild.2023.112815_b0135
  article-title: Numerical investigations on the performance of a single-stage auto-cascade refrigerator operating with two vapor-liquid separators and environmentally benign binary refrigerants
  publication-title: J. Applied Energy.
  doi: 10.1016/j.apenergy.2013.01.081
– volume: 03
  start-page: 108
  year: 2021
  ident: 10.1016/j.enbuild.2023.112815_b0240
  article-title: Thermodynamic Property Calculation in Vapor-Liquid Equilibrium for Multicomponent Mixtures using Highly Accurate Helmholtz Free Energy Equation of State
  publication-title: J. Series Mechanical Engineering.
– volume: 112
  start-page: 69
  year: 2016
  ident: 10.1016/j.enbuild.2023.112815_b0165
  article-title: Modeling the exergy performance of heat pump systems without using refrigerant thermodynamic properties
  publication-title: J. Energy and Buildings.
  doi: 10.1016/j.enbuild.2015.09.061
– volume: 202
  year: 2020
  ident: 10.1016/j.enbuild.2023.112815_b0025
  article-title: Study on the performance of a novel waste heat recovery system at low temperatures
  publication-title: J. Energy.
  doi: 10.1016/j.energy.2020.117751
– volume: 66
  start-page: 4112
  issue: 32
  year: 2021
  ident: 10.1016/j.enbuild.2023.112815_b0035
  article-title: Research status and future development of thermal management system for new energy vehicles under the background of carbon neutrality
  publication-title: J. Chinese Science Bulletin.
  doi: 10.1360/TB-2021-0648
– volume: 240
  year: 2022
  ident: 10.1016/j.enbuild.2023.112815_b0270
  article-title: Experimental characterization of an innovative refrigeration system coupled with Linde-Hampson cycle and auto-cascade cycle for multi-stage refrigeration temperature applications
  publication-title: J. Energy.
  doi: 10.1016/j.energy.2021.122498
– ident: 10.1016/j.enbuild.2023.112815_b0215
  doi: 10.1016/j.ijrefrig.2020.01.012
– volume: 130
  start-page: 356
  year: 2021
  ident: 10.1016/j.enbuild.2023.112815_b0220
  article-title: An analytical method for ensuring the optimal circulating composition of the multicomponent refrigerant mixture in a steady-state operation mode of the Joule-Thomson refrigerator operating with mixtures
  publication-title: J. International Journal of Refrigeration.
  doi: 10.1016/j.ijrefrig.2021.05.034
– volume: 84
  start-page: 589
  year: 2014
  ident: 10.1016/j.enbuild.2023.112815_b0160
  article-title: Exergy and energy analysis of three stage auto refrigerating cascade system using zeotropic mixture for sustainable development
  publication-title: J. Energy Conversion & Management.
  doi: 10.1016/j.enconman.2014.04.076
– volume: 238
  year: 2022
  ident: 10.1016/j.enbuild.2023.112815_b0145
  article-title: Influence of internal heat exchanger position on the performance of ejector-enhanced auto-cascade refrigeration cycle for the low-temperature freezer
  publication-title: J. Energy.
  doi: 10.1016/j.energy.2021.121803
– ident: 10.1016/j.enbuild.2023.112815_b0235
SSID ssj0006571
Score 2.4566147
Snippet •A novel three-stage RACR was proposed to improve the performance of ACR.•The R134a/R23/R14 RACR system performed better than the ACR system.•The influence of...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 112815
SubjectTerms Performance comparison
Ratio optimization
Refrigerant substitution
Three-stage RACR system
Title Theoretical performance comparison for a regenerator-enhanced three-stage auto-cascade refrigeration system using different zeotropic mixed refrigerants
URI https://dx.doi.org/10.1016/j.enbuild.2023.112815
Volume 283
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8NAFB6KXvQgrlg35uB1umSyzVGKUrciLtBbmJnM1EhNSxtBPPg7_Lm-l6VREAVPIcO8JMx7vIW873uEHLtWgwcIYqZsFwoUNGPJdcx8YUVHyxhUjtjh64Hff3Avht6wQXoVFgbbKkvfX_j03FuXK-3yNNvTJGnfdTgYG1RwkETnxOCIYHcDtPLWe93m4Xt50YWbGe6uUTztpxbSCyRjJAx1OIJpQpyO-1N8-hJzztbJWpks0pPiezZIw6SbZPULheAW-bivkYh0WqMAqF4MGKSwRiWdmVFOMQ1FNjPpY_7nn2agSsMgQxwZKl-yCdNyjh3zsNtC3W4K-6AF3zPFJvkRrWaqZPTNTLLZZJpo-py8wtMWQmk23yYPZ6f3vT4rpy0wzTsiY8blSiEy1pFG-h6XnoH3ad-1CopYT4NSZShjJ_CVCLjFQMdtoFxpu1yDn-A7ZCmdpGaXUMcqKZSwMdfa5SYI4ziIRcd0DXek8EWTuNUZR7qkIseJGOOo6jl7ikrVRKiaqFBNk7QWYtOCi-MvgbBSYPTNqCKIF7-L7v1fdJ-s4B02qnW9A7KUzV7MIWQumTrKTfOILJ_0bq9u8Hp-2R98AvR69kk
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB1BOQAHxCp2fOBq2sZZ6iNCoLL1QpG4RbZjl1SQViVIiC_hc5nJ0oKEQOLqeJzIM5pFmfcG4Nh3Bj1AlHDt2ligkBkrYRIeSidbRiWocsIO3_bC7r1_9RA8zMFZjYWhtsrK95c-vfDW1Uqzus3mOE2bdy2BxoYVHCbRBTH4PCwQO1XQgIXTy-tub-qQw6Cou2g_J4EZkKc5PCGGgfSJOEM9QXiaDg3I_SlEfQk7F6uwUuWL7LT8pDWYs9k6LH9hEdyAj_4MjMjGMyAAM9MZgwzXmGITOyhYprHO5jZ7LH7-sxy1aTkmiQPL1Gs-4ka9UNM87nZYutvSRFhJ-cyoT37A6rEqOXu3o3wyGqeGPadveNpUKMtfNuH-4rx_1uXVwAVuREvm3PpCawLHesqqMBAqsPg-E_pOYx0bGNSr6qjEi0ItI-Eo1gkXaV-5tjDoKsQWNLJRZreBeU4rqaVLhDG-sFEnSaJEtmzbCk_JUO6AX99xbCo2chqK8RTXbWfDuFJNTKqJS9XswMlUbFzScfwl0KkVGH-zqxhDxu-iu_8XPYLFbv_2Jr657F3vwRI9ob61drAPjXzyag8wkcn1YWWon5zO92U
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Theoretical+performance+comparison+for+a+regenerator-enhanced+three-stage+auto-cascade+refrigeration+system+using+different+zeotropic+mixed+refrigerants&rft.jtitle=Energy+and+buildings&rft.au=He%2C+Yongning&rft.au=Wu%2C+Huihong&rft.au=Xu%2C+Ke&rft.au=Zhang%2C+Yeqiang&rft.date=2023-03-15&rft.issn=0378-7788&rft.volume=283&rft.spage=112815&rft_id=info:doi/10.1016%2Fj.enbuild.2023.112815&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_enbuild_2023_112815
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-7788&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-7788&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-7788&client=summon