Analysis of coupled motion constraints and coupling errors for a six-axis magnetic levitation stage

This paper presents the coupled motion constraints and coupling errors analysis of a magnetic levitation stage, which are two aspects of the coupling characteristics of magnetic levitation stage caused by force coupling. Aiming at the motion constraint coupling problem, this paper proposes a motion...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science Vol. 234; no. 11; pp. 2097 - 2112
Main Authors Sheng, Xiaochao, Menq, Chia-Hsiang, Tao, Tao
Format Journal Article
LanguageEnglish
Published London, England SAGE Publications 01.06.2020
SAGE PUBLICATIONS, INC
Subjects
Online AccessGet more information

Cover

Loading…
Abstract This paper presents the coupled motion constraints and coupling errors analysis of a magnetic levitation stage, which are two aspects of the coupling characteristics of magnetic levitation stage caused by force coupling. Aiming at the motion constraint coupling problem, this paper proposes a motion constrain method based on the force distribution matrix of the magnetic levitation stage. By this method, the motion constraint intervals without input saturation for single-degree-of-freedom motion, in-plane motion, and out-of-plane motion of magnetic levitation stage are established. When used for motion control, these constraints can provide the motion constraint specifications for the magnetic levitation stage, avoid the input saturation problem caused by the actuation force coupling, and provide a theoretical basis for magnetic levitation stage trajectory planning. Aiming at reducing the coupling error, this paper proposes a strategy to evaluate the coupling degree of the magnetic levitation stage actuation force by the condition number of the actuation force transfer matrix and the singular value of the force and torque error matrix. On this basis, the force and torque coupling errors caused by the translational and rotational movements of the magnetic levitation stage are studied, and the mechanism and characteristics of the coupling error between the interaction of translational and rotational movements are revealed. Based on the obtained results, the decoupling algorithm of the magnetic levitation stage is designed. Experimental results of the normalized step response demonstrate that the linearity of the magnetic levitation stage will be destroyed by the current saturation, and coupling error can also be introduced. Therefore, it is necessary to study the motion constrain strategy to provide comprehensive criteria for the trajectory planning and controller design. Experimental results of six-axis coupling error analysis show that the coupling error of x- and y-axes translational movement is reduced by 69.34% and 69.60%, respectively. This method provides a theoretical basis for the decoupling of the magnetic levitation stage and reducing the coupling error.
AbstractList This paper presents the coupled motion constraints and coupling errors analysis of a magnetic levitation stage, which are two aspects of the coupling characteristics of magnetic levitation stage caused by force coupling. Aiming at the motion constraint coupling problem, this paper proposes a motion constrain method based on the force distribution matrix of the magnetic levitation stage. By this method, the motion constraint intervals without input saturation for single-degree-of-freedom motion, in-plane motion, and out-of-plane motion of magnetic levitation stage are established. When used for motion control, these constraints can provide the motion constraint specifications for the magnetic levitation stage, avoid the input saturation problem caused by the actuation force coupling, and provide a theoretical basis for magnetic levitation stage trajectory planning. Aiming at reducing the coupling error, this paper proposes a strategy to evaluate the coupling degree of the magnetic levitation stage actuation force by the condition number of the actuation force transfer matrix and the singular value of the force and torque error matrix. On this basis, the force and torque coupling errors caused by the translational and rotational movements of the magnetic levitation stage are studied, and the mechanism and characteristics of the coupling error between the interaction of translational and rotational movements are revealed. Based on the obtained results, the decoupling algorithm of the magnetic levitation stage is designed. Experimental results of the normalized step response demonstrate that the linearity of the magnetic levitation stage will be destroyed by the current saturation, and coupling error can also be introduced. Therefore, it is necessary to study the motion constrain strategy to provide comprehensive criteria for the trajectory planning and controller design. Experimental results of six-axis coupling error analysis show that the coupling error of x- and y-axes translational movement is reduced by 69.34% and 69.60%, respectively. This method provides a theoretical basis for the decoupling of the magnetic levitation stage and reducing the coupling error.
ArticleNumber 2097
Author Sheng, Xiaochao
Tao, Tao
Menq, Chia-Hsiang
Author_xml – sequence: 1
  givenname: Xiaochao
  surname: Sheng
  fullname: Sheng, Xiaochao
– sequence: 2
  givenname: Chia-Hsiang
  surname: Menq
  fullname: Menq, Chia-Hsiang
– sequence: 3
  givenname: Tao
  orcidid: 0000-0002-7333-7953
  surname: Tao
  fullname: Tao, Tao
  email: taotao@mail.xjtu.edu.cn
BookMark eNp9UMtKAzEUDVLBtrp3GXA9mszkMVmW4gsKbnQ9ZDJJSZkmNUml_XszTkEo6N1cLufBPWcGJs47DcAtRvcYc_6ABCUEsbJEAlWckQswLRHBRSnqagKmA1wM-BWYxbhBeUpGp0AtnOyP0UboDVR-v-t1B7c-We_y6WIK0roUoXTdCFu3hjoEHyI0PkAJoz0U8pANtnLtdLIK9vrLJvljEZNc62twaWQf9c1pz8HH0-P78qVYvT2_LherQlVIpKLljDJSmVqxjiuichKuRIVbxbhQlAmjaS1xa5BBmLWmlkJVXNeIyq4lqkNzcDf67oL_3OuYmo3fh5wvNiVBFBMqKpRZaGSp4GMM2jS7YLcyHBuMmqHK5rzKLGFnEnUKONTT_ycsRmHMNfx-8yf_G94Ehv0
CitedBy_id crossref_primary_10_1016_j_ymssp_2021_108478
Cites_doi 10.1137/1.9780898719512
10.1109/TCST.2013.2245668
10.1109/3516.990889
10.1109/TIA.2005.853374
10.1016/S0141-6359(98)00009-9
10.1016/j.cirp.2012.03.145
10.1109/TRO.2007.892232
10.1109/TIE.2016.2562606
10.1016/j.jsv.2010.03.003
10.1063/1.2776011
10.1177/0954406212447225
10.1016/j.jsv.2015.07.013
10.1002/asjc.1263
10.1177/0959651817750520
10.1177/0954405413497196
10.1109/TMECH.2004.842219
10.1177/0959651812445860
10.1098/rspa.1988.0036
10.1088/0964-1726/23/2/025030
10.1115/1.1978906
10.1109/TMECH.2012.2194161
10.1109/TMECH.2004.828648
10.1002/asjc.92
10.1109/TMECH.2016.2621108
10.1109/TMAG.2006.875839
ContentType Journal Article
Copyright IMechE 2020
Copyright_xml – notice: IMechE 2020
DBID AAYXX
CITATION
7TB
8FD
F28
FR3
DOI 10.1177/0954406220903764
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList
CrossRef
Engineering Research Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Engineering
EISSN 2041-2983
EndPage 2112
ExternalDocumentID 10_1177_0954406220903764
n/a
10.1177_0954406220903764
GroupedDBID -MK
-TN
-~X
.DC
0R~
29P
3V.
4.4
6TJ
88I
8AF
8AO
8FE
8FG
8R4
8R5
8WZ
A6W
AAFNC
AALXP
AAOTM
AAPFT
AAQDB
AAYJJ
ABJCF
ABUBZ
ABUWG
ACGFS
ACGOD
ACIWK
ACKIV
ADQAE
AEDFJ
AEWDL
AFKRA
AFKRG
AIDUJ
AIOMO
AJCXD
AJUZI
AKDDG
ALMA_UNASSIGNED_HOLDINGS
ARTOV
ASPBG
AVWKF
AZFZN
AZQEC
BENPR
BGLVJ
BPACV
BPHCQ
CAG
CCPQU
COF
DWQXO
EBS
EJD
FEDTE
FHBDP
G8K
GNUQQ
HCIFZ
HVGLF
HZ~
I6U
IL9
J8X
L6V
L7B
M2P
M2Q
M4V
M7S
O9-
P.B
PQQKQ
PRI
PROAC
PTHSS
PZZ
Q1R
Q2X
Q7S
SC5
SCNPE
SFC
UCJ
XSW
~33
AAYXX
CITATION
H13
7TB
8FD
F28
FR3
ID FETCH-LOGICAL-c309t-b765643f8c6d7c4c2097c931bc679c569fe58a1bf0f016bf8a9c37e805adb4cd0
ISSN 0954-4062
IngestDate Thu Oct 10 16:51:15 EDT 2024
Wed Oct 09 16:50:28 EDT 2024
Tue Jul 23 14:13:37 EDT 2024
Tue Jul 16 20:48:09 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords coupled motion constraints
Coupling
coupling error
magnetic levitation stage
force distribution
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c309t-b765643f8c6d7c4c2097c931bc679c569fe58a1bf0f016bf8a9c37e805adb4cd0
ORCID 0000-0002-7333-7953
PQID 2405145930
PQPubID 36167
PageCount 16
ParticipantIDs proquest_journals_2405145930
crossref_primary_10_1177_0954406220903764
crossref_citationtrail_10_1177_0954406220903764
sage_journals_10_1177_0954406220903764
PublicationCentury 2000
PublicationDate 20200600
2020-06-00
20200601
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 6
  year: 2020
  text: 20200600
PublicationDecade 2020
PublicationPlace London, England
PublicationPlace_xml – name: London, England
– name: London
PublicationTitle Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science
PublicationYear 2020
Publisher SAGE Publications
SAGE PUBLICATIONS, INC
Publisher_xml – name: SAGE Publications
– name: SAGE PUBLICATIONS, INC
References Kim, Trumper 1998; 22
Du, Chen, Wu 2014; 228
Hoque, Mizuno, Ishino 2010; 329
Verma, Shakir, Kim 2006; 42
Yong, Bhikkaji, Moheimani 2013; 18
Li, Zhu, Yang 2017; 64
Dyck, Lu, Altintas 2017; 22
Mizuno, Takasaki, Ishino 2016; 18
Jayawant 1988; 416
Verma, Kim, Shakir 2005; 41
Kuo, Menq 2005; 10
Shan, Kuo, Zhang 2002; 7
Gu, Kim, Verma 2005; 127
Zhu, Cazzolato, Robertson 2015; 358
Wang, Long, Li 2018; 232
Oomen, van Herpen, Quist 2014; 22
Wadikhaye, Yong, Bhikkaji 2014; 22
Zhang, Zhu, Mu 2012; 226
Lu 2012; 61
Zhang, Fang, Zhou 2009; 11
Zhang, Mei, Zhang 2013; 227
Zhang, Menq 2007; 23
Zhang, Menq 2007; 78
Verma, Kim, Gu 2004; 9
bibr5-0954406220903764
bibr22-0954406220903764
bibr18-0954406220903764
bibr9-0954406220903764
bibr27-0954406220903764
bibr14-0954406220903764
bibr4-0954406220903764
bibr21-0954406220903764
bibr13-0954406220903764
bibr26-0954406220903764
bibr17-0954406220903764
bibr8-0954406220903764
bibr16-0954406220903764
bibr20-0954406220903764
bibr25-0954406220903764
bibr3-0954406220903764
bibr7-0954406220903764
bibr12-0954406220903764
bibr10-0954406220903764
bibr23-0954406220903764
bibr1-0954406220903764
bibr2-0954406220903764
bibr19-0954406220903764
bibr24-0954406220903764
bibr6-0954406220903764
bibr11-0954406220903764
bibr15-0954406220903764
References_xml – volume: 227
  start-page: 213
  year: 2013
  end-page: 229
  article-title: Application of decoupling fuzzy sliding mode control with active disturbance rejection for MIMO magnetic levitation system
  publication-title: Proc IMechE, Part C: J Mechanical Engineering Science
  contributor:
    fullname: Zhang
– volume: 22
  start-page: 530
  year: 2017
  end-page: 540
  article-title: Magnetically levitated rotary table with six degrees of freedom
  publication-title: IEEE/ASME Trans Mechatron
  contributor:
    fullname: Altintas
– volume: 42
  start-page: 2052
  year: 2006
  end-page: 2062
  article-title: Novel electromagnetic actuation scheme for multiaxis nanopositioning
  publication-title: IEEE Trans Magn
  contributor:
    fullname: Kim
– volume: 22
  start-page: 66
  year: 1998
  end-page: 77
  article-title: High-precision magnetic levitation stage for photolithography
  publication-title: Precis Eng
  contributor:
    fullname: Trumper
– volume: 78
  start-page: 3438
  year: 2007
  article-title: Laser interferometric system for six-axis motion measurement
  publication-title: Rev Scient Instrum
  contributor:
    fullname: Menq
– volume: 64
  start-page: 4139
  year: 2017
  end-page: 4149
  article-title: An integrated model-data-based zero-phase error tracking feedforward control strategy with application to an ultraprecision wafer stage
  publication-title: IEEE Trans Ind Electron
  contributor:
    fullname: Yang
– volume: 11
  start-page: 166
  year: 2009
  end-page: 174
  article-title: Image-based hysteresis modeling and compensation for an AFM piezo-scanner
  publication-title: Asian J Control
  contributor:
    fullname: Zhou
– volume: 329
  start-page: 3417
  year: 2010
  end-page: 3430
  article-title: A six-axis hybrid vibration isolation system using active zero-power control supported by passive weight support mechanism
  publication-title: J Sound Vib
  contributor:
    fullname: Ishino
– volume: 232
  start-page: 315
  year: 2018
  end-page: 323
  article-title: Levitation control of permanent magnet electromagnetic hybrid suspension maglev train
  publication-title: Proc IMechE, Part I: J Systems and Control Engineering
  contributor:
    fullname: Li
– volume: 22
  start-page: 102
  year: 2014
  end-page: 118
  article-title: Connecting system identification and robust control for next-generation motion control of a wafer stage
  publication-title: IEEE Trans Control Syst Technol
  contributor:
    fullname: Quist
– volume: 416
  start-page: 245
  year: 1988
  end-page: 320
  article-title: Review lecture. Electromagnetic suspension and levitation techniques
  publication-title: Proc R Soc Lond
  contributor:
    fullname: Jayawant
– volume: 358
  start-page: 48
  year: 2015
  end-page: 73
  article-title: Vibration isolation using six degree-of-freedom quasi-zero stiffness magnetic levitation
  publication-title: J Sound Vib
  contributor:
    fullname: Robertson
– volume: 41
  start-page: 1159
  year: 2005
  end-page: 1167
  article-title: Multi-axis maglev nanopositioner for precision manufacturing and manipulation applications
  publication-title: IEEE Trans Ind Appl
  contributor:
    fullname: Shakir
– volume: 226
  start-page: 875
  year: 2012
  end-page: 886
  article-title: Decoupling and levitation control of six-degrees-of-freedom magnetically levitated stage with moving coils based on commutation of coil array
  publication-title: Proc IMechE, Part I: J Systems & Control Engineering
  contributor:
    fullname: Mu
– volume: 127
  start-page: 433
  year: 2005
  end-page: 442
  article-title: Nanoscale motion control with a compact minimum-actuator magnetic levitator
  publication-title: J Dyn Syst Meas Control
  contributor:
    fullname: Verma
– volume: 7
  start-page: 67
  year: 2002
  end-page: 78
  article-title: Ultra precision motion control of a multiple degrees of freedom magnetic suspension stage
  publication-title: IEEE/ASME Trans Mechatron
  contributor:
    fullname: Zhang
– volume: 61
  start-page: 359
  year: 2012
  end-page: 362
  article-title: 6D direct-drive technology for planar motion stages
  publication-title: CIRP Ann-Manuf Technol
  contributor:
    fullname: Lu
– volume: 18
  start-page: 1060
  year: 2013
  end-page: 1071
  article-title: Design, modeling, and FPAA-based control of a high-speed atomic force microscope nanopositioner
  publication-title: IEEE/ASME Trans Mechatron
  contributor:
    fullname: Moheimani
– volume: 9
  start-page: 384
  year: 2004
  end-page: 391
  article-title: Six-axis nanopositioning device with precision magnetic levitation technology
  publication-title: IEEE/ASME Trans Mechatron
  contributor:
    fullname: Gu
– volume: 23
  start-page: 196
  year: 2007
  end-page: 205
  article-title: Six-axis magnetic levitation and motion control
  publication-title: IEEE Trans Robot
  contributor:
    fullname: Menq
– volume: 228
  start-page: 127
  year: 2014
  end-page: 139
  article-title: Development of a force-decoupled parallel alignment device for nanoimprint applications
  publication-title: Proc IMechE, Part B: J Engineering Manufacture
  contributor:
    fullname: Wu
– volume: 10
  start-page: 50
  year: 2005
  end-page: 59
  article-title: Modeling and control of a six-axis precision motion control stage
  publication-title: IEEE/ASME Trans Mechatron
  contributor:
    fullname: Menq
– volume: 22
  start-page: 025030
  year: 2014
  article-title: Control of a piezoelectrically actuated high-speed serial-kinematic afm nanopositioner
  publication-title: Smart Mater Struct
  contributor:
    fullname: Bhikkaji
– volume: 18
  start-page: 1313
  year: 2016
  end-page: 1327
  article-title: Controllability and observability of parallel magnetic suspension systems
  publication-title: Asian J Control
  contributor:
    fullname: Ishino
– ident: bibr27-0954406220903764
  doi: 10.1137/1.9780898719512
– ident: bibr1-0954406220903764
  doi: 10.1109/TCST.2013.2245668
– ident: bibr22-0954406220903764
  doi: 10.1109/3516.990889
– ident: bibr17-0954406220903764
  doi: 10.1109/TIA.2005.853374
– ident: bibr20-0954406220903764
  doi: 10.1016/S0141-6359(98)00009-9
– ident: bibr12-0954406220903764
  doi: 10.1016/j.cirp.2012.03.145
– ident: bibr24-0954406220903764
  doi: 10.1109/TRO.2007.892232
– ident: bibr2-0954406220903764
  doi: 10.1109/TIE.2016.2562606
– ident: bibr7-0954406220903764
  doi: 10.1016/j.jsv.2010.03.003
– ident: bibr25-0954406220903764
  doi: 10.1063/1.2776011
– ident: bibr9-0954406220903764
  doi: 10.1177/0954406212447225
– ident: bibr8-0954406220903764
  doi: 10.1016/j.jsv.2015.07.013
– ident: bibr10-0954406220903764
  doi: 10.1002/asjc.1263
– ident: bibr11-0954406220903764
  doi: 10.1177/0959651817750520
– ident: bibr4-0954406220903764
  doi: 10.1177/0954405413497196
– ident: bibr23-0954406220903764
  doi: 10.1109/TMECH.2004.842219
– ident: bibr21-0954406220903764
  doi: 10.1177/0959651812445860
– ident: bibr14-0954406220903764
  doi: 10.1098/rspa.1988.0036
– ident: bibr6-0954406220903764
  doi: 10.1088/0964-1726/23/2/025030
– ident: bibr15-0954406220903764
– ident: bibr18-0954406220903764
  doi: 10.1115/1.1978906
– ident: bibr5-0954406220903764
  doi: 10.1109/TMECH.2012.2194161
– ident: bibr16-0954406220903764
  doi: 10.1109/TMECH.2004.828648
– ident: bibr3-0954406220903764
  doi: 10.1002/asjc.92
– ident: bibr26-0954406220903764
– ident: bibr13-0954406220903764
  doi: 10.1109/TMECH.2016.2621108
– ident: bibr19-0954406220903764
  doi: 10.1109/TMAG.2006.875839
SSID ssj0000265
Score 2.3008575
Snippet This paper presents the coupled motion constraints and coupling errors analysis of a magnetic levitation stage, which are two aspects of the coupling...
SourceID proquest
crossref
sage
SourceType Aggregation Database
Index Database
Publisher
StartPage 2097
SubjectTerms Actuation
Algorithms
Control systems design
Coupling
Decoupling
Error analysis
Force distribution
Linearity
Magnetic levitation
Motion control
Railroad transportation
Saturation
Step response
Stress concentration
Torque
Trajectory control
Trajectory planning
Transfer matrices
Title Analysis of coupled motion constraints and coupling errors for a six-axis magnetic levitation stage
URI https://journals.sagepub.com/doi/full/10.1177/0954406220903764
https://www.proquest.com/docview/2405145930
Volume 234
hasFullText
inHoldings
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Na9swFBfpdtkOY58sWwc6jMEIbmVbtqPjKBth0LFDCrkZSZa6QGtnsQNlf2f_oD592W5oR7eLMcqTHOv9LL339D4Q-ljl2mTF4pFJtRlRpuOIcaki2JwSHTOhY2Jih09_5Isz-n2VrSaT65HX0q4TR_LPnXEl_8NVaAO-mijZf-BsPyg0wD3wF67AYbg-iMfjjCKy2W0uQHp0ZXmMN3lryz90rQ9d221s5Lnabk19Hes8OWvXVxG_ggEu-XltwhlnJtrcOyCC3HjbUehnv9m1wbUg-Bp4sfNUmUBiy_eQ6LA9Ail1281OnK2-F38vB1I15ESc-R25N_z8Um4xWq15Ax2aHiCq_u3cBdY8WphI0PPBCGHNv0tP7E0aCRlcr0ZnafdZLSmovH4BV7YtITSOEubq4YRFPfEmUo_eeLxGE-cR7Pd70ICTu_cSe5ptnmgemBiDVuEyru9l6PbE5T7pATqwyfmCXJDYwqb9KwyH5sf7PW8LSYPmM3I2tPLP8jl65jmHvzgUvkATVb9ET0fpLF8hGfCIG409HrHDIx7hEQMeccAjdnjEgEfMccAjDnjEAx6xxeNrdPbt6_JkEfkiHpFMCesiUYDGQFM9l3lVSCrN7EuWxkLmBZNZzrTK5jwWmmjQPoSecybTQs1JxitBZUXeoEd1U6u3CJOcCJ3knCqRUEErYXR3ENAlUUylOp6i4zBrpfT_zbzZRRmHpPZ78zxFn_seG5fd5S-0h4ERpV8D2hLkYdA4MpaSKfpkmDP8dN847x5K-B49GT6OQ_RYA7H6ACJwJ24AWAesiw
link.rule.ids 786
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+of+coupled+motion+constraints+and+coupling+errors+for+a+six-axis+magnetic+levitation+stage&rft.jtitle=Proceedings+of+the+Institution+of+Mechanical+Engineers.+Part+C%2C+Journal+of+mechanical+engineering+science&rft.au=Sheng%2C+Xiaochao&rft.au=Menq%2C+Chia-Hsiang&rft.au=Tao%2C+Tao&rft.date=2020-06-01&rft.pub=SAGE+Publications&rft.issn=0954-4062&rft.eissn=2041-2983&rft.volume=234&rft.issue=11&rft.spage=2097&rft.epage=2112&rft_id=info:doi/10.1177%2F0954406220903764&rft.externalDocID=10.1177_0954406220903764
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0954-4062&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0954-4062&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0954-4062&client=summon