A numerical study of fluid flow and heat transfer over a fin and flat tube heat exchangers with complex vortex generators

A numerical work is carried out to investigate the heat transfer and fluid flow behaviors in a fin-and-flat-tube heat exchanger provided with complex vortex generators (CVGs). A new design of CVGs is proposed in the present paper, it consists of CVGs formed by two portions: a flat portion with vario...

Full description

Saved in:
Bibliographic Details
Published inEuropean physical journal. Applied physics Vol. 78; no. 3; p. 34805
Main Authors Sahel, Djamel, Ameur, Houari, Kamla, Youcef
Format Journal Article
LanguageEnglish
Published Les Ulis EDP Sciences 01.06.2017
Subjects
Online AccessGet full text
ISSN1286-0042
1286-0050
DOI10.1051/epjap/2017170066

Cover

Loading…
Abstract A numerical work is carried out to investigate the heat transfer and fluid flow behaviors in a fin-and-flat-tube heat exchanger provided with complex vortex generators (CVGs). A new design of CVGs is proposed in the present paper, it consists of CVGs formed by two portions: a flat portion with various attack angles (β = 0°, 20°, 40° and 60°) and a curved portion with various curvature angles (α = 30°, 45° and 60°). Changes in CVGs position ratio (R*) inside the tube are also investigated and three values of R* are considered, namely: R* = 1.375, 1.750 and 2.125. Computations based on the finite volume method with the SIMPLE algorithm are conducted for the air flow. The Reynolds number is ranging from 25 to 400. The obtained results show that the vortex formed near the tubes is intensified by the flat potion of CVGs, and the curved tube guide the fluid flow towards the region behind the tubes, resulting thus in improved heat transfer rates. In a comparison with tubes without CVG, the new design suggested and especially the case with β = 60°, α = 60° and R* = 2.125 improve significantly the heat transfer (an increase by about 76%) with a moderate pressure loss penalty.
AbstractList A numerical work is carried out to investigate the heat transfer and fluid flow behaviors in a fin-and-flat-tube heat exchanger provided with complex vortex generators (CVGs). A new design of CVGs is proposed in the present paper, it consists of CVGs formed by two portions: a flat portion with various attack angles (β = 0°, 20°, 40° and 60°) and a curved portion with various curvature angles (α = 30°, 45° and 60°). Changes in CVGs position ratio (R*) inside the tube are also investigated and three values of R* are considered, namely: R* = 1.375, 1.750 and 2.125. Computations based on the finite volume method with the SIMPLE algorithm are conducted for the air flow. The Reynolds number is ranging from 25 to 400. The obtained results show that the vortex formed near the tubes is intensified by the flat potion of CVGs, and the curved tube guide the fluid flow towards the region behind the tubes, resulting thus in improved heat transfer rates. In a comparison with tubes without CVG, the new design suggested and especially the case with β = 60°, α = 60° and R* = 2.125 improve significantly the heat transfer (an increase by about 76%) with a moderate pressure loss penalty.
Author Kamla, Youcef
Sahel, Djamel
Ameur, Houari
Author_xml – sequence: 4
  givenname: Djamel
  surname: Sahel
  fullname: Sahel, Djamel
  email: djamel_sahel@ymail.com
  organization: Technical Sciences Department, Faculty of Technology, University of Amar Telidji-Laghouat, 03000, Algeria
– sequence: 5
  givenname: Houari
  surname: Ameur
  fullname: Ameur, Houari
  organization: Institute of Science and Technology, University Center of Naâma, 45000, Algeria
– sequence: 6
  givenname: Youcef
  surname: Kamla
  fullname: Kamla, Youcef
  organization: Faculty of Mechanical Engineering, USTO-MB University, Oran 31000, Algeria
BookMark eNp9UE1v1DAUtFAr9QPuPVriHPrslzjOsVoBBSr1AgVxsRzH7nrJ2sF22u6_J-1WReLAZeZJM_Oe3pyQgxCDJeSMwTsGDTu300ZP5xxYy1oAIV6RY8alqAAaOHiZa35ETnLeAAATsjkmuwsa5q1N3uiR5jIPOxoddePshwXjPdVhoGurCy1Jh-xsovFuAU2dD0-iGx_Fubd7m30wax1ubcr03pc1NXE7jfaB3sVUFrq1wSZdYsqvyaHTY7ZvnvmUfPvw_uvqsrq6_vhpdXFVGYSuVAOiqTvh0PJeukawbhig46bXruslR9b3CBZriy2XpjY18t5IRM47ji1yPCVv93unFH_PNhe1iXMKy0nFWdchQ8nF4hJ7l0kx52SdMr7o4mNY_vajYqAea1ZPNau_NS9B-Cc4Jb_Vafe_SLWP-LxU8uLX6ZcSLbaNkvBdyWb1-cdPfqO-4B_QPpKU
CitedBy_id crossref_primary_10_2514_1_T6941
crossref_primary_10_1016_j_applthermaleng_2021_117597
crossref_primary_10_1016_j_tsep_2020_100534
crossref_primary_10_1016_j_tsep_2019_100430
crossref_primary_10_1016_j_ijft_2023_100500
crossref_primary_10_2514_1_T6208
crossref_primary_10_1016_j_rser_2021_111842
crossref_primary_10_1002_ese3_1239
crossref_primary_10_1016_j_rineng_2019_100021
crossref_primary_10_1080_01430750_2021_1980740
crossref_primary_10_1002_eng2_12142
crossref_primary_10_1016_j_ijheatmasstransfer_2020_119724
crossref_primary_10_1016_j_ijthermalsci_2017_12_025
crossref_primary_10_1016_j_ijthermalsci_2024_109634
crossref_primary_10_2298_TSCI211120018T
crossref_primary_10_2514_1_T6023
crossref_primary_10_1080_01430750_2022_2101521
Cites_doi 10.1016/0017-9310(94)90099-X
10.1016/j.applthermaleng.2012.02.040
10.1080/10407789508913738
10.1016/j.ijheatmasstransfer.2015.05.013
10.1016/j.ces.2009.10.017
10.1016/j.applthermaleng.2015.04.041
10.1016/j.applthermaleng.2010.04.009
10.1115/1.2740308
10.1016/j.anucene.2013.01.060
10.1016/j.applthermaleng.2012.01.002
10.1016/0894-1777(95)00066-U
10.1016/j.ijheatmasstransfer.2012.09.004
10.1016/j.ijthermalsci.2009.02.007
10.1016/j.ijheatmasstransfer.2012.04.059
10.1016/j.applthermaleng.2015.02.071
10.1016/j.icheatmasstransfer.2011.04.006
10.1080/10407780590957134
10.1016/0142-727X(95)00043-P
10.15282/ijame.7.2012.7.0073
10.15282/ijame.9.2014.1.0123
10.1016/j.ijheatmasstransfer.2010.11.038
10.1016/j.ijheatmasstransfer.2008.07.006
10.1007/s00231-003-0498-9
10.4028/www.scientific.net/AMM.564.197
10.1016/j.rser.2014.10.070
10.1016/S0017-9310(02)00080-7
10.1007/s00231-007-0256-5
10.1016/0894-1777(93)90052-K
10.1016/S0017-9310(01)00297-6
10.1016/j.icheatmasstransfer.2013.11.007
10.1016/j.applthermaleng.2014.05.073
10.1016/j.ijheatmasstransfer.2007.03.031
10.1080/10407781003744888
10.1016/S0017-9310(97)00272-X
10.3923/ajsr.2013.217.226
10.1016/j.anucene.2015.07.025
10.1016/j.ijrefrig.2007.04.011
10.1016/j.applthermaleng.2008.04.021
10.1016/j.applthermaleng.2009.03.017
10.1016/j.icheatmasstransfer.2014.02.016
10.1080/10407780307325
10.1016/j.ijheatmasstransfer.2013.11.024
10.1016/j.applthermaleng.2014.11.079
ContentType Journal Article
Copyright 2017. Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the associated terms available at https://www.epjap.org/articles/epjap/abs/2017/06/ap170066/ap170066.html .
Copyright_xml – notice: 2017. Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the associated terms available at https://www.epjap.org/articles/epjap/abs/2017/06/ap170066/ap170066.html .
DBID BSCLL
AAYXX
CITATION
7U5
8FD
L7M
DOI 10.1051/epjap/2017170066
DatabaseName Istex
CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Solid State and Superconductivity Abstracts
DatabaseTitleList
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1286-0050
Editor El Ganaoui, Mohammed
Bennacer, Rachid
Nunzi, Jean-Michel
Editor_xml – sequence: 1
  givenname: Jean-Michel
  surname: Nunzi
  fullname: Nunzi, Jean-Michel
  organization: 1 Technical Sciences Department, Faculty of Technology, University of Amar Telidji-Laghouat, 03000, Algeria
– sequence: 2
  givenname: Rachid
  surname: Bennacer
  fullname: Bennacer, Rachid
  organization: 1 Technical Sciences Department, Faculty of Technology, University of Amar Telidji-Laghouat, 03000, Algeria
– sequence: 3
  givenname: Mohammed
  surname: El Ganaoui
  fullname: El Ganaoui, Mohammed
  organization: 1 Technical Sciences Department, Faculty of Technology, University of Amar Telidji-Laghouat, 03000, Algeria
ExternalDocumentID 10_1051_epjap_2017170066
ark_67375_80W_85CJXZ2V_K
GroupedDBID -E.
.4S
.DC
.FH
0E1
123
4.4
5VS
74X
74Y
7~V
8FE
8FG
AAOTM
ABGRX
ABJNI
ABKKG
ABUBZ
ABZDU
ACACO
ACGFS
ACIMK
ACQPF
AEMTW
AFKRA
AFUTZ
AI.
AJPFC
ALMA_UNASSIGNED_HOLDINGS
ARABE
ARAPS
ARCSS
AZPVJ
BENPR
BSCLL
C0O
DC4
EBS
EJD
HCIFZ
HG-
HST
HZ~
I.6
IL9
I~P
J36
J38
J3A
L98
M-V
O9-
P62
RCA
RED
RR0
S6-
TUS
VH1
WQ3
WXU
WXY
ZE2
AAOGA
AAYXX
ABGDZ
ABNSH
ACRPL
ADMLS
ADNMO
AGQPQ
CITATION
7U5
8FD
L7M
ID FETCH-LOGICAL-c309t-d33c496f3e2b8f5619dd092cbaf9b8231bb30e34e3728c4c432bc833229237323
ISSN 1286-0042
IngestDate Mon Jun 30 03:44:35 EDT 2025
Thu Apr 24 23:06:40 EDT 2025
Tue Jul 01 02:08:44 EDT 2025
Wed Oct 30 09:30:57 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c309t-d33c496f3e2b8f5619dd092cbaf9b8231bb30e34e3728c4c432bc833229237323
Notes istex:E55F9F247F7E5FCDACAC4108E478ACDB6B8DAAF2
publisher-ID:ap170066
ark:/67375/80W-85CJXZ2V-K
Contribution to the topical issue “Materials for Energy harvesting, conversion and storage II (ICOME 2016)”, edited by Jean-Michel Nunzi, Rachid Bennacer and Mohammed El Ganaoui
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2199313826
PQPubID 616449
ParticipantIDs proquest_journals_2199313826
crossref_citationtrail_10_1051_epjap_2017170066
crossref_primary_10_1051_epjap_2017170066
istex_primary_ark_67375_80W_85CJXZ2V_K
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-06
2017-06-00
20170601
PublicationDateYYYYMMDD 2017-06-01
PublicationDate_xml – month: 06
  year: 2017
  text: 2017-06
PublicationDecade 2010
PublicationPlace Les Ulis
PublicationPlace_xml – name: Les Ulis
PublicationTitle European physical journal. Applied physics
PublicationYear 2017
Publisher EDP Sciences
Publisher_xml – name: EDP Sciences
References Biswas (R13) 1994; 37
Kim (R42) 2013; 57
Huisseune (R9) 2015; 89
Sahel (R17) 2015; 21
Tahseen (R27) 2015; 43
Guo (R44) 2002; 45
Tahseen (R34) 2013; 6
Lin (R16) 2015; 88
Zeng (R26) 2010; 30
Benarji (R28) 2008; 44
Li (R14) 2014; 70
Fiebig (R18) 1993; 7
Pal (R23) 2012; 61
Anoop (R8) 2015; 85
Wang (R41) 2015; 86
Guo (R45) 1998; 41
Huisseune (R6) 2013; 56
Joardar (R11) 2007; 129
Fullerton (R29) 2010; 57
Gholami (R40) 2014; 54
Lin (R7) 2014; 73
Wu (R37) 2008; 51
Fiebig (R38) 1995; 28
Tian (R2) 2009; 48
Tahseen (R32) 2014; 564
Zhang (R36) 2004; 40
Wu (R43) 2012; 37
He (R25) 2013; 61
Jain (R19) 2003; 43
Fiebig (R22) 1995; 16
Wang (R4) 2011; 54
Ishak (R30) 2013; 7
Tahseen (R31) 2014; 9
Torii (R12) 2002; 45
He (R10) 2012; 55
Fan (R39) 2009; 52
Jacobi (R21) 1995; 11
Joardar (R5) 2008; 311
Arora (R15) 2015; 82
Chu (R20) 2009; 29
Lei (R24) 2010; 65
Tahseen (R35) 2014; 50
Phan (R3) 2011; 38
Yun (R1) 2009; 29
Bahaidarah (R33) 2005; 48
References_xml – volume: 37
  start-page: 283
  year: 1994
  ident: R13
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/0017-9310(94)90099-X
– volume: 61
  start-page: 770
  year: 2013
  ident: R25
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2012.02.040
– volume: 28
  start-page: 147
  year: 1995
  ident: R38
  publication-title: Numer. Heat Transf. A: Appl.
  doi: 10.1080/10407789508913738
– volume: 89
  start-page: 1
  year: 2015
  ident: R9
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2015.05.013
– volume: 65
  start-page: 1551
  year: 2010
  ident: R24
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2009.10.017
– volume: 86
  start-page: 27
  year: 2015
  ident: R41
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2015.04.041
– volume: 30
  start-page: 1775
  year: 2010
  ident: R26
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2010.04.009
– volume: 129
  start-page: 1156
  year: 2007
  ident: R11
  publication-title: J. Heat Transfer
  doi: 10.1115/1.2740308
– volume: 61
  start-page: 912
  year: 2012
  ident: R23
  publication-title: Numer. Heat Transf. A: Appl.
– volume: 57
  start-page: 209
  year: 2013
  ident: R42
  publication-title: Ann. Nucl. Energy
  doi: 10.1016/j.anucene.2013.01.060
– volume: 37
  start-page: 67
  year: 2012
  ident: R43
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2012.01.002
– volume: 11
  start-page: 295
  year: 1995
  ident: R21
  publication-title: Exp. Therm. Fluid Sci.
  doi: 10.1016/0894-1777(95)00066-U
– volume: 56
  start-page: 475
  year: 2013
  ident: R6
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2012.09.004
– volume: 48
  start-page: 1765
  year: 2009
  ident: R2
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2009.02.007
– volume: 55
  start-page: 5449
  year: 2012
  ident: R10
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2012.04.059
– volume: 82
  start-page: 329
  year: 2015
  ident: R15
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2015.02.071
– volume: 38
  start-page: 893
  year: 2011
  ident: R3
  publication-title: Int. Commun. Heat Mass Transfer
  doi: 10.1016/j.icheatmasstransfer.2011.04.006
– volume: 48
  start-page: 359
  year: 2005
  ident: R33
  publication-title: Numer. Heat Transf. A: Appl.
  doi: 10.1080/10407780590957134
– volume: 21
  start-page: 457
  year: 2015
  ident: R17
  publication-title: Mechnika
– volume: 16
  start-page: 376
  year: 1995
  ident: R22
  publication-title: Int. J. Heat Fluid Flow
  doi: 10.1016/0142-727X(95)00043-P
– volume: 7
  start-page: 900
  year: 2013
  ident: R30
  publication-title: Int. J. Automot. Mech. Eng.
  doi: 10.15282/ijame.7.2012.7.0073
– volume: 9
  start-page: 1487
  year: 2014
  ident: R31
  publication-title: Int. J. Automot. Mech. Eng.
  doi: 10.15282/ijame.9.2014.1.0123
– volume: 54
  start-page: 1024
  year: 2011
  ident: R4
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2010.11.038
– volume: 52
  start-page: 33
  year: 2009
  ident: R39
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2008.07.006
– volume: 40
  start-page: 881
  year: 2004
  ident: R36
  publication-title: Heat Mass Transfer
  doi: 10.1007/s00231-003-0498-9
– volume: 564
  start-page: 197
  year: 2014
  ident: R32
  publication-title: Appl. Mech. Mater.
  doi: 10.4028/www.scientific.net/AMM.564.197
– volume: 43
  start-page: 363
  year: 2015
  ident: R27
  publication-title: Renew Sust. Energ. Rev.
  doi: 10.1016/j.rser.2014.10.070
– volume: 45
  start-page: 3795
  year: 2002
  ident: R12
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/S0017-9310(02)00080-7
– volume: 44
  start-page: 445
  year: 2008
  ident: R28
  publication-title: Heat Mass Transfer
  doi: 10.1007/s00231-007-0256-5
– volume: 7
  start-page: 287
  year: 1993
  ident: R18
  publication-title: Exp. Therm. Fluid Sci.
  doi: 10.1016/0894-1777(93)90052-K
– volume: 45
  start-page: 2119
  year: 2002
  ident: R44
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/S0017-9310(01)00297-6
– volume: 50
  start-page: 85
  year: 2014
  ident: R35
  publication-title: Int. Commun. Heat Mass Transfer
  doi: 10.1016/j.icheatmasstransfer.2013.11.007
– volume: 73
  start-page: 1465
  year: 2014
  ident: R7
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2014.05.073
– volume: 51
  start-page: 3683
  year: 2008
  ident: R37
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2007.03.031
– volume: 57
  start-page: 642
  year: 2010
  ident: R29
  publication-title: Numer. Heat Transf. A: Appl.
  doi: 10.1080/10407781003744888
– volume: 41
  start-page: 2221
  year: 1998
  ident: R45
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/S0017-9310(97)00272-X
– volume: 6
  start-page: 217
  year: 2013
  ident: R34
  publication-title: Asian J. Sci. Res.
  doi: 10.3923/ajsr.2013.217.226
– volume: 85
  start-page: 1052
  year: 2015
  ident: R8
  publication-title: Ann. Nucl. Energy
  doi: 10.1016/j.anucene.2015.07.025
– volume: 311
  start-page: 87
  year: 2008
  ident: R5
  publication-title: Int. J. Refrig.
  doi: 10.1016/j.ijrefrig.2007.04.011
– volume: 29
  start-page: 859
  year: 2009
  ident: R20
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2008.04.021
– volume: 29
  start-page: 3014
  year: 2009
  ident: R1
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2009.03.017
– volume: 54
  start-page: 132
  year: 2014
  ident: R40
  publication-title: Int. Commun. Heat Mass Transfer
  doi: 10.1016/j.icheatmasstransfer.2014.02.016
– volume: 43
  start-page: 201
  year: 2003
  ident: R19
  publication-title: Numer. Heat Transf. A: Appl.
  doi: 10.1080/10407780307325
– volume: 70
  start-page: 734
  year: 2014
  ident: R14
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2013.11.024
– volume: 88
  start-page: 198
  year: 2015
  ident: R16
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2014.11.079
SSID ssj0001685
Score 2.2251904
Snippet A numerical work is carried out to investigate the heat transfer and fluid flow behaviors in a fin-and-flat-tube heat exchanger provided with complex vortex...
SourceID proquest
crossref
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 34805
SubjectTerms Aerodynamics
Air flow
Algorithms
Angle of attack
Computational fluid dynamics
Curvature
Finite volume method
Fluid flow
Heat transfer
Pressure loss
Reynolds number
Tube heat exchangers
Tubes
Vortex generators
Vortices
Title A numerical study of fluid flow and heat transfer over a fin and flat tube heat exchangers with complex vortex generators
URI https://api.istex.fr/ark:/67375/80W-85CJXZ2V-K/fulltext.pdf
https://www.proquest.com/docview/2199313826
Volume 78
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELbSREhwQFBApC2VDwgJRZvs2vs8Ri0lKhQhtYWIy8re9YqUvJRkUeCP8HeZsfcFLYhyWUW2M3nM55nPnvGYkOcBS4XtKGEBewstVwnfkqHgFqyYfS4TDzg-7necvfNHl-7p2Bu3Wj8aWUv5RvaT7zeeK_kfrUIb6BVPyd5Cs5VQaIDXoF94gobh-U86HvbmuYm4TE2dWKR-2TSfpPBcmFxfNLZ4EQTQU7XqYcJmT_SyiclBzqbYmUtlhqltcQ54XaakY-3gbe8rZuRu8bZlpaPy6xv385elyovv3q8orump2Pu5-GxyA46vxExVKR7Dmco1fkYLwO2kcgViNtUMFwxTorLmNoUT1OlUhWVlITTYppRWXzXbTOXZ0hwHYQN2vGFbuRvqE9rXrT4YFtT_8kos8YALlgAKkEvVPq6M6__m-qqERB2K95xYy4hrCTukw2D9wdqkMzw-e3teOXnH17e9Vr-qiICDjIGWMahl_MJ4Ojh5t9ccv2YzFw_I_WIZQocGUw9JS813yb1Gccpdcue90doj8m1IK5xRjTO6yKjGGUWcUYASRQDREmcUcUYFBZzpTsQZRZyZYTXOKOKMFjijBme0xtljcnny6uJoZBVXdlgJt6ONlXKeuJGfccVkmAE3j9LUjlgiRRZJjDhLyW3FXcUDFiZu4nImk5CDV4GFRsAZf0La88VcPSU09QPuyciTLHXcNOAikbD29aQjBJdAcrtkUP6tcVLUs8drVabxn5TZJS-rdyxNLZe_jH2hNVUNFKsvmAMZeHFof4xD7-h0_Il9iN90yUGpyriYXuuYYVosVvf0927xmfvkbj1zDkh7s8rVM6C8G3lIdsKT14cFCH8CZgGuaw
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+numerical+study+of+fluid+flow+and+heat+transfer+over+a+fin+and+flat+tube+heat+exchangers+with+complex+vortex+generators&rft.jtitle=European+physical+journal.+Applied+physics&rft.au=Sahel%2C+Djamel&rft.au=Ameur%2C+Houari&rft.au=Kamla%2C+Youcef&rft.date=2017-06-01&rft.issn=1286-0042&rft.eissn=1286-0050&rft.volume=78&rft.issue=3&rft.spage=34805&rft_id=info:doi/10.1051%2Fepjap%2F2017170066&rft.externalDBID=n%2Fa&rft.externalDocID=10_1051_epjap_2017170066
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1286-0042&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1286-0042&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1286-0042&client=summon