An approach to application for LiNi0.6Co0.2Mn0.2O2 cathode material at high cutoff voltage by TiO2 coating
Nickel-rich LiNi0.6Co0.2Mn0.2O2 cathode material is coated with nano-sized anatase TiO2 synthesized via hydrolyzation method to improve its electrochemical performance at high cutoff voltage of 4.5 V. Scanning electron microscopy (SEM), transmission electron microscope (TEM) and high resolution tran...
Saved in:
Published in | Journal of power sources Vol. 256; pp. 20 - 27 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
15.06.2014
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Nickel-rich LiNi0.6Co0.2Mn0.2O2 cathode material is coated with nano-sized anatase TiO2 synthesized via hydrolyzation method to improve its electrochemical performance at high cutoff voltage of 4.5 V. Scanning electron microscopy (SEM), transmission electron microscope (TEM) and high resolution transmission electron microscope (HRTEM) results show that the anatase TiO2 is successfully coated on the surface of LiNi0.6Co0.2Mn0.2O2 with nanoscale and the coating layer thickness is about 25–35 nm. X-ray diffraction (XRD) test results indicate that appropriate amount of TiO2 coating is beneficial to form a good layered structure with less cation disorder. Charge–discharge test results demonstrate that the TiO2-coated LiNi0.6Co0.2Mn0.2O2 presents excellent cycling capability, rate capability and thermal stability at cutoff voltage of 4.5 V. The 1.0 wt.% TiO2-coated LiNi0.6Co0.2Mn0.2O2 exhibits a capacity retention of 88.7% after 50 cycles at 1 C and a discharge capacity of 135.8 mAh g−1 after 10 cycles at 5 C, comparing to those of the pristine LiNi0.6Co0.2Mn0.2O2 of only 78.1% and 85.4 mAh g−1. Electrochemical impedance spectroscopy (EIS) and differential scanning calorimeter (DSC) tests results provide evidence that the improved electrochemical properties are mainly attributed to the suppression of the interface reaction between the cathode and electrolyte and the improvement of structural stability of the material by coating.
•Anatase nano-TiO2 is successfully coated on the surface of LiNi0.6Co0.2Mn0.2O2.•Appropriate amount of TiO2 is beneficial to reduce cation disorder.•The 1.0 wt.% TiO2-coated LiNi0.6Co0.2Mn0.2O2 exhibits excellent electrochemistry properties.•The TiO2-coated LiNi0.6Co0.2Mn0.2O2 presents excellent thermal stability. |
---|---|
AbstractList | Nickel-rich LiNi0.6Co0.2Mn0.2O2 cathode material is coated with nano-sized anatase TiO2 synthesized via hydrolyzation method to improve its electrochemical performance at high cutoff voltage of 4.5 V. Scanning electron microscopy (SEM), transmission electron microscope (TEM) and high resolution transmission electron microscope (HRTEM) results show that the anatase TiO2 is successfully coated on the surface of LiNi0.6Co0.2Mn0.2O2 with nanoscale and the coating layer thickness is about 25–35 nm. X-ray diffraction (XRD) test results indicate that appropriate amount of TiO2 coating is beneficial to form a good layered structure with less cation disorder. Charge–discharge test results demonstrate that the TiO2-coated LiNi0.6Co0.2Mn0.2O2 presents excellent cycling capability, rate capability and thermal stability at cutoff voltage of 4.5 V. The 1.0 wt.% TiO2-coated LiNi0.6Co0.2Mn0.2O2 exhibits a capacity retention of 88.7% after 50 cycles at 1 C and a discharge capacity of 135.8 mAh g−1 after 10 cycles at 5 C, comparing to those of the pristine LiNi0.6Co0.2Mn0.2O2 of only 78.1% and 85.4 mAh g−1. Electrochemical impedance spectroscopy (EIS) and differential scanning calorimeter (DSC) tests results provide evidence that the improved electrochemical properties are mainly attributed to the suppression of the interface reaction between the cathode and electrolyte and the improvement of structural stability of the material by coating.
•Anatase nano-TiO2 is successfully coated on the surface of LiNi0.6Co0.2Mn0.2O2.•Appropriate amount of TiO2 is beneficial to reduce cation disorder.•The 1.0 wt.% TiO2-coated LiNi0.6Co0.2Mn0.2O2 exhibits excellent electrochemistry properties.•The TiO2-coated LiNi0.6Co0.2Mn0.2O2 presents excellent thermal stability. |
Author | Wang, Zongyi Lu, Chao Chen, Baojun Chen, Yanping Zhang, Yun |
Author_xml | – sequence: 1 givenname: Yanping surname: Chen fullname: Chen, Yanping – sequence: 2 givenname: Yun surname: Zhang fullname: Zhang, Yun email: y_zhang@scu.edu.cn – sequence: 3 givenname: Baojun surname: Chen fullname: Chen, Baojun – sequence: 4 givenname: Zongyi surname: Wang fullname: Wang, Zongyi – sequence: 5 givenname: Chao surname: Lu fullname: Lu, Chao |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28250642$$DView record in Pascal Francis |
BookMark | eNqFkE9PwzAMxXMACQZ8BZQLxxWnbdpO4sA08U8acIFzlLrOlqprqiQD8e3pGLtw4WJb8nvP8m_CjnrXE2OXAhIBorhuk3Zwn8FtfZKCyBMQCRTiiJ1CVlbTspTZCZuE0AKAECWcsnbecz0M3mlc8-h2c2dRR-t6bpznS_tiISkWDpL0uR_La8rH9do1xDc6kre64zrytV2tOW6jM4Z_uC7qFfH6i7_Znd6Nef3qnB0b3QW6-O1n7P3-7m3xOF2-Pjwt5sspZjCL07quSZaQo5SUyTzL61JXdV3OmhkRYoNIRshMiMqQbApRZkbmlSZRiRRlQdkZu9rnDjqg7ozXPdqgBm832n-ptEolFHk66m72OvQuBE9GoY0_n0evbacEqB1T1aoDU7VjqkCokeloL_7YDxf-Nd7ujTRC-LDkVUBLPVJjPWFUjbP_RXwDQAiZ5Q |
CODEN | JPSODZ |
CitedBy_id | crossref_primary_10_1002_aenm_201903864 crossref_primary_10_1155_2018_6930386 crossref_primary_10_1002_ente_202000339 crossref_primary_10_1016_j_jallcom_2016_03_061 crossref_primary_10_1016_j_jallcom_2023_169455 crossref_primary_10_1016_j_jpowsour_2016_01_079 crossref_primary_10_1016_j_apenergy_2017_03_074 crossref_primary_10_1016_j_jelechem_2017_11_021 crossref_primary_10_1016_j_ceramint_2015_03_280 crossref_primary_10_1002_adma_201606715 crossref_primary_10_1016_j_jpowsour_2021_230219 crossref_primary_10_1016_j_jpowsour_2020_228405 crossref_primary_10_1021_acs_chemmater_7b05116 crossref_primary_10_20964_2016_08_15 crossref_primary_10_3390_batteries9030186 crossref_primary_10_1021_acsomega_9b01706 crossref_primary_10_1039_D3RA04145J crossref_primary_10_1007_s12034_020_2042_7 crossref_primary_10_1002_batt_202100016 crossref_primary_10_1039_D1NJ05359K crossref_primary_10_1002_adfm_202302563 crossref_primary_10_1002_admi_201901749 crossref_primary_10_1016_j_jpowsour_2022_231258 crossref_primary_10_1016_j_matlet_2016_08_011 crossref_primary_10_1039_D1NJ03740D crossref_primary_10_1149_2_0801904jes crossref_primary_10_1016_j_nanoen_2021_106665 crossref_primary_10_1016_j_jechem_2016_12_003 crossref_primary_10_1021_acs_jpcc_9b08111 crossref_primary_10_12677_MS_2021_114046 crossref_primary_10_1016_j_electacta_2016_05_060 crossref_primary_10_1021_acsami_8b22743 crossref_primary_10_1016_j_jechem_2022_02_015 crossref_primary_10_1016_j_ssi_2021_115674 crossref_primary_10_1149_1945_7111_ac285f crossref_primary_10_1149_2_0951607jes crossref_primary_10_1002_eem2_12080 crossref_primary_10_1016_j_jallcom_2018_09_224 crossref_primary_10_1039_D0CP06422J crossref_primary_10_1016_j_ssi_2021_115550 crossref_primary_10_1016_j_electacta_2022_140958 crossref_primary_10_1016_j_isci_2021_103496 crossref_primary_10_1016_j_jallcom_2019_05_090 crossref_primary_10_1039_D2TA07322F crossref_primary_10_1007_s10854_019_02600_6 crossref_primary_10_1021_acsaem_0c02897 crossref_primary_10_1021_acsami_5b00788 crossref_primary_10_1021_acssuschemeng_9b05539 crossref_primary_10_1016_j_jallcom_2017_03_225 crossref_primary_10_1088_1674_1056_28_6_068202 crossref_primary_10_1002_aenm_201802946 crossref_primary_10_1007_s11581_017_2111_0 crossref_primary_10_1016_j_est_2021_103534 crossref_primary_10_1149_1945_7111_abe28c crossref_primary_10_1016_j_chempr_2017_12_027 crossref_primary_10_1016_j_jallcom_2015_02_056 crossref_primary_10_1021_acs_chemmater_5b03081 crossref_primary_10_1149_1945_7111_ad4e6f crossref_primary_10_1149_1945_7111_aba8b8 crossref_primary_10_1016_j_jpowsour_2017_05_042 crossref_primary_10_1149_2_0111914jes crossref_primary_10_1002_aenm_201901915 crossref_primary_10_1016_j_ica_2024_122239 crossref_primary_10_1002_ente_202100028 crossref_primary_10_1016_j_ceramint_2018_12_169 crossref_primary_10_1038_s41597_022_01217_5 crossref_primary_10_1149_2_0351701jes crossref_primary_10_1016_j_ceramint_2019_07_247 crossref_primary_10_1016_j_jtice_2019_02_006 crossref_primary_10_1021_acsaem_9b01412 crossref_primary_10_1016_j_electacta_2018_08_089 crossref_primary_10_1016_j_electacta_2018_12_127 crossref_primary_10_1016_j_mattod_2023_07_024 crossref_primary_10_1002_adfm_202104395 crossref_primary_10_1016_j_electacta_2018_08_085 crossref_primary_10_1016_j_ssi_2022_115886 crossref_primary_10_1016_j_nanoen_2021_105775 crossref_primary_10_1007_s11581_021_04375_5 crossref_primary_10_1002_adsu_202300267 crossref_primary_10_1016_j_ssi_2019_115087 crossref_primary_10_1149_2_1091816jes crossref_primary_10_1016_j_jallcom_2019_151786 crossref_primary_10_1002_aenm_202002027 crossref_primary_10_1007_s10853_018_3126_2 crossref_primary_10_1021_acsaem_1c00939 crossref_primary_10_1149_2_1631713jes crossref_primary_10_1007_s11581_020_03474_z crossref_primary_10_1021_acsaem_1c02681 crossref_primary_10_1007_s12598_022_02243_3 crossref_primary_10_1021_acssuschemeng_8b03442 crossref_primary_10_1016_j_electacta_2022_141328 crossref_primary_10_1016_j_jpowsour_2019_226722 crossref_primary_10_1016_j_electacta_2021_139636 crossref_primary_10_1016_j_electacta_2016_07_157 crossref_primary_10_1002_aenm_201702028 crossref_primary_10_1016_j_electacta_2016_06_114 crossref_primary_10_1016_j_electacta_2020_135871 crossref_primary_10_1016_j_jallcom_2020_158022 crossref_primary_10_1007_s11581_017_2064_3 crossref_primary_10_1016_j_jcis_2023_08_101 crossref_primary_10_1016_j_electacta_2018_07_183 crossref_primary_10_1021_acsami_0c06484 crossref_primary_10_1016_j_electacta_2017_01_198 crossref_primary_10_1016_j_ceramint_2020_08_247 crossref_primary_10_1016_j_ceramint_2021_11_118 crossref_primary_10_1016_j_jallcom_2016_03_003 crossref_primary_10_1021_acsaem_1c02201 crossref_primary_10_1149_1945_7111_ad4820 crossref_primary_10_1016_j_ensm_2016_10_007 crossref_primary_10_1016_j_mtener_2018_08_013 crossref_primary_10_1016_j_jallcom_2021_159664 crossref_primary_10_1016_j_jpowsour_2014_05_122 crossref_primary_10_1021_acssuschemeng_1c07637 crossref_primary_10_1016_j_jallcom_2017_02_139 crossref_primary_10_1016_j_jpowsour_2018_06_052 crossref_primary_10_1007_s10008_017_3863_1 crossref_primary_10_1049_mnl_2018_5011 crossref_primary_10_1007_s11581_019_03166_3 crossref_primary_10_1002_celc_202101230 crossref_primary_10_1016_j_electacta_2016_03_079 crossref_primary_10_1134_S1023193516060070 crossref_primary_10_33961_JECST_2017_8_2_101 crossref_primary_10_1021_acsaem_0c03135 crossref_primary_10_1021_acs_jpcc_3c00546 crossref_primary_10_1021_acsaem_2c01812 crossref_primary_10_1016_j_apsusc_2021_151017 crossref_primary_10_1016_j_matlet_2015_06_075 crossref_primary_10_1016_j_jallcom_2016_01_044 crossref_primary_10_1149_2_0331908jes crossref_primary_10_1016_j_electacta_2016_10_158 crossref_primary_10_1016_j_jallcom_2020_156387 crossref_primary_10_1007_s11581_016_1685_2 crossref_primary_10_1016_j_jallcom_2015_10_127 crossref_primary_10_1039_C9RA03087E crossref_primary_10_1002_sus2_176 crossref_primary_10_1016_j_ensm_2024_103440 crossref_primary_10_1002_batt_201900131 crossref_primary_10_1016_j_jallcom_2019_152677 crossref_primary_10_1088_1361_6528_abd127 crossref_primary_10_1021_acsami_6b04644 crossref_primary_10_1002_adma_201900985 crossref_primary_10_1007_s11581_017_2311_7 crossref_primary_10_1016_j_electacta_2017_05_075 crossref_primary_10_1002_inf2_12507 crossref_primary_10_1016_j_electacta_2014_10_011 crossref_primary_10_1039_C5TA10773C crossref_primary_10_1039_C7TA10308E crossref_primary_10_1016_j_ceramint_2018_10_219 crossref_primary_10_1016_j_nanoen_2017_11_010 crossref_primary_10_1039_D1YA00031D crossref_primary_10_1007_s10008_024_06031_0 crossref_primary_10_1186_s11671_024_04010_y crossref_primary_10_1039_D0RA08448D crossref_primary_10_1021_acsami_0c21164 crossref_primary_10_5229_JKES_2016_19_3_80 crossref_primary_10_1016_j_jpowsour_2021_230505 crossref_primary_10_1016_j_jpowsour_2020_228372 crossref_primary_10_1002_pen_24304 crossref_primary_10_1007_s11814_015_0154_3 crossref_primary_10_1021_acsaem_9b02008 crossref_primary_10_1149_2_0211814jes crossref_primary_10_1016_j_ceramint_2016_07_191 crossref_primary_10_1016_j_electacta_2020_135959 crossref_primary_10_1016_j_ceramint_2022_10_306 crossref_primary_10_1016_j_electacta_2017_12_176 crossref_primary_10_1016_j_nanoen_2019_02_004 crossref_primary_10_1039_D1TA08441K crossref_primary_10_1088_2631_7990_ac92ef crossref_primary_10_1016_j_electacta_2020_136122 crossref_primary_10_1007_s11581_022_04691_4 crossref_primary_10_1016_j_ijoes_2023_100141 crossref_primary_10_1039_C6TA07991A crossref_primary_10_3390_nano12111888 crossref_primary_10_1103_PRXEnergy_4_013009 crossref_primary_10_1002_nano_202000008 crossref_primary_10_1021_acsami_9b22360 crossref_primary_10_1016_j_electacta_2020_137216 crossref_primary_10_1021_acsami_8b04167 crossref_primary_10_1088_1755_1315_199_3_032079 crossref_primary_10_1016_j_jpowsour_2021_229857 crossref_primary_10_1149_2_0701908jes crossref_primary_10_1039_D2NR05701H crossref_primary_10_1149_2_1631712jes crossref_primary_10_4028_www_scientific_net_AMR_1035_361 crossref_primary_10_1002_aenm_201602888 crossref_primary_10_1021_acsami_5b02690 crossref_primary_10_1002_adfm_202107761 crossref_primary_10_1016_j_jallcom_2017_05_331 crossref_primary_10_1021_acsami_6b09197 crossref_primary_10_1007_s10008_018_4150_5 crossref_primary_10_1002_cssc_202001771 crossref_primary_10_1016_j_ceramint_2017_08_048 crossref_primary_10_1021_acs_chemmater_9b01557 crossref_primary_10_1016_j_jallcom_2016_08_187 crossref_primary_10_1039_D1SE01137E crossref_primary_10_3390_mi15070894 crossref_primary_10_1016_j_electacta_2020_136251 crossref_primary_10_1002_cjoc_201800559 crossref_primary_10_1016_j_ssi_2018_01_018 crossref_primary_10_3390_inorganics5020032 crossref_primary_10_1016_j_jallcom_2019_151800 crossref_primary_10_1002_ente_202200843 crossref_primary_10_1002_admt_202200436 crossref_primary_10_1016_j_jpowsour_2019_226773 crossref_primary_10_1007_s10800_022_01736_4 crossref_primary_10_1007_s10832_021_00229_8 crossref_primary_10_1007_s11581_015_1501_4 crossref_primary_10_20964_2017_06_19 crossref_primary_10_1016_j_nanoen_2018_09_014 crossref_primary_10_1021_acsaem_9b01814 crossref_primary_10_1002_aenm_201602559 crossref_primary_10_1002_tcr_202300132 crossref_primary_10_1002_smll_201904854 crossref_primary_10_1016_j_electacta_2019_01_144 crossref_primary_10_1016_j_jpowsour_2014_05_047 crossref_primary_10_1016_j_jpowsour_2019_05_046 crossref_primary_10_1016_j_jelechem_2019_113771 crossref_primary_10_1016_j_ensm_2021_01_032 crossref_primary_10_1007_s11581_023_05056_1 crossref_primary_10_1016_j_ceramint_2015_02_026 crossref_primary_10_1002_cjoc_202000344 crossref_primary_10_1007_s11581_019_03429_z crossref_primary_10_1002_aenm_202200682 crossref_primary_10_1007_s41918_019_00053_3 crossref_primary_10_1016_j_jpowsour_2014_12_128 crossref_primary_10_1016_j_jallcom_2021_159853 crossref_primary_10_1021_acsomega_0c00458 crossref_primary_10_1021_acsenergylett_0c00191 crossref_primary_10_1016_j_electacta_2016_01_039 crossref_primary_10_1016_j_pmatsci_2020_100655 crossref_primary_10_3390_ma10111273 crossref_primary_10_1002_ente_202000800 crossref_primary_10_1016_j_ensm_2021_06_024 crossref_primary_10_1016_j_jpowsour_2014_12_131 crossref_primary_10_1021_acs_energyfuels_4c05158 crossref_primary_10_1002_admi_201700382 crossref_primary_10_1149_2_0491813jes crossref_primary_10_1016_j_matchemphys_2018_04_078 crossref_primary_10_1007_s11581_019_03416_4 crossref_primary_10_1007_s40242_020_9103_8 crossref_primary_10_1016_j_jpowsour_2016_08_014 crossref_primary_10_1016_j_electacta_2016_11_041 crossref_primary_10_1016_j_jelechem_2020_114910 crossref_primary_10_1039_D3MH01151H crossref_primary_10_1021_acs_iecr_2c02541 crossref_primary_10_1007_s41918_022_00166_2 crossref_primary_10_1021_acsaem_0c00446 crossref_primary_10_1088_2053_1591_ab1044 crossref_primary_10_3390_en15239235 crossref_primary_10_1021_acsaem_9b01471 crossref_primary_10_1007_s11581_017_2069_y crossref_primary_10_1016_j_electacta_2021_137974 crossref_primary_10_1021_acsami_8b21621 crossref_primary_10_1002_er_8618 crossref_primary_10_1021_acsami_9b12123 crossref_primary_10_1007_s00339_024_07897_7 crossref_primary_10_1016_j_electacta_2019_01_153 crossref_primary_10_1063_5_0136321 crossref_primary_10_1021_acsaem_1c02841 crossref_primary_10_1021_acsami_7b13597 crossref_primary_10_1038_natrevmats_2016_13 crossref_primary_10_1142_S1793292018300074 crossref_primary_10_1016_j_cej_2022_134645 crossref_primary_10_1016_j_jpowsour_2022_232324 crossref_primary_10_1039_C9NJ01539F crossref_primary_10_1016_j_jallcom_2017_02_230 crossref_primary_10_1149_1945_7111_ad4420 crossref_primary_10_1016_j_electacta_2021_138138 crossref_primary_10_1088_2053_1591_ab3d61 |
Cites_doi | 10.1016/j.electacta.2013.09.085 10.1016/S0378-7753(03)00173-3 10.1016/j.elecom.2006.03.040 10.1149/1.2220730 10.1007/s10008-002-0287-2 10.1016/j.jpowsour.2006.02.080 10.1016/j.jallcom.2013.01.091 10.1016/j.jpowsour.2012.10.074 10.1016/j.elecom.2008.07.012 10.1007/s10008-012-1739-y 10.1016/j.jpowsour.2008.12.046 10.1016/j.ssi.2005.02.023 10.1016/j.ssi.2008.01.091 10.1016/j.jpowsour.2005.11.083 10.1016/j.electacta.2010.07.074 10.1016/j.jpowsour.2006.06.031 10.1038/nmat3435 10.1016/j.electacta.2006.02.058 10.1016/j.electacta.2012.08.029 10.1016/j.electacta.2007.08.032 10.1016/S0378-7753(00)00499-7 10.1016/j.electacta.2011.12.121 10.1016/j.jpowsour.2010.01.040 10.1016/S0378-7753(03)00529-9 10.1246/cl.2001.642 10.1016/j.electacta.2009.05.034 10.1016/j.jpowsour.2007.06.051 10.1016/j.jpowsour.2013.06.133 10.1016/j.ssi.2007.12.054 10.1149/1.1394016 10.1016/j.electacta.2005.01.037 10.1016/j.jpowsour.2007.08.034 10.1016/S0013-4686(02)00593-5 10.1016/j.surfcoat.2005.03.021 10.1016/j.jpowsour.2009.02.063 10.1016/j.ssi.2003.11.010 10.1016/j.jpowsour.2013.01.063 10.1016/j.cap.2006.02.014 |
ContentType | Journal Article |
Copyright | 2014 Elsevier B.V. 2015 INIST-CNRS |
Copyright_xml | – notice: 2014 Elsevier B.V. – notice: 2015 INIST-CNRS |
DBID | AAYXX CITATION IQODW |
DOI | 10.1016/j.jpowsour.2014.01.061 |
DatabaseName | CrossRef Pascal-Francis |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Applied Sciences |
EndPage | 27 |
ExternalDocumentID | 28250642 10_1016_j_jpowsour_2014_01_061 S0378775314000858 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AAEDT AAEDW AAEPC AAHCO AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AARLI AATTM AAXKI AAXUO AAYWO ABFNM ABJNI ABMAC ABXDB ABXRA ACDAQ ACGFS ACRLP ACVFH ADBBV ADCNI ADECG ADEZE AEBSH AEIPS AEKER AENEX AEUPX AEZYN AFPUW AFRZQ AFTJW AFXIZ AFZHZ AGCQF AGHFR AGRNS AGUBO AGYEJ AHHHB AHIDL AIEXJ AIIUN AIKHN AITUG AJSZI AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AXJTR BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LX7 LY6 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SSH SSK SSM SSR SSZ T5K XPP ZMT ~G- 29L AAQXK AAYXX ABWVN ACNNM ACRPL ADMUD ADNMO AFJKZ AGQPQ AI. AIGII APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CITATION EJD FEDTE FGOYB G-2 HLY HVGLF HZ~ NDZJH R2- SAC SCB SCE SEW T9H VH1 VOH WUQ AACTN IQODW |
ID | FETCH-LOGICAL-c309t-bbbe5704c55e35434b7a8bb79d9eeccdccef153118fe5d6173f548ae1812c56e3 |
IEDL.DBID | .~1 |
ISSN | 0378-7753 |
IngestDate | Wed Apr 02 07:37:51 EDT 2025 Tue Jul 01 04:23:03 EDT 2025 Thu Apr 24 22:58:12 EDT 2025 Thu Jul 17 01:59:50 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Anatase TiO2 coating Lithium ion batteries Electrochemical performance High voltage Nickel-rich cathode materials Titanium IV Oxides Anatase TiO Coating material coating Anatase Cathode Transition metal Secondary cell Electrode material Coatings Electrochemical characteristic Nickel Titanium oxide Application Electrical characteristic |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c309t-bbbe5704c55e35434b7a8bb79d9eeccdccef153118fe5d6173f548ae1812c56e3 |
PageCount | 8 |
ParticipantIDs | pascalfrancis_primary_28250642 crossref_citationtrail_10_1016_j_jpowsour_2014_01_061 crossref_primary_10_1016_j_jpowsour_2014_01_061 elsevier_sciencedirect_doi_10_1016_j_jpowsour_2014_01_061 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-06-15 |
PublicationDateYYYYMMDD | 2014-06-15 |
PublicationDate_xml | – month: 06 year: 2014 text: 2014-06-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Journal of power sources |
PublicationYear | 2014 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Sun, Cho, Myung (bib37) 2007; 53 Zhang, Li, Yang (bib25) 2006; 52 Cho, Park (bib39) 2001; 92 Ahn, Lee, Lee, Kim, Cho, Park (bib20) 2007; 7 Liu, Zhang, Gong, Yang (bib24) 2004; 166 Shi, Tu, Mai, Zhang, Tang, Wang (bib29) 2012; 83 Yang, Fan, Guo, Qu (bib12) 2012; 63 Xiong, Wang, Yan, Guo, Li (bib19) 2014; 245 Shaju, Subba Rao, Chowdari (bib5) 2002; 48 Lin, Lin, Zhou, Zhao, Huang, Huang (bib33) 2013; 226 Cao, Zhang, Zhang, Xia (bib16) 2005; 176 Kosova, Devyatkina, Kaichev (bib14) 2007; 174 Mahesh, Manjunatha, Venkatesha, Suresh (bib36) 2012; 16 Wang, Zhang, Zou, Liu, Chen (bib13) 2013; 558 Cheng, Akhtar, Yang, Stadler (bib28) 2013; 113 Yabuuchi, Ohzuku (bib4) 2003; 119–121 Noh, Youn, Yoon, Sun (bib10) 2013; 233 Sun, Chen, Noh, Jung, Ren, Wang, Yoon, Myung, Amine (bib9) 2012; 11 Choi, Manthiram (bib2) 2006; 162 Ohzuku, Makimura (bib3) 2001; 30 Li, Li, Zhang, He (bib15) 2009; 189 Fey, Lu, Prem Kumar, Chang (bib34) 2005; 199 Gover, Kanno, Mitchell (bib32) 2000; 147 Hwang, Chena, Chenga, Santhanama, Ragavendran (bib38) 2010; 195 Wu, Wang, Su, Chen, Xu (bib7) 2009; 191 Park, Kim, Myung, Amine, Belharouak, Lee, Sun (bib18) 2008; 178 Guo, Shi, Cheng, Sun (bib22) 2009; 54 Zheng, Li, Zhang, Guo, Yang (bib31) 2008; 179 Li, Kato, Kobayakawa, Noguchi, Sato (bib21) 2006; 160 Ohzuku, Ueda, Nagayama (bib27) 1993; 140 Jang, Kang, Amine, Bae, Sun (bib23) 2005; 50 Xing, Chang, Yuan, Sun (bib35) 2008; 10 Sun, Han, Myung, Lee, Amine (bib26) 2006; 8 Yue, Wang, Guo, He (bib17) 2012; 176 Kim, Shin, Shin, Sun (bib1) 2006; 159 Lin, Wen, Han, Wu (bib6) 2008; 179 Sun, Kim, Jung, Myung, Amine (bib11) 2010; 55 Chowdari, Rao, Chow (bib30) 2002; 6 Belharouak, Sun, Liu, Amine (bib8) 2003; 123 Yang (10.1016/j.jpowsour.2014.01.061_bib12) 2012; 63 Li (10.1016/j.jpowsour.2014.01.061_bib15) 2009; 189 Ohzuku (10.1016/j.jpowsour.2014.01.061_bib3) 2001; 30 Li (10.1016/j.jpowsour.2014.01.061_bib21) 2006; 160 Liu (10.1016/j.jpowsour.2014.01.061_bib24) 2004; 166 Xing (10.1016/j.jpowsour.2014.01.061_bib35) 2008; 10 Choi (10.1016/j.jpowsour.2014.01.061_bib2) 2006; 162 Guo (10.1016/j.jpowsour.2014.01.061_bib22) 2009; 54 Kim (10.1016/j.jpowsour.2014.01.061_bib1) 2006; 159 Cao (10.1016/j.jpowsour.2014.01.061_bib16) 2005; 176 Xiong (10.1016/j.jpowsour.2014.01.061_bib19) 2014; 245 Zheng (10.1016/j.jpowsour.2014.01.061_bib31) 2008; 179 Kosova (10.1016/j.jpowsour.2014.01.061_bib14) 2007; 174 Gover (10.1016/j.jpowsour.2014.01.061_bib32) 2000; 147 Wu (10.1016/j.jpowsour.2014.01.061_bib7) 2009; 191 Jang (10.1016/j.jpowsour.2014.01.061_bib23) 2005; 50 Sun (10.1016/j.jpowsour.2014.01.061_bib11) 2010; 55 Belharouak (10.1016/j.jpowsour.2014.01.061_bib8) 2003; 123 Wang (10.1016/j.jpowsour.2014.01.061_bib13) 2013; 558 Hwang (10.1016/j.jpowsour.2014.01.061_bib38) 2010; 195 Noh (10.1016/j.jpowsour.2014.01.061_bib10) 2013; 233 Park (10.1016/j.jpowsour.2014.01.061_bib18) 2008; 178 Cheng (10.1016/j.jpowsour.2014.01.061_bib28) 2013; 113 Ohzuku (10.1016/j.jpowsour.2014.01.061_bib27) 1993; 140 Mahesh (10.1016/j.jpowsour.2014.01.061_bib36) 2012; 16 Yabuuchi (10.1016/j.jpowsour.2014.01.061_bib4) 2003; 119–121 Sun (10.1016/j.jpowsour.2014.01.061_bib9) 2012; 11 Zhang (10.1016/j.jpowsour.2014.01.061_bib25) 2006; 52 Yue (10.1016/j.jpowsour.2014.01.061_bib17) 2012; 176 Sun (10.1016/j.jpowsour.2014.01.061_bib26) 2006; 8 Lin (10.1016/j.jpowsour.2014.01.061_bib33) 2013; 226 Cho (10.1016/j.jpowsour.2014.01.061_bib39) 2001; 92 Ahn (10.1016/j.jpowsour.2014.01.061_bib20) 2007; 7 Sun (10.1016/j.jpowsour.2014.01.061_bib37) 2007; 53 Fey (10.1016/j.jpowsour.2014.01.061_bib34) 2005; 199 Shaju (10.1016/j.jpowsour.2014.01.061_bib5) 2002; 48 Lin (10.1016/j.jpowsour.2014.01.061_bib6) 2008; 179 Shi (10.1016/j.jpowsour.2014.01.061_bib29) 2012; 83 Chowdari (10.1016/j.jpowsour.2014.01.061_bib30) 2002; 6 |
References_xml | – volume: 123 start-page: 247 year: 2003 end-page: 252 ident: bib8 publication-title: J. Power Sources – volume: 83 start-page: 105 year: 2012 end-page: 112 ident: bib29 publication-title: Electrochim. Acta – volume: 11 start-page: 942 year: 2012 end-page: 947 ident: bib9 publication-title: Nat. Mater. – volume: 233 start-page: 121 year: 2013 end-page: 130 ident: bib10 publication-title: J. Power Sources – volume: 166 start-page: 317 year: 2004 end-page: 325 ident: bib24 publication-title: Solid State Ionics – volume: 8 start-page: 821 year: 2006 end-page: 826 ident: bib26 publication-title: Electrochem. Commun. – volume: 179 start-page: 1794 year: 2008 end-page: 1799 ident: bib31 publication-title: Solid State Ionics – volume: 147 start-page: 4045 year: 2000 end-page: 4051 ident: bib32 publication-title: J. Electrochem. Soc. – volume: 53 start-page: 1013 year: 2007 end-page: 1019 ident: bib37 publication-title: Electrochim. Acta – volume: 195 start-page: 4255 year: 2010 end-page: 4265 ident: bib38 publication-title: J. Power Sources – volume: 50 start-page: 4168 year: 2005 end-page: 4173 ident: bib23 publication-title: Electrochim. Acta – volume: 54 start-page: 5796 year: 2009 end-page: 5803 ident: bib22 publication-title: Electrochim. Acta – volume: 176 start-page: 1207 year: 2005 end-page: 1211 ident: bib16 publication-title: Solid State Ionics – volume: 92 start-page: 35 year: 2001 end-page: 39 ident: bib39 publication-title: J. Power Sources – volume: 199 start-page: 22 year: 2005 end-page: 31 ident: bib34 publication-title: Surf. Coat. Technol. – volume: 55 start-page: 8621 year: 2010 end-page: 8627 ident: bib11 publication-title: Electrochim. Acta – volume: 189 start-page: 28 year: 2009 end-page: 33 ident: bib15 publication-title: J. Power Sources – volume: 159 start-page: 1328 year: 2006 end-page: 1333 ident: bib1 publication-title: J. Power Sources – volume: 191 start-page: 628 year: 2009 end-page: 632 ident: bib7 publication-title: J. Power Sources – volume: 63 start-page: 363 year: 2012 end-page: 368 ident: bib12 publication-title: Electrochim. Acta – volume: 162 start-page: 667 year: 2006 end-page: 672 ident: bib2 publication-title: J. Power Sources – volume: 113 start-page: 527 year: 2013 end-page: 535 ident: bib28 publication-title: Electrochim. Acta – volume: 226 start-page: 20 year: 2013 end-page: 26 ident: bib33 publication-title: J. Power Sources – volume: 6 start-page: 565 year: 2002 end-page: 571 ident: bib30 publication-title: J. Solid State Electrochem. – volume: 179 start-page: 1750 year: 2008 end-page: 1753 ident: bib6 publication-title: Solid State Ionics – volume: 7 start-page: 172 year: 2007 end-page: 175 ident: bib20 publication-title: Curr. Appl. Phys. – volume: 174 start-page: 965 year: 2007 end-page: 969 ident: bib14 publication-title: J. Power Sources – volume: 52 start-page: 1442 year: 2006 end-page: 1450 ident: bib25 publication-title: Electrochim. Acta – volume: 558 start-page: 172 year: 2013 end-page: 178 ident: bib13 publication-title: J. Alloys Compd. – volume: 160 start-page: 1342 year: 2006 end-page: 1348 ident: bib21 publication-title: J. Power Sources – volume: 16 start-page: 3011 year: 2012 end-page: 3025 ident: bib36 publication-title: J. Solid State Electrochem. – volume: 10 start-page: 1360 year: 2008 end-page: 1363 ident: bib35 publication-title: Electrochem. Commun. – volume: 178 start-page: 826 year: 2008 end-page: 831 ident: bib18 publication-title: J. Power Sources – volume: 30 start-page: 642 year: 2001 end-page: 643 ident: bib3 publication-title: Chem. Lett. – volume: 48 start-page: 145 year: 2002 end-page: 151 ident: bib5 publication-title: Electrochim. Acta – volume: 140 start-page: 1862 year: 1993 end-page: 1870 ident: bib27 publication-title: J. Electrochem. Soc. – volume: 119–121 start-page: 171 year: 2003 end-page: 174 ident: bib4 publication-title: J. Power Sources – volume: 176 start-page: 1823 year: 2012 end-page: 1828 ident: bib17 publication-title: J. Solid State Electrochem. – volume: 245 start-page: 183 year: 2014 end-page: 193 ident: bib19 publication-title: J. Power Sources – volume: 113 start-page: 527 year: 2013 ident: 10.1016/j.jpowsour.2014.01.061_bib28 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2013.09.085 – volume: 119–121 start-page: 171 year: 2003 ident: 10.1016/j.jpowsour.2014.01.061_bib4 publication-title: J. Power Sources doi: 10.1016/S0378-7753(03)00173-3 – volume: 8 start-page: 821 year: 2006 ident: 10.1016/j.jpowsour.2014.01.061_bib26 publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2006.03.040 – volume: 140 start-page: 1862 year: 1993 ident: 10.1016/j.jpowsour.2014.01.061_bib27 publication-title: J. Electrochem. Soc. doi: 10.1149/1.2220730 – volume: 6 start-page: 565 year: 2002 ident: 10.1016/j.jpowsour.2014.01.061_bib30 publication-title: J. Solid State Electrochem. doi: 10.1007/s10008-002-0287-2 – volume: 160 start-page: 1342 year: 2006 ident: 10.1016/j.jpowsour.2014.01.061_bib21 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2006.02.080 – volume: 558 start-page: 172 year: 2013 ident: 10.1016/j.jpowsour.2014.01.061_bib13 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2013.01.091 – volume: 226 start-page: 20 year: 2013 ident: 10.1016/j.jpowsour.2014.01.061_bib33 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2012.10.074 – volume: 10 start-page: 1360 year: 2008 ident: 10.1016/j.jpowsour.2014.01.061_bib35 publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2008.07.012 – volume: 16 start-page: 3011 year: 2012 ident: 10.1016/j.jpowsour.2014.01.061_bib36 publication-title: J. Solid State Electrochem. doi: 10.1007/s10008-012-1739-y – volume: 189 start-page: 28 year: 2009 ident: 10.1016/j.jpowsour.2014.01.061_bib15 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2008.12.046 – volume: 176 start-page: 1207 year: 2005 ident: 10.1016/j.jpowsour.2014.01.061_bib16 publication-title: Solid State Ionics doi: 10.1016/j.ssi.2005.02.023 – volume: 179 start-page: 1794 year: 2008 ident: 10.1016/j.jpowsour.2014.01.061_bib31 publication-title: Solid State Ionics doi: 10.1016/j.ssi.2008.01.091 – volume: 159 start-page: 1328 year: 2006 ident: 10.1016/j.jpowsour.2014.01.061_bib1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2005.11.083 – volume: 55 start-page: 8621 year: 2010 ident: 10.1016/j.jpowsour.2014.01.061_bib11 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2010.07.074 – volume: 176 start-page: 1823 year: 2012 ident: 10.1016/j.jpowsour.2014.01.061_bib17 publication-title: J. Solid State Electrochem. – volume: 162 start-page: 667 year: 2006 ident: 10.1016/j.jpowsour.2014.01.061_bib2 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2006.06.031 – volume: 11 start-page: 942 year: 2012 ident: 10.1016/j.jpowsour.2014.01.061_bib9 publication-title: Nat. Mater. doi: 10.1038/nmat3435 – volume: 52 start-page: 1442 year: 2006 ident: 10.1016/j.jpowsour.2014.01.061_bib25 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2006.02.058 – volume: 83 start-page: 105 year: 2012 ident: 10.1016/j.jpowsour.2014.01.061_bib29 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2012.08.029 – volume: 53 start-page: 1013 year: 2007 ident: 10.1016/j.jpowsour.2014.01.061_bib37 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2007.08.032 – volume: 92 start-page: 35 year: 2001 ident: 10.1016/j.jpowsour.2014.01.061_bib39 publication-title: J. Power Sources doi: 10.1016/S0378-7753(00)00499-7 – volume: 63 start-page: 363 year: 2012 ident: 10.1016/j.jpowsour.2014.01.061_bib12 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2011.12.121 – volume: 195 start-page: 4255 year: 2010 ident: 10.1016/j.jpowsour.2014.01.061_bib38 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2010.01.040 – volume: 123 start-page: 247 year: 2003 ident: 10.1016/j.jpowsour.2014.01.061_bib8 publication-title: J. Power Sources doi: 10.1016/S0378-7753(03)00529-9 – volume: 30 start-page: 642 year: 2001 ident: 10.1016/j.jpowsour.2014.01.061_bib3 publication-title: Chem. Lett. doi: 10.1246/cl.2001.642 – volume: 54 start-page: 5796 year: 2009 ident: 10.1016/j.jpowsour.2014.01.061_bib22 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2009.05.034 – volume: 174 start-page: 965 year: 2007 ident: 10.1016/j.jpowsour.2014.01.061_bib14 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2007.06.051 – volume: 245 start-page: 183 year: 2014 ident: 10.1016/j.jpowsour.2014.01.061_bib19 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2013.06.133 – volume: 179 start-page: 1750 year: 2008 ident: 10.1016/j.jpowsour.2014.01.061_bib6 publication-title: Solid State Ionics doi: 10.1016/j.ssi.2007.12.054 – volume: 147 start-page: 4045 year: 2000 ident: 10.1016/j.jpowsour.2014.01.061_bib32 publication-title: J. Electrochem. Soc. doi: 10.1149/1.1394016 – volume: 50 start-page: 4168 year: 2005 ident: 10.1016/j.jpowsour.2014.01.061_bib23 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2005.01.037 – volume: 178 start-page: 826 year: 2008 ident: 10.1016/j.jpowsour.2014.01.061_bib18 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2007.08.034 – volume: 48 start-page: 145 year: 2002 ident: 10.1016/j.jpowsour.2014.01.061_bib5 publication-title: Electrochim. Acta doi: 10.1016/S0013-4686(02)00593-5 – volume: 199 start-page: 22 year: 2005 ident: 10.1016/j.jpowsour.2014.01.061_bib34 publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2005.03.021 – volume: 191 start-page: 628 year: 2009 ident: 10.1016/j.jpowsour.2014.01.061_bib7 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2009.02.063 – volume: 166 start-page: 317 year: 2004 ident: 10.1016/j.jpowsour.2014.01.061_bib24 publication-title: Solid State Ionics doi: 10.1016/j.ssi.2003.11.010 – volume: 233 start-page: 121 year: 2013 ident: 10.1016/j.jpowsour.2014.01.061_bib10 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2013.01.063 – volume: 7 start-page: 172 year: 2007 ident: 10.1016/j.jpowsour.2014.01.061_bib20 publication-title: Curr. Appl. Phys. doi: 10.1016/j.cap.2006.02.014 |
SSID | ssj0001170 |
Score | 2.5705044 |
Snippet | Nickel-rich LiNi0.6Co0.2Mn0.2O2 cathode material is coated with nano-sized anatase TiO2 synthesized via hydrolyzation method to improve its electrochemical... |
SourceID | pascalfrancis crossref elsevier |
SourceType | Index Database Enrichment Source Publisher |
StartPage | 20 |
SubjectTerms | Anatase TiO2 coating Applied sciences Direct energy conversion and energy accumulation Electrical engineering. Electrical power engineering Electrical power engineering Electrochemical conversion: primary and secondary batteries, fuel cells Electrochemical performance Exact sciences and technology High voltage Lithium ion batteries Materials Nickel-rich cathode materials |
Title | An approach to application for LiNi0.6Co0.2Mn0.2O2 cathode material at high cutoff voltage by TiO2 coating |
URI | https://dx.doi.org/10.1016/j.jpowsour.2014.01.061 |
Volume | 256 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07a8MwEBahXVpK6ZOmj6ChqxPbkux4DKEhfaVDE8hmLFkCh2Kb1qF06W_vnR9pMpQMXQQ2kmxOx-k76bs7Qm4dTwrpGgm-iYAGCYQB6JLlBjp2uImQbYNsi4k3nvGHuZi3yLCJhUFaZW37K5teWuv6Ta-WZi9Pkt6rzUDZAG3D_AgcMOCXcx-1vPv9S_PAyirlTQJ4S9h7LUp40V3k2ScekiPFi5fpOz3nrw3qII8-QGymqnextgmNjshhjR7poPrBY9LS6QnZX8speEoWg5Q2icJpkdG1G2oKAJU-JZPE7nrDzO66zyk0Ly7F3K1ZrCmg11IhaVRQzGNM1bLIjKFgwgqwO1R-0WmC_bMI2dJnZDa6mw7HVl1QwVLMDgpLSqmFb3MlhGYYUyr9qC-lH8SBhqWMldIGLCD4HEaLGLANM-DQRBpRgBKeZudkJ81SfUFoH2CCCkDezFXcZkq6LOqbyGeer6ThvE1EI8VQ1dnGsejFW9jQyhZhI_0QpR_aTgjSb5Pealxe5dvYOiJoFinc0JwQNoWtYzsbq7r6JEb0omt2-Y_Jr8gePiGvzBHXZKd4X-obQDCF7JQq2iG7g_vH8eQHxtHwig |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLbGOABCiKd4kwPXbW2TtOtxmkAbjHFgSNyiJk2kTqidoAjx77G3dhoHxIFLDm2dVo7lfG4-2wDXfqilDpzG2ETiQATCGG2pFcQ29YVLiG1DbItxOHgWdy_ypQH9OheGaJWV71_49Lm3rq50Km12ZlnWefI4GhuibZyfgEN3DdapOpVswnpveD8YLx0yNVeZHyZgwEQCK4nC0_Z0VnzSf3JieYl5Bc_Q_22P2p4l76g5t2h5sbIP3e7CTgUgWW_xjXvQsPk-bK2UFTyAaS9nda1wVhZs5ZCaIUZlo2ycee2wX3jt4CHH4TFgVL61SC1DADu3SZaUjEoZM_NRFs4x9GIluh6mv9gko-eLhAjTh_B8ezPpD1pVT4WW4V5ctrTWVkaeMFJaTmmlOkq6WkdxGltczdQY69AJYtjhrEwR3nCHMU1iCQgYGVp-BM28yO0xsC4iBRMLEfHACI8bHfCk65KIh5HRTogTkLUWlakKjlPfi1dVM8umqta-Iu0rz1eo_RPoLOVmi5Ibf0rE9SKpH8ajcF_4U_byx6ouX0lJvRSdnf5j8ivYGEweRmo0HN-fwSbdIZqZL8-hWb592AsENKW-rAz2GwQS8zs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+approach+to+application+for+LiNi0.6Co0.2Mn0.2O2+cathode+material+at+high+cutoff+voltage+by+TiO2+coating&rft.jtitle=Journal+of+power+sources&rft.au=YANPING+CHEN&rft.au=YUN+ZHANG&rft.au=BAOJUN+CHEN&rft.au=ZONGYI+WANG&rft.date=2014-06-15&rft.pub=Elsevier&rft.issn=0378-7753&rft.volume=256&rft.spage=20&rft.epage=27&rft_id=info:doi/10.1016%2Fj.jpowsour.2014.01.061&rft.externalDBID=n%2Fa&rft.externalDocID=28250642 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-7753&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-7753&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-7753&client=summon |