A numerical study of fluid flow and heat transfer over a fin and flat tube heat exchangers with complex vortex generators
A numerical work is carried out to investigate the heat transfer and fluid flow behaviors in a fin-and-flat-tube heat exchanger provided with complex vortex generators (CVGs). A new design of CVGs is proposed in the present paper, it consists of CVGs formed by two portions: a flat portion with vario...
Saved in:
Published in | European physical journal. Applied physics Vol. 78; no. 3; p. 34805 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Les Ulis
EDP Sciences
01.06.2017
|
Subjects | |
Online Access | Get full text |
ISSN | 1286-0042 1286-0050 |
DOI | 10.1051/epjap/2017170066 |
Cover
Loading…
Abstract | A numerical work is carried out to investigate the heat transfer and fluid flow behaviors in a fin-and-flat-tube heat exchanger provided with complex vortex generators (CVGs). A new design of CVGs is proposed in the present paper, it consists of CVGs formed by two portions: a flat portion with various attack angles (β = 0°, 20°, 40° and 60°) and a curved portion with various curvature angles (α = 30°, 45° and 60°). Changes in CVGs position ratio (R*) inside the tube are also investigated and three values of R* are considered, namely: R* = 1.375, 1.750 and 2.125. Computations based on the finite volume method with the SIMPLE algorithm are conducted for the air flow. The Reynolds number is ranging from 25 to 400. The obtained results show that the vortex formed near the tubes is intensified by the flat potion of CVGs, and the curved tube guide the fluid flow towards the region behind the tubes, resulting thus in improved heat transfer rates. In a comparison with tubes without CVG, the new design suggested and especially the case with β = 60°, α = 60° and R* = 2.125 improve significantly the heat transfer (an increase by about 76%) with a moderate pressure loss penalty. |
---|---|
AbstractList | A numerical work is carried out to investigate the heat transfer and fluid flow behaviors in a fin-and-flat-tube heat exchanger provided with complex vortex generators (CVGs). A new design of CVGs is proposed in the present paper, it consists of CVGs formed by two portions: a flat portion with various attack angles (β = 0°, 20°, 40° and 60°) and a curved portion with various curvature angles (α = 30°, 45° and 60°). Changes in CVGs position ratio (R*) inside the tube are also investigated and three values of R* are considered, namely: R* = 1.375, 1.750 and 2.125. Computations based on the finite volume method with the SIMPLE algorithm are conducted for the air flow. The Reynolds number is ranging from 25 to 400. The obtained results show that the vortex formed near the tubes is intensified by the flat potion of CVGs, and the curved tube guide the fluid flow towards the region behind the tubes, resulting thus in improved heat transfer rates. In a comparison with tubes without CVG, the new design suggested and especially the case with β = 60°, α = 60° and R* = 2.125 improve significantly the heat transfer (an increase by about 76%) with a moderate pressure loss penalty. |
Author | Kamla, Youcef Sahel, Djamel Ameur, Houari |
Author_xml | – sequence: 4 givenname: Djamel surname: Sahel fullname: Sahel, Djamel email: djamel_sahel@ymail.com organization: Technical Sciences Department, Faculty of Technology, University of Amar Telidji-Laghouat, 03000, Algeria – sequence: 5 givenname: Houari surname: Ameur fullname: Ameur, Houari organization: Institute of Science and Technology, University Center of Naâma, 45000, Algeria – sequence: 6 givenname: Youcef surname: Kamla fullname: Kamla, Youcef organization: Faculty of Mechanical Engineering, USTO-MB University, Oran 31000, Algeria |
BookMark | eNp9UE1v1DAUtFAr9QPuPVriHPrslzjOsVoBBSr1AgVxsRzH7nrJ2sF22u6_J-1WReLAZeZJM_Oe3pyQgxCDJeSMwTsGDTu300ZP5xxYy1oAIV6RY8alqAAaOHiZa35ETnLeAAATsjkmuwsa5q1N3uiR5jIPOxoddePshwXjPdVhoGurCy1Jh-xsovFuAU2dD0-iGx_Fubd7m30wax1ubcr03pc1NXE7jfaB3sVUFrq1wSZdYsqvyaHTY7ZvnvmUfPvw_uvqsrq6_vhpdXFVGYSuVAOiqTvh0PJeukawbhig46bXruslR9b3CBZriy2XpjY18t5IRM47ji1yPCVv93unFH_PNhe1iXMKy0nFWdchQ8nF4hJ7l0kx52SdMr7o4mNY_vajYqAea1ZPNau_NS9B-Cc4Jb_Vafe_SLWP-LxU8uLX6ZcSLbaNkvBdyWb1-cdPfqO-4B_QPpKU |
CitedBy_id | crossref_primary_10_2514_1_T6941 crossref_primary_10_1016_j_applthermaleng_2021_117597 crossref_primary_10_1016_j_tsep_2020_100534 crossref_primary_10_1016_j_tsep_2019_100430 crossref_primary_10_1016_j_ijft_2023_100500 crossref_primary_10_2514_1_T6208 crossref_primary_10_1016_j_rser_2021_111842 crossref_primary_10_1002_ese3_1239 crossref_primary_10_1016_j_rineng_2019_100021 crossref_primary_10_1080_01430750_2021_1980740 crossref_primary_10_1002_eng2_12142 crossref_primary_10_1016_j_ijheatmasstransfer_2020_119724 crossref_primary_10_1016_j_ijthermalsci_2017_12_025 crossref_primary_10_1016_j_ijthermalsci_2024_109634 crossref_primary_10_2298_TSCI211120018T crossref_primary_10_2514_1_T6023 crossref_primary_10_1080_01430750_2022_2101521 |
Cites_doi | 10.1016/0017-9310(94)90099-X 10.1016/j.applthermaleng.2012.02.040 10.1080/10407789508913738 10.1016/j.ijheatmasstransfer.2015.05.013 10.1016/j.ces.2009.10.017 10.1016/j.applthermaleng.2015.04.041 10.1016/j.applthermaleng.2010.04.009 10.1115/1.2740308 10.1016/j.anucene.2013.01.060 10.1016/j.applthermaleng.2012.01.002 10.1016/0894-1777(95)00066-U 10.1016/j.ijheatmasstransfer.2012.09.004 10.1016/j.ijthermalsci.2009.02.007 10.1016/j.ijheatmasstransfer.2012.04.059 10.1016/j.applthermaleng.2015.02.071 10.1016/j.icheatmasstransfer.2011.04.006 10.1080/10407780590957134 10.1016/0142-727X(95)00043-P 10.15282/ijame.7.2012.7.0073 10.15282/ijame.9.2014.1.0123 10.1016/j.ijheatmasstransfer.2010.11.038 10.1016/j.ijheatmasstransfer.2008.07.006 10.1007/s00231-003-0498-9 10.4028/www.scientific.net/AMM.564.197 10.1016/j.rser.2014.10.070 10.1016/S0017-9310(02)00080-7 10.1007/s00231-007-0256-5 10.1016/0894-1777(93)90052-K 10.1016/S0017-9310(01)00297-6 10.1016/j.icheatmasstransfer.2013.11.007 10.1016/j.applthermaleng.2014.05.073 10.1016/j.ijheatmasstransfer.2007.03.031 10.1080/10407781003744888 10.1016/S0017-9310(97)00272-X 10.3923/ajsr.2013.217.226 10.1016/j.anucene.2015.07.025 10.1016/j.ijrefrig.2007.04.011 10.1016/j.applthermaleng.2008.04.021 10.1016/j.applthermaleng.2009.03.017 10.1016/j.icheatmasstransfer.2014.02.016 10.1080/10407780307325 10.1016/j.ijheatmasstransfer.2013.11.024 10.1016/j.applthermaleng.2014.11.079 |
ContentType | Journal Article |
Copyright | 2017. Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the associated terms available at https://www.epjap.org/articles/epjap/abs/2017/06/ap170066/ap170066.html . |
Copyright_xml | – notice: 2017. Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the associated terms available at https://www.epjap.org/articles/epjap/abs/2017/06/ap170066/ap170066.html . |
DBID | BSCLL AAYXX CITATION 7U5 8FD L7M |
DOI | 10.1051/epjap/2017170066 |
DatabaseName | Istex CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Solid State and Superconductivity Abstracts |
DatabaseTitleList | Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1286-0050 |
Editor | El Ganaoui, Mohammed Bennacer, Rachid Nunzi, Jean-Michel |
Editor_xml | – sequence: 1 givenname: Jean-Michel surname: Nunzi fullname: Nunzi, Jean-Michel organization: 1 Technical Sciences Department, Faculty of Technology, University of Amar Telidji-Laghouat, 03000, Algeria – sequence: 2 givenname: Rachid surname: Bennacer fullname: Bennacer, Rachid organization: 1 Technical Sciences Department, Faculty of Technology, University of Amar Telidji-Laghouat, 03000, Algeria – sequence: 3 givenname: Mohammed surname: El Ganaoui fullname: El Ganaoui, Mohammed organization: 1 Technical Sciences Department, Faculty of Technology, University of Amar Telidji-Laghouat, 03000, Algeria |
ExternalDocumentID | 10_1051_epjap_2017170066 ark_67375_80W_85CJXZ2V_K |
GroupedDBID | -E. .4S .DC .FH 0E1 123 4.4 5VS 74X 74Y 7~V 8FE 8FG AAOTM ABGRX ABJNI ABKKG ABUBZ ABZDU ACACO ACGFS ACIMK ACQPF AEMTW AFKRA AFUTZ AI. AJPFC ALMA_UNASSIGNED_HOLDINGS ARABE ARAPS ARCSS AZPVJ BENPR BSCLL C0O DC4 EBS EJD HCIFZ HG- HST HZ~ I.6 IL9 I~P J36 J38 J3A L98 M-V O9- P62 RCA RED RR0 S6- TUS VH1 WQ3 WXU WXY ZE2 AAOGA AAYXX ABGDZ ABNSH ACRPL ADMLS ADNMO AGQPQ CITATION 7U5 8FD L7M |
ID | FETCH-LOGICAL-c309t-d33c496f3e2b8f5619dd092cbaf9b8231bb30e34e3728c4c432bc833229237323 |
ISSN | 1286-0042 |
IngestDate | Mon Jun 30 03:44:35 EDT 2025 Thu Apr 24 23:06:40 EDT 2025 Tue Jul 01 02:08:44 EDT 2025 Wed Oct 30 09:30:57 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c309t-d33c496f3e2b8f5619dd092cbaf9b8231bb30e34e3728c4c432bc833229237323 |
Notes | istex:E55F9F247F7E5FCDACAC4108E478ACDB6B8DAAF2 publisher-ID:ap170066 ark:/67375/80W-85CJXZ2V-K Contribution to the topical issue “Materials for Energy harvesting, conversion and storage II (ICOME 2016)”, edited by Jean-Michel Nunzi, Rachid Bennacer and Mohammed El Ganaoui ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2199313826 |
PQPubID | 616449 |
ParticipantIDs | proquest_journals_2199313826 crossref_citationtrail_10_1051_epjap_2017170066 crossref_primary_10_1051_epjap_2017170066 istex_primary_ark_67375_80W_85CJXZ2V_K |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-06 2017-06-00 20170601 |
PublicationDateYYYYMMDD | 2017-06-01 |
PublicationDate_xml | – month: 06 year: 2017 text: 2017-06 |
PublicationDecade | 2010 |
PublicationPlace | Les Ulis |
PublicationPlace_xml | – name: Les Ulis |
PublicationTitle | European physical journal. Applied physics |
PublicationYear | 2017 |
Publisher | EDP Sciences |
Publisher_xml | – name: EDP Sciences |
References | Biswas (R13) 1994; 37 Kim (R42) 2013; 57 Huisseune (R9) 2015; 89 Sahel (R17) 2015; 21 Tahseen (R27) 2015; 43 Guo (R44) 2002; 45 Tahseen (R34) 2013; 6 Lin (R16) 2015; 88 Zeng (R26) 2010; 30 Benarji (R28) 2008; 44 Li (R14) 2014; 70 Fiebig (R18) 1993; 7 Pal (R23) 2012; 61 Anoop (R8) 2015; 85 Wang (R41) 2015; 86 Guo (R45) 1998; 41 Huisseune (R6) 2013; 56 Joardar (R11) 2007; 129 Fullerton (R29) 2010; 57 Gholami (R40) 2014; 54 Lin (R7) 2014; 73 Wu (R37) 2008; 51 Fiebig (R38) 1995; 28 Tian (R2) 2009; 48 Tahseen (R32) 2014; 564 Zhang (R36) 2004; 40 Wu (R43) 2012; 37 He (R25) 2013; 61 Jain (R19) 2003; 43 Fiebig (R22) 1995; 16 Wang (R4) 2011; 54 Ishak (R30) 2013; 7 Tahseen (R31) 2014; 9 Torii (R12) 2002; 45 He (R10) 2012; 55 Fan (R39) 2009; 52 Jacobi (R21) 1995; 11 Joardar (R5) 2008; 311 Arora (R15) 2015; 82 Chu (R20) 2009; 29 Lei (R24) 2010; 65 Tahseen (R35) 2014; 50 Phan (R3) 2011; 38 Yun (R1) 2009; 29 Bahaidarah (R33) 2005; 48 |
References_xml | – volume: 37 start-page: 283 year: 1994 ident: R13 publication-title: Int. J. Heat Mass Transfer doi: 10.1016/0017-9310(94)90099-X – volume: 61 start-page: 770 year: 2013 ident: R25 publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2012.02.040 – volume: 28 start-page: 147 year: 1995 ident: R38 publication-title: Numer. Heat Transf. A: Appl. doi: 10.1080/10407789508913738 – volume: 89 start-page: 1 year: 2015 ident: R9 publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2015.05.013 – volume: 65 start-page: 1551 year: 2010 ident: R24 publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2009.10.017 – volume: 86 start-page: 27 year: 2015 ident: R41 publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2015.04.041 – volume: 30 start-page: 1775 year: 2010 ident: R26 publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2010.04.009 – volume: 129 start-page: 1156 year: 2007 ident: R11 publication-title: J. Heat Transfer doi: 10.1115/1.2740308 – volume: 61 start-page: 912 year: 2012 ident: R23 publication-title: Numer. Heat Transf. A: Appl. – volume: 57 start-page: 209 year: 2013 ident: R42 publication-title: Ann. Nucl. Energy doi: 10.1016/j.anucene.2013.01.060 – volume: 37 start-page: 67 year: 2012 ident: R43 publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2012.01.002 – volume: 11 start-page: 295 year: 1995 ident: R21 publication-title: Exp. Therm. Fluid Sci. doi: 10.1016/0894-1777(95)00066-U – volume: 56 start-page: 475 year: 2013 ident: R6 publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2012.09.004 – volume: 48 start-page: 1765 year: 2009 ident: R2 publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2009.02.007 – volume: 55 start-page: 5449 year: 2012 ident: R10 publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2012.04.059 – volume: 82 start-page: 329 year: 2015 ident: R15 publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2015.02.071 – volume: 38 start-page: 893 year: 2011 ident: R3 publication-title: Int. Commun. Heat Mass Transfer doi: 10.1016/j.icheatmasstransfer.2011.04.006 – volume: 48 start-page: 359 year: 2005 ident: R33 publication-title: Numer. Heat Transf. A: Appl. doi: 10.1080/10407780590957134 – volume: 21 start-page: 457 year: 2015 ident: R17 publication-title: Mechnika – volume: 16 start-page: 376 year: 1995 ident: R22 publication-title: Int. J. Heat Fluid Flow doi: 10.1016/0142-727X(95)00043-P – volume: 7 start-page: 900 year: 2013 ident: R30 publication-title: Int. J. Automot. Mech. Eng. doi: 10.15282/ijame.7.2012.7.0073 – volume: 9 start-page: 1487 year: 2014 ident: R31 publication-title: Int. J. Automot. Mech. Eng. doi: 10.15282/ijame.9.2014.1.0123 – volume: 54 start-page: 1024 year: 2011 ident: R4 publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2010.11.038 – volume: 52 start-page: 33 year: 2009 ident: R39 publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2008.07.006 – volume: 40 start-page: 881 year: 2004 ident: R36 publication-title: Heat Mass Transfer doi: 10.1007/s00231-003-0498-9 – volume: 564 start-page: 197 year: 2014 ident: R32 publication-title: Appl. Mech. Mater. doi: 10.4028/www.scientific.net/AMM.564.197 – volume: 43 start-page: 363 year: 2015 ident: R27 publication-title: Renew Sust. Energ. Rev. doi: 10.1016/j.rser.2014.10.070 – volume: 45 start-page: 3795 year: 2002 ident: R12 publication-title: Int. J. Heat Mass Transfer doi: 10.1016/S0017-9310(02)00080-7 – volume: 44 start-page: 445 year: 2008 ident: R28 publication-title: Heat Mass Transfer doi: 10.1007/s00231-007-0256-5 – volume: 7 start-page: 287 year: 1993 ident: R18 publication-title: Exp. Therm. Fluid Sci. doi: 10.1016/0894-1777(93)90052-K – volume: 45 start-page: 2119 year: 2002 ident: R44 publication-title: Int. J. Heat Mass Transfer doi: 10.1016/S0017-9310(01)00297-6 – volume: 50 start-page: 85 year: 2014 ident: R35 publication-title: Int. Commun. Heat Mass Transfer doi: 10.1016/j.icheatmasstransfer.2013.11.007 – volume: 73 start-page: 1465 year: 2014 ident: R7 publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2014.05.073 – volume: 51 start-page: 3683 year: 2008 ident: R37 publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2007.03.031 – volume: 57 start-page: 642 year: 2010 ident: R29 publication-title: Numer. Heat Transf. A: Appl. doi: 10.1080/10407781003744888 – volume: 41 start-page: 2221 year: 1998 ident: R45 publication-title: Int. J. Heat Mass Transfer doi: 10.1016/S0017-9310(97)00272-X – volume: 6 start-page: 217 year: 2013 ident: R34 publication-title: Asian J. Sci. Res. doi: 10.3923/ajsr.2013.217.226 – volume: 85 start-page: 1052 year: 2015 ident: R8 publication-title: Ann. Nucl. Energy doi: 10.1016/j.anucene.2015.07.025 – volume: 311 start-page: 87 year: 2008 ident: R5 publication-title: Int. J. Refrig. doi: 10.1016/j.ijrefrig.2007.04.011 – volume: 29 start-page: 859 year: 2009 ident: R20 publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2008.04.021 – volume: 29 start-page: 3014 year: 2009 ident: R1 publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2009.03.017 – volume: 54 start-page: 132 year: 2014 ident: R40 publication-title: Int. Commun. Heat Mass Transfer doi: 10.1016/j.icheatmasstransfer.2014.02.016 – volume: 43 start-page: 201 year: 2003 ident: R19 publication-title: Numer. Heat Transf. A: Appl. doi: 10.1080/10407780307325 – volume: 70 start-page: 734 year: 2014 ident: R14 publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2013.11.024 – volume: 88 start-page: 198 year: 2015 ident: R16 publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2014.11.079 |
SSID | ssj0001685 |
Score | 2.2251904 |
Snippet | A numerical work is carried out to investigate the heat transfer and fluid flow behaviors in a fin-and-flat-tube heat exchanger provided with complex vortex... |
SourceID | proquest crossref istex |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 34805 |
SubjectTerms | Aerodynamics Air flow Algorithms Angle of attack Computational fluid dynamics Curvature Finite volume method Fluid flow Heat transfer Pressure loss Reynolds number Tube heat exchangers Tubes Vortex generators Vortices |
Title | A numerical study of fluid flow and heat transfer over a fin and flat tube heat exchangers with complex vortex generators |
URI | https://api.istex.fr/ark:/67375/80W-85CJXZ2V-K/fulltext.pdf https://www.proquest.com/docview/2199313826 |
Volume | 78 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELbSREhwQFBApC2VDwgJRZvs2vs8Ri0lKhQhtYWIy8re9YqUvJRkUeCP8HeZsfcFLYhyWUW2M3nM55nPnvGYkOcBS4XtKGEBewstVwnfkqHgFqyYfS4TDzg-7necvfNHl-7p2Bu3Wj8aWUv5RvaT7zeeK_kfrUIb6BVPyd5Cs5VQaIDXoF94gobh-U86HvbmuYm4TE2dWKR-2TSfpPBcmFxfNLZ4EQTQU7XqYcJmT_SyiclBzqbYmUtlhqltcQ54XaakY-3gbe8rZuRu8bZlpaPy6xv385elyovv3q8orump2Pu5-GxyA46vxExVKR7Dmco1fkYLwO2kcgViNtUMFwxTorLmNoUT1OlUhWVlITTYppRWXzXbTOXZ0hwHYQN2vGFbuRvqE9rXrT4YFtT_8kos8YALlgAKkEvVPq6M6__m-qqERB2K95xYy4hrCTukw2D9wdqkMzw-e3teOXnH17e9Vr-qiICDjIGWMahl_MJ4Ojh5t9ccv2YzFw_I_WIZQocGUw9JS813yb1Gccpdcue90doj8m1IK5xRjTO6yKjGGUWcUYASRQDREmcUcUYFBZzpTsQZRZyZYTXOKOKMFjijBme0xtljcnny6uJoZBVXdlgJt6ONlXKeuJGfccVkmAE3j9LUjlgiRRZJjDhLyW3FXcUDFiZu4nImk5CDV4GFRsAZf0La88VcPSU09QPuyciTLHXcNOAikbD29aQjBJdAcrtkUP6tcVLUs8drVabxn5TZJS-rdyxNLZe_jH2hNVUNFKsvmAMZeHFof4xD7-h0_Il9iN90yUGpyriYXuuYYVosVvf0927xmfvkbj1zDkh7s8rVM6C8G3lIdsKT14cFCH8CZgGuaw |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+numerical+study+of+fluid+flow+and+heat+transfer+over+a+fin+and+flat+tube+heat+exchangers+with+complex+vortex+generators&rft.jtitle=European+physical+journal.+Applied+physics&rft.au=Sahel%2C+Djamel&rft.au=Ameur%2C+Houari&rft.au=Kamla%2C+Youcef&rft.date=2017-06-01&rft.issn=1286-0042&rft.eissn=1286-0050&rft.volume=78&rft.issue=3&rft.spage=34805&rft_id=info:doi/10.1051%2Fepjap%2F2017170066&rft.externalDBID=n%2Fa&rft.externalDocID=10_1051_epjap_2017170066 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1286-0042&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1286-0042&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1286-0042&client=summon |