Liu, D., Zhong, S., Lin, L., Zhao, M., Fu, X., & Liu, X. (2023). Deep attention SMOTE: Data augmentation with a learnable interpolation factor for imbalanced anomaly detection of gas turbines. Computers in industry, 151, 103972. https://doi.org/10.1016/j.compind.2023.103972
Chicago Style (17th ed.) CitationLiu, Dan, Shisheng Zhong, Lin Lin, Minghang Zhao, Xuyun Fu, and Xueyun Liu. "Deep Attention SMOTE: Data Augmentation with a Learnable Interpolation Factor for Imbalanced Anomaly Detection of Gas Turbines." Computers in Industry 151 (2023): 103972. https://doi.org/10.1016/j.compind.2023.103972.
MLA (9th ed.) CitationLiu, Dan, et al. "Deep Attention SMOTE: Data Augmentation with a Learnable Interpolation Factor for Imbalanced Anomaly Detection of Gas Turbines." Computers in Industry, vol. 151, 2023, p. 103972, https://doi.org/10.1016/j.compind.2023.103972.