CALPHAD-aided design for superior thermal stability and mechanical behavior in a TiZrHfNb refractory high-entropy alloy
TiZrHfNbTa refractory high-entropy alloys (RHEAs) are now at the research frontier of advanced metallic materials due to their exceptional mechanical performance, particularly at high temperatures. However, the TiZrHfNbTa RHEAs exhibit poor phase stability at intermediate temperatures (600 – 1,000 °...
Saved in:
Published in | Acta materialia Vol. 246; p. 118728 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.03.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | TiZrHfNbTa refractory high-entropy alloys (RHEAs) are now at the research frontier of advanced metallic materials due to their exceptional mechanical performance, particularly at high temperatures. However, the TiZrHfNbTa RHEAs exhibit poor phase stability at intermediate temperatures (600 – 1,000 °C). The present study aimed to tailor their phase stability and mechanical properties via the calculation of phase diagrams (CALPHAD) approach. We found that Ta and Hf were detrimental to the phase stability of the TiZrHfNbTa RHEAs. Accordingly, a Ta-free and Hf-depleted Ti30Zr30Hf16Nb24 RHEA with outstanding phase stability was designed, which could remain a single-phase body-centered cubic (BCC) structure after annealing at 600 °C for 200 h. Furthermore, numerous (Ti, Zr)-rich nano-precipitates were dispersedly formed in the cold-rolled plus recrystallization-annealed (CR+A) Ti30Zr30Hf16Nb24 RHEA. The nano-precipitates controlled by the spinodal decomposition mechanism had an identical BCC lattice. The lattice fringes with (11¯0) Miller indices bent from the matrix phase to the nano-precipitates, causing a strong local strain field near the phase boundaries. The CR+A alloy possessed a yield strength of ∼ 800 MPa and tensile fracture elongation of ∼ 34.0%, showing a superior strength-ductility combination. The strain measurement by a digital image correlation indicated that the CR+A alloy exhibited a more substantial plastic stability than the as-cast alloy. Detailed observations of deformation microstructures through a transmission electron microscope and electron back-scattered diffraction revealed the origin of strength and ductility. Dislocation cross-slip and kink bands tended to form in the CR+A alloy during deformation and were capable of accommodating dislocation slip against stress concentration. Labusch's model uncovered that solid-solution strengthening contributed the most to yield strength. The present study provides a paradigm for the superior thermostability and controllable nanophase-precipitation behavior in RHEAs.
[Display omitted] |
---|---|
AbstractList | TiZrHfNbTa refractory high-entropy alloys (RHEAs) are now at the research frontier of advanced metallic materials due to their exceptional mechanical performance, particularly at high temperatures. However, the TiZrHfNbTa RHEAs exhibit poor phase stability at intermediate temperatures (600 – 1,000 °C). The present study aimed to tailor their phase stability and mechanical properties via the calculation of phase diagrams (CALPHAD) approach. We found that Ta and Hf were detrimental to the phase stability of the TiZrHfNbTa RHEAs. Accordingly, a Ta-free and Hf-depleted Ti30Zr30Hf16Nb24 RHEA with outstanding phase stability was designed, which could remain a single-phase body-centered cubic (BCC) structure after annealing at 600 °C for 200 h. Furthermore, numerous (Ti, Zr)-rich nano-precipitates were dispersedly formed in the cold-rolled plus recrystallization-annealed (CR+A) Ti30Zr30Hf16Nb24 RHEA. The nano-precipitates controlled by the spinodal decomposition mechanism had an identical BCC lattice. The lattice fringes with (11¯0) Miller indices bent from the matrix phase to the nano-precipitates, causing a strong local strain field near the phase boundaries. The CR+A alloy possessed a yield strength of ∼ 800 MPa and tensile fracture elongation of ∼ 34.0%, showing a superior strength-ductility combination. The strain measurement by a digital image correlation indicated that the CR+A alloy exhibited a more substantial plastic stability than the as-cast alloy. Detailed observations of deformation microstructures through a transmission electron microscope and electron back-scattered diffraction revealed the origin of strength and ductility. Dislocation cross-slip and kink bands tended to form in the CR+A alloy during deformation and were capable of accommodating dislocation slip against stress concentration. Labusch's model uncovered that solid-solution strengthening contributed the most to yield strength. The present study provides a paradigm for the superior thermostability and controllable nanophase-precipitation behavior in RHEAs.
[Display omitted] |
ArticleNumber | 118728 |
Author | Wang, Shudao Wang, Tongmin Liaw, Peter K. Lu, Yiping Li, Tingju Fan, Wenxue Li, Tianxin |
Author_xml | – sequence: 1 givenname: Tianxin surname: Li fullname: Li, Tianxin organization: Key Laboratory of Solidification Control and Digital Preparation Technology (Liaoning Province), School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China – sequence: 2 givenname: Shudao surname: Wang fullname: Wang, Shudao organization: Key Laboratory of Solidification Control and Digital Preparation Technology (Liaoning Province), School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China – sequence: 3 givenname: Wenxue surname: Fan fullname: Fan, Wenxue organization: Key Laboratory of Solidification Control and Digital Preparation Technology (Liaoning Province), School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China – sequence: 4 givenname: Yiping orcidid: 0000-0002-4157-7135 surname: Lu fullname: Lu, Yiping email: luyiping@dlut.edu.cn, 82713860@qq.com organization: Key Laboratory of Solidification Control and Digital Preparation Technology (Liaoning Province), School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China – sequence: 5 givenname: Tongmin surname: Wang fullname: Wang, Tongmin organization: Key Laboratory of Solidification Control and Digital Preparation Technology (Liaoning Province), School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China – sequence: 6 givenname: Tingju surname: Li fullname: Li, Tingju organization: Key Laboratory of Solidification Control and Digital Preparation Technology (Liaoning Province), School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China – sequence: 7 givenname: Peter K. surname: Liaw fullname: Liaw, Peter K. organization: Department of Materials Science and Engineering, The University of Tennessee, Knoxville, TN 37996, United States |
BookMark | eNqFkM1u2zAQhIkgAeL8PEIAvoBcUpRECT0UhtvUBYK2h-SSC7Eil9EasmSQrAu_fWk4p15y2gF2v8Hs3LDLaZ6QsQcpllLI5tN2CTbBDtKyFKVaStnqsr1gizxVUVa1usxa1V3RVHV1zW5i3AohS12JBfu7Xj393qy-FkAOHXcY6W3ifg48_tljoCzSgGEHI48JehopHTlMju_QDjCRzYseBzicLmniwJ_pNWz8z54H9CEHm8ORD_Q2FDilMO8zPY7z8Y5deRgj3r_PW_by-O15vSmefn3_kTMVVokuFV0nteotaqtl11e69tJ7VTntWg8gPPhG6kq1KDqr-x5ti41vhBTY-86BVLfs89nXhjnGHMlYSpBozmGARiOFOXVotua9Q3Pq0Jw7zHT9H70PtINw_JD7cuYwv3YgDCZawsmio4A2GTfTBw7_AEWZk3I |
CitedBy_id | crossref_primary_10_1007_s11837_024_07023_1 crossref_primary_10_1016_j_jmrt_2024_11_053 crossref_primary_10_1007_s12598_024_02852_0 crossref_primary_10_1016_j_msea_2024_147438 crossref_primary_10_1038_s41529_024_00495_1 crossref_primary_10_1016_j_addma_2023_103813 crossref_primary_10_3390_met14060672 crossref_primary_10_1016_j_vacuum_2024_113424 crossref_primary_10_1016_j_jallcom_2024_173449 crossref_primary_10_1016_j_jmrt_2023_07_233 crossref_primary_10_1007_s42864_024_00311_y crossref_primary_10_1016_j_ijrmhm_2025_107064 crossref_primary_10_1016_j_matchar_2024_113679 crossref_primary_10_1016_j_intermet_2023_107991 crossref_primary_10_1016_j_jallcom_2024_178216 crossref_primary_10_1016_j_matchar_2023_113314 crossref_primary_10_1016_j_msea_2024_146513 crossref_primary_10_1016_j_msea_2024_146993 crossref_primary_10_1002_srin_202400646 crossref_primary_10_1063_5_0170416 crossref_primary_10_1080_14786435_2023_2227793 crossref_primary_10_1016_j_jmmm_2024_172134 crossref_primary_10_1016_j_matchar_2024_114641 crossref_primary_10_1016_j_jallcom_2023_170739 crossref_primary_10_1016_j_jallcom_2024_177874 crossref_primary_10_1016_j_msea_2024_147699 crossref_primary_10_1016_j_addma_2023_103795 crossref_primary_10_1016_j_msea_2024_146522 crossref_primary_10_1016_j_msea_2024_146369 crossref_primary_10_1016_j_jmrt_2024_09_131 crossref_primary_10_1007_s12598_024_02899_z crossref_primary_10_1016_j_ijplas_2024_104008 crossref_primary_10_1016_j_matchar_2023_113449 crossref_primary_10_1016_j_jallcom_2023_170065 crossref_primary_10_1016_j_msea_2024_147696 crossref_primary_10_1016_j_msea_2023_145757 crossref_primary_10_1016_j_jallcom_2024_175481 crossref_primary_10_1063_5_0200862 crossref_primary_10_1016_j_jallcom_2025_179284 crossref_primary_10_1007_s40843_023_2705_2 crossref_primary_10_1016_j_intermet_2024_108384 crossref_primary_10_1016_j_jnucmat_2023_154876 crossref_primary_10_1038_s41598_024_57392_5 crossref_primary_10_1016_j_ceramint_2025_02_034 crossref_primary_10_1016_j_jallcom_2023_170826 crossref_primary_10_1016_j_matchar_2024_114393 crossref_primary_10_1039_D3MH00360D crossref_primary_10_1016_j_jmrt_2023_12_079 crossref_primary_10_1016_j_mtcomm_2024_109607 crossref_primary_10_1093_nsr_nwae026 crossref_primary_10_1016_j_corsci_2023_111508 crossref_primary_10_20517_jmi_2023_12 crossref_primary_10_1016_j_intermet_2025_108705 crossref_primary_10_1021_acsanm_4c00720 crossref_primary_10_1007_s12613_023_2788_1 crossref_primary_10_1038_s41524_024_01385_5 crossref_primary_10_1016_j_ijrmhm_2023_106361 crossref_primary_10_1016_j_jallcom_2024_178063 crossref_primary_10_1016_j_corsci_2024_112185 crossref_primary_10_1007_s41365_024_01508_z crossref_primary_10_1016_j_matchar_2024_113730 crossref_primary_10_1007_s41230_024_3068_z crossref_primary_10_1016_j_jmrt_2023_06_061 crossref_primary_10_1016_j_vacuum_2023_112545 crossref_primary_10_1021_acs_jctc_4c00340 crossref_primary_10_1016_j_msea_2023_145073 crossref_primary_10_3390_met14080894 crossref_primary_10_1016_j_msea_2024_147159 crossref_primary_10_1016_j_intermet_2025_108711 crossref_primary_10_1016_j_matdes_2024_112996 crossref_primary_10_1016_j_msea_2024_147437 crossref_primary_10_1016_j_intermet_2024_108535 crossref_primary_10_1080_00295450_2024_2411791 crossref_primary_10_1016_j_intermet_2023_108080 crossref_primary_10_1016_j_apmt_2024_102164 crossref_primary_10_1016_j_corsci_2023_111484 crossref_primary_10_1016_j_msea_2025_147914 crossref_primary_10_1016_j_ijrmhm_2024_106857 crossref_primary_10_1002_mgea_87 crossref_primary_10_1080_00084433_2024_2359296 crossref_primary_10_1016_j_jallcom_2023_169772 crossref_primary_10_1016_j_jmrt_2024_01_246 crossref_primary_10_1016_j_ijplas_2024_104213 crossref_primary_10_1016_j_jallcom_2024_174578 crossref_primary_10_1007_s41230_025_4130_1 crossref_primary_10_1016_j_msea_2025_147801 crossref_primary_10_1063_5_0218290 crossref_primary_10_1016_j_jallcom_2024_175144 crossref_primary_10_1016_j_scriptamat_2024_116141 crossref_primary_10_1038_s41586_023_06894_9 crossref_primary_10_1016_j_intermet_2024_108350 crossref_primary_10_1016_j_matchar_2024_114203 crossref_primary_10_1002_sstr_202400110 crossref_primary_10_1126_sciadv_adq6828 crossref_primary_10_1007_s44210_024_00042_2 crossref_primary_10_1016_j_jallcom_2023_171630 crossref_primary_10_1016_j_matchar_2023_113247 crossref_primary_10_1016_j_msea_2024_146721 crossref_primary_10_1016_j_msea_2024_147015 crossref_primary_10_1016_j_scriptamat_2024_116031 crossref_primary_10_1016_j_msea_2024_147618 crossref_primary_10_1016_j_msea_2024_146767 crossref_primary_10_1016_j_jmrt_2024_01_145 crossref_primary_10_1016_j_compositesa_2024_108246 crossref_primary_10_1016_j_corsci_2024_112391 crossref_primary_10_1126_science_adn2428 crossref_primary_10_1016_j_intermet_2024_108349 crossref_primary_10_1016_j_ijplas_2024_104079 crossref_primary_10_1016_j_msea_2024_147060 crossref_primary_10_1016_j_compositesb_2024_111222 crossref_primary_10_1016_j_mtcomm_2024_108313 crossref_primary_10_1016_j_nxmate_2023_100052 crossref_primary_10_1016_j_ijmecsci_2023_108753 crossref_primary_10_1016_j_ijplas_2024_104115 crossref_primary_10_1016_j_intermet_2023_108149 crossref_primary_10_1016_j_ijplas_2024_104237 crossref_primary_10_1016_j_intermet_2023_108148 crossref_primary_10_1063_5_0249449 crossref_primary_10_4028_p_eS8wsb crossref_primary_10_1016_j_scriptamat_2024_116401 crossref_primary_10_1016_j_jmrt_2024_05_253 crossref_primary_10_1016_j_msea_2024_147627 crossref_primary_10_1016_j_jmrt_2024_02_108 crossref_primary_10_1016_j_jallcom_2024_175311 crossref_primary_10_1016_j_addma_2024_104126 crossref_primary_10_1016_j_jallcom_2024_175394 crossref_primary_10_1007_s11665_023_08983_2 crossref_primary_10_1016_j_jallcom_2023_171571 crossref_primary_10_1088_1361_651X_ad2af5 |
Cites_doi | 10.1016/j.jmst.2021.09.016 10.1038/s41586-019-1617-1 10.1080/09506608.2016.1191808 10.1038/s41586-018-0685-y 10.2320/matertrans.46.2817 10.1016/j.actamat.2020.10.044 10.1016/j.scriptamat.2021.114225 10.1080/21663831.2016.1221861 10.1039/D0MH01341B 10.1016/j.jallcom.2015.07.209 10.1016/j.intermet.2018.04.023 10.1016/j.matlet.2020.127369 10.3390/e21020114 10.1016/j.actamat.2021.117582 10.1557/jmr.2018.153 10.1016/j.jmst.2022.01.017 10.1016/j.matlet.2014.05.134 10.1002/adma.201701678 10.1016/j.actamat.2017.09.035 10.1016/j.intermet.2019.01.004 10.1016/j.actamat.2016.11.016 10.1016/j.jallcom.2011.02.171 10.1016/j.matchar.2015.11.018 10.1016/j.scriptamat.2021.114367 10.1016/j.matlet.2016.08.060 10.1016/j.msea.2018.03.071 10.1016/j.msea.2020.140169 10.1016/j.actamat.2010.01.015 10.1038/s41563-020-0750-4 10.1063/1.4966659 10.1016/j.msea.2021.141512 10.1007/s11661-018-4646-8 10.1038/nature17981 10.1016/j.msea.2007.06.077 10.1016/j.scriptamat.2018.08.032 10.1007/BF03220742 10.1016/j.msea.2015.08.024 10.1016/j.actamat.2020.06.023 10.1016/j.actamat.2016.01.018 10.1016/S0081-1947(08)60568-8 10.1016/S1359-6462(01)00909-5 10.1016/j.actamat.2010.09.023 10.1016/j.actamat.2016.08.081 10.1016/j.scriptamat.2020.06.048 10.1016/j.jmst.2021.08.034 10.1038/149643a0 10.1016/j.scriptamat.2022.114506 10.3390/e18030102 10.1016/j.jallcom.2016.11.188 |
ContentType | Journal Article |
Copyright | 2023 Acta Materialia Inc. |
Copyright_xml | – notice: 2023 Acta Materialia Inc. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.actamat.2023.118728 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-2453 |
ExternalDocumentID | 10_1016_j_actamat_2023_118728 S1359645423000605 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABMAC ABNEU ABXRA ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AIEXJ AIKHN AITUG AIVDX AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W KOM M41 MAGPM N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SPD SSM SSQ SSZ T5K TN5 XPP ZMT ~G- AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADIYS ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FGOYB R2- SSH T9H ZY4 |
ID | FETCH-LOGICAL-c309t-99173bce7c719b475f1ff34d7d8faa0faf617438e09c7bbec8e6f6010ebf9da13 |
IEDL.DBID | .~1 |
ISSN | 1359-6454 |
IngestDate | Tue Jul 01 01:30:20 EDT 2025 Thu Apr 24 22:57:07 EDT 2025 Fri Feb 23 02:39:26 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | High-entropy alloys CALPHAD Mechanical property Strengthening mechanism |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c309t-99173bce7c719b475f1ff34d7d8faa0faf617438e09c7bbec8e6f6010ebf9da13 |
ORCID | 0000-0002-4157-7135 |
ParticipantIDs | crossref_citationtrail_10_1016_j_actamat_2023_118728 crossref_primary_10_1016_j_actamat_2023_118728 elsevier_sciencedirect_doi_10_1016_j_actamat_2023_118728 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-03-01 2023-03-00 |
PublicationDateYYYYMMDD | 2023-03-01 |
PublicationDate_xml | – month: 03 year: 2023 text: 2023-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Acta materialia |
PublicationYear | 2023 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Yao, Liu, Gao, Jiang, Li, Liu, Zhang, Fan (bib0010) 2018; 98 Bania (bib0015) 1994; 46 Wu, Wang, Xiao, Zhu, Yang, Shu, Sun (bib0034) 2022; 110 Senkov, Scott, Senkova, Miracle, Woodward (bib0005) 2011; 509 Senkov, Pilchak, Semiatin (bib0025) 2018; 49 Juan, Tsai, Tsai, Hsu, Lin, Chen, Lin, Yeh (bib0033) 2016; 184 Senkov, Miracle, Chaput, Couzinie (bib0001) 2018; 33 Yang, Wu, Li, Li, Lu, Yang, Ge (bib0036) 2010; 58 Sander, Raabe (bib0041) 2008; 479 Senkov, Semiatin (bib0008) 2015; 649 Yao, Qiao, Hawk, Zhou, Chen, Gao (bib0050) 2017; 696 Huang, Wu, He, Wang, Liu, An, Wu, Lu (bib0022) 2017; 29 Senkov, Isheim, Seidman, Pilchak (bib0046) 2016; 18 Wei, Kim, Kang, Zhang, Zhang, Furuhara, Park, Tasan (bib0024) 2020; 19 Wang, Wu, Shu, Sun (bib0037) 2020; 264 Sheikh, Shafeie, Hu, Ahlström, Persson, Veselý, Zýka, Klement, Guo (bib0030) 2016; 120 Wang, Ma, Xu (bib0023) 2019; 107 Eleti, Stepanov, Yurchenko, Zherebtsov, Maresca (bib0026) 2022; 209 Wu, Cai, Wang, Si, Zhu, Wang, Hui (bib0006) 2014; 130 . Dirras, Couque, Lilensten, Heczel, Tingaud, Couzinié, Perrière, Gubicza, Guillot (bib0039) 2016; 111 Lu, Gao, Jiang, Chen, Wang, Jie, Kang, Zhang, Guo, Ruan, Zhao, Cao, Li (bib0032) 2017; 124 Zýka, Málek, Veselý, Lukáč, Čížek, Kuriplach, Melikhova (bib0027) 2019; 21 Fan, Qu, Zhang (bib0040) 2022; 123 Chen, Ma, Qiu, Zhang, Zhang, Yang, Hu (bib0049) 2022; 225 Wang, Wu, Shu, Zhu, Wang, Sun (bib0038) 2020; 201 Ding, Zhang, Chen, Fu, Chen, Chen, Gu, Wei, Bei, Gao, Wen, Li, Zhang, Zhu, Ritchie, Yu (bib0044) 2019; 574 An, Mao, Yang, Liu, Zhang, Ma, Zhou, Zhang, Wang, Han (bib0013) 2021; 8 Nguyen, Qian, Shi, Tran, Fabijanic, Joseph, Qu, Matsumura, Zhang, Zhang, Zou (bib0019) 2020; 798 Takeuchi, Inoue (bib0047) 2005; 12 Chen, Tong, Tseng, Yeh, Poplawsky, Wen, Gao, Kim, Chen, Ren, Feng, Li, Liaw (bib0009) 2019; 158 Lei, Liu, Wu, Wang, Jiang, Wang, Hui, Wu, Gault, Kontis, Raabe, Gu, Zhang, Chen, Wang, Liu, An, Zeng, Nieh, Lu (bib0012) 2018; 563 Singh, Wanderka, Murty, Glatzel, Banhart (bib0048) 2011; 59 Cordero, Knight, Schuh (bib0051) 2016; 61 Zhang, Han (bib0042) 2020; 196 Lilensten, Couzinié, Bourgon, Perrière, Dirras, Prima, Guillot (bib0031) 2017; 5 Huang, Sun, Cao, Wu, Liu, Jiang, Wang, Lu (bib0016) 2022; 211 Orowan (bib0035) 1942; 149 Miracle, Senkov (bib0003) 2017; 122 Yan, Liaw, Zhang (bib0029) 2022; 110 Maiti, Steurer (bib0018) 2016; 106 Senkov, Miracle, Rao (bib0004) 2021; 820 Couzinie, Lilensten, Champion, Dirras, Perriere, Guillot (bib0045) 2015; 645 Miracle, Tsai, Senkov, Soni, Banerjee (bib0002) 2020; 187 Guinier (bib0021) 1959 Wang, Tang, Lei, Ai, Tong, Li, Ye, Bai (bib0043) 2022 Li, Pradeep, Deng, Raabe, Tasan (bib0011) 2016; 534 Wu, Si, Lin, Wang, Wang, Wang, Liu, Hui (bib0017) 2018; 724 Su, Tseng, Yeh, El-Sayed, Liu, Wang (bib0028) 2022; 206 Konno, Hiraga, Kawasaki (bib0020) 2001; 44 Schuh, Völker, Todt, Schell, Perrière, Li, Couzinié, Hohenwarter (bib0007) 2018; 142 CompuTherm Software, Databases, in Wang (10.1016/j.actamat.2023.118728_bib0043) 2022 Senkov (10.1016/j.actamat.2023.118728_bib0046) 2016; 18 Dirras (10.1016/j.actamat.2023.118728_bib0039) 2016; 111 Bania (10.1016/j.actamat.2023.118728_bib0015) 1994; 46 Sander (10.1016/j.actamat.2023.118728_bib0041) 2008; 479 Senkov (10.1016/j.actamat.2023.118728_bib0025) 2018; 49 Zýka (10.1016/j.actamat.2023.118728_bib0027) 2019; 21 Senkov (10.1016/j.actamat.2023.118728_bib0004) 2021; 820 Chen (10.1016/j.actamat.2023.118728_bib0009) 2019; 158 Konno (10.1016/j.actamat.2023.118728_bib0020) 2001; 44 Wang (10.1016/j.actamat.2023.118728_bib0023) 2019; 107 Eleti (10.1016/j.actamat.2023.118728_bib0026) 2022; 209 An (10.1016/j.actamat.2023.118728_bib0013) 2021; 8 Ding (10.1016/j.actamat.2023.118728_bib0044) 2019; 574 Li (10.1016/j.actamat.2023.118728_bib0011) 2016; 534 Orowan (10.1016/j.actamat.2023.118728_bib0035) 1942; 149 Su (10.1016/j.actamat.2023.118728_bib0028) 2022; 206 Schuh (10.1016/j.actamat.2023.118728_bib0007) 2018; 142 Fan (10.1016/j.actamat.2023.118728_bib0040) 2022; 123 Zhang (10.1016/j.actamat.2023.118728_bib0042) 2020; 196 Lei (10.1016/j.actamat.2023.118728_bib0012) 2018; 563 Singh (10.1016/j.actamat.2023.118728_bib0048) 2011; 59 Yang (10.1016/j.actamat.2023.118728_bib0036) 2010; 58 Cordero (10.1016/j.actamat.2023.118728_bib0051) 2016; 61 Senkov (10.1016/j.actamat.2023.118728_bib0005) 2011; 509 10.1016/j.actamat.2023.118728_bib0014 Sheikh (10.1016/j.actamat.2023.118728_bib0030) 2016; 120 Wang (10.1016/j.actamat.2023.118728_bib0037) 2020; 264 Wei (10.1016/j.actamat.2023.118728_bib0024) 2020; 19 Yao (10.1016/j.actamat.2023.118728_bib0010) 2018; 98 Huang (10.1016/j.actamat.2023.118728_bib0016) 2022; 211 Wu (10.1016/j.actamat.2023.118728_bib0006) 2014; 130 Maiti (10.1016/j.actamat.2023.118728_bib0018) 2016; 106 Huang (10.1016/j.actamat.2023.118728_bib0022) 2017; 29 Wang (10.1016/j.actamat.2023.118728_bib0038) 2020; 201 Couzinie (10.1016/j.actamat.2023.118728_bib0045) 2015; 645 Guinier (10.1016/j.actamat.2023.118728_bib0021) 1959 Wu (10.1016/j.actamat.2023.118728_bib0034) 2022; 110 Chen (10.1016/j.actamat.2023.118728_bib0049) 2022; 225 Juan (10.1016/j.actamat.2023.118728_bib0033) 2016; 184 Takeuchi (10.1016/j.actamat.2023.118728_bib0047) 2005; 12 Lilensten (10.1016/j.actamat.2023.118728_bib0031) 2017; 5 Senkov (10.1016/j.actamat.2023.118728_bib0001) 2018; 33 Lu (10.1016/j.actamat.2023.118728_bib0032) 2017; 124 Miracle (10.1016/j.actamat.2023.118728_bib0003) 2017; 122 Miracle (10.1016/j.actamat.2023.118728_bib0002) 2020; 187 Yao (10.1016/j.actamat.2023.118728_bib0050) 2017; 696 Senkov (10.1016/j.actamat.2023.118728_bib0008) 2015; 649 Wu (10.1016/j.actamat.2023.118728_bib0017) 2018; 724 Yan (10.1016/j.actamat.2023.118728_bib0029) 2022; 110 Nguyen (10.1016/j.actamat.2023.118728_bib0019) 2020; 798 |
References_xml | – volume: 187 start-page: 445 year: 2020 end-page: 452 ident: bib0002 article-title: Refractory high entropy superalloys (RSAs) publication-title: Scr. Mater. – volume: 111 start-page: 106 year: 2016 end-page: 113 ident: bib0039 article-title: Mechanical behavior and microstructure of Ti20Hf20Zr20Ta20Nb20 high-entropy alloy loaded under quasi-static and dynamic compression conditions publication-title: Mater. Charact. – volume: 142 start-page: 201 year: 2018 end-page: 212 ident: bib0007 article-title: Thermodynamic instability of a nanocrystalline, single-phase TiZrNbHfTa alloy and its impact on the mechanical properties publication-title: Acta Mater. – volume: 120 year: 2016 ident: bib0030 article-title: Alloy design for intrinsically ductile refractory high-entropy alloys publication-title: J. Appl. Phys. – volume: 46 start-page: 16 year: 1994 end-page: 19 ident: bib0015 article-title: Beta titanium alloys and their role in the titanium industry publication-title: JOM – volume: 49 start-page: 2876 year: 2018 end-page: 2892 ident: bib0025 article-title: Effect of cold deformation and annealing on the microstructure and tensile properties of a HfNbTaTiZr refractory high entropy alloy publication-title: Metall. Mater. Trans. A – volume: 149 start-page: 643 year: 1942 end-page: 644 ident: bib0035 article-title: A type of plastic deformation new in metals publication-title: Nature – volume: 798 year: 2020 ident: bib0019 article-title: Cuboid-like nanostructure strengthened equiatomic Ti–Zr–Nb–Ta medium entropy alloy publication-title: Mater. Sci. Eng. A – volume: 18 start-page: 102 year: 2016 ident: bib0046 article-title: Development of a refractory high entropy superalloy publication-title: Entropy – volume: 12 start-page: 2817 year: 2005 ident: bib0047 article-title: Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element publication-title: Mater. Trans. – volume: 264 year: 2020 ident: bib0037 article-title: Kinking in a refractory TiZrHfNb0.7 medium-entropy alloy publication-title: Mater. Lett. – volume: 724 start-page: 249 year: 2018 end-page: 259 ident: bib0017 article-title: Phase stability and mechanical properties of AlHfNbTiZr high-entropy alloys publication-title: Mater. Sci. Eng. A – volume: 130 start-page: 277 year: 2014 end-page: 280 ident: bib0006 article-title: A refractory Hf25Nb25Ti25Zr25 high-entropy alloy with excellent structural stability and tensile properties publication-title: Mater. Lett. – volume: 98 start-page: 79 year: 2018 end-page: 88 ident: bib0010 article-title: Phase stability of a ductile single-phase BCC Hf0.5Nb0.5Ta0.5Ti1.5Zr refractory high-entropy alloy publication-title: Intermetallics – volume: 184 start-page: 200 year: 2016 end-page: 203 ident: bib0033 article-title: Simultaneously increasing the strength and ductility of a refractory high-entropy alloy via grain refining publication-title: Mater. Lett. – volume: 123 start-page: 70 year: 2022 end-page: 77 ident: bib0040 article-title: Remarkably high fracture toughness of HfNbTaTiZr refractory high-entropy alloy publication-title: J. Mater. Sci. Technol. – start-page: 213 year: 2022 ident: bib0043 article-title: Achieving high strength and ductility in nitrogen-doped refractory high-entropy alloys publication-title: Mater. Des. – volume: 110 start-page: 210 year: 2022 end-page: 215 ident: bib0034 article-title: Dislocation glide and mechanical twinning in a ductile VNbTi medium entropy alloy publication-title: J. Mater. Sci. Technol. – volume: 201 start-page: 517 year: 2020 end-page: 527 ident: bib0038 article-title: Mechanical instability and tensile properties of TiZrHfNbTa high entropy alloy at cryogenic temperatures publication-title: Acta Mater – volume: 44 start-page: 2303 year: 2001 end-page: 2307 ident: bib0020 article-title: Guinier-Preston (GP) zone revisited: atomic level observation by HAADF-TEM technique publication-title: Scr. Mater. – volume: 124 start-page: 143 year: 2017 end-page: 150 ident: bib0032 article-title: Directly cast bulk eutectic and near-eutectic high entropy alloys with balanced strength and ductility in a wide temperature range publication-title: Acta Mater. – volume: 696 start-page: 1139 year: 2017 end-page: 1150 ident: bib0050 article-title: Mechanical properties of refractory high-entropy alloys: experiments and modeling publication-title: J. Alloys Compd. – volume: 645 start-page: 255 year: 2015 end-page: 263 ident: bib0045 article-title: On the room temperature deformation mechanisms of a TiZrHfNbTa refractory high-entropy alloy publication-title: Mater. Sci. Eng. A – volume: 107 start-page: 15 year: 2019 end-page: 23 ident: bib0023 article-title: New ternary equi-atomic refractory medium-entropy alloys with tensile ductility: hafnium versus titanium into NbTa-based solution publication-title: Intermetallics – volume: 211 year: 2022 ident: bib0016 article-title: On cooling rates dependence of microstructure and mechanical properties of refractory high-entropy alloys HfTaTiZr and HfNbTiZr publication-title: Scr. Mater. – volume: 122 start-page: 448 year: 2017 end-page: 511 ident: bib0003 article-title: A critical review of high entropy alloys and related concepts publication-title: Acta Mater. – volume: 8 start-page: 948 year: 2021 end-page: 955 ident: bib0013 article-title: Spinodal-modulated solid solution delivers a strong and ductile refractory high-entropy alloy publication-title: Mater. Horizons – volume: 21 start-page: 114 year: 2019 ident: bib0027 article-title: Microstructure and room temperature mechanical properties of different 3 and 4 element medium entropy alloys from HfNbTaTiZr system publication-title: Entropy – volume: 29 year: 2017 ident: bib0022 article-title: Phase-transformation ductilization of brittle high-entropy alloys via metastability engineering publication-title: Adv. Mater. – start-page: 293 year: 1959 end-page: 398 ident: bib0021 article-title: Heterogeneities in solid solutions publication-title: Solid State Physics – volume: 196 start-page: 122 year: 2020 end-page: 132 ident: bib0042 article-title: Oxygen solutes induced anomalous hardening, toughening and embrittlement in body-centered cubic vanadium publication-title: Acta Mater – volume: 509 start-page: 6043 year: 2011 end-page: 6048 ident: bib0005 article-title: Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy publication-title: J. Alloys Compd. – volume: 58 start-page: 2778 year: 2010 end-page: 2787 ident: bib0036 article-title: Evolution of deformation mechanisms of Ti–22.4Nb–0.73Ta–2Zr–1.34O alloy during straining publication-title: Acta Mater – volume: 820 year: 2021 ident: bib0004 article-title: Correlations to improve room temperature ductility of refractory complex concentrated alloys publication-title: Mater. Sci. Eng. A – volume: 59 start-page: 182 year: 2011 end-page: 190 ident: bib0048 article-title: Decomposition in multi-component AlCoCrCuFeNi high-entropy alloy publication-title: Acta Mater. – reference: CompuTherm Software, Databases, in, – volume: 206 year: 2022 ident: bib0028 article-title: Strengthening mechanisms and microstructural evolution of ductile refractory medium-entropy alloy Hf20Nb10Ti35Zr35 publication-title: Scr. Mater. – volume: 19 start-page: 1175 year: 2020 end-page: 1181 ident: bib0024 article-title: Natural-mixing guided design of refractory high-entropy alloys with as-cast tensile ductility publication-title: Nat. Mater. – volume: 209 year: 2022 ident: bib0026 article-title: Cross-kink unpinning controls the medium- to high-temperature strength of body-centered cubic NbTiZr medium-entropy alloy publication-title: Scr. Mater. – volume: 5 start-page: 110 year: 2017 end-page: 116 ident: bib0031 article-title: Design and tensile properties of a bcc Ti-rich high-entropy alloy with transformation-induced plasticity publication-title: Mater. Res. Lett. – volume: 106 start-page: 87 year: 2016 end-page: 97 ident: bib0018 article-title: Structural-disorder and its effect on mechanical properties in single-phase TaNbHfZr high-entropy alloy publication-title: Acta Mater. – volume: 649 start-page: 1110 year: 2015 end-page: 1123 ident: bib0008 article-title: Microstructure and properties of a refractory high-entropy alloy after cold working publication-title: J. Alloys Compd. – volume: 158 start-page: 50 year: 2019 end-page: 56 ident: bib0009 article-title: Phase transformations of HfNbTaTiZr high-entropy alloy at intermediate temperatures publication-title: Scr. Mater. – volume: 534 start-page: 227 year: 2016 end-page: 230 ident: bib0011 article-title: Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off publication-title: Nature – volume: 61 start-page: 495 year: 2016 end-page: 512 ident: bib0051 article-title: Six decades of the Hall–Petch effect – a survey of grain-size strengthening studies on pure metals publication-title: Int. Mater. Rev. – volume: 110 start-page: 109 year: 2022 end-page: 116 ident: bib0029 article-title: Ultrastrong and ductile BCC high-entropy alloys with low-density via dislocation regulation and nanoprecipitates publication-title: J. Mater. Sci. Technol. – volume: 563 start-page: 546 year: 2018 end-page: 550 ident: bib0012 article-title: Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes publication-title: Nature – reference: . – volume: 574 start-page: 223 year: 2019 end-page: 227 ident: bib0044 article-title: Tuning element distribution, structure and properties by composition in high-entropy alloys publication-title: Nature – volume: 33 start-page: 3092 year: 2018 end-page: 3128 ident: bib0001 article-title: Development and exploration of refractory high entropy alloys—a review publication-title: J. Mater. Res. – volume: 479 start-page: 236 year: 2008 end-page: 247 ident: bib0041 article-title: Texture inhomogeneity in a Ti-Nb-based beta-titanium alloy after warm rolling and recrystallization publication-title: Mater. Sci. Eng. A – volume: 225 year: 2022 ident: bib0049 article-title: Phase decomposition and strengthening in HfNbTaTiZr high entropy alloy from first-principles calculations publication-title: Acta Mater – volume: 110 start-page: 210 year: 2022 ident: 10.1016/j.actamat.2023.118728_bib0034 article-title: Dislocation glide and mechanical twinning in a ductile VNbTi medium entropy alloy publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2021.09.016 – volume: 574 start-page: 223 issue: 7777 year: 2019 ident: 10.1016/j.actamat.2023.118728_bib0044 article-title: Tuning element distribution, structure and properties by composition in high-entropy alloys publication-title: Nature doi: 10.1038/s41586-019-1617-1 – volume: 61 start-page: 495 issue: 8 year: 2016 ident: 10.1016/j.actamat.2023.118728_bib0051 article-title: Six decades of the Hall–Petch effect – a survey of grain-size strengthening studies on pure metals publication-title: Int. Mater. Rev. doi: 10.1080/09506608.2016.1191808 – volume: 563 start-page: 546 issue: 7732 year: 2018 ident: 10.1016/j.actamat.2023.118728_bib0012 article-title: Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes publication-title: Nature doi: 10.1038/s41586-018-0685-y – volume: 12 start-page: 2817 year: 2005 ident: 10.1016/j.actamat.2023.118728_bib0047 article-title: Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element publication-title: Mater. Trans. doi: 10.2320/matertrans.46.2817 – volume: 201 start-page: 517 year: 2020 ident: 10.1016/j.actamat.2023.118728_bib0038 article-title: Mechanical instability and tensile properties of TiZrHfNbTa high entropy alloy at cryogenic temperatures publication-title: Acta Mater doi: 10.1016/j.actamat.2020.10.044 – volume: 206 year: 2022 ident: 10.1016/j.actamat.2023.118728_bib0028 article-title: Strengthening mechanisms and microstructural evolution of ductile refractory medium-entropy alloy Hf20Nb10Ti35Zr35 publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2021.114225 – volume: 5 start-page: 110 issue: 2 year: 2017 ident: 10.1016/j.actamat.2023.118728_bib0031 article-title: Design and tensile properties of a bcc Ti-rich high-entropy alloy with transformation-induced plasticity publication-title: Mater. Res. Lett. doi: 10.1080/21663831.2016.1221861 – volume: 8 start-page: 948 issue: 3 year: 2021 ident: 10.1016/j.actamat.2023.118728_bib0013 article-title: Spinodal-modulated solid solution delivers a strong and ductile refractory high-entropy alloy publication-title: Mater. Horizons doi: 10.1039/D0MH01341B – volume: 649 start-page: 1110 year: 2015 ident: 10.1016/j.actamat.2023.118728_bib0008 article-title: Microstructure and properties of a refractory high-entropy alloy after cold working publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2015.07.209 – volume: 98 start-page: 79 year: 2018 ident: 10.1016/j.actamat.2023.118728_bib0010 article-title: Phase stability of a ductile single-phase BCC Hf0.5Nb0.5Ta0.5Ti1.5Zr refractory high-entropy alloy publication-title: Intermetallics doi: 10.1016/j.intermet.2018.04.023 – volume: 264 year: 2020 ident: 10.1016/j.actamat.2023.118728_bib0037 article-title: Kinking in a refractory TiZrHfNb0.7 medium-entropy alloy publication-title: Mater. Lett. doi: 10.1016/j.matlet.2020.127369 – volume: 21 start-page: 114 year: 2019 ident: 10.1016/j.actamat.2023.118728_bib0027 article-title: Microstructure and room temperature mechanical properties of different 3 and 4 element medium entropy alloys from HfNbTaTiZr system publication-title: Entropy doi: 10.3390/e21020114 – volume: 225 year: 2022 ident: 10.1016/j.actamat.2023.118728_bib0049 article-title: Phase decomposition and strengthening in HfNbTaTiZr high entropy alloy from first-principles calculations publication-title: Acta Mater doi: 10.1016/j.actamat.2021.117582 – volume: 33 start-page: 3092 issue: 19 year: 2018 ident: 10.1016/j.actamat.2023.118728_bib0001 article-title: Development and exploration of refractory high entropy alloys—a review publication-title: J. Mater. Res. doi: 10.1557/jmr.2018.153 – volume: 123 start-page: 70 year: 2022 ident: 10.1016/j.actamat.2023.118728_bib0040 article-title: Remarkably high fracture toughness of HfNbTaTiZr refractory high-entropy alloy publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2022.01.017 – volume: 130 start-page: 277 year: 2014 ident: 10.1016/j.actamat.2023.118728_bib0006 article-title: A refractory Hf25Nb25Ti25Zr25 high-entropy alloy with excellent structural stability and tensile properties publication-title: Mater. Lett. doi: 10.1016/j.matlet.2014.05.134 – volume: 29 issue: 30 year: 2017 ident: 10.1016/j.actamat.2023.118728_bib0022 article-title: Phase-transformation ductilization of brittle high-entropy alloys via metastability engineering publication-title: Adv. Mater. doi: 10.1002/adma.201701678 – volume: 142 start-page: 201 year: 2018 ident: 10.1016/j.actamat.2023.118728_bib0007 article-title: Thermodynamic instability of a nanocrystalline, single-phase TiZrNbHfTa alloy and its impact on the mechanical properties publication-title: Acta Mater. doi: 10.1016/j.actamat.2017.09.035 – volume: 107 start-page: 15 year: 2019 ident: 10.1016/j.actamat.2023.118728_bib0023 article-title: New ternary equi-atomic refractory medium-entropy alloys with tensile ductility: hafnium versus titanium into NbTa-based solution publication-title: Intermetallics doi: 10.1016/j.intermet.2019.01.004 – volume: 124 start-page: 143 year: 2017 ident: 10.1016/j.actamat.2023.118728_bib0032 article-title: Directly cast bulk eutectic and near-eutectic high entropy alloys with balanced strength and ductility in a wide temperature range publication-title: Acta Mater. doi: 10.1016/j.actamat.2016.11.016 – volume: 509 start-page: 6043 issue: 20 year: 2011 ident: 10.1016/j.actamat.2023.118728_bib0005 article-title: Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2011.02.171 – volume: 111 start-page: 106 year: 2016 ident: 10.1016/j.actamat.2023.118728_bib0039 article-title: Mechanical behavior and microstructure of Ti20Hf20Zr20Ta20Nb20 high-entropy alloy loaded under quasi-static and dynamic compression conditions publication-title: Mater. Charact. doi: 10.1016/j.matchar.2015.11.018 – volume: 209 year: 2022 ident: 10.1016/j.actamat.2023.118728_bib0026 article-title: Cross-kink unpinning controls the medium- to high-temperature strength of body-centered cubic NbTiZr medium-entropy alloy publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2021.114367 – volume: 184 start-page: 200 year: 2016 ident: 10.1016/j.actamat.2023.118728_bib0033 article-title: Simultaneously increasing the strength and ductility of a refractory high-entropy alloy via grain refining publication-title: Mater. Lett. doi: 10.1016/j.matlet.2016.08.060 – volume: 724 start-page: 249 year: 2018 ident: 10.1016/j.actamat.2023.118728_bib0017 article-title: Phase stability and mechanical properties of AlHfNbTiZr high-entropy alloys publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2018.03.071 – volume: 798 year: 2020 ident: 10.1016/j.actamat.2023.118728_bib0019 article-title: Cuboid-like nanostructure strengthened equiatomic Ti–Zr–Nb–Ta medium entropy alloy publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2020.140169 – volume: 58 start-page: 2778 issue: 7 year: 2010 ident: 10.1016/j.actamat.2023.118728_bib0036 article-title: Evolution of deformation mechanisms of Ti–22.4Nb–0.73Ta–2Zr–1.34O alloy during straining publication-title: Acta Mater doi: 10.1016/j.actamat.2010.01.015 – volume: 19 start-page: 1175 year: 2020 ident: 10.1016/j.actamat.2023.118728_bib0024 article-title: Natural-mixing guided design of refractory high-entropy alloys with as-cast tensile ductility publication-title: Nat. Mater. doi: 10.1038/s41563-020-0750-4 – volume: 120 issue: 16 year: 2016 ident: 10.1016/j.actamat.2023.118728_bib0030 article-title: Alloy design for intrinsically ductile refractory high-entropy alloys publication-title: J. Appl. Phys. doi: 10.1063/1.4966659 – volume: 820 year: 2021 ident: 10.1016/j.actamat.2023.118728_bib0004 article-title: Correlations to improve room temperature ductility of refractory complex concentrated alloys publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2021.141512 – volume: 49 start-page: 2876 issue: 7 year: 2018 ident: 10.1016/j.actamat.2023.118728_bib0025 article-title: Effect of cold deformation and annealing on the microstructure and tensile properties of a HfNbTaTiZr refractory high entropy alloy publication-title: Metall. Mater. Trans. A doi: 10.1007/s11661-018-4646-8 – volume: 534 start-page: 227 issue: 7606 year: 2016 ident: 10.1016/j.actamat.2023.118728_bib0011 article-title: Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off publication-title: Nature doi: 10.1038/nature17981 – volume: 479 start-page: 236 issue: 1–2 year: 2008 ident: 10.1016/j.actamat.2023.118728_bib0041 article-title: Texture inhomogeneity in a Ti-Nb-based beta-titanium alloy after warm rolling and recrystallization publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2007.06.077 – volume: 158 start-page: 50 year: 2019 ident: 10.1016/j.actamat.2023.118728_bib0009 article-title: Phase transformations of HfNbTaTiZr high-entropy alloy at intermediate temperatures publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2018.08.032 – start-page: 213 year: 2022 ident: 10.1016/j.actamat.2023.118728_bib0043 article-title: Achieving high strength and ductility in nitrogen-doped refractory high-entropy alloys publication-title: Mater. Des. – volume: 46 start-page: 16 issue: 7 year: 1994 ident: 10.1016/j.actamat.2023.118728_bib0015 article-title: Beta titanium alloys and their role in the titanium industry publication-title: JOM doi: 10.1007/BF03220742 – volume: 645 start-page: 255 year: 2015 ident: 10.1016/j.actamat.2023.118728_bib0045 article-title: On the room temperature deformation mechanisms of a TiZrHfNbTa refractory high-entropy alloy publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2015.08.024 – volume: 196 start-page: 122 year: 2020 ident: 10.1016/j.actamat.2023.118728_bib0042 article-title: Oxygen solutes induced anomalous hardening, toughening and embrittlement in body-centered cubic vanadium publication-title: Acta Mater doi: 10.1016/j.actamat.2020.06.023 – ident: 10.1016/j.actamat.2023.118728_bib0014 – volume: 106 start-page: 87 year: 2016 ident: 10.1016/j.actamat.2023.118728_bib0018 article-title: Structural-disorder and its effect on mechanical properties in single-phase TaNbHfZr high-entropy alloy publication-title: Acta Mater. doi: 10.1016/j.actamat.2016.01.018 – start-page: 293 year: 1959 ident: 10.1016/j.actamat.2023.118728_bib0021 article-title: Heterogeneities in solid solutions doi: 10.1016/S0081-1947(08)60568-8 – volume: 44 start-page: 2303 issue: 8 year: 2001 ident: 10.1016/j.actamat.2023.118728_bib0020 article-title: Guinier-Preston (GP) zone revisited: atomic level observation by HAADF-TEM technique publication-title: Scr. Mater. doi: 10.1016/S1359-6462(01)00909-5 – volume: 59 start-page: 182 issue: 1 year: 2011 ident: 10.1016/j.actamat.2023.118728_bib0048 article-title: Decomposition in multi-component AlCoCrCuFeNi high-entropy alloy publication-title: Acta Mater. doi: 10.1016/j.actamat.2010.09.023 – volume: 122 start-page: 448 year: 2017 ident: 10.1016/j.actamat.2023.118728_bib0003 article-title: A critical review of high entropy alloys and related concepts publication-title: Acta Mater. doi: 10.1016/j.actamat.2016.08.081 – volume: 187 start-page: 445 year: 2020 ident: 10.1016/j.actamat.2023.118728_bib0002 article-title: Refractory high entropy superalloys (RSAs) publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2020.06.048 – volume: 110 start-page: 109 year: 2022 ident: 10.1016/j.actamat.2023.118728_bib0029 article-title: Ultrastrong and ductile BCC high-entropy alloys with low-density via dislocation regulation and nanoprecipitates publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2021.08.034 – volume: 149 start-page: 643 issue: 3788 year: 1942 ident: 10.1016/j.actamat.2023.118728_bib0035 article-title: A type of plastic deformation new in metals publication-title: Nature doi: 10.1038/149643a0 – volume: 211 year: 2022 ident: 10.1016/j.actamat.2023.118728_bib0016 article-title: On cooling rates dependence of microstructure and mechanical properties of refractory high-entropy alloys HfTaTiZr and HfNbTiZr publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2022.114506 – volume: 18 start-page: 102 issue: 3 year: 2016 ident: 10.1016/j.actamat.2023.118728_bib0046 article-title: Development of a refractory high entropy superalloy publication-title: Entropy doi: 10.3390/e18030102 – volume: 696 start-page: 1139 year: 2017 ident: 10.1016/j.actamat.2023.118728_bib0050 article-title: Mechanical properties of refractory high-entropy alloys: experiments and modeling publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2016.11.188 |
SSID | ssj0012740 |
Score | 2.6990457 |
Snippet | TiZrHfNbTa refractory high-entropy alloys (RHEAs) are now at the research frontier of advanced metallic materials due to their exceptional mechanical... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 118728 |
SubjectTerms | CALPHAD High-entropy alloys Mechanical property Strengthening mechanism |
Title | CALPHAD-aided design for superior thermal stability and mechanical behavior in a TiZrHfNb refractory high-entropy alloy |
URI | https://dx.doi.org/10.1016/j.actamat.2023.118728 |
Volume | 246 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA5jvuiDeMXryIOv2RqbtsljmY56G4IbDF9KkyawsXVjbshe_O3m9DIniIJvbekp4Zz05Es45_sQutJcOcr-NoRKZgiTlBMuPU14In0LCBR3cvm2p64f9dn9wBvUULvqhYGyyjL3Fzk9z9blk1bpzdZsOGy9UNcTwEdlQTSwikCjOWMBzPLmx7rMg9pdV9Ep7AkCb3918bRGdsiLxALDJmiIN0F4G0TZf1qfNtaczh7aLcEiDovx7KOazg7QzgaF4CF6b4ePz1F4Q4DqMcVpXpCBLRLFb0sgMbYXAPEm9jMWB-aVsCucZCmeaOj5hRDhqlUfDzOc4N7wdR6ZrsR2bPNcjWeFgdSYwDnwdGatx-Pp6gj1O7e9dkRKMQWiXEcsiMWBgSuVDlRAhWSBZ6gxLkuDlJskcUxifNiccO0IFUgbWa59A7s1LY1IE-oeo3o2zfQJwoEx15IrqrjSzJcC8qUwnnaoUakW7ililQtjVTKNg-DFOK5KykZx6fkYPB8Xnj9FzbXZrKDa-MuAV_GJv82Z2C4Hv5ue_d_0HG3DXVGHdoHqi_lSX1pgspCNfOY10FZ49xB1PwEcz-V_ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LSyQxEC58HNSDrOuKj901h_WYmc70Kzl4kHWlfQ2CI8he2k46gZGxZxhHZC7-Kf_gVvXDVRAFwVvTTYX0l-rKl6bqK4BfVhrP4GfDhQ4cD7SQXOrQcpnpCAmBkV7Zvu20GyUXwdFleDkDj00tDKVV1rG_iulltK7vtGs026N-v30u_FCRHhWSaFIVaTIrj-30Hs9tt7uH-7jIO53OwZ_e74TXrQW48T014ciKYl8bG5tYKB3EoRPO-UEe59JlmecyFxFVl9ZTJtb4ntJGjs4uVjuVZ8LHcWdhPsBwQW0TWg9PeSUCj3lVaXKoOE3vf9lQ-xoxmmTIRFvUtLxFnb6pC_xrG-KzTe7gCyzX7JTtVQCswIwtvsLSM83CVbjH1ztL9vY5aUvmLC8zQBhSX3Z7R6rJeEGc8gaHQeJZpt5OWVbk7MZSkTH5BGu0AVi_YBnr9f-OE9fVDOc2Ltv_TBmpKHP68TwcofVgMJx-g4tPgXgN5ophYdeBxc51tDTCSGODSCsK0MqF1hPO5Fb5GxA0EKamljanDhuDtMlhu05r5FNCPq2Q34DWk9mo0vZ4z0A265O-cNIU95-3TTc_broNC0nv9CQ9Oeweb8EiPamS4L7D3GR8Z38gK5ron6UXMrj6bLf_BxrxIvg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CALPHAD-aided+design+for+superior+thermal+stability+and+mechanical+behavior+in+a+TiZrHfNb+refractory+high-entropy+alloy&rft.jtitle=Acta+materialia&rft.au=Li%2C+Tianxin&rft.au=Wang%2C+Shudao&rft.au=Fan%2C+Wenxue&rft.au=Lu%2C+Yiping&rft.date=2023-03-01&rft.issn=1359-6454&rft.volume=246&rft.spage=118728&rft_id=info:doi/10.1016%2Fj.actamat.2023.118728&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_actamat_2023_118728 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-6454&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-6454&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-6454&client=summon |