Theoretical performance comparison for a regenerator-enhanced three-stage auto-cascade refrigeration system using different zeotropic mixed refrigerants
•A novel three-stage RACR was proposed to improve the performance of ACR.•The R134a/R23/R14 RACR system performed better than the ACR system.•The influence of the refrigerant ratio on RACR performance was investigated.•Different hydrocarbons were provided as alternatives to R134a and R23.•R600/R170/...
Saved in:
Published in | Energy and buildings Vol. 283; p. 112815 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
15.03.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 0378-7788 |
DOI | 10.1016/j.enbuild.2023.112815 |
Cover
Loading…
Abstract | •A novel three-stage RACR was proposed to improve the performance of ACR.•The R134a/R23/R14 RACR system performed better than the ACR system.•The influence of the refrigerant ratio on RACR performance was investigated.•Different hydrocarbons were provided as alternatives to R134a and R23.•R600/R170/R14 performed the optimum performance in the RACR system.
Auto-cascade refrigeration (ACR) systems are widely used at low temperatures. The selection and ratio optimization of zeotropic refrigerants in ACR systems have an important impact on system performance and environmental protection. This study proposes a three-stage regenerator-enhanced auto-cascade refrigeration (RACR) system. Under certain working conditions, the theoretical performances of the three-stage R134a/R23/R14 ACR and RACR systems were compared, and the influence of the refrigerant mixture ratio on the RACR system performance was explored. The system performances of replacing R134a and R23 with different hydrocarbons were compared under different working conditions. The results demonstrated that RACR performed better than ACR alone. A reasonable adjustment to the mixed refrigerant ratio improved the energy efficiency of the RACR system. Water-cooling conditions for the RACR system were suggested, under which the coefficient of performance, thermodynamic perfectness, and exergy efficiency of R600/R170/R14 were 13.8 %, 12.4 %, and 8.4 % higher than those of R600/R23/R14, respectively. The environmental policy, safety requirements, and energy efficiency were considered to obtain −100 °C, R600/R170/R14 with mass fractions of 0.24/0.12/0.64 was the best choice in a water-cooled RACR system. |
---|---|
AbstractList | •A novel three-stage RACR was proposed to improve the performance of ACR.•The R134a/R23/R14 RACR system performed better than the ACR system.•The influence of the refrigerant ratio on RACR performance was investigated.•Different hydrocarbons were provided as alternatives to R134a and R23.•R600/R170/R14 performed the optimum performance in the RACR system.
Auto-cascade refrigeration (ACR) systems are widely used at low temperatures. The selection and ratio optimization of zeotropic refrigerants in ACR systems have an important impact on system performance and environmental protection. This study proposes a three-stage regenerator-enhanced auto-cascade refrigeration (RACR) system. Under certain working conditions, the theoretical performances of the three-stage R134a/R23/R14 ACR and RACR systems were compared, and the influence of the refrigerant mixture ratio on the RACR system performance was explored. The system performances of replacing R134a and R23 with different hydrocarbons were compared under different working conditions. The results demonstrated that RACR performed better than ACR alone. A reasonable adjustment to the mixed refrigerant ratio improved the energy efficiency of the RACR system. Water-cooling conditions for the RACR system were suggested, under which the coefficient of performance, thermodynamic perfectness, and exergy efficiency of R600/R170/R14 were 13.8 %, 12.4 %, and 8.4 % higher than those of R600/R23/R14, respectively. The environmental policy, safety requirements, and energy efficiency were considered to obtain −100 °C, R600/R170/R14 with mass fractions of 0.24/0.12/0.64 was the best choice in a water-cooled RACR system. |
ArticleNumber | 112815 |
Author | Jin, Tingxiang Cheng, Chuanxiao Xu, Ke Wu, Huihong He, Yongning Wang, Tao Wu, Xuehong Zhang, Yeqiang |
Author_xml | – sequence: 1 givenname: Yongning orcidid: 0000-0002-8326-1067 surname: He fullname: He, Yongning – sequence: 2 givenname: Huihong orcidid: 0000-0002-4721-5469 surname: Wu fullname: Wu, Huihong – sequence: 3 givenname: Ke surname: Xu fullname: Xu, Ke – sequence: 4 givenname: Yeqiang surname: Zhang fullname: Zhang, Yeqiang email: zhangyeqiang@zzuli.edu.cn – sequence: 5 givenname: Tao surname: Wang fullname: Wang, Tao – sequence: 6 givenname: Xuehong surname: Wu fullname: Wu, Xuehong – sequence: 7 givenname: Chuanxiao surname: Cheng fullname: Cheng, Chuanxiao – sequence: 8 givenname: Tingxiang surname: Jin fullname: Jin, Tingxiang |
BookMark | eNqFkMFqGzEQhnVwoXbSRyjoBdaRVt7Vmh5KMWkTMPTinMWsdmTLeCUzkkvTJ-njVhuHHHrJSTD836-Zb8FmIQZk7LMUSylke3dcYugv_jQsa1GrpZR1J5sZmwulu0rrrvvIFikdhRBto-Wc_d0dMBJmb-HEz0gu0gjBIrdxPAP5FAMvMw6ccI8BCXKkCsNhCg08HwixShn2yOGSY2UhWRiwpB35_RT3pSE9p4wjvyQf9nzwziFhyPwPxkzx7C0f_e_S9gaFnG7ZBwenhJ9e3xv29P1-t3motj9_PG6-bSurxDpXuFJ9X9e1rgGhbRQ0WP637cr1ndKNdRahg6HWbb_WypW7hXK6X4GTymol1A37cu21FFMqGxjr88vWmcCfjBRmEmuO5lWsmcSaq9hCN__RZ_Ij0PO73Ncrh-W0Xx7JJOtxUuoJbTZD9O80_APVtaBX |
CitedBy_id | crossref_primary_10_1016_j_applthermaleng_2023_122116 crossref_primary_10_1016_j_energy_2024_130255 crossref_primary_10_1016_j_energy_2025_135146 crossref_primary_10_1177_09544089241283617 crossref_primary_10_1016_j_enconman_2023_117129 crossref_primary_10_1016_j_psep_2024_11_105 crossref_primary_10_1016_j_applthermaleng_2024_123442 crossref_primary_10_1016_j_applthermaleng_2024_124568 crossref_primary_10_1016_j_ijrefrig_2025_02_004 crossref_primary_10_70030_sjmakeu_1473745 crossref_primary_10_1016_j_applthermaleng_2023_121146 crossref_primary_10_1016_j_csite_2024_104977 crossref_primary_10_1016_j_energy_2024_134197 |
Cites_doi | 10.1016/j.energy.2018.05.205 10.1016/j.cryogenics.2010.07.004 10.15446/ing.investig.v34n2.41621 10.1016/j.ijrefrig.2021.01.028 10.1631/jzus.A1000050 10.1016/j.ijrefrig.2019.11.016 10.1016/j.enbuild.2011.08.037 10.1016/j.enbuild.2021.111609 10.1016/j.ijrefrig.2022.06.008 10.1002/er.1492 10.1016/j.ijrefrig.2004.10.008 10.1016/j.apenergy.2014.10.069 10.3390/en13092254 10.1016/j.ijrefrig.2021.08.021 10.1016/j.ijrefrig.2018.07.025 10.1007/s00231-015-1577-4 10.1016/j.applthermaleng.2019.114149 10.1016/S0140-7007(01)00110-4 10.1016/j.enconman.2016.08.057 10.1016/j.ces.2020.116045 10.1016/j.ijrefrig.2018.11.024 10.1016/j.enbuild.2014.07.083 10.1016/j.ijrefrig.2007.11.016 10.1016/j.applthermaleng.2015.03.047 10.1016/j.cjche.2013.06.001 10.1016/j.ijrefrig.2020.02.017 10.1016/j.ijrefrig.2017.04.021 10.1016/j.applthermaleng.2015.05.016 10.1016/j.enbuild.2010.08.016 10.1016/j.ijrefrig.2020.04.008 10.1016/j.energy.2018.12.055 10.1016/j.expthermflusci.2008.08.006 10.1016/j.rser.2020.110571 10.1016/j.applthermaleng.2022.119570 10.1631/jzus.A0900208 10.1002/er.1396 10.1016/j.enconman.2021.114093 10.1016/j.applthermaleng.2021.117636 10.1016/j.apenergy.2013.01.081 10.1016/j.enbuild.2015.09.061 10.1016/j.energy.2020.117751 10.1360/TB-2021-0648 10.1016/j.energy.2021.122498 10.1016/j.ijrefrig.2020.01.012 10.1016/j.ijrefrig.2021.05.034 10.1016/j.enconman.2014.04.076 10.1016/j.energy.2021.121803 |
ContentType | Journal Article |
Copyright | 2023 Elsevier B.V. |
Copyright_xml | – notice: 2023 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.enbuild.2023.112815 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
ExternalDocumentID | 10_1016_j_enbuild_2023_112815 S0378778823000452 |
GroupedDBID | --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AAEDT AAEDW AAHCO AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AATTM AAXKI AAXUO AAYWO ABFYP ABJNI ABLST ABMAC ACDAQ ACGFS ACIWK ACRLP ACVFH ADBBV ADCNI ADEZE ADTZH AEBSH AECPX AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFRAH AFTJW AFXIZ AGCQF AGHFR AGUBO AGYEJ AHEUO AHHHB AHIDL AHJVU AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKIFW AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP AXJTR BELTK BJAXD BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFKBS EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE JJJVA KCYFY KOM LY6 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL SDF SDG SES SPC SPCBC SSJ SSR SST SSZ T5K ~02 ~G- --K 29G AAQXK AAYXX ABFNM ABWVN ABXDB ACNNM ACRPL ADMUD ADNMO AGQPQ ASPBG AVWKF AZFZN CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- RPZ SAC SET SEW WUQ ZMT ZY4 |
ID | FETCH-LOGICAL-c309t-e43bb22272aea653a5ecadc64fb8375cfcea8ad276b973f00003f7b4af13c7303 |
IEDL.DBID | .~1 |
ISSN | 0378-7788 |
IngestDate | Thu Apr 24 23:07:21 EDT 2025 Wed Aug 27 16:27:26 EDT 2025 Sat Aug 30 17:14:16 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Ratio optimization Performance comparison Refrigerant substitution Three-stage RACR system |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c309t-e43bb22272aea653a5ecadc64fb8375cfcea8ad276b973f00003f7b4af13c7303 |
ORCID | 0000-0002-8326-1067 0000-0002-4721-5469 |
ParticipantIDs | crossref_citationtrail_10_1016_j_enbuild_2023_112815 crossref_primary_10_1016_j_enbuild_2023_112815 elsevier_sciencedirect_doi_10_1016_j_enbuild_2023_112815 |
PublicationCentury | 2000 |
PublicationDate | 2023-03-15 |
PublicationDateYYYYMMDD | 2023-03-15 |
PublicationDate_xml | – month: 03 year: 2023 text: 2023-03-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Energy and buildings |
PublicationYear | 2023 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | http://www.gov.cn/xinwen/2020-09/22/content_5546168.htm. Qin, Li, Zhang, Jin, Liu (b0270) 2022; 240 http://refhub.elsevier.com/S1359-4311(22)01500-9/h0280. Wang, Cao, Li, Yin, Song, He (b0035) 2021; 66 Xinhua News Agency. Xi Jinping delivered an important speech at the general debate of the 75th session of the United Nations General Assembly. Qin, Li, Liu, Zhang (b0155) 2020; 117 Tan, Wang, Liang (b0085) 2015; 84 Qin, Li, Zhang, Liu (b0265) 2021; 126 Yu, Xu, Tian (b0070) 2010; 42 161, 114149. 10.1016/j.applthermaleng.2019.114149. Rui, Zhang, Zhang, Wen (b0275) 2016; 52 138, 133-142. 10.1016/j.apenergy.2014.10.069. Kumar, Upadhyay (b0245) 2021; 229 Bai, Xie, Liu, Yan, Yu (b0095) 2021; 131 34, 39-43. 10.15446/ing.investig.v34n2.41621. Zhang, He, Wang, Wu, Jia, Gong (b0015) 2020; 114 Hu, Shi, Zhao, Liu (b0255) 2013 Kim, Kim (b0120) 2002; 25 Wang, Cui, Sun, Chen, Chen (b0260) 2010; 11 Wang, Li, Wang, Sun, Han, Chen (b0135) 2013; 112 Lemmon, Huber, Mclinden (b0225) 2010 87, 669-677. 10.1016/j.applthermaleng.2015.05.016. Chen, Zhou, Yu (b0080) 2011; 43 Nayak, Venkatarathnam (b0150) 2010; 50 Luo, Chirkov (b0240) 2021; 03 He, Wu, Liu, Wang, Wu, Cheng, Jin (b0190) 2022; 142 Paula, CHD.; Duarte, WM.; Rocha, TTM.; Oliveira, RND.; Maia, AAT. Optimal design and environmental, energy and exergy analysis of a vapor compression refrigeration system using R290, R1234yf, and R744 as alternatives to replace R134a. J. Qin, Li, Zhang, Liu (b0075) 2021; 236 Wang, Cui, Sun, Chen (b0130) 2011; 12 International Journal of Refrigeration, 113, 10-20. 10.1016/j.ijrefrig.2020.01.012. propane auto-cascade refrigerator with a fractionation heat exchanger. J. Applied Thermal Engineering. Salouxa, Sorinb, Teyssedou (b0165) 2016; 112 Dai, Liu, Liu, Wang, Wang, Zou, Zhou (b0175) 2023; 219 Bai, Yu, Yan (b0200) 2016; 126 Zhao, Zheng, Deng (b0065) 2014; 82 Kabul, Kizilkan, Yakut (b0180) 2008; 32 Mota-Babiloni, Joybari, Navarro-Esbri, Mateu-Royo, Barragan-Cervera, Amat-Albuixech, Moles (b0050) 2020; 111 Liu, Liu, Yu, Yan (b0105) 2022; 200 Li, Groll (b0205) 2005; 28 Pan, Zhao, Liang, Zhu, Liang, Bao (b0010) 2020; 13 He, Gao, Chen, Chen (b0025) 2020; 202 Bai, Yan, Yu (b0030) 2018; 157 Sobieraj, M.; Rosínski, M. High phase-separation efficiency auto-cascade system working with a blend of carbon dioxide for low-temperature isothermal refrigeration. J. Applied Thermal Engineering. Du, Zhang, Xu, Niu (b0140) 2009; 33 Liu, Yu, Yan (b0100) 2018; 94 Rodriguez-Jara, Sanchez-de-la-Flor, Exposito-Carrillo, Salmeron-Lissen (b0110) 2021; 200 Aprea, Maiorino (b0250) 2009; 33 Bai, Yan, Yu (b0145) 2022; 238 Sivakumar, Somasundaram (b0160) 2014; 84 Xu, Liu, Cao (b0020) 2015; 23 Fontalvo, J. Using user models in Matlab® within the Aspen Plus® interface with an Excel® link. J. Ingeniería e Investigación. ASPEN Plus. Aspen Technology Inc. 200 Wheeler Road Burlington, MA, USA. http://refhub.elsevier.com/S0140-7007(21)00048-7/sbref0003. Bai, Yan, Yu (b0090) 2019; 99 Sun, Wang, Xie, Liu, Su, Cui (b0210) 2019; 170 Mehrpooya, Ghorbani, Mousavi, Zaitsev (b0170) 2020; 40 Bychkov (b0220) 2021; 130 Lemmon, EW.; Bell, IH.; Huber ML.; McLinden, MO. NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 10.0, National Institute of Standards and Technology, Standard Reference Data Program, Gaithersburg. Palm (b0060) 2008; 31 Wu, Hu, Wang (b0045) 2021; 138 Jiang, You, Wu, Zhang, Wang, Wei (b0185) 2022; 254 Zhang, L.; Xu, SM.; Du, P.; Liu, HY. Experimental and theoretical investigation on the performance of CO Llopis, R.; Śanchez, D.; Sanz-Kock, C.; Cabello, R.; Torrella, E. Energy and environmental comparison of two-stage solutions for commercial refrigeration at low temperature: Fluids and systems. J. Applied Energy. Bamigbetan, Eikevik, Nekså, Bantle (b0055) 2017; 80 Mehrpooya (10.1016/j.enbuild.2023.112815_b0170) 2020; 40 Aprea (10.1016/j.enbuild.2023.112815_b0250) 2009; 33 Lemmon (10.1016/j.enbuild.2023.112815_b0225) 2010 Qin (10.1016/j.enbuild.2023.112815_b0155) 2020; 117 Bai (10.1016/j.enbuild.2023.112815_b0200) 2016; 126 He (10.1016/j.enbuild.2023.112815_b0025) 2020; 202 Hu (10.1016/j.enbuild.2023.112815_b0255) 2013 Li (10.1016/j.enbuild.2023.112815_b0205) 2005; 28 Xu (10.1016/j.enbuild.2023.112815_b0020) 2015; 23 Salouxa (10.1016/j.enbuild.2023.112815_b0165) 2016; 112 Du (10.1016/j.enbuild.2023.112815_b0140) 2009; 33 Wang (10.1016/j.enbuild.2023.112815_b0135) 2013; 112 10.1016/j.enbuild.2023.112815_b0215 Bychkov (10.1016/j.enbuild.2023.112815_b0220) 2021; 130 Bamigbetan (10.1016/j.enbuild.2023.112815_b0055) 2017; 80 Yu (10.1016/j.enbuild.2023.112815_b0070) 2010; 42 Luo (10.1016/j.enbuild.2023.112815_b0240) 2021; 03 10.1016/j.enbuild.2023.112815_b0040 Nayak (10.1016/j.enbuild.2023.112815_b0150) 2010; 50 Sun (10.1016/j.enbuild.2023.112815_b0210) 2019; 170 10.1016/j.enbuild.2023.112815_b0005 Bai (10.1016/j.enbuild.2023.112815_b0095) 2021; 131 Bai (10.1016/j.enbuild.2023.112815_b0145) 2022; 238 Chen (10.1016/j.enbuild.2023.112815_b0080) 2011; 43 Bai (10.1016/j.enbuild.2023.112815_b0030) 2018; 157 Liu (10.1016/j.enbuild.2023.112815_b0100) 2018; 94 Kim (10.1016/j.enbuild.2023.112815_b0120) 2002; 25 Bai (10.1016/j.enbuild.2023.112815_b0090) 2019; 99 Wu (10.1016/j.enbuild.2023.112815_b0045) 2021; 138 10.1016/j.enbuild.2023.112815_b0125 Mota-Babiloni (10.1016/j.enbuild.2023.112815_b0050) 2020; 111 Dai (10.1016/j.enbuild.2023.112815_b0175) 2023; 219 Sivakumar (10.1016/j.enbuild.2023.112815_b0160) 2014; 84 Qin (10.1016/j.enbuild.2023.112815_b0265) 2021; 126 Qin (10.1016/j.enbuild.2023.112815_b0270) 2022; 240 Rodriguez-Jara (10.1016/j.enbuild.2023.112815_b0110) 2021; 200 Pan (10.1016/j.enbuild.2023.112815_b0010) 2020; 13 Wang (10.1016/j.enbuild.2023.112815_b0130) 2011; 12 Wang (10.1016/j.enbuild.2023.112815_b0260) 2010; 11 10.1016/j.enbuild.2023.112815_b0115 Rui (10.1016/j.enbuild.2023.112815_b0275) 2016; 52 Kabul (10.1016/j.enbuild.2023.112815_b0180) 2008; 32 10.1016/j.enbuild.2023.112815_b0195 10.1016/j.enbuild.2023.112815_b0230 Palm (10.1016/j.enbuild.2023.112815_b0060) 2008; 31 Kumar (10.1016/j.enbuild.2023.112815_b0245) 2021; 229 Zhao (10.1016/j.enbuild.2023.112815_b0065) 2014; 82 10.1016/j.enbuild.2023.112815_b0235 Qin (10.1016/j.enbuild.2023.112815_b0075) 2021; 236 Jiang (10.1016/j.enbuild.2023.112815_b0185) 2022; 254 Liu (10.1016/j.enbuild.2023.112815_b0105) 2022; 200 Wang (10.1016/j.enbuild.2023.112815_b0035) 2021; 66 Tan (10.1016/j.enbuild.2023.112815_b0085) 2015; 84 Zhang (10.1016/j.enbuild.2023.112815_b0015) 2020; 114 He (10.1016/j.enbuild.2023.112815_b0190) 2022; 142 |
References_xml | – volume: 219 year: 2023 ident: b0175 article-title: Life cycle techno-enviro-economic assessment of dual-temperature evaporation transcritical CO publication-title: J. Applied Thermal Engineering. – volume: 240 year: 2022 ident: b0270 article-title: Experimental characterization of an innovative refrigeration system coupled with Linde-Hampson cycle and auto-cascade cycle for multi-stage refrigeration temperature applications publication-title: J. Energy. – volume: 50 start-page: 720 year: 2010 end-page: 727 ident: b0150 article-title: Performance of an auto refrigerant cascade refrigerator operating in liquid refrigerant supply (LRS) mode with different cascade heat exchangers publication-title: J. Cryogenics. – volume: 114 start-page: 175 year: 2020 end-page: 180 ident: b0015 article-title: Experimental investigation of the performance of an R1270/CO publication-title: J. International Journal of Refrigeration. – volume: 138 year: 2021 ident: b0045 article-title: Vapor compression heat pumps with pure Low-GWP refrigerants publication-title: J. Renewable and Sustainable Energy Reviews. – year: 2013 ident: b0255 article-title: The impact of R50 on -100 °C three-stage auto-cascade refrigeration system, Proceedings of the International Conference on Materials for Renewable publication-title: Energy and Environment. – volume: 28 start-page: 766 year: 2005 end-page: 773 ident: b0205 article-title: Transcritical CO publication-title: J. International Journal of Refrigeration. – volume: 117 start-page: 284 year: 2020 end-page: 294 ident: b0155 article-title: Isothermal measurement and modeling of VLE properties for 2,3,3,3-tetrafluoroprop-1-ene + trifluoromethane plus tetrafluoromethane ternary system at temperatures from 253.15 K to 273.15 K publication-title: J International Journal of Refrigeration. – year: 2010 ident: b0225 article-title: NIST Standard Reference Database 23: reference fluid thermodynamic and transport properties - REFPROP, version 9.1 publication-title: Standard Reference Data Program. National Institute of Standards and Technology. – volume: 126 start-page: 850 year: 2016 end-page: 861 ident: b0200 article-title: Advanced exergy analyses of an ejector expansion transcritical CO publication-title: Energy Conversion and Management. J. – volume: 82 start-page: 621 year: 2014 end-page: 631 ident: b0065 article-title: A thermodynamic analysis of an auto-cascade heat pump cycle for heating application in cold regions publication-title: J. Energy and Buildings. – reference: Sobieraj, M.; Rosínski, M. High phase-separation efficiency auto-cascade system working with a blend of carbon dioxide for low-temperature isothermal refrigeration. J. Applied Thermal Engineering. – volume: 200 year: 2021 ident: b0110 article-title: Thermodynamic analysis of auto-cascade refrigeration cycles, with and without ejector, for ultra low temperature freezing using a mixture of refrigerants R600a and R1150 publication-title: J. Applied Thermal Engineering. – reference: Fontalvo, J. Using user models in Matlab® within the Aspen Plus® interface with an Excel® link. J. Ingeniería e Investigación. – volume: 25 start-page: 1093 year: 2002 end-page: 1101 ident: b0120 article-title: Experiment and simulation on the performance of an auto-cascade refrigeration system using carbon dioxide as a refrigerant publication-title: J. International Journal of Refrigeration. – volume: 11 start-page: 115 year: 2010 end-page: 127 ident: b0260 article-title: Performance of a single-stage Linde-Hampson refrigerator operating with binary refrigerants at the temperature level of -60 °C publication-title: J. Journal of Zhejiang University SCIENCE A. – volume: 238 year: 2022 ident: b0145 article-title: Influence of internal heat exchanger position on the performance of ejector-enhanced auto-cascade refrigeration cycle for the low-temperature freezer publication-title: J. Energy. – reference: Zhang, L.; Xu, SM.; Du, P.; Liu, HY. Experimental and theoretical investigation on the performance of CO – volume: 99 start-page: 145 year: 2019 end-page: 152 ident: b0090 article-title: Experimental investigation on the concentration distribution behaviors of mixture in an ejector enhanced auto-cascade refrigeration system publication-title: J. International Journal of Refrigeration-Revue Internationale Du Froid. – reference: Xinhua News Agency. Xi Jinping delivered an important speech at the general debate of the 75th session of the United Nations General Assembly. – volume: 32 start-page: 824 year: 2008 end-page: 836 ident: b0180 article-title: Performance and exergetic analysis of vapor compression refrigeration system with an internal heat exchanger using a hydrocarbon, isobutane (R600a) publication-title: J. International Journal of Energy Research. – volume: 13 start-page: 2254 year: 2020 ident: b0010 article-title: A Review of the Cascade Refrigeration System publication-title: Energies. J. – volume: 12 start-page: 139 year: 2011 end-page: 145 ident: b0130 article-title: Performance of a single-stage auto-cascade refrigerator operating with a rectifying column at the temperature level of -60 °C publication-title: J. Journal of Zhejiang University-Science A. – volume: 40 year: 2020 ident: b0170 article-title: Proposal and assessment of a new integrated liquefied natural gas generation process with auto-cascade refrigeration (exergy and economic analyses) publication-title: J. Sustainable Energy Technologies and Assessments. – volume: 142 start-page: 27 year: 2022 end-page: 36 ident: b0190 article-title: Theoretical performance comparison for two-stage auto-cascade refrigeration system using hydrocarbon refrigerants publication-title: J. International Journal of Refrigeration. – volume: 131 start-page: 41 year: 2021 end-page: 50 ident: b0095 article-title: Experimental investigation on the influence of ejector geometry on the pull-down performance of an ejector-enhanced auto-cascade low-temperature freezer publication-title: J. International Journal of Refrigeration. – reference: , International Journal of Refrigeration, 113, 10-20. 10.1016/j.ijrefrig.2020.01.012. – volume: 112 start-page: 69 year: 2016 end-page: 79 ident: b0165 article-title: Modeling the exergy performance of heat pump systems without using refrigerant thermodynamic properties publication-title: J. Energy and Buildings. – reference: , 138, 133-142. 10.1016/j.apenergy.2014.10.069. – volume: 80 start-page: 197 year: 2017 end-page: 211 ident: b0055 article-title: Review of vapour compression heat pumps for high temperature heating using natural working fluids publication-title: J. International Journal of Refrigeration. – reference: Llopis, R.; Śanchez, D.; Sanz-Kock, C.; Cabello, R.; Torrella, E. Energy and environmental comparison of two-stage solutions for commercial refrigeration at low temperature: Fluids and systems. J. Applied Energy. – volume: 130 start-page: 356 year: 2021 end-page: 369 ident: b0220 article-title: An analytical method for ensuring the optimal circulating composition of the multicomponent refrigerant mixture in a steady-state operation mode of the Joule-Thomson refrigerator operating with mixtures publication-title: J. International Journal of Refrigeration. – volume: 33 start-page: 565 year: 2009 end-page: 575 ident: b0250 article-title: Autocascade refrigeration system: Experimental results in achieving ultra low temperature publication-title: J. International Journal of Energy Research. – volume: 43 start-page: 3331 year: 2011 end-page: 3336 ident: b0080 article-title: A theoretical study of an innovative ejector enhanced vapor compression heat pump cycle for water heating application publication-title: J. Energy and Buildings. – volume: 202 year: 2020 ident: b0025 article-title: Study on the performance of a novel waste heat recovery system at low temperatures publication-title: J. Energy. – volume: 112 start-page: 949 year: 2013 end-page: 955 ident: b0135 article-title: Numerical investigations on the performance of a single-stage auto-cascade refrigerator operating with two vapor-liquid separators and environmentally benign binary refrigerants publication-title: J. Applied Energy. – volume: 236 year: 2021 ident: b0075 article-title: Thermodynamic performance of a modified −150 °C refrigeration system coupled with Linde-Hampson and three-stage auto-cascade using low-GWP refrigerants publication-title: J. Energy Conversion and Management. – volume: 84 start-page: 268 year: 2015 end-page: 275 ident: b0085 article-title: Thermodynamic performance of an auto-cascade ejector refrigeration cycle with mixed refrigerant R32 + R236fa publication-title: J. Applied Thermal Engineering. – reference: . http://www.gov.cn/xinwen/2020-09/22/content_5546168.htm. – volume: 200 year: 2022 ident: b0105 article-title: Thermodynamic analysis of a novel ejector-enhanced auto-cascade refrigeration cycle publication-title: J. Applied Thermal Engineering. – reference: , 161, 114149. 10.1016/j.applthermaleng.2019.114149. – volume: 84 start-page: 589 year: 2014 end-page: 596 ident: b0160 article-title: Exergy and energy analysis of three stage auto refrigerating cascade system using zeotropic mixture for sustainable development publication-title: J. Energy Conversion & Management. – reference: Paula, CHD.; Duarte, WM.; Rocha, TTM.; Oliveira, RND.; Maia, AAT. Optimal design and environmental, energy and exergy analysis of a vapor compression refrigeration system using R290, R1234yf, and R744 as alternatives to replace R134a. J. – volume: 254 year: 2022 ident: b0185 article-title: Multi-objective optimization of the refrigerant-direct convective-radiant cooling system considering the thermal and economic performances publication-title: J. Energy and Buildings. – reference: /propane auto-cascade refrigerator with a fractionation heat exchanger. J. Applied Thermal Engineering. – reference: , 87, 669-677. 10.1016/j.applthermaleng.2015.05.016. – volume: 31 start-page: 552 year: 2008 end-page: 563 ident: b0060 article-title: Hydrocarbons as refrigerants in small heat pump and refrigeration systems - a review publication-title: J. International Journal of Refrigeration. – volume: 94 start-page: 33 year: 2018 end-page: 39 ident: b0100 article-title: Theoretical analysis of a double ejector-expansion autocascade refrigeration cycle using hydrocarbon mixture R290/R170 publication-title: J. International Journal of Refrigeration. – volume: 66 start-page: 4112 year: 2021 end-page: 4128 ident: b0035 article-title: Research status and future development of thermal management system for new energy vehicles under the background of carbon neutrality publication-title: J. Chinese Science Bulletin. – volume: 229 year: 2021 ident: b0245 article-title: A new two-parameters cubic equation of state with benefits of three-parameters publication-title: J. Chemical Engineering Science. – volume: 52 start-page: 11 year: 2016 end-page: 20 ident: b0275 article-title: Experimental investigation of the performance of a single-stage auto-cascade refrigerator publication-title: J. Heat Mass Transfer. – volume: 111 start-page: 147 year: 2020 end-page: 158 ident: b0050 article-title: Ultralow-temperature refrigeration systems: Configurations and refrigerants to reduce the environmental impact publication-title: J. International Journal of Refrigeration. – volume: 42 start-page: 2431 year: 2010 end-page: 2436 ident: b0070 article-title: A thermodynamic analysis of a transcritical cycle with refrigerant mixture R32/R290 for a small heat pump water heater publication-title: J. Energy and Buildings. – reference: ASPEN Plus. Aspen Technology Inc. 200 Wheeler Road Burlington, MA, USA. – reference: . http://refhub.elsevier.com/S0140-7007(21)00048-7/sbref0003. – reference: Lemmon, EW.; Bell, IH.; Huber ML.; McLinden, MO. NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 10.0, National Institute of Standards and Technology, Standard Reference Data Program, Gaithersburg. – volume: 170 start-page: 1170 year: 2019 end-page: 1180 ident: b0210 article-title: Energy and exergy analysis of low GWP refrigerants in cascade refrigeration system publication-title: J. Energy. – volume: 33 start-page: 240 year: 2009 end-page: 245 ident: b0140 article-title: A study on the cycle characteristics of an auto-cascade refrigeration system publication-title: J. Experimental Thermal and Fluid Science. – reference: , 34, 39-43. 10.15446/ing.investig.v34n2.41621. – volume: 157 start-page: 647 year: 2018 end-page: 657 ident: b0030 article-title: Experimental research on the pull-down performance of an ejector enhanced auto-cascade refrigeration system for low-temperature freezer publication-title: J. Energy. – volume: 23 start-page: 199 year: 2015 end-page: 204 ident: b0020 article-title: Mixed refrigerant composition shift due to throttle valves opening in auto cascade refrigeration system publication-title: J. Chinese Journal of Chemical Engineering. – volume: 03 start-page: 108 year: 2021 end-page: 121 ident: b0240 article-title: Thermodynamic Property Calculation in Vapor-Liquid Equilibrium for Multicomponent Mixtures using Highly Accurate Helmholtz Free Energy Equation of State publication-title: J. Series Mechanical Engineering. – volume: 126 start-page: 66 year: 2021 end-page: 75 ident: b0265 article-title: Energy and exergy performance evaluation of a three-stage auto-cascade refrigeration system using low-GWP alternative refrigerants publication-title: J. International Journal of Refrigeration. – reference: . http://refhub.elsevier.com/S1359-4311(22)01500-9/h0280. – ident: 10.1016/j.enbuild.2023.112815_b0040 – volume: 157 start-page: 647 year: 2018 ident: 10.1016/j.enbuild.2023.112815_b0030 article-title: Experimental research on the pull-down performance of an ejector enhanced auto-cascade refrigeration system for low-temperature freezer publication-title: J. Energy. doi: 10.1016/j.energy.2018.05.205 – volume: 50 start-page: 720 issue: 11–12 year: 2010 ident: 10.1016/j.enbuild.2023.112815_b0150 article-title: Performance of an auto refrigerant cascade refrigerator operating in liquid refrigerant supply (LRS) mode with different cascade heat exchangers publication-title: J. Cryogenics. doi: 10.1016/j.cryogenics.2010.07.004 – ident: 10.1016/j.enbuild.2023.112815_b0195 doi: 10.15446/ing.investig.v34n2.41621 – volume: 126 start-page: 66 year: 2021 ident: 10.1016/j.enbuild.2023.112815_b0265 article-title: Energy and exergy performance evaluation of a three-stage auto-cascade refrigeration system using low-GWP alternative refrigerants publication-title: J. International Journal of Refrigeration. doi: 10.1016/j.ijrefrig.2021.01.028 – volume: 12 start-page: 139 year: 2011 ident: 10.1016/j.enbuild.2023.112815_b0130 article-title: Performance of a single-stage auto-cascade refrigerator operating with a rectifying column at the temperature level of -60 °C publication-title: J. Journal of Zhejiang University-Science A. doi: 10.1631/jzus.A1000050 – volume: 111 start-page: 147 year: 2020 ident: 10.1016/j.enbuild.2023.112815_b0050 article-title: Ultralow-temperature refrigeration systems: Configurations and refrigerants to reduce the environmental impact publication-title: J. International Journal of Refrigeration. doi: 10.1016/j.ijrefrig.2019.11.016 – volume: 43 start-page: 3331 year: 2011 ident: 10.1016/j.enbuild.2023.112815_b0080 article-title: A theoretical study of an innovative ejector enhanced vapor compression heat pump cycle for water heating application publication-title: J. Energy and Buildings. doi: 10.1016/j.enbuild.2011.08.037 – volume: 254 year: 2022 ident: 10.1016/j.enbuild.2023.112815_b0185 article-title: Multi-objective optimization of the refrigerant-direct convective-radiant cooling system considering the thermal and economic performances publication-title: J. Energy and Buildings. doi: 10.1016/j.enbuild.2021.111609 – volume: 142 start-page: 27 year: 2022 ident: 10.1016/j.enbuild.2023.112815_b0190 article-title: Theoretical performance comparison for two-stage auto-cascade refrigeration system using hydrocarbon refrigerants publication-title: J. International Journal of Refrigeration. doi: 10.1016/j.ijrefrig.2022.06.008 – volume: 33 start-page: 565 year: 2009 ident: 10.1016/j.enbuild.2023.112815_b0250 article-title: Autocascade refrigeration system: Experimental results in achieving ultra low temperature publication-title: J. International Journal of Energy Research. doi: 10.1002/er.1492 – ident: 10.1016/j.enbuild.2023.112815_b0230 – volume: 28 start-page: 766 issue: 5 year: 2005 ident: 10.1016/j.enbuild.2023.112815_b0205 article-title: Transcritical CO2 refrigeration cycle with ejector-expansion device publication-title: J. International Journal of Refrigeration. doi: 10.1016/j.ijrefrig.2004.10.008 – ident: 10.1016/j.enbuild.2023.112815_b0005 doi: 10.1016/j.apenergy.2014.10.069 – volume: 13 start-page: 2254 year: 2020 ident: 10.1016/j.enbuild.2023.112815_b0010 article-title: A Review of the Cascade Refrigeration System publication-title: Energies. J. doi: 10.3390/en13092254 – volume: 131 start-page: 41 year: 2021 ident: 10.1016/j.enbuild.2023.112815_b0095 article-title: Experimental investigation on the influence of ejector geometry on the pull-down performance of an ejector-enhanced auto-cascade low-temperature freezer publication-title: J. International Journal of Refrigeration. doi: 10.1016/j.ijrefrig.2021.08.021 – volume: 94 start-page: 33 year: 2018 ident: 10.1016/j.enbuild.2023.112815_b0100 article-title: Theoretical analysis of a double ejector-expansion autocascade refrigeration cycle using hydrocarbon mixture R290/R170 publication-title: J. International Journal of Refrigeration. doi: 10.1016/j.ijrefrig.2018.07.025 – year: 2010 ident: 10.1016/j.enbuild.2023.112815_b0225 article-title: NIST Standard Reference Database 23: reference fluid thermodynamic and transport properties - REFPROP, version 9.1 publication-title: Standard Reference Data Program. National Institute of Standards and Technology. – volume: 52 start-page: 11 year: 2016 ident: 10.1016/j.enbuild.2023.112815_b0275 article-title: Experimental investigation of the performance of a single-stage auto-cascade refrigerator publication-title: J. Heat Mass Transfer. doi: 10.1007/s00231-015-1577-4 – volume: 40 year: 2020 ident: 10.1016/j.enbuild.2023.112815_b0170 article-title: Proposal and assessment of a new integrated liquefied natural gas generation process with auto-cascade refrigeration (exergy and economic analyses) publication-title: J. Sustainable Energy Technologies and Assessments. – volume: 200 year: 2021 ident: 10.1016/j.enbuild.2023.112815_b0110 article-title: Thermodynamic analysis of auto-cascade refrigeration cycles, with and without ejector, for ultra low temperature freezing using a mixture of refrigerants R600a and R1150 publication-title: J. Applied Thermal Engineering. – ident: 10.1016/j.enbuild.2023.112815_b0115 doi: 10.1016/j.applthermaleng.2019.114149 – volume: 25 start-page: 1093 issue: 8 year: 2002 ident: 10.1016/j.enbuild.2023.112815_b0120 article-title: Experiment and simulation on the performance of an auto-cascade refrigeration system using carbon dioxide as a refrigerant publication-title: J. International Journal of Refrigeration. doi: 10.1016/S0140-7007(01)00110-4 – volume: 126 start-page: 850 year: 2016 ident: 10.1016/j.enbuild.2023.112815_b0200 article-title: Advanced exergy analyses of an ejector expansion transcritical CO2 refrigeration system publication-title: Energy Conversion and Management. J. doi: 10.1016/j.enconman.2016.08.057 – volume: 229 year: 2021 ident: 10.1016/j.enbuild.2023.112815_b0245 article-title: A new two-parameters cubic equation of state with benefits of three-parameters publication-title: J. Chemical Engineering Science. doi: 10.1016/j.ces.2020.116045 – volume: 99 start-page: 145 year: 2019 ident: 10.1016/j.enbuild.2023.112815_b0090 article-title: Experimental investigation on the concentration distribution behaviors of mixture in an ejector enhanced auto-cascade refrigeration system publication-title: J. International Journal of Refrigeration-Revue Internationale Du Froid. doi: 10.1016/j.ijrefrig.2018.11.024 – volume: 82 start-page: 621 year: 2014 ident: 10.1016/j.enbuild.2023.112815_b0065 article-title: A thermodynamic analysis of an auto-cascade heat pump cycle for heating application in cold regions publication-title: J. Energy and Buildings. doi: 10.1016/j.enbuild.2014.07.083 – volume: 31 start-page: 552 issue: 4 year: 2008 ident: 10.1016/j.enbuild.2023.112815_b0060 article-title: Hydrocarbons as refrigerants in small heat pump and refrigeration systems - a review publication-title: J. International Journal of Refrigeration. doi: 10.1016/j.ijrefrig.2007.11.016 – volume: 84 start-page: 268 year: 2015 ident: 10.1016/j.enbuild.2023.112815_b0085 article-title: Thermodynamic performance of an auto-cascade ejector refrigeration cycle with mixed refrigerant R32 + R236fa publication-title: J. Applied Thermal Engineering. doi: 10.1016/j.applthermaleng.2015.03.047 – volume: 23 start-page: 199 year: 2015 ident: 10.1016/j.enbuild.2023.112815_b0020 article-title: Mixed refrigerant composition shift due to throttle valves opening in auto cascade refrigeration system publication-title: J. Chinese Journal of Chemical Engineering. doi: 10.1016/j.cjche.2013.06.001 – volume: 114 start-page: 175 year: 2020 ident: 10.1016/j.enbuild.2023.112815_b0015 article-title: Experimental investigation of the performance of an R1270/CO2 cascade refrigerant system publication-title: J. International Journal of Refrigeration. doi: 10.1016/j.ijrefrig.2020.02.017 – year: 2013 ident: 10.1016/j.enbuild.2023.112815_b0255 article-title: The impact of R50 on -100 °C three-stage auto-cascade refrigeration system, Proceedings of the International Conference on Materials for Renewable publication-title: Energy and Environment. – volume: 80 start-page: 197 year: 2017 ident: 10.1016/j.enbuild.2023.112815_b0055 article-title: Review of vapour compression heat pumps for high temperature heating using natural working fluids publication-title: J. International Journal of Refrigeration. doi: 10.1016/j.ijrefrig.2017.04.021 – ident: 10.1016/j.enbuild.2023.112815_b0125 doi: 10.1016/j.applthermaleng.2015.05.016 – volume: 42 start-page: 2431 year: 2010 ident: 10.1016/j.enbuild.2023.112815_b0070 article-title: A thermodynamic analysis of a transcritical cycle with refrigerant mixture R32/R290 for a small heat pump water heater publication-title: J. Energy and Buildings. doi: 10.1016/j.enbuild.2010.08.016 – volume: 117 start-page: 284 year: 2020 ident: 10.1016/j.enbuild.2023.112815_b0155 article-title: Isothermal measurement and modeling of VLE properties for 2,3,3,3-tetrafluoroprop-1-ene + trifluoromethane plus tetrafluoromethane ternary system at temperatures from 253.15 K to 273.15 K publication-title: J International Journal of Refrigeration. doi: 10.1016/j.ijrefrig.2020.04.008 – volume: 170 start-page: 1170 year: 2019 ident: 10.1016/j.enbuild.2023.112815_b0210 article-title: Energy and exergy analysis of low GWP refrigerants in cascade refrigeration system publication-title: J. Energy. doi: 10.1016/j.energy.2018.12.055 – volume: 33 start-page: 240 issue: 2 year: 2009 ident: 10.1016/j.enbuild.2023.112815_b0140 article-title: A study on the cycle characteristics of an auto-cascade refrigeration system publication-title: J. Experimental Thermal and Fluid Science. doi: 10.1016/j.expthermflusci.2008.08.006 – volume: 138 year: 2021 ident: 10.1016/j.enbuild.2023.112815_b0045 article-title: Vapor compression heat pumps with pure Low-GWP refrigerants publication-title: J. Renewable and Sustainable Energy Reviews. doi: 10.1016/j.rser.2020.110571 – volume: 219 year: 2023 ident: 10.1016/j.enbuild.2023.112815_b0175 article-title: Life cycle techno-enviro-economic assessment of dual-temperature evaporation transcritical CO2 high-temperature heat pump systems for industrial waste heat recovery publication-title: J. Applied Thermal Engineering. doi: 10.1016/j.applthermaleng.2022.119570 – volume: 11 start-page: 115 year: 2010 ident: 10.1016/j.enbuild.2023.112815_b0260 article-title: Performance of a single-stage Linde-Hampson refrigerator operating with binary refrigerants at the temperature level of -60 °C publication-title: J. Journal of Zhejiang University SCIENCE A. doi: 10.1631/jzus.A0900208 – volume: 32 start-page: 824 issue: 9 year: 2008 ident: 10.1016/j.enbuild.2023.112815_b0180 article-title: Performance and exergetic analysis of vapor compression refrigeration system with an internal heat exchanger using a hydrocarbon, isobutane (R600a) publication-title: J. International Journal of Energy Research. doi: 10.1002/er.1396 – volume: 236 year: 2021 ident: 10.1016/j.enbuild.2023.112815_b0075 article-title: Thermodynamic performance of a modified −150 °C refrigeration system coupled with Linde-Hampson and three-stage auto-cascade using low-GWP refrigerants publication-title: J. Energy Conversion and Management. doi: 10.1016/j.enconman.2021.114093 – volume: 200 year: 2022 ident: 10.1016/j.enbuild.2023.112815_b0105 article-title: Thermodynamic analysis of a novel ejector-enhanced auto-cascade refrigeration cycle publication-title: J. Applied Thermal Engineering. doi: 10.1016/j.applthermaleng.2021.117636 – volume: 112 start-page: 949 year: 2013 ident: 10.1016/j.enbuild.2023.112815_b0135 article-title: Numerical investigations on the performance of a single-stage auto-cascade refrigerator operating with two vapor-liquid separators and environmentally benign binary refrigerants publication-title: J. Applied Energy. doi: 10.1016/j.apenergy.2013.01.081 – volume: 03 start-page: 108 year: 2021 ident: 10.1016/j.enbuild.2023.112815_b0240 article-title: Thermodynamic Property Calculation in Vapor-Liquid Equilibrium for Multicomponent Mixtures using Highly Accurate Helmholtz Free Energy Equation of State publication-title: J. Series Mechanical Engineering. – volume: 112 start-page: 69 year: 2016 ident: 10.1016/j.enbuild.2023.112815_b0165 article-title: Modeling the exergy performance of heat pump systems without using refrigerant thermodynamic properties publication-title: J. Energy and Buildings. doi: 10.1016/j.enbuild.2015.09.061 – volume: 202 year: 2020 ident: 10.1016/j.enbuild.2023.112815_b0025 article-title: Study on the performance of a novel waste heat recovery system at low temperatures publication-title: J. Energy. doi: 10.1016/j.energy.2020.117751 – volume: 66 start-page: 4112 issue: 32 year: 2021 ident: 10.1016/j.enbuild.2023.112815_b0035 article-title: Research status and future development of thermal management system for new energy vehicles under the background of carbon neutrality publication-title: J. Chinese Science Bulletin. doi: 10.1360/TB-2021-0648 – volume: 240 year: 2022 ident: 10.1016/j.enbuild.2023.112815_b0270 article-title: Experimental characterization of an innovative refrigeration system coupled with Linde-Hampson cycle and auto-cascade cycle for multi-stage refrigeration temperature applications publication-title: J. Energy. doi: 10.1016/j.energy.2021.122498 – ident: 10.1016/j.enbuild.2023.112815_b0215 doi: 10.1016/j.ijrefrig.2020.01.012 – volume: 130 start-page: 356 year: 2021 ident: 10.1016/j.enbuild.2023.112815_b0220 article-title: An analytical method for ensuring the optimal circulating composition of the multicomponent refrigerant mixture in a steady-state operation mode of the Joule-Thomson refrigerator operating with mixtures publication-title: J. International Journal of Refrigeration. doi: 10.1016/j.ijrefrig.2021.05.034 – volume: 84 start-page: 589 year: 2014 ident: 10.1016/j.enbuild.2023.112815_b0160 article-title: Exergy and energy analysis of three stage auto refrigerating cascade system using zeotropic mixture for sustainable development publication-title: J. Energy Conversion & Management. doi: 10.1016/j.enconman.2014.04.076 – volume: 238 year: 2022 ident: 10.1016/j.enbuild.2023.112815_b0145 article-title: Influence of internal heat exchanger position on the performance of ejector-enhanced auto-cascade refrigeration cycle for the low-temperature freezer publication-title: J. Energy. doi: 10.1016/j.energy.2021.121803 – ident: 10.1016/j.enbuild.2023.112815_b0235 |
SSID | ssj0006571 |
Score | 2.4566147 |
Snippet | •A novel three-stage RACR was proposed to improve the performance of ACR.•The R134a/R23/R14 RACR system performed better than the ACR system.•The influence of... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 112815 |
SubjectTerms | Performance comparison Ratio optimization Refrigerant substitution Three-stage RACR system |
Title | Theoretical performance comparison for a regenerator-enhanced three-stage auto-cascade refrigeration system using different zeotropic mixed refrigerants |
URI | https://dx.doi.org/10.1016/j.enbuild.2023.112815 |
Volume | 283 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8NAFB6KXvQgrlg35uB1umSyzVGKUrciLtBbmJnM1EhNSxtBPPg7_Lm-l6VREAVPIcO8JMx7vIW873uEHLtWgwcIYqZsFwoUNGPJdcx8YUVHyxhUjtjh64Hff3Avht6wQXoVFgbbKkvfX_j03FuXK-3yNNvTJGnfdTgYG1RwkETnxOCIYHcDtPLWe93m4Xt50YWbGe6uUTztpxbSCyRjJAx1OIJpQpyO-1N8-hJzztbJWpks0pPiezZIw6SbZPULheAW-bivkYh0WqMAqF4MGKSwRiWdmVFOMQ1FNjPpY_7nn2agSsMgQxwZKl-yCdNyjh3zsNtC3W4K-6AF3zPFJvkRrWaqZPTNTLLZZJpo-py8wtMWQmk23yYPZ6f3vT4rpy0wzTsiY8blSiEy1pFG-h6XnoH3ad-1CopYT4NSZShjJ_CVCLjFQMdtoFxpu1yDn-A7ZCmdpGaXUMcqKZSwMdfa5SYI4ziIRcd0DXek8EWTuNUZR7qkIseJGOOo6jl7ikrVRKiaqFBNk7QWYtOCi-MvgbBSYPTNqCKIF7-L7v1fdJ-s4B02qnW9A7KUzV7MIWQumTrKTfOILJ_0bq9u8Hp-2R98AvR69kk |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB1BOQAHxCp2fOBq2sZZ6iNCoLL1QpG4RbZjl1SQViVIiC_hc5nJ0oKEQOLqeJzIM5pFmfcG4Nh3Bj1AlHDt2ligkBkrYRIeSidbRiWocsIO3_bC7r1_9RA8zMFZjYWhtsrK95c-vfDW1Uqzus3mOE2bdy2BxoYVHCbRBTH4PCwQO1XQgIXTy-tub-qQw6Cou2g_J4EZkKc5PCGGgfSJOEM9QXiaDg3I_SlEfQk7F6uwUuWL7LT8pDWYs9k6LH9hEdyAj_4MjMjGMyAAM9MZgwzXmGITOyhYprHO5jZ7LH7-sxy1aTkmiQPL1Gs-4ka9UNM87nZYutvSRFhJ-cyoT37A6rEqOXu3o3wyGqeGPadveNpUKMtfNuH-4rx_1uXVwAVuREvm3PpCawLHesqqMBAqsPg-E_pOYx0bGNSr6qjEi0ItI-Eo1gkXaV-5tjDoKsQWNLJRZreBeU4rqaVLhDG-sFEnSaJEtmzbCk_JUO6AX99xbCo2chqK8RTXbWfDuFJNTKqJS9XswMlUbFzScfwl0KkVGH-zqxhDxu-iu_8XPYLFbv_2Jr657F3vwRI9ob61drAPjXzyag8wkcn1YWWon5zO92U |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Theoretical+performance+comparison+for+a+regenerator-enhanced+three-stage+auto-cascade+refrigeration+system+using+different+zeotropic+mixed+refrigerants&rft.jtitle=Energy+and+buildings&rft.au=He%2C+Yongning&rft.au=Wu%2C+Huihong&rft.au=Xu%2C+Ke&rft.au=Zhang%2C+Yeqiang&rft.date=2023-03-15&rft.issn=0378-7788&rft.volume=283&rft.spage=112815&rft_id=info:doi/10.1016%2Fj.enbuild.2023.112815&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_enbuild_2023_112815 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-7788&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-7788&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-7788&client=summon |