CALPHAD-aided design for superior thermal stability and mechanical behavior in a TiZrHfNb refractory high-entropy alloy

TiZrHfNbTa refractory high-entropy alloys (RHEAs) are now at the research frontier of advanced metallic materials due to their exceptional mechanical performance, particularly at high temperatures. However, the TiZrHfNbTa RHEAs exhibit poor phase stability at intermediate temperatures (600 – 1,000 °...

Full description

Saved in:
Bibliographic Details
Published inActa materialia Vol. 246; p. 118728
Main Authors Li, Tianxin, Wang, Shudao, Fan, Wenxue, Lu, Yiping, Wang, Tongmin, Li, Tingju, Liaw, Peter K.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.03.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract TiZrHfNbTa refractory high-entropy alloys (RHEAs) are now at the research frontier of advanced metallic materials due to their exceptional mechanical performance, particularly at high temperatures. However, the TiZrHfNbTa RHEAs exhibit poor phase stability at intermediate temperatures (600 – 1,000 °C). The present study aimed to tailor their phase stability and mechanical properties via the calculation of phase diagrams (CALPHAD) approach. We found that Ta and Hf were detrimental to the phase stability of the TiZrHfNbTa RHEAs. Accordingly, a Ta-free and Hf-depleted Ti30Zr30Hf16Nb24 RHEA with outstanding phase stability was designed, which could remain a single-phase body-centered cubic (BCC) structure after annealing at 600 °C for 200 h. Furthermore, numerous (Ti, Zr)-rich nano-precipitates were dispersedly formed in the cold-rolled plus recrystallization-annealed (CR+A) Ti30Zr30Hf16Nb24 RHEA. The nano-precipitates controlled by the spinodal decomposition mechanism had an identical BCC lattice. The lattice fringes with (11¯0) Miller indices bent from the matrix phase to the nano-precipitates, causing a strong local strain field near the phase boundaries. The CR+A alloy possessed a yield strength of ∼ 800 MPa and tensile fracture elongation of ∼ 34.0%, showing a superior strength-ductility combination. The strain measurement by a digital image correlation indicated that the CR+A alloy exhibited a more substantial plastic stability than the as-cast alloy. Detailed observations of deformation microstructures through a transmission electron microscope and electron back-scattered diffraction revealed the origin of strength and ductility. Dislocation cross-slip and kink bands tended to form in the CR+A alloy during deformation and were capable of accommodating dislocation slip against stress concentration. Labusch's model uncovered that solid-solution strengthening contributed the most to yield strength. The present study provides a paradigm for the superior thermostability and controllable nanophase-precipitation behavior in RHEAs. [Display omitted]
AbstractList TiZrHfNbTa refractory high-entropy alloys (RHEAs) are now at the research frontier of advanced metallic materials due to their exceptional mechanical performance, particularly at high temperatures. However, the TiZrHfNbTa RHEAs exhibit poor phase stability at intermediate temperatures (600 – 1,000 °C). The present study aimed to tailor their phase stability and mechanical properties via the calculation of phase diagrams (CALPHAD) approach. We found that Ta and Hf were detrimental to the phase stability of the TiZrHfNbTa RHEAs. Accordingly, a Ta-free and Hf-depleted Ti30Zr30Hf16Nb24 RHEA with outstanding phase stability was designed, which could remain a single-phase body-centered cubic (BCC) structure after annealing at 600 °C for 200 h. Furthermore, numerous (Ti, Zr)-rich nano-precipitates were dispersedly formed in the cold-rolled plus recrystallization-annealed (CR+A) Ti30Zr30Hf16Nb24 RHEA. The nano-precipitates controlled by the spinodal decomposition mechanism had an identical BCC lattice. The lattice fringes with (11¯0) Miller indices bent from the matrix phase to the nano-precipitates, causing a strong local strain field near the phase boundaries. The CR+A alloy possessed a yield strength of ∼ 800 MPa and tensile fracture elongation of ∼ 34.0%, showing a superior strength-ductility combination. The strain measurement by a digital image correlation indicated that the CR+A alloy exhibited a more substantial plastic stability than the as-cast alloy. Detailed observations of deformation microstructures through a transmission electron microscope and electron back-scattered diffraction revealed the origin of strength and ductility. Dislocation cross-slip and kink bands tended to form in the CR+A alloy during deformation and were capable of accommodating dislocation slip against stress concentration. Labusch's model uncovered that solid-solution strengthening contributed the most to yield strength. The present study provides a paradigm for the superior thermostability and controllable nanophase-precipitation behavior in RHEAs. [Display omitted]
ArticleNumber 118728
Author Wang, Shudao
Wang, Tongmin
Liaw, Peter K.
Lu, Yiping
Li, Tingju
Fan, Wenxue
Li, Tianxin
Author_xml – sequence: 1
  givenname: Tianxin
  surname: Li
  fullname: Li, Tianxin
  organization: Key Laboratory of Solidification Control and Digital Preparation Technology (Liaoning Province), School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China
– sequence: 2
  givenname: Shudao
  surname: Wang
  fullname: Wang, Shudao
  organization: Key Laboratory of Solidification Control and Digital Preparation Technology (Liaoning Province), School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China
– sequence: 3
  givenname: Wenxue
  surname: Fan
  fullname: Fan, Wenxue
  organization: Key Laboratory of Solidification Control and Digital Preparation Technology (Liaoning Province), School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China
– sequence: 4
  givenname: Yiping
  orcidid: 0000-0002-4157-7135
  surname: Lu
  fullname: Lu, Yiping
  email: luyiping@dlut.edu.cn, 82713860@qq.com
  organization: Key Laboratory of Solidification Control and Digital Preparation Technology (Liaoning Province), School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China
– sequence: 5
  givenname: Tongmin
  surname: Wang
  fullname: Wang, Tongmin
  organization: Key Laboratory of Solidification Control and Digital Preparation Technology (Liaoning Province), School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China
– sequence: 6
  givenname: Tingju
  surname: Li
  fullname: Li, Tingju
  organization: Key Laboratory of Solidification Control and Digital Preparation Technology (Liaoning Province), School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China
– sequence: 7
  givenname: Peter K.
  surname: Liaw
  fullname: Liaw, Peter K.
  organization: Department of Materials Science and Engineering, The University of Tennessee, Knoxville, TN 37996, United States
BookMark eNqFkM1u2zAQhIkgAeL8PEIAvoBcUpRECT0UhtvUBYK2h-SSC7Eil9EasmSQrAu_fWk4p15y2gF2v8Hs3LDLaZ6QsQcpllLI5tN2CTbBDtKyFKVaStnqsr1gizxVUVa1usxa1V3RVHV1zW5i3AohS12JBfu7Xj393qy-FkAOHXcY6W3ifg48_tljoCzSgGEHI48JehopHTlMju_QDjCRzYseBzicLmniwJ_pNWz8z54H9CEHm8ORD_Q2FDilMO8zPY7z8Y5deRgj3r_PW_by-O15vSmefn3_kTMVVokuFV0nteotaqtl11e69tJ7VTntWg8gPPhG6kq1KDqr-x5ti41vhBTY-86BVLfs89nXhjnGHMlYSpBozmGARiOFOXVotua9Q3Pq0Jw7zHT9H70PtINw_JD7cuYwv3YgDCZawsmio4A2GTfTBw7_AEWZk3I
CitedBy_id crossref_primary_10_1007_s11837_024_07023_1
crossref_primary_10_1016_j_jmrt_2024_11_053
crossref_primary_10_1007_s12598_024_02852_0
crossref_primary_10_1016_j_msea_2024_147438
crossref_primary_10_1038_s41529_024_00495_1
crossref_primary_10_1016_j_addma_2023_103813
crossref_primary_10_3390_met14060672
crossref_primary_10_1016_j_vacuum_2024_113424
crossref_primary_10_1016_j_jallcom_2024_173449
crossref_primary_10_1016_j_jmrt_2023_07_233
crossref_primary_10_1007_s42864_024_00311_y
crossref_primary_10_1016_j_ijrmhm_2025_107064
crossref_primary_10_1016_j_matchar_2024_113679
crossref_primary_10_1016_j_intermet_2023_107991
crossref_primary_10_1016_j_jallcom_2024_178216
crossref_primary_10_1016_j_matchar_2023_113314
crossref_primary_10_1016_j_msea_2024_146513
crossref_primary_10_1016_j_msea_2024_146993
crossref_primary_10_1002_srin_202400646
crossref_primary_10_1063_5_0170416
crossref_primary_10_1080_14786435_2023_2227793
crossref_primary_10_1016_j_jmmm_2024_172134
crossref_primary_10_1016_j_matchar_2024_114641
crossref_primary_10_1016_j_jallcom_2023_170739
crossref_primary_10_1016_j_jallcom_2024_177874
crossref_primary_10_1016_j_msea_2024_147699
crossref_primary_10_1016_j_addma_2023_103795
crossref_primary_10_1016_j_msea_2024_146522
crossref_primary_10_1016_j_msea_2024_146369
crossref_primary_10_1016_j_jmrt_2024_09_131
crossref_primary_10_1007_s12598_024_02899_z
crossref_primary_10_1016_j_ijplas_2024_104008
crossref_primary_10_1016_j_matchar_2023_113449
crossref_primary_10_1016_j_jallcom_2023_170065
crossref_primary_10_1016_j_msea_2024_147696
crossref_primary_10_1016_j_msea_2023_145757
crossref_primary_10_1016_j_jallcom_2024_175481
crossref_primary_10_1063_5_0200862
crossref_primary_10_1016_j_jallcom_2025_179284
crossref_primary_10_1007_s40843_023_2705_2
crossref_primary_10_1016_j_intermet_2024_108384
crossref_primary_10_1016_j_jnucmat_2023_154876
crossref_primary_10_1038_s41598_024_57392_5
crossref_primary_10_1016_j_ceramint_2025_02_034
crossref_primary_10_1016_j_jallcom_2023_170826
crossref_primary_10_1016_j_matchar_2024_114393
crossref_primary_10_1039_D3MH00360D
crossref_primary_10_1016_j_jmrt_2023_12_079
crossref_primary_10_1016_j_mtcomm_2024_109607
crossref_primary_10_1093_nsr_nwae026
crossref_primary_10_1016_j_corsci_2023_111508
crossref_primary_10_20517_jmi_2023_12
crossref_primary_10_1016_j_intermet_2025_108705
crossref_primary_10_1021_acsanm_4c00720
crossref_primary_10_1007_s12613_023_2788_1
crossref_primary_10_1038_s41524_024_01385_5
crossref_primary_10_1016_j_ijrmhm_2023_106361
crossref_primary_10_1016_j_jallcom_2024_178063
crossref_primary_10_1016_j_corsci_2024_112185
crossref_primary_10_1007_s41365_024_01508_z
crossref_primary_10_1016_j_matchar_2024_113730
crossref_primary_10_1007_s41230_024_3068_z
crossref_primary_10_1016_j_jmrt_2023_06_061
crossref_primary_10_1016_j_vacuum_2023_112545
crossref_primary_10_1021_acs_jctc_4c00340
crossref_primary_10_1016_j_msea_2023_145073
crossref_primary_10_3390_met14080894
crossref_primary_10_1016_j_msea_2024_147159
crossref_primary_10_1016_j_intermet_2025_108711
crossref_primary_10_1016_j_matdes_2024_112996
crossref_primary_10_1016_j_msea_2024_147437
crossref_primary_10_1016_j_intermet_2024_108535
crossref_primary_10_1080_00295450_2024_2411791
crossref_primary_10_1016_j_intermet_2023_108080
crossref_primary_10_1016_j_apmt_2024_102164
crossref_primary_10_1016_j_corsci_2023_111484
crossref_primary_10_1016_j_msea_2025_147914
crossref_primary_10_1016_j_ijrmhm_2024_106857
crossref_primary_10_1002_mgea_87
crossref_primary_10_1080_00084433_2024_2359296
crossref_primary_10_1016_j_jallcom_2023_169772
crossref_primary_10_1016_j_jmrt_2024_01_246
crossref_primary_10_1016_j_ijplas_2024_104213
crossref_primary_10_1016_j_jallcom_2024_174578
crossref_primary_10_1007_s41230_025_4130_1
crossref_primary_10_1016_j_msea_2025_147801
crossref_primary_10_1063_5_0218290
crossref_primary_10_1016_j_jallcom_2024_175144
crossref_primary_10_1016_j_scriptamat_2024_116141
crossref_primary_10_1038_s41586_023_06894_9
crossref_primary_10_1016_j_intermet_2024_108350
crossref_primary_10_1016_j_matchar_2024_114203
crossref_primary_10_1002_sstr_202400110
crossref_primary_10_1126_sciadv_adq6828
crossref_primary_10_1007_s44210_024_00042_2
crossref_primary_10_1016_j_jallcom_2023_171630
crossref_primary_10_1016_j_matchar_2023_113247
crossref_primary_10_1016_j_msea_2024_146721
crossref_primary_10_1016_j_msea_2024_147015
crossref_primary_10_1016_j_scriptamat_2024_116031
crossref_primary_10_1016_j_msea_2024_147618
crossref_primary_10_1016_j_msea_2024_146767
crossref_primary_10_1016_j_jmrt_2024_01_145
crossref_primary_10_1016_j_compositesa_2024_108246
crossref_primary_10_1016_j_corsci_2024_112391
crossref_primary_10_1126_science_adn2428
crossref_primary_10_1016_j_intermet_2024_108349
crossref_primary_10_1016_j_ijplas_2024_104079
crossref_primary_10_1016_j_msea_2024_147060
crossref_primary_10_1016_j_compositesb_2024_111222
crossref_primary_10_1016_j_mtcomm_2024_108313
crossref_primary_10_1016_j_nxmate_2023_100052
crossref_primary_10_1016_j_ijmecsci_2023_108753
crossref_primary_10_1016_j_ijplas_2024_104115
crossref_primary_10_1016_j_intermet_2023_108149
crossref_primary_10_1016_j_ijplas_2024_104237
crossref_primary_10_1016_j_intermet_2023_108148
crossref_primary_10_1063_5_0249449
crossref_primary_10_4028_p_eS8wsb
crossref_primary_10_1016_j_scriptamat_2024_116401
crossref_primary_10_1016_j_jmrt_2024_05_253
crossref_primary_10_1016_j_msea_2024_147627
crossref_primary_10_1016_j_jmrt_2024_02_108
crossref_primary_10_1016_j_jallcom_2024_175311
crossref_primary_10_1016_j_addma_2024_104126
crossref_primary_10_1016_j_jallcom_2024_175394
crossref_primary_10_1007_s11665_023_08983_2
crossref_primary_10_1016_j_jallcom_2023_171571
crossref_primary_10_1088_1361_651X_ad2af5
Cites_doi 10.1016/j.jmst.2021.09.016
10.1038/s41586-019-1617-1
10.1080/09506608.2016.1191808
10.1038/s41586-018-0685-y
10.2320/matertrans.46.2817
10.1016/j.actamat.2020.10.044
10.1016/j.scriptamat.2021.114225
10.1080/21663831.2016.1221861
10.1039/D0MH01341B
10.1016/j.jallcom.2015.07.209
10.1016/j.intermet.2018.04.023
10.1016/j.matlet.2020.127369
10.3390/e21020114
10.1016/j.actamat.2021.117582
10.1557/jmr.2018.153
10.1016/j.jmst.2022.01.017
10.1016/j.matlet.2014.05.134
10.1002/adma.201701678
10.1016/j.actamat.2017.09.035
10.1016/j.intermet.2019.01.004
10.1016/j.actamat.2016.11.016
10.1016/j.jallcom.2011.02.171
10.1016/j.matchar.2015.11.018
10.1016/j.scriptamat.2021.114367
10.1016/j.matlet.2016.08.060
10.1016/j.msea.2018.03.071
10.1016/j.msea.2020.140169
10.1016/j.actamat.2010.01.015
10.1038/s41563-020-0750-4
10.1063/1.4966659
10.1016/j.msea.2021.141512
10.1007/s11661-018-4646-8
10.1038/nature17981
10.1016/j.msea.2007.06.077
10.1016/j.scriptamat.2018.08.032
10.1007/BF03220742
10.1016/j.msea.2015.08.024
10.1016/j.actamat.2020.06.023
10.1016/j.actamat.2016.01.018
10.1016/S0081-1947(08)60568-8
10.1016/S1359-6462(01)00909-5
10.1016/j.actamat.2010.09.023
10.1016/j.actamat.2016.08.081
10.1016/j.scriptamat.2020.06.048
10.1016/j.jmst.2021.08.034
10.1038/149643a0
10.1016/j.scriptamat.2022.114506
10.3390/e18030102
10.1016/j.jallcom.2016.11.188
ContentType Journal Article
Copyright 2023 Acta Materialia Inc.
Copyright_xml – notice: 2023 Acta Materialia Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.actamat.2023.118728
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-2453
ExternalDocumentID 10_1016_j_actamat_2023_118728
S1359645423000605
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABMAC
ABNEU
ABXRA
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
KOM
M41
MAGPM
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SPD
SSM
SSQ
SSZ
T5K
TN5
XPP
ZMT
~G-
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FGOYB
R2-
SSH
T9H
ZY4
ID FETCH-LOGICAL-c309t-99173bce7c719b475f1ff34d7d8faa0faf617438e09c7bbec8e6f6010ebf9da13
IEDL.DBID .~1
ISSN 1359-6454
IngestDate Tue Jul 01 01:30:20 EDT 2025
Thu Apr 24 22:57:07 EDT 2025
Fri Feb 23 02:39:26 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords High-entropy alloys
CALPHAD
Mechanical property
Strengthening mechanism
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c309t-99173bce7c719b475f1ff34d7d8faa0faf617438e09c7bbec8e6f6010ebf9da13
ORCID 0000-0002-4157-7135
ParticipantIDs crossref_citationtrail_10_1016_j_actamat_2023_118728
crossref_primary_10_1016_j_actamat_2023_118728
elsevier_sciencedirect_doi_10_1016_j_actamat_2023_118728
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-03-01
2023-03-00
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-03-01
  day: 01
PublicationDecade 2020
PublicationTitle Acta materialia
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Yao, Liu, Gao, Jiang, Li, Liu, Zhang, Fan (bib0010) 2018; 98
Bania (bib0015) 1994; 46
Wu, Wang, Xiao, Zhu, Yang, Shu, Sun (bib0034) 2022; 110
Senkov, Scott, Senkova, Miracle, Woodward (bib0005) 2011; 509
Senkov, Pilchak, Semiatin (bib0025) 2018; 49
Juan, Tsai, Tsai, Hsu, Lin, Chen, Lin, Yeh (bib0033) 2016; 184
Senkov, Miracle, Chaput, Couzinie (bib0001) 2018; 33
Yang, Wu, Li, Li, Lu, Yang, Ge (bib0036) 2010; 58
Sander, Raabe (bib0041) 2008; 479
Senkov, Semiatin (bib0008) 2015; 649
Yao, Qiao, Hawk, Zhou, Chen, Gao (bib0050) 2017; 696
Huang, Wu, He, Wang, Liu, An, Wu, Lu (bib0022) 2017; 29
Senkov, Isheim, Seidman, Pilchak (bib0046) 2016; 18
Wei, Kim, Kang, Zhang, Zhang, Furuhara, Park, Tasan (bib0024) 2020; 19
Wang, Wu, Shu, Sun (bib0037) 2020; 264
Sheikh, Shafeie, Hu, Ahlström, Persson, Veselý, Zýka, Klement, Guo (bib0030) 2016; 120
Wang, Ma, Xu (bib0023) 2019; 107
Eleti, Stepanov, Yurchenko, Zherebtsov, Maresca (bib0026) 2022; 209
Wu, Cai, Wang, Si, Zhu, Wang, Hui (bib0006) 2014; 130
.
Dirras, Couque, Lilensten, Heczel, Tingaud, Couzinié, Perrière, Gubicza, Guillot (bib0039) 2016; 111
Lu, Gao, Jiang, Chen, Wang, Jie, Kang, Zhang, Guo, Ruan, Zhao, Cao, Li (bib0032) 2017; 124
Zýka, Málek, Veselý, Lukáč, Čížek, Kuriplach, Melikhova (bib0027) 2019; 21
Fan, Qu, Zhang (bib0040) 2022; 123
Chen, Ma, Qiu, Zhang, Zhang, Yang, Hu (bib0049) 2022; 225
Wang, Wu, Shu, Zhu, Wang, Sun (bib0038) 2020; 201
Ding, Zhang, Chen, Fu, Chen, Chen, Gu, Wei, Bei, Gao, Wen, Li, Zhang, Zhu, Ritchie, Yu (bib0044) 2019; 574
An, Mao, Yang, Liu, Zhang, Ma, Zhou, Zhang, Wang, Han (bib0013) 2021; 8
Nguyen, Qian, Shi, Tran, Fabijanic, Joseph, Qu, Matsumura, Zhang, Zhang, Zou (bib0019) 2020; 798
Takeuchi, Inoue (bib0047) 2005; 12
Chen, Tong, Tseng, Yeh, Poplawsky, Wen, Gao, Kim, Chen, Ren, Feng, Li, Liaw (bib0009) 2019; 158
Lei, Liu, Wu, Wang, Jiang, Wang, Hui, Wu, Gault, Kontis, Raabe, Gu, Zhang, Chen, Wang, Liu, An, Zeng, Nieh, Lu (bib0012) 2018; 563
Singh, Wanderka, Murty, Glatzel, Banhart (bib0048) 2011; 59
Cordero, Knight, Schuh (bib0051) 2016; 61
Zhang, Han (bib0042) 2020; 196
Lilensten, Couzinié, Bourgon, Perrière, Dirras, Prima, Guillot (bib0031) 2017; 5
Huang, Sun, Cao, Wu, Liu, Jiang, Wang, Lu (bib0016) 2022; 211
Orowan (bib0035) 1942; 149
Miracle, Senkov (bib0003) 2017; 122
Yan, Liaw, Zhang (bib0029) 2022; 110
Maiti, Steurer (bib0018) 2016; 106
Senkov, Miracle, Rao (bib0004) 2021; 820
Couzinie, Lilensten, Champion, Dirras, Perriere, Guillot (bib0045) 2015; 645
Miracle, Tsai, Senkov, Soni, Banerjee (bib0002) 2020; 187
Guinier (bib0021) 1959
Wang, Tang, Lei, Ai, Tong, Li, Ye, Bai (bib0043) 2022
Li, Pradeep, Deng, Raabe, Tasan (bib0011) 2016; 534
Wu, Si, Lin, Wang, Wang, Wang, Liu, Hui (bib0017) 2018; 724
Su, Tseng, Yeh, El-Sayed, Liu, Wang (bib0028) 2022; 206
Konno, Hiraga, Kawasaki (bib0020) 2001; 44
Schuh, Völker, Todt, Schell, Perrière, Li, Couzinié, Hohenwarter (bib0007) 2018; 142
CompuTherm Software, Databases, in
Wang (10.1016/j.actamat.2023.118728_bib0043) 2022
Senkov (10.1016/j.actamat.2023.118728_bib0046) 2016; 18
Dirras (10.1016/j.actamat.2023.118728_bib0039) 2016; 111
Bania (10.1016/j.actamat.2023.118728_bib0015) 1994; 46
Sander (10.1016/j.actamat.2023.118728_bib0041) 2008; 479
Senkov (10.1016/j.actamat.2023.118728_bib0025) 2018; 49
Zýka (10.1016/j.actamat.2023.118728_bib0027) 2019; 21
Senkov (10.1016/j.actamat.2023.118728_bib0004) 2021; 820
Chen (10.1016/j.actamat.2023.118728_bib0009) 2019; 158
Konno (10.1016/j.actamat.2023.118728_bib0020) 2001; 44
Wang (10.1016/j.actamat.2023.118728_bib0023) 2019; 107
Eleti (10.1016/j.actamat.2023.118728_bib0026) 2022; 209
An (10.1016/j.actamat.2023.118728_bib0013) 2021; 8
Ding (10.1016/j.actamat.2023.118728_bib0044) 2019; 574
Li (10.1016/j.actamat.2023.118728_bib0011) 2016; 534
Orowan (10.1016/j.actamat.2023.118728_bib0035) 1942; 149
Su (10.1016/j.actamat.2023.118728_bib0028) 2022; 206
Schuh (10.1016/j.actamat.2023.118728_bib0007) 2018; 142
Fan (10.1016/j.actamat.2023.118728_bib0040) 2022; 123
Zhang (10.1016/j.actamat.2023.118728_bib0042) 2020; 196
Lei (10.1016/j.actamat.2023.118728_bib0012) 2018; 563
Singh (10.1016/j.actamat.2023.118728_bib0048) 2011; 59
Yang (10.1016/j.actamat.2023.118728_bib0036) 2010; 58
Cordero (10.1016/j.actamat.2023.118728_bib0051) 2016; 61
Senkov (10.1016/j.actamat.2023.118728_bib0005) 2011; 509
10.1016/j.actamat.2023.118728_bib0014
Sheikh (10.1016/j.actamat.2023.118728_bib0030) 2016; 120
Wang (10.1016/j.actamat.2023.118728_bib0037) 2020; 264
Wei (10.1016/j.actamat.2023.118728_bib0024) 2020; 19
Yao (10.1016/j.actamat.2023.118728_bib0010) 2018; 98
Huang (10.1016/j.actamat.2023.118728_bib0016) 2022; 211
Wu (10.1016/j.actamat.2023.118728_bib0006) 2014; 130
Maiti (10.1016/j.actamat.2023.118728_bib0018) 2016; 106
Huang (10.1016/j.actamat.2023.118728_bib0022) 2017; 29
Wang (10.1016/j.actamat.2023.118728_bib0038) 2020; 201
Couzinie (10.1016/j.actamat.2023.118728_bib0045) 2015; 645
Guinier (10.1016/j.actamat.2023.118728_bib0021) 1959
Wu (10.1016/j.actamat.2023.118728_bib0034) 2022; 110
Chen (10.1016/j.actamat.2023.118728_bib0049) 2022; 225
Juan (10.1016/j.actamat.2023.118728_bib0033) 2016; 184
Takeuchi (10.1016/j.actamat.2023.118728_bib0047) 2005; 12
Lilensten (10.1016/j.actamat.2023.118728_bib0031) 2017; 5
Senkov (10.1016/j.actamat.2023.118728_bib0001) 2018; 33
Lu (10.1016/j.actamat.2023.118728_bib0032) 2017; 124
Miracle (10.1016/j.actamat.2023.118728_bib0003) 2017; 122
Miracle (10.1016/j.actamat.2023.118728_bib0002) 2020; 187
Yao (10.1016/j.actamat.2023.118728_bib0050) 2017; 696
Senkov (10.1016/j.actamat.2023.118728_bib0008) 2015; 649
Wu (10.1016/j.actamat.2023.118728_bib0017) 2018; 724
Yan (10.1016/j.actamat.2023.118728_bib0029) 2022; 110
Nguyen (10.1016/j.actamat.2023.118728_bib0019) 2020; 798
References_xml – volume: 187
  start-page: 445
  year: 2020
  end-page: 452
  ident: bib0002
  article-title: Refractory high entropy superalloys (RSAs)
  publication-title: Scr. Mater.
– volume: 111
  start-page: 106
  year: 2016
  end-page: 113
  ident: bib0039
  article-title: Mechanical behavior and microstructure of Ti20Hf20Zr20Ta20Nb20 high-entropy alloy loaded under quasi-static and dynamic compression conditions
  publication-title: Mater. Charact.
– volume: 142
  start-page: 201
  year: 2018
  end-page: 212
  ident: bib0007
  article-title: Thermodynamic instability of a nanocrystalline, single-phase TiZrNbHfTa alloy and its impact on the mechanical properties
  publication-title: Acta Mater.
– volume: 120
  year: 2016
  ident: bib0030
  article-title: Alloy design for intrinsically ductile refractory high-entropy alloys
  publication-title: J. Appl. Phys.
– volume: 46
  start-page: 16
  year: 1994
  end-page: 19
  ident: bib0015
  article-title: Beta titanium alloys and their role in the titanium industry
  publication-title: JOM
– volume: 49
  start-page: 2876
  year: 2018
  end-page: 2892
  ident: bib0025
  article-title: Effect of cold deformation and annealing on the microstructure and tensile properties of a HfNbTaTiZr refractory high entropy alloy
  publication-title: Metall. Mater. Trans. A
– volume: 149
  start-page: 643
  year: 1942
  end-page: 644
  ident: bib0035
  article-title: A type of plastic deformation new in metals
  publication-title: Nature
– volume: 798
  year: 2020
  ident: bib0019
  article-title: Cuboid-like nanostructure strengthened equiatomic Ti–Zr–Nb–Ta medium entropy alloy
  publication-title: Mater. Sci. Eng. A
– volume: 18
  start-page: 102
  year: 2016
  ident: bib0046
  article-title: Development of a refractory high entropy superalloy
  publication-title: Entropy
– volume: 12
  start-page: 2817
  year: 2005
  ident: bib0047
  article-title: Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element
  publication-title: Mater. Trans.
– volume: 264
  year: 2020
  ident: bib0037
  article-title: Kinking in a refractory TiZrHfNb0.7 medium-entropy alloy
  publication-title: Mater. Lett.
– volume: 724
  start-page: 249
  year: 2018
  end-page: 259
  ident: bib0017
  article-title: Phase stability and mechanical properties of AlHfNbTiZr high-entropy alloys
  publication-title: Mater. Sci. Eng. A
– volume: 130
  start-page: 277
  year: 2014
  end-page: 280
  ident: bib0006
  article-title: A refractory Hf25Nb25Ti25Zr25 high-entropy alloy with excellent structural stability and tensile properties
  publication-title: Mater. Lett.
– volume: 98
  start-page: 79
  year: 2018
  end-page: 88
  ident: bib0010
  article-title: Phase stability of a ductile single-phase BCC Hf0.5Nb0.5Ta0.5Ti1.5Zr refractory high-entropy alloy
  publication-title: Intermetallics
– volume: 184
  start-page: 200
  year: 2016
  end-page: 203
  ident: bib0033
  article-title: Simultaneously increasing the strength and ductility of a refractory high-entropy alloy via grain refining
  publication-title: Mater. Lett.
– volume: 123
  start-page: 70
  year: 2022
  end-page: 77
  ident: bib0040
  article-title: Remarkably high fracture toughness of HfNbTaTiZr refractory high-entropy alloy
  publication-title: J. Mater. Sci. Technol.
– start-page: 213
  year: 2022
  ident: bib0043
  article-title: Achieving high strength and ductility in nitrogen-doped refractory high-entropy alloys
  publication-title: Mater. Des.
– volume: 110
  start-page: 210
  year: 2022
  end-page: 215
  ident: bib0034
  article-title: Dislocation glide and mechanical twinning in a ductile VNbTi medium entropy alloy
  publication-title: J. Mater. Sci. Technol.
– volume: 201
  start-page: 517
  year: 2020
  end-page: 527
  ident: bib0038
  article-title: Mechanical instability and tensile properties of TiZrHfNbTa high entropy alloy at cryogenic temperatures
  publication-title: Acta Mater
– volume: 44
  start-page: 2303
  year: 2001
  end-page: 2307
  ident: bib0020
  article-title: Guinier-Preston (GP) zone revisited: atomic level observation by HAADF-TEM technique
  publication-title: Scr. Mater.
– volume: 124
  start-page: 143
  year: 2017
  end-page: 150
  ident: bib0032
  article-title: Directly cast bulk eutectic and near-eutectic high entropy alloys with balanced strength and ductility in a wide temperature range
  publication-title: Acta Mater.
– volume: 696
  start-page: 1139
  year: 2017
  end-page: 1150
  ident: bib0050
  article-title: Mechanical properties of refractory high-entropy alloys: experiments and modeling
  publication-title: J. Alloys Compd.
– volume: 645
  start-page: 255
  year: 2015
  end-page: 263
  ident: bib0045
  article-title: On the room temperature deformation mechanisms of a TiZrHfNbTa refractory high-entropy alloy
  publication-title: Mater. Sci. Eng. A
– volume: 107
  start-page: 15
  year: 2019
  end-page: 23
  ident: bib0023
  article-title: New ternary equi-atomic refractory medium-entropy alloys with tensile ductility: hafnium versus titanium into NbTa-based solution
  publication-title: Intermetallics
– volume: 211
  year: 2022
  ident: bib0016
  article-title: On cooling rates dependence of microstructure and mechanical properties of refractory high-entropy alloys HfTaTiZr and HfNbTiZr
  publication-title: Scr. Mater.
– volume: 122
  start-page: 448
  year: 2017
  end-page: 511
  ident: bib0003
  article-title: A critical review of high entropy alloys and related concepts
  publication-title: Acta Mater.
– volume: 8
  start-page: 948
  year: 2021
  end-page: 955
  ident: bib0013
  article-title: Spinodal-modulated solid solution delivers a strong and ductile refractory high-entropy alloy
  publication-title: Mater. Horizons
– volume: 21
  start-page: 114
  year: 2019
  ident: bib0027
  article-title: Microstructure and room temperature mechanical properties of different 3 and 4 element medium entropy alloys from HfNbTaTiZr system
  publication-title: Entropy
– volume: 29
  year: 2017
  ident: bib0022
  article-title: Phase-transformation ductilization of brittle high-entropy alloys via metastability engineering
  publication-title: Adv. Mater.
– start-page: 293
  year: 1959
  end-page: 398
  ident: bib0021
  article-title: Heterogeneities in solid solutions
  publication-title: Solid State Physics
– volume: 196
  start-page: 122
  year: 2020
  end-page: 132
  ident: bib0042
  article-title: Oxygen solutes induced anomalous hardening, toughening and embrittlement in body-centered cubic vanadium
  publication-title: Acta Mater
– volume: 509
  start-page: 6043
  year: 2011
  end-page: 6048
  ident: bib0005
  article-title: Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy
  publication-title: J. Alloys Compd.
– volume: 58
  start-page: 2778
  year: 2010
  end-page: 2787
  ident: bib0036
  article-title: Evolution of deformation mechanisms of Ti–22.4Nb–0.73Ta–2Zr–1.34O alloy during straining
  publication-title: Acta Mater
– volume: 820
  year: 2021
  ident: bib0004
  article-title: Correlations to improve room temperature ductility of refractory complex concentrated alloys
  publication-title: Mater. Sci. Eng. A
– volume: 59
  start-page: 182
  year: 2011
  end-page: 190
  ident: bib0048
  article-title: Decomposition in multi-component AlCoCrCuFeNi high-entropy alloy
  publication-title: Acta Mater.
– reference: CompuTherm Software, Databases, in,
– volume: 206
  year: 2022
  ident: bib0028
  article-title: Strengthening mechanisms and microstructural evolution of ductile refractory medium-entropy alloy Hf20Nb10Ti35Zr35
  publication-title: Scr. Mater.
– volume: 19
  start-page: 1175
  year: 2020
  end-page: 1181
  ident: bib0024
  article-title: Natural-mixing guided design of refractory high-entropy alloys with as-cast tensile ductility
  publication-title: Nat. Mater.
– volume: 209
  year: 2022
  ident: bib0026
  article-title: Cross-kink unpinning controls the medium- to high-temperature strength of body-centered cubic NbTiZr medium-entropy alloy
  publication-title: Scr. Mater.
– volume: 5
  start-page: 110
  year: 2017
  end-page: 116
  ident: bib0031
  article-title: Design and tensile properties of a bcc Ti-rich high-entropy alloy with transformation-induced plasticity
  publication-title: Mater. Res. Lett.
– volume: 106
  start-page: 87
  year: 2016
  end-page: 97
  ident: bib0018
  article-title: Structural-disorder and its effect on mechanical properties in single-phase TaNbHfZr high-entropy alloy
  publication-title: Acta Mater.
– volume: 649
  start-page: 1110
  year: 2015
  end-page: 1123
  ident: bib0008
  article-title: Microstructure and properties of a refractory high-entropy alloy after cold working
  publication-title: J. Alloys Compd.
– volume: 158
  start-page: 50
  year: 2019
  end-page: 56
  ident: bib0009
  article-title: Phase transformations of HfNbTaTiZr high-entropy alloy at intermediate temperatures
  publication-title: Scr. Mater.
– volume: 534
  start-page: 227
  year: 2016
  end-page: 230
  ident: bib0011
  article-title: Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off
  publication-title: Nature
– volume: 61
  start-page: 495
  year: 2016
  end-page: 512
  ident: bib0051
  article-title: Six decades of the Hall–Petch effect – a survey of grain-size strengthening studies on pure metals
  publication-title: Int. Mater. Rev.
– volume: 110
  start-page: 109
  year: 2022
  end-page: 116
  ident: bib0029
  article-title: Ultrastrong and ductile BCC high-entropy alloys with low-density via dislocation regulation and nanoprecipitates
  publication-title: J. Mater. Sci. Technol.
– volume: 563
  start-page: 546
  year: 2018
  end-page: 550
  ident: bib0012
  article-title: Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes
  publication-title: Nature
– reference: .
– volume: 574
  start-page: 223
  year: 2019
  end-page: 227
  ident: bib0044
  article-title: Tuning element distribution, structure and properties by composition in high-entropy alloys
  publication-title: Nature
– volume: 33
  start-page: 3092
  year: 2018
  end-page: 3128
  ident: bib0001
  article-title: Development and exploration of refractory high entropy alloys—a review
  publication-title: J. Mater. Res.
– volume: 479
  start-page: 236
  year: 2008
  end-page: 247
  ident: bib0041
  article-title: Texture inhomogeneity in a Ti-Nb-based beta-titanium alloy after warm rolling and recrystallization
  publication-title: Mater. Sci. Eng. A
– volume: 225
  year: 2022
  ident: bib0049
  article-title: Phase decomposition and strengthening in HfNbTaTiZr high entropy alloy from first-principles calculations
  publication-title: Acta Mater
– volume: 110
  start-page: 210
  year: 2022
  ident: 10.1016/j.actamat.2023.118728_bib0034
  article-title: Dislocation glide and mechanical twinning in a ductile VNbTi medium entropy alloy
  publication-title: J. Mater. Sci. Technol.
  doi: 10.1016/j.jmst.2021.09.016
– volume: 574
  start-page: 223
  issue: 7777
  year: 2019
  ident: 10.1016/j.actamat.2023.118728_bib0044
  article-title: Tuning element distribution, structure and properties by composition in high-entropy alloys
  publication-title: Nature
  doi: 10.1038/s41586-019-1617-1
– volume: 61
  start-page: 495
  issue: 8
  year: 2016
  ident: 10.1016/j.actamat.2023.118728_bib0051
  article-title: Six decades of the Hall–Petch effect – a survey of grain-size strengthening studies on pure metals
  publication-title: Int. Mater. Rev.
  doi: 10.1080/09506608.2016.1191808
– volume: 563
  start-page: 546
  issue: 7732
  year: 2018
  ident: 10.1016/j.actamat.2023.118728_bib0012
  article-title: Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes
  publication-title: Nature
  doi: 10.1038/s41586-018-0685-y
– volume: 12
  start-page: 2817
  year: 2005
  ident: 10.1016/j.actamat.2023.118728_bib0047
  article-title: Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element
  publication-title: Mater. Trans.
  doi: 10.2320/matertrans.46.2817
– volume: 201
  start-page: 517
  year: 2020
  ident: 10.1016/j.actamat.2023.118728_bib0038
  article-title: Mechanical instability and tensile properties of TiZrHfNbTa high entropy alloy at cryogenic temperatures
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2020.10.044
– volume: 206
  year: 2022
  ident: 10.1016/j.actamat.2023.118728_bib0028
  article-title: Strengthening mechanisms and microstructural evolution of ductile refractory medium-entropy alloy Hf20Nb10Ti35Zr35
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2021.114225
– volume: 5
  start-page: 110
  issue: 2
  year: 2017
  ident: 10.1016/j.actamat.2023.118728_bib0031
  article-title: Design and tensile properties of a bcc Ti-rich high-entropy alloy with transformation-induced plasticity
  publication-title: Mater. Res. Lett.
  doi: 10.1080/21663831.2016.1221861
– volume: 8
  start-page: 948
  issue: 3
  year: 2021
  ident: 10.1016/j.actamat.2023.118728_bib0013
  article-title: Spinodal-modulated solid solution delivers a strong and ductile refractory high-entropy alloy
  publication-title: Mater. Horizons
  doi: 10.1039/D0MH01341B
– volume: 649
  start-page: 1110
  year: 2015
  ident: 10.1016/j.actamat.2023.118728_bib0008
  article-title: Microstructure and properties of a refractory high-entropy alloy after cold working
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2015.07.209
– volume: 98
  start-page: 79
  year: 2018
  ident: 10.1016/j.actamat.2023.118728_bib0010
  article-title: Phase stability of a ductile single-phase BCC Hf0.5Nb0.5Ta0.5Ti1.5Zr refractory high-entropy alloy
  publication-title: Intermetallics
  doi: 10.1016/j.intermet.2018.04.023
– volume: 264
  year: 2020
  ident: 10.1016/j.actamat.2023.118728_bib0037
  article-title: Kinking in a refractory TiZrHfNb0.7 medium-entropy alloy
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2020.127369
– volume: 21
  start-page: 114
  year: 2019
  ident: 10.1016/j.actamat.2023.118728_bib0027
  article-title: Microstructure and room temperature mechanical properties of different 3 and 4 element medium entropy alloys from HfNbTaTiZr system
  publication-title: Entropy
  doi: 10.3390/e21020114
– volume: 225
  year: 2022
  ident: 10.1016/j.actamat.2023.118728_bib0049
  article-title: Phase decomposition and strengthening in HfNbTaTiZr high entropy alloy from first-principles calculations
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2021.117582
– volume: 33
  start-page: 3092
  issue: 19
  year: 2018
  ident: 10.1016/j.actamat.2023.118728_bib0001
  article-title: Development and exploration of refractory high entropy alloys—a review
  publication-title: J. Mater. Res.
  doi: 10.1557/jmr.2018.153
– volume: 123
  start-page: 70
  year: 2022
  ident: 10.1016/j.actamat.2023.118728_bib0040
  article-title: Remarkably high fracture toughness of HfNbTaTiZr refractory high-entropy alloy
  publication-title: J. Mater. Sci. Technol.
  doi: 10.1016/j.jmst.2022.01.017
– volume: 130
  start-page: 277
  year: 2014
  ident: 10.1016/j.actamat.2023.118728_bib0006
  article-title: A refractory Hf25Nb25Ti25Zr25 high-entropy alloy with excellent structural stability and tensile properties
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2014.05.134
– volume: 29
  issue: 30
  year: 2017
  ident: 10.1016/j.actamat.2023.118728_bib0022
  article-title: Phase-transformation ductilization of brittle high-entropy alloys via metastability engineering
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201701678
– volume: 142
  start-page: 201
  year: 2018
  ident: 10.1016/j.actamat.2023.118728_bib0007
  article-title: Thermodynamic instability of a nanocrystalline, single-phase TiZrNbHfTa alloy and its impact on the mechanical properties
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2017.09.035
– volume: 107
  start-page: 15
  year: 2019
  ident: 10.1016/j.actamat.2023.118728_bib0023
  article-title: New ternary equi-atomic refractory medium-entropy alloys with tensile ductility: hafnium versus titanium into NbTa-based solution
  publication-title: Intermetallics
  doi: 10.1016/j.intermet.2019.01.004
– volume: 124
  start-page: 143
  year: 2017
  ident: 10.1016/j.actamat.2023.118728_bib0032
  article-title: Directly cast bulk eutectic and near-eutectic high entropy alloys with balanced strength and ductility in a wide temperature range
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2016.11.016
– volume: 509
  start-page: 6043
  issue: 20
  year: 2011
  ident: 10.1016/j.actamat.2023.118728_bib0005
  article-title: Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2011.02.171
– volume: 111
  start-page: 106
  year: 2016
  ident: 10.1016/j.actamat.2023.118728_bib0039
  article-title: Mechanical behavior and microstructure of Ti20Hf20Zr20Ta20Nb20 high-entropy alloy loaded under quasi-static and dynamic compression conditions
  publication-title: Mater. Charact.
  doi: 10.1016/j.matchar.2015.11.018
– volume: 209
  year: 2022
  ident: 10.1016/j.actamat.2023.118728_bib0026
  article-title: Cross-kink unpinning controls the medium- to high-temperature strength of body-centered cubic NbTiZr medium-entropy alloy
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2021.114367
– volume: 184
  start-page: 200
  year: 2016
  ident: 10.1016/j.actamat.2023.118728_bib0033
  article-title: Simultaneously increasing the strength and ductility of a refractory high-entropy alloy via grain refining
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2016.08.060
– volume: 724
  start-page: 249
  year: 2018
  ident: 10.1016/j.actamat.2023.118728_bib0017
  article-title: Phase stability and mechanical properties of AlHfNbTiZr high-entropy alloys
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2018.03.071
– volume: 798
  year: 2020
  ident: 10.1016/j.actamat.2023.118728_bib0019
  article-title: Cuboid-like nanostructure strengthened equiatomic Ti–Zr–Nb–Ta medium entropy alloy
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2020.140169
– volume: 58
  start-page: 2778
  issue: 7
  year: 2010
  ident: 10.1016/j.actamat.2023.118728_bib0036
  article-title: Evolution of deformation mechanisms of Ti–22.4Nb–0.73Ta–2Zr–1.34O alloy during straining
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2010.01.015
– volume: 19
  start-page: 1175
  year: 2020
  ident: 10.1016/j.actamat.2023.118728_bib0024
  article-title: Natural-mixing guided design of refractory high-entropy alloys with as-cast tensile ductility
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-020-0750-4
– volume: 120
  issue: 16
  year: 2016
  ident: 10.1016/j.actamat.2023.118728_bib0030
  article-title: Alloy design for intrinsically ductile refractory high-entropy alloys
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4966659
– volume: 820
  year: 2021
  ident: 10.1016/j.actamat.2023.118728_bib0004
  article-title: Correlations to improve room temperature ductility of refractory complex concentrated alloys
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2021.141512
– volume: 49
  start-page: 2876
  issue: 7
  year: 2018
  ident: 10.1016/j.actamat.2023.118728_bib0025
  article-title: Effect of cold deformation and annealing on the microstructure and tensile properties of a HfNbTaTiZr refractory high entropy alloy
  publication-title: Metall. Mater. Trans. A
  doi: 10.1007/s11661-018-4646-8
– volume: 534
  start-page: 227
  issue: 7606
  year: 2016
  ident: 10.1016/j.actamat.2023.118728_bib0011
  article-title: Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off
  publication-title: Nature
  doi: 10.1038/nature17981
– volume: 479
  start-page: 236
  issue: 1–2
  year: 2008
  ident: 10.1016/j.actamat.2023.118728_bib0041
  article-title: Texture inhomogeneity in a Ti-Nb-based beta-titanium alloy after warm rolling and recrystallization
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2007.06.077
– volume: 158
  start-page: 50
  year: 2019
  ident: 10.1016/j.actamat.2023.118728_bib0009
  article-title: Phase transformations of HfNbTaTiZr high-entropy alloy at intermediate temperatures
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2018.08.032
– start-page: 213
  year: 2022
  ident: 10.1016/j.actamat.2023.118728_bib0043
  article-title: Achieving high strength and ductility in nitrogen-doped refractory high-entropy alloys
  publication-title: Mater. Des.
– volume: 46
  start-page: 16
  issue: 7
  year: 1994
  ident: 10.1016/j.actamat.2023.118728_bib0015
  article-title: Beta titanium alloys and their role in the titanium industry
  publication-title: JOM
  doi: 10.1007/BF03220742
– volume: 645
  start-page: 255
  year: 2015
  ident: 10.1016/j.actamat.2023.118728_bib0045
  article-title: On the room temperature deformation mechanisms of a TiZrHfNbTa refractory high-entropy alloy
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2015.08.024
– volume: 196
  start-page: 122
  year: 2020
  ident: 10.1016/j.actamat.2023.118728_bib0042
  article-title: Oxygen solutes induced anomalous hardening, toughening and embrittlement in body-centered cubic vanadium
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2020.06.023
– ident: 10.1016/j.actamat.2023.118728_bib0014
– volume: 106
  start-page: 87
  year: 2016
  ident: 10.1016/j.actamat.2023.118728_bib0018
  article-title: Structural-disorder and its effect on mechanical properties in single-phase TaNbHfZr high-entropy alloy
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2016.01.018
– start-page: 293
  year: 1959
  ident: 10.1016/j.actamat.2023.118728_bib0021
  article-title: Heterogeneities in solid solutions
  doi: 10.1016/S0081-1947(08)60568-8
– volume: 44
  start-page: 2303
  issue: 8
  year: 2001
  ident: 10.1016/j.actamat.2023.118728_bib0020
  article-title: Guinier-Preston (GP) zone revisited: atomic level observation by HAADF-TEM technique
  publication-title: Scr. Mater.
  doi: 10.1016/S1359-6462(01)00909-5
– volume: 59
  start-page: 182
  issue: 1
  year: 2011
  ident: 10.1016/j.actamat.2023.118728_bib0048
  article-title: Decomposition in multi-component AlCoCrCuFeNi high-entropy alloy
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2010.09.023
– volume: 122
  start-page: 448
  year: 2017
  ident: 10.1016/j.actamat.2023.118728_bib0003
  article-title: A critical review of high entropy alloys and related concepts
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2016.08.081
– volume: 187
  start-page: 445
  year: 2020
  ident: 10.1016/j.actamat.2023.118728_bib0002
  article-title: Refractory high entropy superalloys (RSAs)
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2020.06.048
– volume: 110
  start-page: 109
  year: 2022
  ident: 10.1016/j.actamat.2023.118728_bib0029
  article-title: Ultrastrong and ductile BCC high-entropy alloys with low-density via dislocation regulation and nanoprecipitates
  publication-title: J. Mater. Sci. Technol.
  doi: 10.1016/j.jmst.2021.08.034
– volume: 149
  start-page: 643
  issue: 3788
  year: 1942
  ident: 10.1016/j.actamat.2023.118728_bib0035
  article-title: A type of plastic deformation new in metals
  publication-title: Nature
  doi: 10.1038/149643a0
– volume: 211
  year: 2022
  ident: 10.1016/j.actamat.2023.118728_bib0016
  article-title: On cooling rates dependence of microstructure and mechanical properties of refractory high-entropy alloys HfTaTiZr and HfNbTiZr
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2022.114506
– volume: 18
  start-page: 102
  issue: 3
  year: 2016
  ident: 10.1016/j.actamat.2023.118728_bib0046
  article-title: Development of a refractory high entropy superalloy
  publication-title: Entropy
  doi: 10.3390/e18030102
– volume: 696
  start-page: 1139
  year: 2017
  ident: 10.1016/j.actamat.2023.118728_bib0050
  article-title: Mechanical properties of refractory high-entropy alloys: experiments and modeling
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2016.11.188
SSID ssj0012740
Score 2.6990457
Snippet TiZrHfNbTa refractory high-entropy alloys (RHEAs) are now at the research frontier of advanced metallic materials due to their exceptional mechanical...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 118728
SubjectTerms CALPHAD
High-entropy alloys
Mechanical property
Strengthening mechanism
Title CALPHAD-aided design for superior thermal stability and mechanical behavior in a TiZrHfNb refractory high-entropy alloy
URI https://dx.doi.org/10.1016/j.actamat.2023.118728
Volume 246
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA5jvuiDeMXryIOv2RqbtsljmY56G4IbDF9KkyawsXVjbshe_O3m9DIniIJvbekp4Zz05Es45_sQutJcOcr-NoRKZgiTlBMuPU14In0LCBR3cvm2p64f9dn9wBvUULvqhYGyyjL3Fzk9z9blk1bpzdZsOGy9UNcTwEdlQTSwikCjOWMBzPLmx7rMg9pdV9Ep7AkCb3918bRGdsiLxALDJmiIN0F4G0TZf1qfNtaczh7aLcEiDovx7KOazg7QzgaF4CF6b4ePz1F4Q4DqMcVpXpCBLRLFb0sgMbYXAPEm9jMWB-aVsCucZCmeaOj5hRDhqlUfDzOc4N7wdR6ZrsR2bPNcjWeFgdSYwDnwdGatx-Pp6gj1O7e9dkRKMQWiXEcsiMWBgSuVDlRAhWSBZ6gxLkuDlJskcUxifNiccO0IFUgbWa59A7s1LY1IE-oeo3o2zfQJwoEx15IrqrjSzJcC8qUwnnaoUakW7ililQtjVTKNg-DFOK5KykZx6fkYPB8Xnj9FzbXZrKDa-MuAV_GJv82Z2C4Hv5ue_d_0HG3DXVGHdoHqi_lSX1pgspCNfOY10FZ49xB1PwEcz-V_
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LSyQxEC58HNSDrOuKj901h_WYmc70Kzl4kHWlfQ2CI8he2k46gZGxZxhHZC7-Kf_gVvXDVRAFwVvTTYX0l-rKl6bqK4BfVhrP4GfDhQ4cD7SQXOrQcpnpCAmBkV7Zvu20GyUXwdFleDkDj00tDKVV1rG_iulltK7vtGs026N-v30u_FCRHhWSaFIVaTIrj-30Hs9tt7uH-7jIO53OwZ_e74TXrQW48T014ciKYl8bG5tYKB3EoRPO-UEe59JlmecyFxFVl9ZTJtb4ntJGjs4uVjuVZ8LHcWdhPsBwQW0TWg9PeSUCj3lVaXKoOE3vf9lQ-xoxmmTIRFvUtLxFnb6pC_xrG-KzTe7gCyzX7JTtVQCswIwtvsLSM83CVbjH1ztL9vY5aUvmLC8zQBhSX3Z7R6rJeEGc8gaHQeJZpt5OWVbk7MZSkTH5BGu0AVi_YBnr9f-OE9fVDOc2Ltv_TBmpKHP68TwcofVgMJx-g4tPgXgN5ophYdeBxc51tDTCSGODSCsK0MqF1hPO5Fb5GxA0EKamljanDhuDtMlhu05r5FNCPq2Q34DWk9mo0vZ4z0A265O-cNIU95-3TTc_broNC0nv9CQ9Oeweb8EiPamS4L7D3GR8Z38gK5ron6UXMrj6bLf_BxrxIvg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CALPHAD-aided+design+for+superior+thermal+stability+and+mechanical+behavior+in+a+TiZrHfNb+refractory+high-entropy+alloy&rft.jtitle=Acta+materialia&rft.au=Li%2C+Tianxin&rft.au=Wang%2C+Shudao&rft.au=Fan%2C+Wenxue&rft.au=Lu%2C+Yiping&rft.date=2023-03-01&rft.issn=1359-6454&rft.volume=246&rft.spage=118728&rft_id=info:doi/10.1016%2Fj.actamat.2023.118728&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_actamat_2023_118728
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-6454&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-6454&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-6454&client=summon