Phase transformations in an Aurivillius layer structured ferroelectric designed using the high entropy concept
A single phase four-layer Aurivillius structured ferroelectric ceramic, (Ca0.2Sr0.2Ba0.2Pb0.2Nd0.1Na0.1)Bi4Ti4O15 (6ABTO) was obtained using a high entropy design concept. The material, which has orthorhombic symmetry in space group A21am at room temperature, has Ca2+, Sr2+, Ba2+, Pb2+, Nd3+ and Na+...
Saved in:
Published in | Acta materialia Vol. 229; p. 117815 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.05.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A single phase four-layer Aurivillius structured ferroelectric ceramic, (Ca0.2Sr0.2Ba0.2Pb0.2Nd0.1Na0.1)Bi4Ti4O15 (6ABTO) was obtained using a high entropy design concept. The material, which has orthorhombic symmetry in space group A21am at room temperature, has Ca2+, Sr2+, Ba2+, Pb2+, Nd3+ and Na+ distributed not only on the A sites of the perovskite layer but also in the bismuthate layer. 6ABTO shows complex ferroelectric behavior, with a Curie point of 557 °C. Four current peaks are observed in the current - electric field curve. These peaks are attributed to a combination of a field induced phase transition and domain wall switching, which is the first reported occurrence of such current - electric field behavior for an Aurivillius structured ferroelectric material. Despite the level of disorder between the A site cations in the perovskite layer and the Bi positions in the bismuthate layer, 6ABTO does not show the relaxor ferroelectric behavior, that is commonly observed in cases of such disorder. This suggests that relaxor behavior in ferroelectrics, may be more associated with the thermal stability of dipoles, rather than the presence of polar nano-regions formed as a result of chemical disorder. The nature of the high entropy effect in 6ABTO is discussed through comparison of results from isostructural compositions containing 5, 4 and 3 of the component cations
[Display omitted] |
---|---|
AbstractList | A single phase four-layer Aurivillius structured ferroelectric ceramic, (Ca0.2Sr0.2Ba0.2Pb0.2Nd0.1Na0.1)Bi4Ti4O15 (6ABTO) was obtained using a high entropy design concept. The material, which has orthorhombic symmetry in space group A21am at room temperature, has Ca2+, Sr2+, Ba2+, Pb2+, Nd3+ and Na+ distributed not only on the A sites of the perovskite layer but also in the bismuthate layer. 6ABTO shows complex ferroelectric behavior, with a Curie point of 557 °C. Four current peaks are observed in the current - electric field curve. These peaks are attributed to a combination of a field induced phase transition and domain wall switching, which is the first reported occurrence of such current - electric field behavior for an Aurivillius structured ferroelectric material. Despite the level of disorder between the A site cations in the perovskite layer and the Bi positions in the bismuthate layer, 6ABTO does not show the relaxor ferroelectric behavior, that is commonly observed in cases of such disorder. This suggests that relaxor behavior in ferroelectrics, may be more associated with the thermal stability of dipoles, rather than the presence of polar nano-regions formed as a result of chemical disorder. The nature of the high entropy effect in 6ABTO is discussed through comparison of results from isostructural compositions containing 5, 4 and 3 of the component cations
[Display omitted] |
ArticleNumber | 117815 |
Author | Abrahams, Isaac Reece, Michael J. Zhang, Man Xu, Xinzhao Yue, Yajun Ahmed, Shafique Gao, Feng Palma, Matteo Yan, Haixue Svec, Peter |
Author_xml | – sequence: 1 givenname: Man orcidid: 0000-0002-1094-7279 surname: Zhang fullname: Zhang, Man organization: School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London, E1 4NS, United Kingdom – sequence: 2 givenname: Xinzhao surname: Xu fullname: Xu, Xinzhao organization: Department of Chemistry, Queen Mary University of London, Mile End Road, London, E1 4NS, United Kingdom – sequence: 3 givenname: Shafique surname: Ahmed fullname: Ahmed, Shafique organization: School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London, E1 4NS, United Kingdom – sequence: 4 givenname: Yajun surname: Yue fullname: Yue, Yajun organization: Department of Chemistry, Queen Mary University of London, Mile End Road, London, E1 4NS, United Kingdom – sequence: 5 givenname: Matteo orcidid: 0000-0001-8715-4034 surname: Palma fullname: Palma, Matteo organization: Department of Chemistry, Queen Mary University of London, Mile End Road, London, E1 4NS, United Kingdom – sequence: 6 givenname: Peter orcidid: 0000-0002-2257-3710 surname: Svec fullname: Svec, Peter organization: Institute of Physics, Slovak Academy of Sciences, Dúbravská Cesta 9, 845 11 Bratislava, Slovak Republic – sequence: 7 givenname: Feng orcidid: 0000-0002-5075-4076 surname: Gao fullname: Gao, Feng organization: NPU-QMUL Joint Research Institute of Advanced Materials and Structure, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, China – sequence: 8 givenname: Isaac orcidid: 0000-0002-8606-6056 surname: Abrahams fullname: Abrahams, Isaac email: i.abrahams@qmul.ac.uk organization: Department of Chemistry, Queen Mary University of London, Mile End Road, London, E1 4NS, United Kingdom – sequence: 9 givenname: Michael J. surname: Reece fullname: Reece, Michael J. organization: School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London, E1 4NS, United Kingdom – sequence: 10 givenname: Haixue orcidid: 0000-0002-4563-1100 surname: Yan fullname: Yan, Haixue email: h.x.yan@qmul.ac.uk organization: School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London, E1 4NS, United Kingdom |
BookMark | eNqFkMtqwzAQRUVJoUnaTyjoB-zqYcc2XZQQ-oJAu2jXQpZGsYIjB0kO5O-rNFl109VcBs6Fe2Zo4gYHCN1TklNCFw_bXKoodzLmjDCWU1rVtLxCU1pXPGNFyScp87LJFkVZ3KBZCFtCKKsKMkXus5MBcPTSBTP4VGIHF7B1WDq8HL092L63Y8C9PILHIfpRxdGDxga8H6AHFb1VWEOwG5feY7Bug2MHuLObDoOLftgfsRqcgn28RddG9gHuLneOvl-ev1Zv2frj9X21XGeKkyZmNeXcVLAgvC3awijdMM1ayaQkChqjtZRK1SVUulEtJ1AY3lbQ6EbrmlVly-eoPPcqP4TgwYi9tzvpj4IScZImtuIiTZykibO0xD3-4ZSNv06SIdv_Sz-daUjTDha8CMpCGq6tT56EHuw_DT-2vpKs |
CitedBy_id | crossref_primary_10_1016_j_jeurceramsoc_2023_01_028 crossref_primary_10_3390_ma17153760 crossref_primary_10_1038_s41467_023_41494_1 crossref_primary_10_1039_D4TC05030D crossref_primary_10_1002_adem_202201677 crossref_primary_10_1007_s12598_024_02852_0 crossref_primary_10_3390_ma17174360 crossref_primary_10_1039_D2TA10098C crossref_primary_10_1063_5_0138877 crossref_primary_10_26599_JAC_2023_9220769 crossref_primary_10_1016_j_gee_2023_04_007 crossref_primary_10_1063_5_0243531 crossref_primary_10_1021_acsnano_4c16672 crossref_primary_10_1016_j_jmat_2024_100945 crossref_primary_10_1111_jace_19633 crossref_primary_10_1080_00150193_2024_2325898 crossref_primary_10_1126_science_ads9584 crossref_primary_10_1007_s12598_024_02934_z crossref_primary_10_1021_acsami_3c12015 crossref_primary_10_3390_cryst14090754 crossref_primary_10_1063_5_0233632 crossref_primary_10_1111_jace_18641 crossref_primary_10_1111_jace_20032 crossref_primary_10_1038_s41578_023_00544_2 crossref_primary_10_1016_j_jmat_2025_101052 crossref_primary_10_1016_j_cej_2023_145363 crossref_primary_10_1063_5_0102088 crossref_primary_10_1021_acsapm_2c00327 crossref_primary_10_1080_00150193_2023_2189845 crossref_primary_10_1016_j_jmat_2024_04_015 crossref_primary_10_1111_jace_19927 crossref_primary_10_1021_acsami_3c18262 crossref_primary_10_1016_j_jeurceramsoc_2024_02_040 crossref_primary_10_1111_jace_19349 crossref_primary_10_1016_j_cej_2024_154132 crossref_primary_10_1016_j_jmat_2023_04_012 crossref_primary_10_1002_adma_202419134 crossref_primary_10_1016_j_jmst_2022_10_053 crossref_primary_10_1016_j_mattod_2024_06_005 crossref_primary_10_1002_inf2_12488 crossref_primary_10_1039_D3TC01444D crossref_primary_10_1016_j_nanoen_2022_107910 crossref_primary_10_1088_1674_1056_ad84ca crossref_primary_10_26599_JAC_2024_9221012 crossref_primary_10_1016_j_ceramint_2022_07_052 crossref_primary_10_1016_j_ceramint_2022_12_073 |
Cites_doi | 10.1016/j.jeurceramsoc.2020.01.015 10.1103/PhysRevLett.88.107601 10.1006/jssc.2001.9473 10.1016/j.jeurceramsoc.2020.11.030 10.1016/j.matchemphys.2011.05.081 10.1038/44352 10.1016/j.jallcom.2010.03.171 10.3390/app8010062 10.1063/1.5126652 10.1016/j.ssi.2020.115543 10.1557/JMR.2001.0433 10.1016/j.ssc.2012.03.007 10.1016/j.actamat.2020.09.066 10.1002/pssr.201600043 10.1016/S0038-1098(03)00332-6 10.1016/j.jssc.2004.01.008 10.1016/j.ceramint.2020.05.090 10.1063/1.2034121 10.1016/0022-3697(62)90526-7 10.1016/j.matdes.2020.109447 10.1142/S2010135X11000148 10.1007/s10832-007-9045-2 10.1016/j.scriptamat.2017.08.013 10.1103/PhysRevLett.89.087601 10.1016/j.ceramint.2020.12.272 10.3166/acsm.31.633-648 10.1016/j.jeurceramsoc.2020.04.015 10.1021/acsaelm.9b00180 10.1016/j.nanoen.2018.06.016 10.1080/00150198708016945 10.1016/j.nanoen.2020.105037 10.1016/j.actamat.2020.10.043 10.1557/JMR.2007.0198 10.1039/D1EE00505G 10.1007/s11837-013-0761-6 10.1103/PhysRev.94.1561 10.2109/jcersj.110.215 10.1002/adma.200401860 10.1142/S2010135X13500070 10.1016/j.jeurceramsoc.2019.01.041 10.1016/0925-8388(92)90639-Q 10.1016/j.scriptamat.2017.08.040 10.1080/00150197808237830 10.1063/1.1421078 10.1016/j.jallcom.2013.08.181 10.1080/17436753.2019.1634943 10.1143/JJAP.39.5577 10.1016/j.ceramint.2019.11.239 |
ContentType | Journal Article |
Copyright | 2022 Acta Materialia Inc. |
Copyright_xml | – notice: 2022 Acta Materialia Inc. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.actamat.2022.117815 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-2453 |
ExternalDocumentID | 10_1016_j_actamat_2022_117815 S1359645422002026 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABMAC ABNEU ABXRA ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AIEXJ AIKHN AITUG AIVDX AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W KOM M41 MAGPM N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SPD SSM SSQ SSZ T5K TN5 XPP ZMT ~G- AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADIYS ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FGOYB R2- SEW SSH T9H ZY4 |
ID | FETCH-LOGICAL-c309t-8133f7e603b4b4fcd92d2ba2aa0ce9fddaacc85e7d9cb30e4f3b7e9d9dd8275b3 |
IEDL.DBID | .~1 |
ISSN | 1359-6454 |
IngestDate | Tue Jul 01 01:30:15 EDT 2025 Thu Apr 24 23:03:24 EDT 2025 Fri Feb 23 02:40:49 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Ferroelectric Domain High entropy Aurivillius Phase transition |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c309t-8133f7e603b4b4fcd92d2ba2aa0ce9fddaacc85e7d9cb30e4f3b7e9d9dd8275b3 |
ORCID | 0000-0002-1094-7279 0000-0002-4563-1100 0000-0001-8715-4034 0000-0002-8606-6056 0000-0002-2257-3710 0000-0002-5075-4076 |
ParticipantIDs | crossref_primary_10_1016_j_actamat_2022_117815 crossref_citationtrail_10_1016_j_actamat_2022_117815 elsevier_sciencedirect_doi_10_1016_j_actamat_2022_117815 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-05-01 2022-05-00 |
PublicationDateYYYYMMDD | 2022-05-01 |
PublicationDate_xml | – month: 05 year: 2022 text: 2022-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Acta materialia |
PublicationYear | 2022 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Bérardan, Franger, Dragoe, Meena, Dragoe (bib0016) 2016; 10 Pu, Zhang, Li, Chen, Du, Zhou (bib0018) 2019; 115 Li, Zhou, Liang, Ning, Fu, Xu, Qiu, Xu, Yao, Peng (bib0015) 2021; 11 Zhang, Giddens, Yue, Xu, Araullo-Peters, Koval, Palma, Abrahams, Yan, Hao (bib0051) 2020; 40 Tanwar, Verma, Gupta, Sreenivas (bib0026) 2011; 130 Zurbuchen, Asayama, Schlom, Streiffer (bib0043) 2002; 88 Yan, Zhang, Zhou, Zhang, Yue, Zhang, Xue, Luo, Abrahams, Yan (bib0048) 2020; 200 Tan, Viola, Koval, Yu, Mahajan, Zhang, Zhang, Zhou, Tarakina, Yan (bib0054) 2019; 39 Hervoches, Snedden, Riggs, Kilcoyne, Manuel, Lightfoot (bib0037) 2002; 164 Kennedy, Kubota, Hunter, Ismunandar (bib0036) 2003; 126 Subbarao (bib0002) 1962; 23 McCormack, Navrotsky (bib0009) 2021; 202 Chen, Ruan, Ting, Su, Chang (bib0020) 2021; 47 Jiang, Hu, Gild, Zhou, Nie, Qin, Harrington, Vecchio, Luo (bib0007) 2018; 142 Venkata Ramana, Graça, Valente, Bhima Sankaram (bib0031) 2014; 583 Drougard, Young (bib0050) 1954; 94 Phys, Viola, Ning, Wei, Deluca, Adomkevicius, Khaliq, Reece, Yan (bib0047) 2013; 014107 Zhou, Pu, Zhang, Shi, Guo, Wang, Ji, Wei, Ouyang (bib0013) 2020; 46 Kholkin, Bdikin, Kiselev, Shvartsman, Kim (bib0042) 2007; 19 Liu, Ren, Ma, Du, Wang (bib0019) 2020; 46 Wu, Zhang, Huang, Tseng, Meng, Koval, Chou, Zhang, Yan (bib0046) 2020; 76 Xiong, Zhang, Cao, Gao, Svec, Dusza, Reece, Yan (bib0017) 2021; 41 Yeh (bib0014) 2013; 65 Zurbuchen, Tian, Pan, Fong, Streiffer, Hawley, Lettieri, Jia, Asayama, Fulk, Comstock, Knapp, Carim, Schlom (bib0039) 2007; 22 Zhang, Xu, Yue, Palma, Reece, Yan (bib0022) 2021; 200 Sarkar, Wang, Schiele, Chellali, Bhattacharya, Wang, Brezesinski, Hahn, Velasco, Breitung (bib0008) 2019; 31 Chon, Jang, Kim, Chang (bib0032) 2002; 89 Cross (bib0029) 1987; 76 Campanini, Trassin, Ederer, Erni, Rossell (bib0038) 2019; 1 Xu, Karthik, Damodaran, Martin (bib0049) 2014; 5 Yan, Zhang, Ubic, Reece, Liu, Shen, Zhang (bib0004) 2005; 17 Zeng, Zhao, Shi, Ruan, Zheng, Li (bib0053) 2018; 142 Takenaka (bib0033) 2002; 110 Park, Kang, Bu, Noh, Lee, Jo (bib0001) 1999; 401 Qi, Wang, Wu, Hu, Jia, Zhang (bib0027) 2019; 118 Bobić, Vijatović, Greičius, Banys, Stojanović (bib0028) 2010; 499 Wu, Mahajan, Riekehr, Zhang, Yang, Meng, Zhang, Yan (bib0044) 2018; 50 Dziegielewska, Malys, Wrobel, Hull, Yue, Krok, Abrahams (bib0021) 2021; 360 Yeh (bib0012) 2006; 31 Larson, Von Dreele (bib0034) 1987 Moure (bib0005) 2018; 8 Yan, Zhang, Reece, Dong (bib0040) 2005; 87 Rost, Sachet, Borman, Moballegh, Dickey, Hou, Jones, Curtarolo, Maria (bib0006) 2015; 6 Tellier, Boullay, Manier, Mercurio (bib0035) 2004; 177 Ma, Ma, Wang, Schweidler, Botros, Fu, Hahn, Brezesinski, Breitung (bib0010) 2021; 14 Wright, Wang, Huang, Nieto, Chen, Luo (bib0011) 2020; 40 Suárez, Reaney, Lee (bib0023) 2001; 16 Takeuchi, Tani, Saito (bib0030) 2000; 39 Fang, Fan, Xi, Chen (bib0041) 2012; 152 Sohn, Xianyu, Lee, Lee, Chung (bib0024) 2001; 79 Viola, Saunders, Wei, Chong, Luo, Reece, Yan (bib0052) 2013; 03 Frit, Mercurio (bib0003) 1992; 188 Yan, Inam, Viola, Ning, Zhang, Jiang, Zeng, Gao, Reece (bib0045) 2011; 01 Dêverin (bib0025) 1978; 19 Cross (10.1016/j.actamat.2022.117815_bib0029) 1987; 76 Fang (10.1016/j.actamat.2022.117815_bib0041) 2012; 152 Bérardan (10.1016/j.actamat.2022.117815_bib0016) 2016; 10 Takeuchi (10.1016/j.actamat.2022.117815_bib0030) 2000; 39 Yan (10.1016/j.actamat.2022.117815_bib0040) 2005; 87 Yeh (10.1016/j.actamat.2022.117815_bib0012) 2006; 31 Tan (10.1016/j.actamat.2022.117815_bib0054) 2019; 39 Larson (10.1016/j.actamat.2022.117815_bib0034) 1987 Li (10.1016/j.actamat.2022.117815_bib0015) 2021; 11 Tellier (10.1016/j.actamat.2022.117815_bib0035) 2004; 177 Wu (10.1016/j.actamat.2022.117815_bib0046) 2020; 76 Kennedy (10.1016/j.actamat.2022.117815_bib0036) 2003; 126 Frit (10.1016/j.actamat.2022.117815_bib0003) 1992; 188 Sohn (10.1016/j.actamat.2022.117815_bib0024) 2001; 79 Kholkin (10.1016/j.actamat.2022.117815_bib0042) 2007; 19 Xu (10.1016/j.actamat.2022.117815_bib0049) 2014; 5 Moure (10.1016/j.actamat.2022.117815_bib0005) 2018; 8 Subbarao (10.1016/j.actamat.2022.117815_bib0002) 1962; 23 McCormack (10.1016/j.actamat.2022.117815_bib0009) 2021; 202 Qi (10.1016/j.actamat.2022.117815_bib0027) 2019; 118 Chon (10.1016/j.actamat.2022.117815_bib0032) 2002; 89 Jiang (10.1016/j.actamat.2022.117815_bib0007) 2018; 142 Pu (10.1016/j.actamat.2022.117815_bib0018) 2019; 115 Phys (10.1016/j.actamat.2022.117815_bib0047) 2013; 014107 Zhang (10.1016/j.actamat.2022.117815_bib0022) 2021; 200 Wright (10.1016/j.actamat.2022.117815_bib0011) 2020; 40 Zurbuchen (10.1016/j.actamat.2022.117815_bib0043) 2002; 88 Campanini (10.1016/j.actamat.2022.117815_bib0038) 2019; 1 Zurbuchen (10.1016/j.actamat.2022.117815_bib0039) 2007; 22 Takenaka (10.1016/j.actamat.2022.117815_bib0033) 2002; 110 Hervoches (10.1016/j.actamat.2022.117815_bib0037) 2002; 164 Ma (10.1016/j.actamat.2022.117815_bib0010) 2021; 14 Chen (10.1016/j.actamat.2022.117815_bib0020) 2021; 47 Dêverin (10.1016/j.actamat.2022.117815_bib0025) 1978; 19 Park (10.1016/j.actamat.2022.117815_bib0001) 1999; 401 Liu (10.1016/j.actamat.2022.117815_bib0019) 2020; 46 Yeh (10.1016/j.actamat.2022.117815_bib0014) 2013; 65 Dziegielewska (10.1016/j.actamat.2022.117815_bib0021) 2021; 360 Rost (10.1016/j.actamat.2022.117815_bib0006) 2015; 6 Viola (10.1016/j.actamat.2022.117815_bib0052) 2013; 03 Suárez (10.1016/j.actamat.2022.117815_bib0023) 2001; 16 Bobić (10.1016/j.actamat.2022.117815_bib0028) 2010; 499 Yan (10.1016/j.actamat.2022.117815_bib0045) 2011; 01 Sarkar (10.1016/j.actamat.2022.117815_bib0008) 2019; 31 Zeng (10.1016/j.actamat.2022.117815_bib0053) 2018; 142 Xiong (10.1016/j.actamat.2022.117815_bib0017) 2021; 41 Zhang (10.1016/j.actamat.2022.117815_bib0051) 2020; 40 Wu (10.1016/j.actamat.2022.117815_bib0044) 2018; 50 Zhou (10.1016/j.actamat.2022.117815_bib0013) 2020; 46 Yan (10.1016/j.actamat.2022.117815_bib0048) 2020; 200 Yan (10.1016/j.actamat.2022.117815_bib0004) 2005; 17 Drougard (10.1016/j.actamat.2022.117815_bib0050) 1954; 94 Tanwar (10.1016/j.actamat.2022.117815_bib0026) 2011; 130 Venkata Ramana (10.1016/j.actamat.2022.117815_bib0031) 2014; 583 |
References_xml | – volume: 142 start-page: 20 year: 2018 end-page: 22 ident: bib0053 article-title: Large strain induced by the alignment of defect dipoles in (Bi publication-title: Scr. Mater. – volume: 6 start-page: 1 year: 2015 end-page: 8 ident: bib0006 publication-title: Entropy-stabilized oxides, Nat. Commun – start-page: 86 year: 1987 end-page: 748 ident: bib0034 publication-title: General structure analysis system (GSAS), Los Alamos National Laboratory Report LAUR – volume: 014107 start-page: 0 year: 2013 end-page: 9 ident: bib0047 publication-title: Dielectric relaxation, lattice dynamics and based lead-free ceramics – volume: 401 start-page: 682 year: 1999 end-page: 684 ident: bib0001 article-title: Lanthanum-substituted bismuth titanate for use in non-volatile memories publication-title: Nature – volume: 76 start-page: 241 year: 1987 end-page: 267 ident: bib0029 publication-title: Relaxor ferroelecirics, Ferroelectrics – volume: 164 start-page: 280 year: 2002 end-page: 291 ident: bib0037 article-title: Structural behavior of the four-layer aurivillius-phase ferroelectrics SrBi publication-title: J. Solid State Chem. – volume: 79 start-page: 3672 year: 2001 end-page: 3674 ident: bib0024 article-title: Ferroelectric SrBi publication-title: Appl. Phys. Lett. – volume: 47 start-page: 11451 year: 2021 end-page: 11458 ident: bib0020 article-title: Solution-based fabrication of high-entropy Ba(Ti,Hf,Zr,Fe,Sn)O publication-title: Ceram. Int. – volume: 177 start-page: 1829 year: 2004 end-page: 1837 ident: bib0035 article-title: A comparative study of the Aurivillius phase ferroelectrics CaBi publication-title: J. Solid State Chem. – volume: 202 start-page: 1 year: 2021 end-page: 21 ident: bib0009 article-title: Thermodynamics of high entropy oxides publication-title: Acta Mater – volume: 31 start-page: 633 year: 2006 end-page: 648 ident: bib0012 article-title: Recent progress in high-entropy alloys publication-title: Ann. Chim. Sci. Des Mater – volume: 583 start-page: 198 year: 2014 end-page: 205 ident: bib0031 article-title: Improved ferroelectric and pyroelectric properties of Pb-doped SrBi publication-title: J. Alloys Compd. – volume: 142 start-page: 116 year: 2018 end-page: 120 ident: bib0007 article-title: A new class of high-entropy perovskite oxides publication-title: Scr. Mater. – volume: 22 start-page: 1439 year: 2007 end-page: 1471 ident: bib0039 article-title: Morphology, structure, and nucleation of out-of-phase boundaries (OPBs) in epitaxial films of layered oxides publication-title: J. Mater. Res. – volume: 16 start-page: 3139 year: 2001 end-page: 3149 ident: bib0023 article-title: Relation between tolerance factor and Tc in Aurivillius compounds publication-title: J. Mater. Res. – volume: 110 start-page: 215 year: 2002 end-page: 224 ident: bib0033 article-title: Grain orientation effects on electrical properties of bismuth layer-structured ferroelectric ceramics publication-title: J. Ceram. Soc. Japan. – volume: 19 start-page: 5 year: 1978 end-page: 7 ident: bib0025 article-title: The dielectric properties of PbBi publication-title: Ferroelectrics – volume: 5 start-page: 1 year: 2014 end-page: 7 ident: bib0049 article-title: Stationary domain wall contribution to enhanced ferroelectric susceptibility publication-title: Nat. Commun. – volume: 40 start-page: 2120 year: 2020 end-page: 2129 ident: bib0011 article-title: From high-entropy ceramics to compositionally-complex ceramics: a case study of fluorite oxides publication-title: J. Eur. Ceram. Soc. – volume: 1 start-page: 1019 year: 2019 end-page: 1028 ident: bib0038 article-title: Buried in-plane ferroelectric domains in Fe-doped single-crystalline Aurivillius thin films publication-title: ACS Appl. Electron. Mater. – volume: 65 start-page: 1759 year: 2013 end-page: 1771 ident: bib0014 article-title: Alloy design strategies and future trends in high-entropy alloys publication-title: Jom – volume: 19 start-page: 81 year: 2007 end-page: 94 ident: bib0042 article-title: Nanoscale characterization of polycrystalline ferroelectric materials for piezoelectric applications publication-title: J. Electroceramics. – volume: 126 start-page: 653 year: 2003 end-page: 658 ident: bib0036 article-title: Kato, Structural phase transitions in the layered bismuth oxide BaBi publication-title: Solid State Commun – volume: 76 year: 2020 ident: bib0046 article-title: Ultrahigh field-induced strain in lead-free ceramics publication-title: Nano Energy – volume: 87 start-page: 1 year: 2005 end-page: 4 ident: bib0040 article-title: Thermal depoling of high Curie point Aurivillius phase ferroelectric ceramics publication-title: Appl. Phys. Lett. – volume: 31 year: 2019 ident: bib0008 article-title: High-entropy oxides: fundamental aspects and electrochemical properties publication-title: Adv. Mater. – volume: 200 start-page: 971 year: 2020 end-page: 979 ident: bib0048 article-title: Phase transitions in RbPrNb publication-title: Acta Mater – volume: 115 start-page: 0 year: 2019 end-page: 5 ident: bib0018 article-title: Dielectric properties and electrocaloric effect of high-entropy (Na publication-title: Appl. Phys. Lett. – volume: 46 start-page: 7430 year: 2020 end-page: 7437 ident: bib0013 article-title: Microstructure and dielectric properties of high entropy Ba(Zr publication-title: Ceram. Int. – volume: 88 start-page: 4 year: 2002 ident: bib0043 article-title: Ferroelectric domain structure of SrBi publication-title: Phys. Rev. Lett. – volume: 50 start-page: 723 year: 2018 end-page: 732 ident: bib0044 article-title: Perovskite Srx(Bi publication-title: Nano Energy – volume: 200 year: 2021 ident: bib0022 article-title: Multi elements substituted Aurivillius phase relaxor ferroelectrics using high entropy design concept publication-title: Mater. Des. – volume: 499 start-page: 221 year: 2010 end-page: 226 ident: bib0028 article-title: Dielectric and relaxor behavior of BaBi publication-title: J. Alloys Compd. – volume: 40 start-page: 3996 year: 2020 end-page: 4003 ident: bib0051 article-title: Polar nano-clusters in nominally paraelectric ceramics demonstrating high microwave tunability for wireless communication publication-title: J. Eur. Ceram. Soc. – volume: 17 start-page: 1261 year: 2005 end-page: 1265 ident: bib0004 article-title: A lead-free high-curie-point ferroelectric ceramic, CaBi publication-title: Adv. Mater. – volume: 41 start-page: 2979 year: 2021 end-page: 2985 ident: bib0017 article-title: Low-loss high entropy relaxor-like ferroelectrics with A-site disorder publication-title: J. Eur. Ceram. Soc. – volume: 03 year: 2013 ident: bib0052 article-title: Contribution of piezoelectric effect, electrostriction and ferroelectric/ferroelastic switching to strain-electric field response of dielectrics publication-title: J. Adv. Dielectr. – volume: 188 start-page: 27 year: 1992 end-page: 35 ident: bib0003 article-title: The crystal chemistry and dielectric properties of the Aurivillius family of complex bismuth oxides with perovskite-like layered structures publication-title: J. Alloys Compd. – volume: 39 start-page: 5577 year: 2000 end-page: 5580 ident: bib0030 article-title: Unidirectionally textured CaBi publication-title: Jpn. J. Appl. Physics, Part 1 Regul. Pap. Short Notes Rev. Pap. – volume: 8 start-page: 62 year: 2018 ident: bib0005 article-title: Review and perspectives of Aurivillius structures as a lead-free piezoelectric system publication-title: Appl. Sci. – volume: 89 start-page: 8 year: 2002 end-page: 11 ident: bib0032 article-title: Layered perovskites with giant spontaneous polarizations for nonvolatile nemories publication-title: Phys. Rev. Lett. – volume: 10 start-page: 328 year: 2016 end-page: 333 ident: bib0016 article-title: Colossal dielectric constant in high entropy oxides publication-title: Phys. Status Solidi - Rapid Res. Lett. – volume: 118 start-page: 418 year: 2019 end-page: 424 ident: bib0027 article-title: Relaxor ferroelectric and photocatalytic properties of BaBi publication-title: Adv. Appl. Ceram. – volume: 46 start-page: 20576 year: 2020 end-page: 20581 ident: bib0019 article-title: Dielectric and energy storage properties of flash-sintered high-entropy (Bi publication-title: Ceram. Int. – volume: 39 start-page: 2064 year: 2019 end-page: 2075 ident: bib0054 article-title: On the origin of grain size effects in Ba(Ti publication-title: J. Eur. Ceram. Soc. – volume: 94 start-page: 1561 year: 1954 end-page: 1564 ident: bib0050 article-title: Domain clamping effect in barium titanate single crystals publication-title: Phys. Rev. – volume: 11 start-page: 1 year: 2021 end-page: 17 ident: bib0015 article-title: High-entropy oxides: advanced research on electrical properties publication-title: Coatings – volume: 360 year: 2021 ident: bib0021 article-title: Bi publication-title: Solid State Ionics – volume: 14 start-page: 2883 year: 2021 end-page: 2905 ident: bib0010 article-title: High-entropy energy materials: challenges and new opportunities publication-title: Energy Environ. Sci – volume: 23 start-page: 665 year: 1962 end-page: 676 ident: bib0002 article-title: A family of ferroelectric bismuth compounds publication-title: J. Phys. Chem. Solids. – volume: 01 start-page: 107 year: 2011 end-page: 118 ident: bib0045 article-title: The contribution of electrical conductivity, dielectric permittivity and domain switching in ferroelectric hysteresis loops publication-title: J. Adv. Dielectr. – volume: 130 start-page: 95 year: 2011 end-page: 103 ident: bib0026 article-title: A-site substitution effect of strontium on bismuth layered CaBi 4Ti4O15 ceramics on electrical and piezoelectric properties publication-title: Mater. Chem. Phys. – volume: 152 start-page: 979 year: 2012 end-page: 983 ident: bib0041 article-title: Studies of structural and electrical properties on four-layers Aurivillius phase BaBi publication-title: Solid state commun – volume: 40 start-page: 2120 year: 2020 ident: 10.1016/j.actamat.2022.117815_bib0011 article-title: From high-entropy ceramics to compositionally-complex ceramics: a case study of fluorite oxides publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2020.01.015 – volume: 11 start-page: 1 year: 2021 ident: 10.1016/j.actamat.2022.117815_bib0015 article-title: High-entropy oxides: advanced research on electrical properties publication-title: Coatings – volume: 88 start-page: 4 year: 2002 ident: 10.1016/j.actamat.2022.117815_bib0043 article-title: Ferroelectric domain structure of SrBi2Nb2O9 epitaxial thin films publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.88.107601 – volume: 164 start-page: 280 year: 2002 ident: 10.1016/j.actamat.2022.117815_bib0037 article-title: Structural behavior of the four-layer aurivillius-phase ferroelectrics SrBi4Ti4O15 and Bi5Ti3FeO15 publication-title: J. Solid State Chem. doi: 10.1006/jssc.2001.9473 – volume: 41 start-page: 2979 year: 2021 ident: 10.1016/j.actamat.2022.117815_bib0017 article-title: Low-loss high entropy relaxor-like ferroelectrics with A-site disorder publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2020.11.030 – volume: 130 start-page: 95 year: 2011 ident: 10.1016/j.actamat.2022.117815_bib0026 article-title: A-site substitution effect of strontium on bismuth layered CaBi 4Ti4O15 ceramics on electrical and piezoelectric properties publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2011.05.081 – volume: 401 start-page: 682 year: 1999 ident: 10.1016/j.actamat.2022.117815_bib0001 article-title: Lanthanum-substituted bismuth titanate for use in non-volatile memories publication-title: Nature doi: 10.1038/44352 – volume: 499 start-page: 221 year: 2010 ident: 10.1016/j.actamat.2022.117815_bib0028 article-title: Dielectric and relaxor behavior of BaBi4Ti4O15 ceramics publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2010.03.171 – volume: 8 start-page: 62 year: 2018 ident: 10.1016/j.actamat.2022.117815_bib0005 article-title: Review and perspectives of Aurivillius structures as a lead-free piezoelectric system publication-title: Appl. Sci. doi: 10.3390/app8010062 – volume: 115 start-page: 0 year: 2019 ident: 10.1016/j.actamat.2022.117815_bib0018 article-title: Dielectric properties and electrocaloric effect of high-entropy (Na0.2Bi0.2Ba0.2Sr0.2Ca0.2)TiO3 ceramic publication-title: Appl. Phys. Lett. doi: 10.1063/1.5126652 – volume: 360 year: 2021 ident: 10.1016/j.actamat.2022.117815_bib0021 article-title: Bi2V1-x(Mg0.25Cu0.25Ni0.25Zn0.25)xO5.5-3x/2: a high entropy dopant BIMEVOX publication-title: Solid State Ionics doi: 10.1016/j.ssi.2020.115543 – volume: 16 start-page: 3139 year: 2001 ident: 10.1016/j.actamat.2022.117815_bib0023 article-title: Relation between tolerance factor and Tc in Aurivillius compounds publication-title: J. Mater. Res. doi: 10.1557/JMR.2001.0433 – volume: 152 start-page: 979 year: 2012 ident: 10.1016/j.actamat.2022.117815_bib0041 article-title: Studies of structural and electrical properties on four-layers Aurivillius phase BaBi4Ti4O15 publication-title: Solid state commun doi: 10.1016/j.ssc.2012.03.007 – volume: 200 start-page: 971 year: 2020 ident: 10.1016/j.actamat.2022.117815_bib0048 article-title: Phase transitions in RbPrNb2O7, a layer structured ferroelectric with a high Curie point publication-title: Acta Mater doi: 10.1016/j.actamat.2020.09.066 – volume: 10 start-page: 328 year: 2016 ident: 10.1016/j.actamat.2022.117815_bib0016 article-title: Colossal dielectric constant in high entropy oxides publication-title: Phys. Status Solidi - Rapid Res. Lett. doi: 10.1002/pssr.201600043 – volume: 126 start-page: 653 year: 2003 ident: 10.1016/j.actamat.2022.117815_bib0036 article-title: Kato, Structural phase transitions in the layered bismuth oxide BaBi4Ti4O15 publication-title: Solid State Commun doi: 10.1016/S0038-1098(03)00332-6 – volume: 177 start-page: 1829 year: 2004 ident: 10.1016/j.actamat.2022.117815_bib0035 article-title: A comparative study of the Aurivillius phase ferroelectrics CaBi4Ti4O15 and BaBi4Ti4O15 publication-title: J. Solid State Chem. doi: 10.1016/j.jssc.2004.01.008 – volume: 46 start-page: 20576 year: 2020 ident: 10.1016/j.actamat.2022.117815_bib0019 article-title: Dielectric and energy storage properties of flash-sintered high-entropy (Bi0.2Na0.2K0.2Ba0.2Ca0.2)TiO3 ceramic publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2020.05.090 – volume: 87 start-page: 1 year: 2005 ident: 10.1016/j.actamat.2022.117815_bib0040 article-title: Thermal depoling of high Curie point Aurivillius phase ferroelectric ceramics publication-title: Appl. Phys. Lett. doi: 10.1063/1.2034121 – volume: 23 start-page: 665 year: 1962 ident: 10.1016/j.actamat.2022.117815_bib0002 article-title: A family of ferroelectric bismuth compounds publication-title: J. Phys. Chem. Solids. doi: 10.1016/0022-3697(62)90526-7 – volume: 200 year: 2021 ident: 10.1016/j.actamat.2022.117815_bib0022 article-title: Multi elements substituted Aurivillius phase relaxor ferroelectrics using high entropy design concept publication-title: Mater. Des. doi: 10.1016/j.matdes.2020.109447 – volume: 01 start-page: 107 year: 2011 ident: 10.1016/j.actamat.2022.117815_bib0045 article-title: The contribution of electrical conductivity, dielectric permittivity and domain switching in ferroelectric hysteresis loops publication-title: J. Adv. Dielectr. doi: 10.1142/S2010135X11000148 – volume: 31 year: 2019 ident: 10.1016/j.actamat.2022.117815_bib0008 article-title: High-entropy oxides: fundamental aspects and electrochemical properties publication-title: Adv. Mater. – volume: 19 start-page: 81 year: 2007 ident: 10.1016/j.actamat.2022.117815_bib0042 article-title: Nanoscale characterization of polycrystalline ferroelectric materials for piezoelectric applications publication-title: J. Electroceramics. doi: 10.1007/s10832-007-9045-2 – volume: 142 start-page: 20 year: 2018 ident: 10.1016/j.actamat.2022.117815_bib0053 article-title: Large strain induced by the alignment of defect dipoles in (Bi3+,Fe3+) co-doped Pb(Zr,Ti)O3 ceramics publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2017.08.013 – volume: 89 start-page: 8 year: 2002 ident: 10.1016/j.actamat.2022.117815_bib0032 article-title: Layered perovskites with giant spontaneous polarizations for nonvolatile nemories publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.89.087601 – volume: 47 start-page: 11451 year: 2021 ident: 10.1016/j.actamat.2022.117815_bib0020 article-title: Solution-based fabrication of high-entropy Ba(Ti,Hf,Zr,Fe,Sn)O3 films on fluorine-doped tin oxide substrates and their piezoelectric responses publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2020.12.272 – volume: 31 start-page: 633 year: 2006 ident: 10.1016/j.actamat.2022.117815_bib0012 article-title: Recent progress in high-entropy alloys publication-title: Ann. Chim. Sci. Des Mater doi: 10.3166/acsm.31.633-648 – volume: 5 start-page: 1 year: 2014 ident: 10.1016/j.actamat.2022.117815_bib0049 article-title: Stationary domain wall contribution to enhanced ferroelectric susceptibility publication-title: Nat. Commun. – volume: 014107 start-page: 0 year: 2013 ident: 10.1016/j.actamat.2022.117815_bib0047 publication-title: Dielectric relaxation, lattice dynamics and based lead-free ceramics – volume: 40 start-page: 3996 year: 2020 ident: 10.1016/j.actamat.2022.117815_bib0051 article-title: Polar nano-clusters in nominally paraelectric ceramics demonstrating high microwave tunability for wireless communication publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2020.04.015 – volume: 6 start-page: 1 year: 2015 ident: 10.1016/j.actamat.2022.117815_bib0006 publication-title: Entropy-stabilized oxides, Nat. Commun – start-page: 86 year: 1987 ident: 10.1016/j.actamat.2022.117815_bib0034 publication-title: General structure analysis system (GSAS), Los Alamos National Laboratory Report LAUR – volume: 1 start-page: 1019 year: 2019 ident: 10.1016/j.actamat.2022.117815_bib0038 article-title: Buried in-plane ferroelectric domains in Fe-doped single-crystalline Aurivillius thin films publication-title: ACS Appl. Electron. Mater. doi: 10.1021/acsaelm.9b00180 – volume: 50 start-page: 723 year: 2018 ident: 10.1016/j.actamat.2022.117815_bib0044 article-title: Perovskite Srx(Bi1−xNa0.97−xLi0.03)0.5TiO3 ceramics with polar nano regions for high power energy storage publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.06.016 – volume: 76 start-page: 241 year: 1987 ident: 10.1016/j.actamat.2022.117815_bib0029 publication-title: Relaxor ferroelecirics, Ferroelectrics doi: 10.1080/00150198708016945 – volume: 76 year: 2020 ident: 10.1016/j.actamat.2022.117815_bib0046 article-title: Ultrahigh field-induced strain in lead-free ceramics publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.105037 – volume: 202 start-page: 1 year: 2021 ident: 10.1016/j.actamat.2022.117815_bib0009 article-title: Thermodynamics of high entropy oxides publication-title: Acta Mater doi: 10.1016/j.actamat.2020.10.043 – volume: 22 start-page: 1439 year: 2007 ident: 10.1016/j.actamat.2022.117815_bib0039 article-title: Morphology, structure, and nucleation of out-of-phase boundaries (OPBs) in epitaxial films of layered oxides publication-title: J. Mater. Res. doi: 10.1557/JMR.2007.0198 – volume: 14 start-page: 2883 year: 2021 ident: 10.1016/j.actamat.2022.117815_bib0010 article-title: High-entropy energy materials: challenges and new opportunities publication-title: Energy Environ. Sci doi: 10.1039/D1EE00505G – volume: 65 start-page: 1759 year: 2013 ident: 10.1016/j.actamat.2022.117815_bib0014 article-title: Alloy design strategies and future trends in high-entropy alloys publication-title: Jom doi: 10.1007/s11837-013-0761-6 – volume: 94 start-page: 1561 year: 1954 ident: 10.1016/j.actamat.2022.117815_bib0050 article-title: Domain clamping effect in barium titanate single crystals publication-title: Phys. Rev. doi: 10.1103/PhysRev.94.1561 – volume: 110 start-page: 215 year: 2002 ident: 10.1016/j.actamat.2022.117815_bib0033 article-title: Grain orientation effects on electrical properties of bismuth layer-structured ferroelectric ceramics publication-title: J. Ceram. Soc. Japan. doi: 10.2109/jcersj.110.215 – volume: 17 start-page: 1261 year: 2005 ident: 10.1016/j.actamat.2022.117815_bib0004 article-title: A lead-free high-curie-point ferroelectric ceramic, CaBi2Nb2O9 publication-title: Adv. Mater. doi: 10.1002/adma.200401860 – volume: 03 year: 2013 ident: 10.1016/j.actamat.2022.117815_bib0052 article-title: Contribution of piezoelectric effect, electrostriction and ferroelectric/ferroelastic switching to strain-electric field response of dielectrics publication-title: J. Adv. Dielectr. doi: 10.1142/S2010135X13500070 – volume: 39 start-page: 2064 year: 2019 ident: 10.1016/j.actamat.2022.117815_bib0054 article-title: On the origin of grain size effects in Ba(Ti0.96Sn0.04)O3 perovskite ceramics publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2019.01.041 – volume: 188 start-page: 27 year: 1992 ident: 10.1016/j.actamat.2022.117815_bib0003 article-title: The crystal chemistry and dielectric properties of the Aurivillius family of complex bismuth oxides with perovskite-like layered structures publication-title: J. Alloys Compd. doi: 10.1016/0925-8388(92)90639-Q – volume: 142 start-page: 116 year: 2018 ident: 10.1016/j.actamat.2022.117815_bib0007 article-title: A new class of high-entropy perovskite oxides publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2017.08.040 – volume: 19 start-page: 5 year: 1978 ident: 10.1016/j.actamat.2022.117815_bib0025 article-title: The dielectric properties of PbBi4Ti4O15 ceramics publication-title: Ferroelectrics doi: 10.1080/00150197808237830 – volume: 79 start-page: 3672 year: 2001 ident: 10.1016/j.actamat.2022.117815_bib0024 article-title: Ferroelectric SrBi4Ti4O15 thin films with high polarization grown on an IrO2 layer publication-title: Appl. Phys. Lett. doi: 10.1063/1.1421078 – volume: 583 start-page: 198 year: 2014 ident: 10.1016/j.actamat.2022.117815_bib0031 article-title: Improved ferroelectric and pyroelectric properties of Pb-doped SrBi4Ti4O15 ceramics for high temperature applications publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2013.08.181 – volume: 118 start-page: 418 year: 2019 ident: 10.1016/j.actamat.2022.117815_bib0027 article-title: Relaxor ferroelectric and photocatalytic properties of BaBi4Ti4O15 publication-title: Adv. Appl. Ceram. doi: 10.1080/17436753.2019.1634943 – volume: 39 start-page: 5577 year: 2000 ident: 10.1016/j.actamat.2022.117815_bib0030 article-title: Unidirectionally textured CaBi4Ti4O15 ceramics by the reactive templated grain growth with an extrusion publication-title: Jpn. J. Appl. Physics, Part 1 Regul. Pap. Short Notes Rev. Pap. doi: 10.1143/JJAP.39.5577 – volume: 46 start-page: 7430 year: 2020 ident: 10.1016/j.actamat.2022.117815_bib0013 article-title: Microstructure and dielectric properties of high entropy Ba(Zr0.2Ti0.2Sn0.2Hf0.2Me0.2)O3 perovskite oxides publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2019.11.239 |
SSID | ssj0012740 |
Score | 2.569516 |
Snippet | A single phase four-layer Aurivillius structured ferroelectric ceramic, (Ca0.2Sr0.2Ba0.2Pb0.2Nd0.1Na0.1)Bi4Ti4O15 (6ABTO) was obtained using a high entropy... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 117815 |
SubjectTerms | Aurivillius Domain Ferroelectric High entropy Phase transition |
Title | Phase transformations in an Aurivillius layer structured ferroelectric designed using the high entropy concept |
URI | https://dx.doi.org/10.1016/j.actamat.2022.117815 |
Volume | 229 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvehBfOKz7MFrmmSTTXaPpViqYhG00FvYVzSlpKW2ghd_u7PdpFYQBY9ZMrBMhp1vNt98g9AVY1SEEsoS2CXz4kQnHqdGeYpQQSkJpFlJCt0Pkv4wvh3RUQN1614YS6uszn53pq9O62rFr7zpz4rCfwwjyq0eFbE8AyglbAd7nNoob3-saR4hVF2uU5hyz7791cXjj2HLCwHAEMpEQuzvS2an4_6UnzZyTm8P7VZgEXfcfvZRw5QHaGdDQvAQlQ8vkIfwYgN_QhzhosSixJ3lvHizFyrLVzwRAK6xk4tdzo3GuZnPp24KTqGwXjE5YNkS4Z8xwEJslYyxvfydzt6xcu2NR2jYu37q9r1qhoKnooAvPAY1aJ6aJIhkLONcaU40kYIIESjDc62FUIpRk2quZBSYOI9karjmWjOSUhkdo2Y5Lc0JwjImgS2lWQ6gxXApBVWRDsOEpJxqGZ6iuPZcpiqBcTvnYpLVTLJxVjk8sw7PnMNPUXttNnMKG38ZsPqzZN9CJYMs8Lvp2f9Nz9G2fXJcxwvUhM9lLgGPLGRrFXAttNW5uesPPgGJEeOJ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF58HNSD-MT63IPXtMkmm-weRSxV2yLYQm9hX9GUkpbaCl787c5mU60gCl43GVhmNzvfbL75BqFLxqgIJKQlMEvmRbGOPU6N8hShglLiS1NKCnW6casf3Q3oYAVdL2phLK2yOvvdmV6e1tVIo_JmY5LnjccgpNzqURHLM4BUYhWtR_D52jYG9fdPnkcAaZcrFabcs69_lfE0hjDnmQBkCHkiIfb_JbPtcX8KUEtBp7mDtiu0iK_chHbRiin20NaShuA-Kh6eIRDh2RIAhY2E8wKLAl_Np_mrvVGZv-CRAHSNnV7sfGo0zsx0OnZtcHKFdUnlgGHLhH_CgAuxlTLG9vZ3PHnDytU3HqB-86Z33fKqJgqeCn0-8xgkoVliYj-UkYwypTnRRAoihK8Mz7QWQilGTaK5kqFvoiyUieGaa81IQmV4iNaKcWGOEJYR8W0uzTJALYZLKagKdRDEJOFUy6CGooXnUlUpjNtGF6N0QSUbppXDU-vw1Dm8huqfZhMnsfGXAVssS_ptr6QQBn43Pf6_6QXaaPU67bR9270_QZv2iSM-nqI1WDpzBuBkJs_LzfcBzsDlFw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phase+transformations+in+an+Aurivillius+layer+structured+ferroelectric+designed+using+the+high+entropy+concept&rft.jtitle=Acta+materialia&rft.au=Zhang%2C+Man&rft.au=Xu%2C+Xinzhao&rft.au=Ahmed%2C+Shafique&rft.au=Yue%2C+Yajun&rft.date=2022-05-01&rft.pub=Elsevier+Ltd&rft.issn=1359-6454&rft.eissn=1873-2453&rft.volume=229&rft_id=info:doi/10.1016%2Fj.actamat.2022.117815&rft.externalDocID=S1359645422002026 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-6454&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-6454&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-6454&client=summon |