Real and counterfeit cores: how feedback expands haloes and disrupts tracers of inner gravitational potential in dwarf galaxies

ABSTRACT The tension between the diverging density profiles in Lambda cold dark matter simulations and the constant-density inner regions of observed galaxies is a long-standing challenge known as the ‘core–cusp’ problem. We demonstrate that the SMUGGLE galaxy formation model implemented in the arep...

Full description

Saved in:
Bibliographic Details
Published inMonthly notices of the Royal Astronomical Society Vol. 520; no. 1; pp. 461 - 479
Main Authors Jahn, Ethan D, Sales, Laura V, Marinacci, Federico, Vogelsberger, Mark, Torrey, Paul, Qi, Jia, Smith, Aaron, Li, Hui, Kannan, Rahul, Burger, Jan D, Zavala, Jesús
Format Journal Article
LanguageEnglish
Published Oxford University Press 28.01.2023
Subjects
Online AccessGet full text
ISSN0035-8711
1365-2966
DOI10.1093/mnras/stad109

Cover

Loading…
Abstract ABSTRACT The tension between the diverging density profiles in Lambda cold dark matter simulations and the constant-density inner regions of observed galaxies is a long-standing challenge known as the ‘core–cusp’ problem. We demonstrate that the SMUGGLE galaxy formation model implemented in the arepo moving mesh code forms constant-density cores in idealized dwarf galaxies of M⋆ ≈ 8 × 107 Msun with initially cuspy dark matter (DM) haloes of M200 ≈ 1010 Msun. Identical initial conditions run with an effective equation of state interstellar medium model preserve cuspiness. Literature on the subject has pointed to the low density threshold for star formation, ρth, in such effective models as an obstacle to baryon-induced core formation. Using a SMUGGLE run with equal ρth, we demonstrate that core formation can proceed at low density thresholds, indicating that ρth is insufficient on its own to determine whether a galaxy develops a core. We reaffirm that the ability to resolve a multiphase interstellar medium at sufficiently high densities is a more reliable indicator of core formation than any individual model parameter. In SMUGGLE, core formation is accompanied by large degrees of non-circular motion, with gas rotational velocity profiles that consistently fall below the circular velocity $v_\text{circ} = \sqrt{GM/R}$ out to ∼2 kpc. Asymmetric drift corrections help recover the average underlying DM potential for some of our less efficient feedback runs, but time-variations in the instantaneous azimuthal gas velocity component are substantial, highlighting the need for careful modelling in the inner regions of dwarfs to infer the true distribution of DM.
AbstractList The tension between the diverging density profiles in Lambda cold dark matter simulations and the constant-density inner regions of observed galaxies is a long-standing challenge known as the ‘core–cusp’ problem. We demonstrate that the SMUGGLE galaxy formation model implemented in the arepo moving mesh code forms constant-density cores in idealized dwarf galaxies of M⋆ ≈ 8 × 107 Msun with initially cuspy dark matter (DM) haloes of M200 ≈ 1010 Msun. Identical initial conditions run with an effective equation of state interstellar medium model preserve cuspiness. Literature on the subject has pointed to the low density threshold for star formation, ρth, in such effective models as an obstacle to baryon-induced core formation. Using a SMUGGLE run with equal ρth, we demonstrate that core formation can proceed at low density thresholds, indicating that ρth is insufficient on its own to determine whether a galaxy develops a core. We reaffirm that the ability to resolve a multiphase interstellar medium at sufficiently high densities is a more reliable indicator of core formation than any individual model parameter. In SMUGGLE, core formation is accompanied by large degrees of non-circular motion, with gas rotational velocity profiles that consistently fall below the circular velocity $v_\text{circ} = \sqrt{GM/R}$ out to ∼2 kpc. Asymmetric drift corrections help recover the average underlying DM potential for some of our less efficient feedback runs, but time-variations in the instantaneous azimuthal gas velocity component are substantial, highlighting the need for careful modelling in the inner regions of dwarfs to infer the true distribution of DM.
ABSTRACT The tension between the diverging density profiles in Lambda cold dark matter simulations and the constant-density inner regions of observed galaxies is a long-standing challenge known as the ‘core–cusp’ problem. We demonstrate that the SMUGGLE galaxy formation model implemented in the arepo moving mesh code forms constant-density cores in idealized dwarf galaxies of M⋆ ≈ 8 × 107 Msun with initially cuspy dark matter (DM) haloes of M200 ≈ 1010 Msun. Identical initial conditions run with an effective equation of state interstellar medium model preserve cuspiness. Literature on the subject has pointed to the low density threshold for star formation, ρth, in such effective models as an obstacle to baryon-induced core formation. Using a SMUGGLE run with equal ρth, we demonstrate that core formation can proceed at low density thresholds, indicating that ρth is insufficient on its own to determine whether a galaxy develops a core. We reaffirm that the ability to resolve a multiphase interstellar medium at sufficiently high densities is a more reliable indicator of core formation than any individual model parameter. In SMUGGLE, core formation is accompanied by large degrees of non-circular motion, with gas rotational velocity profiles that consistently fall below the circular velocity $v_\text{circ} = \sqrt{GM/R}$ out to ∼2 kpc. Asymmetric drift corrections help recover the average underlying DM potential for some of our less efficient feedback runs, but time-variations in the instantaneous azimuthal gas velocity component are substantial, highlighting the need for careful modelling in the inner regions of dwarfs to infer the true distribution of DM.
Author Sales, Laura V
Torrey, Paul
Qi, Jia
Marinacci, Federico
Zavala, Jesús
Smith, Aaron
Li, Hui
Kannan, Rahul
Vogelsberger, Mark
Burger, Jan D
Jahn, Ethan D
Author_xml – sequence: 1
  givenname: Ethan D
  orcidid: 0000-0002-4479-5461
  surname: Jahn
  fullname: Jahn, Ethan D
  email: ejahn003@ucr.edu
– sequence: 2
  givenname: Laura V
  orcidid: 0000-0002-3790-720X
  surname: Sales
  fullname: Sales, Laura V
– sequence: 3
  givenname: Federico
  orcidid: 0000-0003-3816-7028
  surname: Marinacci
  fullname: Marinacci, Federico
– sequence: 4
  givenname: Mark
  orcidid: 0000-0001-8593-7692
  surname: Vogelsberger
  fullname: Vogelsberger, Mark
– sequence: 5
  givenname: Paul
  orcidid: 0000-0002-5653-0786
  surname: Torrey
  fullname: Torrey, Paul
– sequence: 6
  givenname: Jia
  surname: Qi
  fullname: Qi, Jia
– sequence: 7
  givenname: Aaron
  orcidid: 0000-0002-2838-9033
  surname: Smith
  fullname: Smith, Aaron
– sequence: 8
  givenname: Hui
  orcidid: 0000-0002-1253-2763
  surname: Li
  fullname: Li, Hui
– sequence: 9
  givenname: Rahul
  orcidid: 0000-0001-6092-2187
  surname: Kannan
  fullname: Kannan, Rahul
– sequence: 10
  givenname: Jan D
  orcidid: 0000-0001-8293-3709
  surname: Burger
  fullname: Burger, Jan D
– sequence: 11
  givenname: Jesús
  surname: Zavala
  fullname: Zavala, Jesús
BookMark eNqFkM1LAzEUxINUsFaP3nP0sjYf292uNyl-QUEQPS9vsy9tdJssSWrryX_d2PYkiKc3D34zDHNKBtZZJOSCsyvOKjleWQ9hHCK06T0iQy6LSSaqohiQIWNykk1Lzk_IaQhvjLFcimJIvp4ROgq2pcqtbUSv0cSkPYZrunQbqhHbBtQ7xW2fsECX0DkMO0trgl_3MdDoQaEP1GlqrEVPFx4-TIRonE3xvYtoo0nKWNpuwGu6gA62BsMZOdbQBTw_3BF5vbt9mT1k86f7x9nNPFOSVTFrUmHB2ZRLIXI24UI1BSsrLcqm0UU7VRyF1q0AWZW55JKhLEXBcw0yz9WklCMi97nKuxA86lod-qXupqs5q382rHcb1ocNkyv75eq9WYH__JO_3PNu3f-DfgN_E4kd
CitedBy_id crossref_primary_10_1093_mnras_stae797
crossref_primary_10_3847_1538_4357_ad49a5
crossref_primary_10_3847_1538_4357_ad10a4
crossref_primary_10_3847_1538_4357_ad13ee
crossref_primary_10_3847_1538_4357_ad7f57
crossref_primary_10_1093_mnras_stae669
crossref_primary_10_3847_1538_4357_ad9b89
crossref_primary_10_1093_mnras_stad549
crossref_primary_10_1093_mnras_stad2152
Cites_doi 10.1088/0067-0049/182/1/216
10.1093/mnras/sts514
10.1103/PhysRevD.100.063007
10.1093/mnras/stz937
10.1086/527543
10.1088/1475-7516/2020/01/001
10.1093/mnras/stu1536
10.1111/j.1365-2966.2011.18680.x
10.1093/mnras/stt066
10.1086/187350
10.1103/PhysRevX.9.031020
10.1093/mnras/stv2165
10.1093/mnras/stw1876
10.1093/mnras/stz2613
10.3847/0004-6256/152/6/157
10.1093/mnras/stu1713
10.1088/1475-7516/2020/06/027
10.1016/j.physrep.2017.11.004
10.1093/mnras/stv2856
10.1093/mnras/stz340
10.1093/mnras/stz496
10.1093/mnras/stw3285
10.3847/2041-8205/827/2/L23
10.1093/mnras/sty354
10.1086/168845
10.1093/mnrasl/slz110
10.1111/j.1365-2966.2012.20571.x
10.1051/0004-6361/201935553
10.1088/0004-637X/761/1/71
10.1093/mnras/stx1887
10.1093/mnras/staa316
10.1088/0004-6256/141/6/193
10.1088/0004-637X/703/2/1416
10.1086/426067
10.1086/321400
10.1093/mnras/stv565
10.1111/j.1365-2966.2006.11097.x
10.1093/mnras/249.3.523
10.1093/mnras/staa3028
10.1038/s42254-019-0127-2
10.1088/2041-8205/789/1/L17
10.3847/1538-4365/ab908c
10.1093/mnras/stx522
10.1093/mnras/stx071
10.1093/mnras/stx2855
10.1093/mnras/stx1757
10.1046/j.1365-8711.2003.06206.x
10.3847/1538-4357/ac1a0f
10.1093/mnras/stz1821
10.1103/RevModPhys.73.1031
10.1088/0004-637X/750/1/33
10.1086/153164
10.1093/mnras/sty3300
10.3847/1538-4357/aa9710
10.1093/mnras/stz1890
10.1111/j.1365-2966.2005.09238.x
10.1093/mnras/stx2482
10.1093/mnras/stv1937
10.1086/321401
10.1103/PhysRevLett.85.1158
10.1093/mnras/stu1227
10.1093/mnras/stu1654
10.1093/mnras/stu2058
10.1103/PhysRevLett.84.3760
10.1111/j.1365-2966.2009.15715.x
10.1093/mnras/sty084
10.1093/mnras/staa3249
10.1088/2041-8205/744/1/L9
10.1038/nature13316
10.1093/mnras/staa3122
10.1088/0004-637X/742/1/20
10.1016/j.newast.2003.08.004
10.1088/0004-637X/786/2/87
10.1038/370629a0
10.1086/321541
10.1093/mnras/stv1067
10.1093/mnras/stx2253
10.1086/163921
10.1093/mnras/stw3101
10.1093/mnras/stx147
10.1111/j.1365-2966.2011.19306.x
10.3847/0004-637X/826/2/200
10.1093/mnras/stw2591
10.1093/mnras/stw145
10.1088/0004-6256/136/6/2648
10.1093/mnras/sty994
10.3847/1538-4357/abb242
10.1093/mnras/stt1891
10.1093/mnras/stt1789
10.1093/mnras/283.3.L72
10.1086/177173
10.1088/0004-6256/149/6/180
10.1086/518025
10.1086/317306
10.1093/mnras/staa1072
10.1093/mnras/sts563
10.1093/mnras/stu155
10.1093/mnras/stx2656
10.1093/mnras/stv725
10.1093/mnras/183.3.341
10.1111/j.1365-2966.2008.14066.x
10.1086/320262
10.1093/mnras/stx2660
10.1088/2041-8205/759/2/L27
10.1007/10828549_46
10.1111/j.1365-2966.2012.21182.x
10.1093/mnras/stt2003
10.1111/j.1365-2966.2004.08424.x
10.1093/mnras/stz889
10.1086/318743
10.1103/PhysRevLett.72.17
10.1086/505345
10.1088/0004-637X/789/1/63
10.1093/mnras/stw1537
10.1086/166834
10.1093/mnras/sty2687
10.1093/mnras/stu1738
10.1093/mnras/sty3531
10.1086/309560
10.1093/mnras/stv1504
10.1093/mnras/sty1690
10.1093/mnras/stz1168
10.1051/0004-6361:20052926
10.1038/nature08640
10.1093/mnras/stz2391
ContentType Journal Article
Copyright 2023 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society 2023
Copyright_xml – notice: 2023 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society 2023
DBID AAYXX
CITATION
DOI 10.1093/mnras/stad109
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Astronomy & Astrophysics
EISSN 1365-2966
EndPage 479
ExternalDocumentID 10_1093_mnras_stad109
10.1093/mnras/stad109
GroupedDBID -DZ
-~X
.2P
.3N
.GA
.I3
.Y3
0R~
10A
123
1OC
1TH
29M
2WC
31~
4.4
48X
51W
51X
52M
52N
52O
52P
52S
52T
52W
52X
5HH
5LA
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8UM
AAHHS
AAHTB
AAIJN
AAJKP
AAJQQ
AAKDD
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AASNB
AAUQX
AAVAP
ABCQN
ABCQX
ABEML
ABEUO
ABFSI
ABIXL
ABJNI
ABNKS
ABPEJ
ABPTD
ABQLI
ABSAR
ABSMQ
ABTAH
ABXVV
ABZBJ
ACBNA
ACBWZ
ACCFJ
ACFRR
ACGFO
ACGFS
ACGOD
ACNCT
ACSCC
ACUFI
ACUTJ
ACXQS
ACYRX
ACYTK
ADEYI
ADGZP
ADHKW
ADHZD
ADOCK
ADQBN
ADRDM
ADRIX
ADRTK
ADVEK
ADYVW
ADZXQ
AECKG
AEEZP
AEGPL
AEJOX
AEKKA
AEKSI
AEMDU
AENEX
AENZO
AEPUE
AEQDE
AETBJ
AETEA
AEWNT
AFBPY
AFEBI
AFFNX
AFFZL
AFIYH
AFOFC
AFXEN
AFZJQ
AGINJ
AGMDO
AGSYK
AHXPO
AIWBW
AJAOE
AJBDE
AJEEA
AJEUX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
APIBT
ASAOO
ASPBG
ATDFG
AVWKF
AXUDD
AZFZN
AZVOD
BAYMD
BCRHZ
BDRZF
BEFXN
BEYMZ
BFFAM
BFHJK
BGNUA
BHONS
BKEBE
BPEOZ
BQUQU
BTQHN
BY8
CAG
CDBKE
CO8
COF
CXTWN
D-E
D-F
DAKXR
DCZOG
DFGAJ
DILTD
DR2
DU5
D~K
E.L
E3Z
EAD
EAP
EBS
EE~
EJD
ESX
F00
F04
F5P
F9B
FEDTE
FLIZI
FLUFQ
FOEOM
FRJ
GAUVT
GJXCC
GROUPED_DOAJ
H13
H5~
HAR
HF~
HOLLA
HVGLF
HW0
HZI
HZ~
IHE
IX1
J21
JAVBF
K48
KBUDW
KOP
KQ8
KSI
KSN
L7B
LC2
LC3
LH4
LP6
LP7
LW6
M43
MBTAY
MK4
NGC
NMDNZ
NOMLY
O0~
O9-
OCL
ODMLO
OHT
OIG
OJQWA
OK1
P2P
P2X
P4D
PAFKI
PB-
PEELM
PQQKQ
Q1.
Q11
Q5Y
QB0
RHF
RNP
RNS
ROL
ROX
ROZ
RUSNO
RW1
RX1
RXO
TJP
TN5
TOX
UB1
UQL
V8K
VOH
W8V
W99
WH7
WQJ
WRC
WYUIH
X5Q
X5S
XG1
YAYTL
YKOAZ
YXANX
ZY4
AAYXX
ABAZT
ABEJV
ABGNP
ABVLG
ACUXJ
AHGBF
ALXQX
AMNDL
ANAKG
CITATION
JXSIZ
ID FETCH-LOGICAL-c309t-b0002108132240512cb6079f27bbf6d8c1e2ffd2a39743130e372614fa344c573
IEDL.DBID TOX
ISSN 0035-8711
IngestDate Tue Jul 01 03:32:24 EDT 2025
Thu Apr 24 23:09:33 EDT 2025
Wed Aug 28 03:17:22 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords galaxies: dwarf
galaxies: structure
galaxies: kinematics and dynamics
dark matter
galaxies: haloes
cosmology: theory
Language English
License This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)
https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c309t-b0002108132240512cb6079f27bbf6d8c1e2ffd2a39743130e372614fa344c573
ORCID 0000-0002-5653-0786
0000-0002-2838-9033
0000-0002-4479-5461
0000-0001-6092-2187
0000-0001-8293-3709
0000-0002-1253-2763
0000-0002-3790-720X
0000-0003-3816-7028
0000-0001-8593-7692
OpenAccessLink https://academic.oup.com/mnras/article-pdf/520/1/461/49003404/stad109.pdf
PageCount 19
ParticipantIDs crossref_citationtrail_10_1093_mnras_stad109
crossref_primary_10_1093_mnras_stad109
oup_primary_10_1093_mnras_stad109
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-01-28
PublicationDateYYYYMMDD 2023-01-28
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-28
  day: 28
PublicationDecade 2020
PublicationTitle Monthly notices of the Royal Astronomical Society
PublicationYear 2023
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Marinacci (2024011301222257100_bib66) 2014; 437
Tollet (2024011301222257100_bib107) 2016; 456
Creasey (2024011301222257100_bib17) 2017; 468
Benítez-Llambay (2024011301222257100_bib3) 2019; 488
Dutton (2024011301222257100_bib27) 2020; 499
Dutton (2024011301222257100_bib26) 2019; 486
El-Badry (2024011301222257100_bib28) 2018; 473
Vogelsberger (2024011301222257100_bib115) 2019; 484
Rahmati (2024011301222257100_bib81) 2013; 430
Hopkins (2024011301222257100_bib45) 2014; 445
Read (2024011301222257100_bib82) 2005; 356
Zolotov (2024011301222257100_bib125) 2012; 761
Robles (2024011301222257100_bib86) 2017; 472
Chua (2024011301222257100_bib14) 2019; 484
Zavala (2024011301222257100_bib124) 2019; 100
Hopkins (2024011301222257100_bib44) 2011; 417
Springel (2024011301222257100_bib100) 2008; 391
Macciò (2024011301222257100_bib63) 2012; 744
Wetzel (2024011301222257100_bib121) 2016; 827
Hinz (2024011301222257100_bib42) 2001; 121
Navarro (2024011301222257100_bib72) 1996; 462
Vogelsberger (2024011301222257100_bib116) 2020; 2
Leaman (2024011301222257100_bib57) 2012; 750
Smith (2024011301222257100_bib98) 2018; 478
Flores (2024011301222257100_bib34) 1994; 427
Oh (2024011301222257100_bib74) 2011; 141
Di Cintio (2024011301222257100_bib22) 2014; 437
Kuzio de Naray (2024011301222257100_bib55) 2008; 676
Smith (2024011301222257100_bib97) 2017; 464
Bode (2024011301222257100_bib4) 2001; 556
Elbert (2024011301222257100_bib29) 2018; 853
Klypin (2024011301222257100_bib52) 2001; 554
Ludlow (2024011301222257100_bib62) 2020; 493
Semenov (2024011301222257100_bib95) 2016; 826
Burger (2024011301222257100_bib9) 2021
Dodelson (2024011301222257100_bib23) 1994; 72
Kannan (2024011301222257100_bib49) 2020; 499
Genel (2024011301222257100_bib35) 2014; 445
Dutton (2024011301222257100_bib25) 2016; 461
Teyssier (2024011301222257100_bib105) 2013; 429
Lancaster (2024011301222257100_bib56) 2020; 2020
Vogelsberger (2024011301222257100_bib113) 2013; 436
Posti (2024011301222257100_bib80) 2019; 626
Dubois (2024011301222257100_bib24) 2014; 444
Oh (2024011301222257100_bib73) 2015; 149
Rocha (2024011301222257100_bib87) 2013; 430
Li (2024011301222257100_bib59) 2020; 499
Chabrier (2024011301222257100_bib12) 2001; 554
Ikeuchi (2024011301222257100_bib47) 1986; 301
van den Bosch (2024011301222257100_bib109) 2018; 475
Oman (2024011301222257100_bib76) 2019; 482
Read (2024011301222257100_bib84) 2017; 467
Brooks (2024011301222257100_bib7) 2014; 786
Kormendy (2024011301222257100_bib53) 2009; 182
Kaplinghat (2024011301222257100_bib50) 2020; 2020
Gilmore (2024011301222257100_bib37) 2007; 663
Katz (2024011301222257100_bib51) 2017; 466
Walker (2024011301222257100_bib118) 2011; 742
Tulin (2024011301222257100_bib108) 2018; 730
Crain (2024011301222257100_bib16) 2015; 450
Oman (2024011301222257100_bib75) 2015; 452
Smith (2024011301222257100_bib96) 2015; 449
Springel (2024011301222257100_bib101) 2010; 401
Spergel (2024011301222257100_bib99) 2000; 84
Davé (2024011301222257100_bib18) 2011; 415
Padoan (2024011301222257100_bib77) 2012; 759
Faucher-Giguère (2024011301222257100_bib30) 2009; 703
Pillepich (2024011301222257100_bib78) 2018; 473
Mocz (2024011301222257100_bib68) 2017; 471
Burkert (2024011301222257100_bib11) 2020; 904
Cioffi (2024011301222257100_bib15) 1988; 334
Sales (2024011301222257100_bib89) 2014; 439
Davé (2024011301222257100_bib19) 2019; 486
Greggio (2024011301222257100_bib40) 2005; 441
Schaye (2024011301222257100_bib94) 2015; 446
Santos-Santos (2024011301222257100_bib90) 2020; 495
Vogelsberger (2024011301222257100_bib110) 2014; 444
Chan (2024011301222257100_bib13) 2015; 454
Madau (2024011301222257100_bib64) 2014; 789
Begeman (2024011301222257100_bib2) 1991; 249
Bozek (2024011301222257100_bib6) 2019; 483
de Blok (2024011301222257100_bib20) 2001; 552
Murray (2024011301222257100_bib70) 2005; 618
Hopkins (2024011301222257100_bib43) 2018; 480
Hernquist (2024011301222257100_bib41) 1990; 356
Bose (2024011301222257100_bib5) 2019; 486
Pontzen (2024011301222257100_bib79) 2012; 421
Iorio (2024011301222257100_bib48) 2017; 466
de Blok (2024011301222257100_bib21) 2008; 136
Grand (2024011301222257100_bib39) 2017; 467
Rogstad (2024011301222257100_bib88) 1974; 193
Weinberger (2024011301222257100_bib120) 2020; 248
Fitts (2024011301222257100_bib33) 2019; 490
Governato (2024011301222257100_bib38) 2010; 463
Ferrière (2024011301222257100_bib31) 2001; 73
Ren (2024011301222257100_bib85) 2019; 9
Vogelsberger (2024011301222257100_bib114) 2014; 444
Schaller (2024011301222257100_bib93) 2015; 451
Genina (2024011301222257100_bib36) 2018; 474
Moore (2024011301222257100_bib69) 1994; 370
Navarro (2024011301222257100_bib71) 1996; 283
White (2024011301222257100_bib122) 1978; 183
Marasco (2024011301222257100_bib65) 2018; 476
Thielemann (2024011301222257100_bib106) 2003
Wang (2024011301222257100_bib119) 2015; 454
Wadsley (2024011301222257100_bib117) 2004; 9
Marinacci (2024011301222257100_bib67) 2019; 489
Hu (2024011301222257100_bib46) 2000; 85
Vogelsberger (2024011301222257100_bib112) 2012; 423
Kuzio de Naray (2024011301222257100_bib54) 2006; 165
Sawala (2024011301222257100_bib92) 2016; 457
Ludlow (2024011301222257100_bib61) 2019; 488
Burkert (2024011301222257100_bib10) 1995; 447
Read (2024011301222257100_bib83) 2016; 462
Adams (2024011301222257100_bib1) 2014; 789
Vogelsberger (2024011301222257100_bib111) 2014; 509
Springel (2024011301222257100_bib102) 2003; 339
Fitts (2024011301222257100_bib32) 2017; 471
Stinson (2024011301222257100_bib104) 2006; 373
Lelli (2024011301222257100_bib58) 2016; 152
Yoshida (2024011301222257100_bib123) 2000; 544
Ludlow (2024011301222257100_bib60) 2019; 488
Santos-Santos (2024011301222257100_bib91) 2018; 473
Springel (2024011301222257100_bib103) 2005; 361
Burger (2024011301222257100_bib8) 2019; 485
References_xml – volume: 182
  start-page: 216
  year: 2009
  ident: 2024011301222257100_bib53
  publication-title: ApJS
  doi: 10.1088/0067-0049/182/1/216
– volume: 430
  start-page: 81
  year: 2013
  ident: 2024011301222257100_bib87
  publication-title: MNRAS
  doi: 10.1093/mnras/sts514
– volume: 100
  start-page: 063007
  year: 2019
  ident: 2024011301222257100_bib124
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.100.063007
– volume: 486
  start-page: 2827
  year: 2019
  ident: 2024011301222257100_bib19
  publication-title: MNRAS
  doi: 10.1093/mnras/stz937
– volume: 676
  start-page: 920
  year: 2008
  ident: 2024011301222257100_bib55
  publication-title: ApJ
  doi: 10.1086/527543
– volume: 2020
  start-page: 001
  year: 2020
  ident: 2024011301222257100_bib56
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2020/01/001
– volume: 444
  start-page: 1518
  year: 2014
  ident: 2024011301222257100_bib110
  publication-title: MNRAS
  doi: 10.1093/mnras/stu1536
– volume: 415
  start-page: 11
  year: 2011
  ident: 2024011301222257100_bib18
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2011.18680.x
– volume: 430
  start-page: 2427
  year: 2013
  ident: 2024011301222257100_bib81
  publication-title: MNRAS
  doi: 10.1093/mnras/stt066
– volume: 427
  start-page: L1
  year: 1994
  ident: 2024011301222257100_bib34
  publication-title: ApJ
  doi: 10.1086/187350
– volume: 9
  start-page: 031020
  year: 2019
  ident: 2024011301222257100_bib85
  publication-title: Phys. Rev. X
  doi: 10.1103/PhysRevX.9.031020
– volume: 454
  start-page: 2981
  year: 2015
  ident: 2024011301222257100_bib13
  publication-title: MNRAS
  doi: 10.1093/mnras/stv2165
– volume: 462
  start-page: 3628
  year: 2016
  ident: 2024011301222257100_bib83
  publication-title: MNRAS
  doi: 10.1093/mnras/stw1876
– volume: 490
  start-page: 962
  year: 2019
  ident: 2024011301222257100_bib33
  publication-title: MNRAS
  doi: 10.1093/mnras/stz2613
– volume: 152
  start-page: 157
  year: 2016
  ident: 2024011301222257100_bib58
  publication-title: AJ
  doi: 10.3847/0004-6256/152/6/157
– volume: 444
  start-page: 3684
  year: 2014
  ident: 2024011301222257100_bib114
  publication-title: MNRAS
  doi: 10.1093/mnras/stu1713
– volume: 2020
  start-page: 027
  year: 2020
  ident: 2024011301222257100_bib50
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2020/06/027
– volume: 730
  start-page: 1
  year: 2018
  ident: 2024011301222257100_bib108
  publication-title: Phys. Rep.
  doi: 10.1016/j.physrep.2017.11.004
– volume: 456
  start-page: 3542
  year: 2016
  ident: 2024011301222257100_bib107
  publication-title: MNRAS
  doi: 10.1093/mnras/stv2856
– volume: 484
  start-page: 5437
  year: 2019
  ident: 2024011301222257100_bib115
  publication-title: MNRAS
  doi: 10.1093/mnras/stz340
– volume: 485
  start-page: 1008
  year: 2019
  ident: 2024011301222257100_bib8
  publication-title: MNRAS
  doi: 10.1093/mnras/stz496
– volume: 466
  start-page: 4159
  year: 2017
  ident: 2024011301222257100_bib48
  publication-title: MNRAS
  doi: 10.1093/mnras/stw3285
– volume: 827
  start-page: L23
  year: 2016
  ident: 2024011301222257100_bib121
  publication-title: ApJ
  doi: 10.3847/2041-8205/827/2/L23
– volume: 476
  start-page: 2168
  year: 2018
  ident: 2024011301222257100_bib65
  publication-title: MNRAS
  doi: 10.1093/mnras/sty354
– volume: 356
  start-page: 359
  year: 1990
  ident: 2024011301222257100_bib41
  publication-title: ApJ
  doi: 10.1086/168845
– volume: 488
  start-page: L123
  year: 2019
  ident: 2024011301222257100_bib60
  publication-title: MNRAS
  doi: 10.1093/mnrasl/slz110
– volume: 421
  start-page: 3464
  year: 2012
  ident: 2024011301222257100_bib79
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2012.20571.x
– volume: 626
  start-page: A56
  year: 2019
  ident: 2024011301222257100_bib80
  publication-title: A&A
  doi: 10.1051/0004-6361/201935553
– volume: 761
  start-page: 71
  year: 2012
  ident: 2024011301222257100_bib125
  publication-title: ApJ
  doi: 10.1088/0004-637X/761/1/71
– volume: 471
  start-page: 4559
  year: 2017
  ident: 2024011301222257100_bib68
  publication-title: MNRAS
  doi: 10.1093/mnras/stx1887
– volume: 493
  start-page: 2926
  year: 2020
  ident: 2024011301222257100_bib62
  publication-title: MNRAS
  doi: 10.1093/mnras/staa316
– volume: 141
  start-page: 193
  year: 2011
  ident: 2024011301222257100_bib74
  publication-title: AJ
  doi: 10.1088/0004-6256/141/6/193
– volume: 703
  start-page: 1416
  year: 2009
  ident: 2024011301222257100_bib30
  publication-title: ApJ
  doi: 10.1088/0004-637X/703/2/1416
– volume: 618
  start-page: 569
  year: 2005
  ident: 2024011301222257100_bib70
  publication-title: ApJ
  doi: 10.1086/426067
– volume: 554
  start-page: 903
  year: 2001
  ident: 2024011301222257100_bib52
  publication-title: ApJ
  doi: 10.1086/321400
– volume: 449
  start-page: 4336
  year: 2015
  ident: 2024011301222257100_bib96
  publication-title: MNRAS
  doi: 10.1093/mnras/stv565
– volume: 373
  start-page: 1074
  year: 2006
  ident: 2024011301222257100_bib104
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2006.11097.x
– volume: 249
  start-page: 523
  year: 1991
  ident: 2024011301222257100_bib2
  publication-title: MNRAS
  doi: 10.1093/mnras/249.3.523
– volume: 499
  start-page: 2648
  year: 2020
  ident: 2024011301222257100_bib27
  publication-title: MNRAS
  doi: 10.1093/mnras/staa3028
– volume: 2
  start-page: 42
  year: 2020
  ident: 2024011301222257100_bib116
  publication-title: Nat. Rev. Phys.
  doi: 10.1038/s42254-019-0127-2
– volume: 789
  start-page: L17
  year: 2014
  ident: 2024011301222257100_bib64
  publication-title: ApJ
  doi: 10.1088/2041-8205/789/1/L17
– volume: 248
  start-page: 32
  year: 2020
  ident: 2024011301222257100_bib120
  publication-title: ApJS
  doi: 10.3847/1538-4365/ab908c
– volume: 468
  start-page: 2283
  year: 2017
  ident: 2024011301222257100_bib17
  publication-title: MNRAS
  doi: 10.1093/mnras/stx522
– volume: 467
  start-page: 179
  year: 2017
  ident: 2024011301222257100_bib39
  publication-title: MNRAS
  doi: 10.1093/mnras/stx071
– volume: 474
  start-page: 1398
  year: 2018
  ident: 2024011301222257100_bib36
  publication-title: MNRAS
  doi: 10.1093/mnras/stx2855
– volume: 471
  start-page: 3547
  year: 2017
  ident: 2024011301222257100_bib32
  publication-title: MNRAS
  doi: 10.1093/mnras/stx1757
– volume: 339
  start-page: 289
  year: 2003
  ident: 2024011301222257100_bib102
  publication-title: MNRAS
  doi: 10.1046/j.1365-8711.2003.06206.x
– start-page: 126
  volume-title: ApJ
  year: 2021
  ident: 2024011301222257100_bib9
  doi: 10.3847/1538-4357/ac1a0f
– volume: 488
  start-page: 3663
  year: 2019
  ident: 2024011301222257100_bib61
  publication-title: MNRAS
  doi: 10.1093/mnras/stz1821
– volume: 73
  start-page: 1031
  year: 2001
  ident: 2024011301222257100_bib31
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.73.1031
– volume: 750
  start-page: 33
  year: 2012
  ident: 2024011301222257100_bib57
  publication-title: ApJ
  doi: 10.1088/0004-637X/750/1/33
– volume: 193
  start-page: 309
  year: 1974
  ident: 2024011301222257100_bib88
  publication-title: ApJ
  doi: 10.1086/153164
– volume: 483
  start-page: 4086
  year: 2019
  ident: 2024011301222257100_bib6
  publication-title: MNRAS
  doi: 10.1093/mnras/sty3300
– volume: 853
  start-page: 109
  year: 2018
  ident: 2024011301222257100_bib29
  publication-title: ApJ
  doi: 10.3847/1538-4357/aa9710
– volume: 488
  start-page: 2387
  year: 2019
  ident: 2024011301222257100_bib3
  publication-title: MNRAS
  doi: 10.1093/mnras/stz1890
– volume: 361
  start-page: 776
  year: 2005
  ident: 2024011301222257100_bib103
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2005.09238.x
– volume: 473
  start-page: 1930
  year: 2018
  ident: 2024011301222257100_bib28
  publication-title: MNRAS
  doi: 10.1093/mnras/stx2482
– volume: 454
  start-page: 83
  year: 2015
  ident: 2024011301222257100_bib119
  publication-title: MNRAS
  doi: 10.1093/mnras/stv1937
– volume: 554
  start-page: 1274
  year: 2001
  ident: 2024011301222257100_bib12
  publication-title: ApJ
  doi: 10.1086/321401
– volume: 85
  start-page: 1158
  year: 2000
  ident: 2024011301222257100_bib46
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.85.1158
– volume: 444
  start-page: 1453
  year: 2014
  ident: 2024011301222257100_bib24
  publication-title: MNRAS
  doi: 10.1093/mnras/stu1227
– volume: 445
  start-page: 175
  year: 2014
  ident: 2024011301222257100_bib35
  publication-title: MNRAS
  doi: 10.1093/mnras/stu1654
– volume: 446
  start-page: 521
  year: 2015
  ident: 2024011301222257100_bib94
  publication-title: MNRAS
  doi: 10.1093/mnras/stu2058
– volume: 84
  start-page: 3760
  year: 2000
  ident: 2024011301222257100_bib99
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.84.3760
– volume: 401
  start-page: 791
  year: 2010
  ident: 2024011301222257100_bib101
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2009.15715.x
– volume: 475
  start-page: 4066
  year: 2018
  ident: 2024011301222257100_bib109
  publication-title: MNRAS
  doi: 10.1093/mnras/sty084
– volume: 499
  start-page: 5732
  year: 2020
  ident: 2024011301222257100_bib49
  publication-title: MNRAS
  doi: 10.1093/mnras/staa3249
– volume: 744
  start-page: L9
  year: 2012
  ident: 2024011301222257100_bib63
  publication-title: ApJ
  doi: 10.1088/2041-8205/744/1/L9
– volume: 509
  start-page: 177
  year: 2014
  ident: 2024011301222257100_bib111
  publication-title: Nature
  doi: 10.1038/nature13316
– volume: 499
  start-page: 5862
  year: 2020
  ident: 2024011301222257100_bib59
  publication-title: MNRAS
  doi: 10.1093/mnras/staa3122
– volume: 742
  start-page: 20
  year: 2011
  ident: 2024011301222257100_bib118
  publication-title: ApJ
  doi: 10.1088/0004-637X/742/1/20
– volume: 9
  start-page: 137
  year: 2004
  ident: 2024011301222257100_bib117
  publication-title: New A
  doi: 10.1016/j.newast.2003.08.004
– volume: 786
  start-page: 87
  year: 2014
  ident: 2024011301222257100_bib7
  publication-title: ApJ
  doi: 10.1088/0004-637X/786/2/87
– volume: 370
  start-page: 629
  year: 1994
  ident: 2024011301222257100_bib69
  publication-title: Nature
  doi: 10.1038/370629a0
– volume: 556
  start-page: 93
  year: 2001
  ident: 2024011301222257100_bib4
  publication-title: ApJ
  doi: 10.1086/321541
– volume: 451
  start-page: 1247
  year: 2015
  ident: 2024011301222257100_bib93
  publication-title: MNRAS
  doi: 10.1093/mnras/stv1067
– volume: 472
  start-page: 2945
  year: 2017
  ident: 2024011301222257100_bib86
  publication-title: MNRAS
  doi: 10.1093/mnras/stx2253
– volume: 301
  start-page: 522
  year: 1986
  ident: 2024011301222257100_bib47
  publication-title: ApJ
  doi: 10.1086/163921
– volume: 466
  start-page: 1648
  year: 2017
  ident: 2024011301222257100_bib51
  publication-title: MNRAS
  doi: 10.1093/mnras/stw3101
– volume: 467
  start-page: 2019
  year: 2017
  ident: 2024011301222257100_bib84
  publication-title: MNRAS
  doi: 10.1093/mnras/stx147
– volume: 417
  start-page: 950
  year: 2011
  ident: 2024011301222257100_bib44
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2011.19306.x
– volume: 826
  start-page: 200
  year: 2016
  ident: 2024011301222257100_bib95
  publication-title: ApJ
  doi: 10.3847/0004-637X/826/2/200
– volume: 464
  start-page: 2963
  year: 2017
  ident: 2024011301222257100_bib97
  publication-title: MNRAS
  doi: 10.1093/mnras/stw2591
– volume: 457
  start-page: 1931
  year: 2016
  ident: 2024011301222257100_bib92
  publication-title: MNRAS
  doi: 10.1093/mnras/stw145
– volume: 136
  start-page: 2648
  year: 2008
  ident: 2024011301222257100_bib21
  publication-title: AJ
  doi: 10.1088/0004-6256/136/6/2648
– volume: 478
  start-page: 302
  year: 2018
  ident: 2024011301222257100_bib98
  publication-title: MNRAS
  doi: 10.1093/mnras/sty994
– volume: 904
  start-page: 161
  year: 2020
  ident: 2024011301222257100_bib11
  publication-title: ApJ
  doi: 10.3847/1538-4357/abb242
– volume: 437
  start-page: 415
  year: 2014
  ident: 2024011301222257100_bib22
  publication-title: MNRAS
  doi: 10.1093/mnras/stt1891
– volume: 436
  start-page: 3031
  year: 2013
  ident: 2024011301222257100_bib113
  publication-title: MNRAS
  doi: 10.1093/mnras/stt1789
– volume: 283
  start-page: L72
  year: 1996
  ident: 2024011301222257100_bib71
  publication-title: MNRAS
  doi: 10.1093/mnras/283.3.L72
– volume: 462
  start-page: 563
  year: 1996
  ident: 2024011301222257100_bib72
  publication-title: ApJ
  doi: 10.1086/177173
– volume: 149
  start-page: 180
  year: 2015
  ident: 2024011301222257100_bib73
  publication-title: AJ
  doi: 10.1088/0004-6256/149/6/180
– volume: 663
  start-page: 948
  year: 2007
  ident: 2024011301222257100_bib37
  publication-title: ApJ
  doi: 10.1086/518025
– volume: 544
  start-page: L87
  year: 2000
  ident: 2024011301222257100_bib123
  publication-title: ApJ
  doi: 10.1086/317306
– volume: 495
  start-page: 58
  year: 2020
  ident: 2024011301222257100_bib90
  publication-title: MNRAS
  doi: 10.1093/mnras/staa1072
– volume: 429
  start-page: 3068
  year: 2013
  ident: 2024011301222257100_bib105
  publication-title: MNRAS
  doi: 10.1093/mnras/sts563
– volume: 439
  start-page: 2990
  year: 2014
  ident: 2024011301222257100_bib89
  publication-title: MNRAS
  doi: 10.1093/mnras/stu155
– volume: 473
  start-page: 4077
  year: 2018
  ident: 2024011301222257100_bib78
  publication-title: MNRAS
  doi: 10.1093/mnras/stx2656
– volume: 450
  start-page: 1937
  year: 2015
  ident: 2024011301222257100_bib16
  publication-title: MNRAS
  doi: 10.1093/mnras/stv725
– volume: 183
  start-page: 341
  year: 1978
  ident: 2024011301222257100_bib122
  publication-title: MNRAS
  doi: 10.1093/mnras/183.3.341
– volume: 391
  start-page: 1685
  year: 2008
  ident: 2024011301222257100_bib100
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2008.14066.x
– volume: 552
  start-page: L23
  year: 2001
  ident: 2024011301222257100_bib20
  publication-title: ApJ
  doi: 10.1086/320262
– volume: 473
  start-page: 4392
  year: 2018
  ident: 2024011301222257100_bib91
  publication-title: MNRAS
  doi: 10.1093/mnras/stx2660
– volume: 759
  start-page: L27
  year: 2012
  ident: 2024011301222257100_bib77
  publication-title: ApJ
  doi: 10.1088/2041-8205/759/2/L27
– start-page: 331
  volume-title: From Twilight to Highlight: The Physics of Supernovae
  year: 2003
  ident: 2024011301222257100_bib106
  doi: 10.1007/10828549_46
– volume: 423
  start-page: 3740
  year: 2012
  ident: 2024011301222257100_bib112
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2012.21182.x
– volume: 437
  start-page: 1750
  year: 2014
  ident: 2024011301222257100_bib66
  publication-title: MNRAS
  doi: 10.1093/mnras/stt2003
– volume: 356
  start-page: 107
  year: 2005
  ident: 2024011301222257100_bib82
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2004.08424.x
– volume: 486
  start-page: 655
  year: 2019
  ident: 2024011301222257100_bib26
  publication-title: MNRAS
  doi: 10.1093/mnras/stz889
– volume: 121
  start-page: 683
  year: 2001
  ident: 2024011301222257100_bib42
  publication-title: AJ
  doi: 10.1086/318743
– volume: 72
  start-page: 17
  year: 1994
  ident: 2024011301222257100_bib23
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.72.17
– volume: 165
  start-page: 461
  year: 2006
  ident: 2024011301222257100_bib54
  publication-title: ApJS
  doi: 10.1086/505345
– volume: 789
  start-page: 63
  year: 2014
  ident: 2024011301222257100_bib1
  publication-title: ApJ
  doi: 10.1088/0004-637X/789/1/63
– volume: 461
  start-page: 2658
  year: 2016
  ident: 2024011301222257100_bib25
  publication-title: MNRAS
  doi: 10.1093/mnras/stw1537
– volume: 334
  start-page: 252
  year: 1988
  ident: 2024011301222257100_bib15
  publication-title: ApJ
  doi: 10.1086/166834
– volume: 482
  start-page: 821
  year: 2019
  ident: 2024011301222257100_bib76
  publication-title: MNRAS
  doi: 10.1093/mnras/sty2687
– volume: 445
  start-page: 581
  year: 2014
  ident: 2024011301222257100_bib45
  publication-title: MNRAS
  doi: 10.1093/mnras/stu1738
– volume: 484
  start-page: 476
  year: 2019
  ident: 2024011301222257100_bib14
  publication-title: MNRAS
  doi: 10.1093/mnras/sty3531
– volume: 447
  start-page: L25
  year: 1995
  ident: 2024011301222257100_bib10
  publication-title: ApJ
  doi: 10.1086/309560
– volume: 452
  start-page: 3650
  year: 2015
  ident: 2024011301222257100_bib75
  publication-title: MNRAS
  doi: 10.1093/mnras/stv1504
– volume: 480
  start-page: 800
  year: 2018
  ident: 2024011301222257100_bib43
  publication-title: MNRAS
  doi: 10.1093/mnras/sty1690
– volume: 486
  start-page: 4790
  year: 2019
  ident: 2024011301222257100_bib5
  publication-title: MNRAS
  doi: 10.1093/mnras/stz1168
– volume: 441
  start-page: 1055
  year: 2005
  ident: 2024011301222257100_bib40
  publication-title: A&A
  doi: 10.1051/0004-6361:20052926
– volume: 463
  start-page: 203
  year: 2010
  ident: 2024011301222257100_bib38
  publication-title: Nature
  doi: 10.1038/nature08640
– volume: 489
  start-page: 4233
  year: 2019
  ident: 2024011301222257100_bib67
  publication-title: MNRAS
  doi: 10.1093/mnras/stz2391
SSID ssj0004326
Score 2.5008204
Snippet ABSTRACT The tension between the diverging density profiles in Lambda cold dark matter simulations and the constant-density inner regions of observed galaxies...
The tension between the diverging density profiles in Lambda cold dark matter simulations and the constant-density inner regions of observed galaxies is a...
SourceID crossref
oup
SourceType Enrichment Source
Index Database
Publisher
StartPage 461
Title Real and counterfeit cores: how feedback expands haloes and disrupts tracers of inner gravitational potential in dwarf galaxies
Volume 520
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF6kJy-iVWl9MYL0ZGiSTdPGWymWIqggLfRWdjc7tNgmJUmxnvzrzm7jCx9425DZEHYWvm9md-Zj7KLDuZLom9hEB07gB8oRUkaOQBkTHknk2t7yvQsHo-Bm3BqX-Y78hyP8iDcXSSbyJnGl2LOVegTApkn-8H78UQDJra6a7b9IEYBXNtP8NvsL-JiCtk9Y0t9lOyUJhO7Ga3tsSydVVuvmJi2dLp6hAXa8yTrkVVa_JWqbZjYDTi978xnxTPu0z14eiOqBSGKwsg86Qz0rwDSnzK9gmj4BEj5JoR5Br5emrhemYp7q3E6JZ3m2WhY5FJlQRAQhRbBiXGBkicr23fT5ZVqYW0U0miVgZJ4RCFnEmsLsAzbqXw97A6dUVXAUd6PCsaeLHjEBbtCc8F7J0G1H6LelxDDuKE_7iLEviKkQu-Cu5m0KswIUPAhUq80PWSVJE11jgOjyjsBISBUHFLiJ0EefGIPiGLVowevs8m25J6r8Z6N8MZ9sjr75xHpnUnqnzhrv5stNr43fDM_Jd3_bHP3D5phtG_V4k1HxOyesUmQrfUoco5Bndn-9AiHw1SA
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Real+and+counterfeit+cores%3A+how+feedback+expands+haloes+and+disrupts+tracers+of+inner+gravitational+potential+in+dwarf+galaxies&rft.jtitle=Monthly+notices+of+the+Royal+Astronomical+Society&rft.au=Jahn%2C+Ethan+D&rft.au=Sales%2C+Laura+V&rft.au=Marinacci%2C+Federico&rft.au=Vogelsberger%2C+Mark&rft.date=2023-01-28&rft.issn=0035-8711&rft.eissn=1365-2966&rft.volume=520&rft.issue=1&rft.spage=461&rft.epage=479&rft_id=info:doi/10.1093%2Fmnras%2Fstad109&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_mnras_stad109
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0035-8711&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0035-8711&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0035-8711&client=summon