Comparative analysis of electroencephalogram (EEG) data gathered from the frontal region with other brain regions affected by attention deficit hyperactivity disorder (ADHD) through multiresolution analysis and machine learning techniques
Attention deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder characterized by repeated patterns of hyperactivity, impulsivity, and inattention that limit daily functioning and development. Electroencephalography (EEG) anomalies correspond to changes in brain connection and activi...
Saved in:
Published in | Applied neuropsychology. Child pp. 1 - 15 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
01.10.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Attention deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder characterized by repeated patterns of hyperactivity, impulsivity, and inattention that limit daily functioning and development. Electroencephalography (EEG) anomalies correspond to changes in brain connection and activity. The authors propose utilizing empirical mode decomposition (EMD) and discrete wavelet transform (DWT) for feature extraction and machine learning (ML) algorithms to categorize ADHD and control subjects. For this study, the authors considered freely accessible ADHD data obtained from the IEEE data site. Studies have demonstrated a range of EEG anomalies in ADHD patients, such as variations in power spectra, coherence patterns, and event-related potentials (ERPs). Some of the studies claimed that the brain's prefrontal cortex and frontal regions collaborate in intricate networks, and disorders in either of them exacerbate the symptoms of ADHD. , Based on the research that claimed the brain's prefrontal cortex and frontal regions collaborate in intricate networks, and disorders in either of them exacerbate the symptoms of ADHD, the proposed study examines the optimal position of EEG electrode for identifying ADHD and in addition to monitoring accuracy on frontal/ prefrontal and other regions of brain our study also investigates the position groupings that have the highest effect on accurateness in identification of ADHD. The results demonstrate that the dataset classified with AdaBoost provided values for accuracy, precision, specificity, sensitivity, and F1-score as 1.00, 0.70, 0.70, 0.75, and 0.71, respectively, whereas using random forest (RF) it is 0.98, 0.64, 0.60, 0.81, and 0.71, respectively, in detecting ADHD. After detailed analysis, it is observed that the most accurate results included all electrodes. The authors believe the processes can detect various neurodevelopmental problems in children utilizing EEG signals. |
---|---|
AbstractList | Attention deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder characterized by repeated patterns of hyperactivity, impulsivity, and inattention that limit daily functioning and development. Electroencephalography (EEG) anomalies correspond to changes in brain connection and activity. The authors propose utilizing empirical mode decomposition (EMD) and discrete wavelet transform (DWT) for feature extraction and machine learning (ML) algorithms to categorize ADHD and control subjects. For this study, the authors considered freely accessible ADHD data obtained from the IEEE data site. Studies have demonstrated a range of EEG anomalies in ADHD patients, such as variations in power spectra, coherence patterns, and event-related potentials (ERPs). Some of the studies claimed that the brain's prefrontal cortex and frontal regions collaborate in intricate networks, and disorders in either of them exacerbate the symptoms of ADHD. , Based on the research that claimed the brain's prefrontal cortex and frontal regions collaborate in intricate networks, and disorders in either of them exacerbate the symptoms of ADHD, the proposed study examines the optimal position of EEG electrode for identifying ADHD and in addition to monitoring accuracy on frontal/ prefrontal and other regions of brain our study also investigates the position groupings that have the highest effect on accurateness in identification of ADHD. The results demonstrate that the dataset classified with AdaBoost provided values for accuracy, precision, specificity, sensitivity, and F1-score as 1.00, 0.70, 0.70, 0.75, and 0.71, respectively, whereas using random forest (RF) it is 0.98, 0.64, 0.60, 0.81, and 0.71, respectively, in detecting ADHD. After detailed analysis, it is observed that the most accurate results included all electrodes. The authors believe the processes can detect various neurodevelopmental problems in children utilizing EEG signals.Attention deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder characterized by repeated patterns of hyperactivity, impulsivity, and inattention that limit daily functioning and development. Electroencephalography (EEG) anomalies correspond to changes in brain connection and activity. The authors propose utilizing empirical mode decomposition (EMD) and discrete wavelet transform (DWT) for feature extraction and machine learning (ML) algorithms to categorize ADHD and control subjects. For this study, the authors considered freely accessible ADHD data obtained from the IEEE data site. Studies have demonstrated a range of EEG anomalies in ADHD patients, such as variations in power spectra, coherence patterns, and event-related potentials (ERPs). Some of the studies claimed that the brain's prefrontal cortex and frontal regions collaborate in intricate networks, and disorders in either of them exacerbate the symptoms of ADHD. , Based on the research that claimed the brain's prefrontal cortex and frontal regions collaborate in intricate networks, and disorders in either of them exacerbate the symptoms of ADHD, the proposed study examines the optimal position of EEG electrode for identifying ADHD and in addition to monitoring accuracy on frontal/ prefrontal and other regions of brain our study also investigates the position groupings that have the highest effect on accurateness in identification of ADHD. The results demonstrate that the dataset classified with AdaBoost provided values for accuracy, precision, specificity, sensitivity, and F1-score as 1.00, 0.70, 0.70, 0.75, and 0.71, respectively, whereas using random forest (RF) it is 0.98, 0.64, 0.60, 0.81, and 0.71, respectively, in detecting ADHD. After detailed analysis, it is observed that the most accurate results included all electrodes. The authors believe the processes can detect various neurodevelopmental problems in children utilizing EEG signals. Attention deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder characterized by repeated patterns of hyperactivity, impulsivity, and inattention that limit daily functioning and development. Electroencephalography (EEG) anomalies correspond to changes in brain connection and activity. The authors propose utilizing empirical mode decomposition (EMD) and discrete wavelet transform (DWT) for feature extraction and machine learning (ML) algorithms to categorize ADHD and control subjects. For this study, the authors considered freely accessible ADHD data obtained from the IEEE data site. Studies have demonstrated a range of EEG anomalies in ADHD patients, such as variations in power spectra, coherence patterns, and event-related potentials (ERPs). Some of the studies claimed that the brain's prefrontal cortex and frontal regions collaborate in intricate networks, and disorders in either of them exacerbate the symptoms of ADHD. , Based on the research that claimed the brain's prefrontal cortex and frontal regions collaborate in intricate networks, and disorders in either of them exacerbate the symptoms of ADHD, the proposed study examines the optimal position of EEG electrode for identifying ADHD and in addition to monitoring accuracy on frontal/ prefrontal and other regions of brain our study also investigates the position groupings that have the highest effect on accurateness in identification of ADHD. The results demonstrate that the dataset classified with AdaBoost provided values for accuracy, precision, specificity, sensitivity, and F1-score as 1.00, 0.70, 0.70, 0.75, and 0.71, respectively, whereas using random forest (RF) it is 0.98, 0.64, 0.60, 0.81, and 0.71, respectively, in detecting ADHD. After detailed analysis, it is observed that the most accurate results included all electrodes. The authors believe the processes can detect various neurodevelopmental problems in children utilizing EEG signals. |
Author | Deshmukh, Manjusha Khemchandani, Mahi Thakur, Paramjit Mahesh |
Author_xml | – sequence: 1 givenname: Manjusha surname: Deshmukh fullname: Deshmukh, Manjusha organization: Computer Engineering Department, Saraswati College of Engineering, Mumbai, India – sequence: 2 givenname: Mahi surname: Khemchandani fullname: Khemchandani, Mahi organization: Information Technology, Saraswati College of Engineering, Mumbai, India – sequence: 3 givenname: Paramjit Mahesh surname: Thakur fullname: Thakur, Paramjit Mahesh organization: Mechanical Engineering Department, Saraswati College of Engineering, Mumbai, India |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39352008$$D View this record in MEDLINE/PubMed |
BookMark | eNqFks9u1DAQxiNURP_QRwD5uD3s4jhxEotTtd22SJW4wDma2JPEyLEX2ynal-YZcOh2D1zwxaPR75sZzXyX2Zl1FrPsQ043OW3oJ5ZXjImKbxhl5YaVlNe5eJNdLPk1E3Vxdoorfp5dh_CDpsd5wXnzLjsvRMEZpc1F9nvrpj14iPoZCVgwh6ADcT1BgzJ6h1bifgTjBg8TWe12DzdEQQQyQBzRoyK9dxNJ8RLYCIZ4HLSz5JeOI3ELRDoP2h7zgUDfp9JJ2R0IxIg2LrjCXksdyXjYoweZ5tHxQJQOzqtUYnV793h3k_p4Nw8jmWYTtcfgzPxXfZocrCITyFFbJAbBW20HElGOVv-cMbzP3vZgAl4f_6vs-_3u2_Zx_fT14cv29mktCyriuqq4UmUJiuZYdQxEL2rsaNl1iBJLJjCtskclRaNkWdCG1QJrXijWl2XdseIqW73U3Xu39I3tpINEY8Cim0Nb5HleFQ3jIqEfj-jcTajavdcT-EP7eqME8BdAeheCx_6E5LRd7NC-2qFd7NAe7ZB0n__Rpf3Csq6Y7mH-o_4Dct7ASQ |
CitedBy_id | crossref_primary_10_1080_21622965_2025_2470438 |
Cites_doi | 10.3390/computation11090180 10.1155/2018/9750904 10.1016/j.compbiomed.2023.106676 10.3389/fnana.2022.936025 10.32604/iasc.2021.017478 10.1007/978-981-19-6634-7_18 10.3390/biomimetics9030188 10.1098/rspa.1998.0193 10.1016/j.cmpb.2020.105738 10.1177/1087054715580847 10.1007/s11571-023-10028-2 10.21227/rzfh-zn36 10.1109/ComPE49325.2020.9200194 10.1109/TIM.2018.2838158 10.1016/j.cmpb.2021.105941 10.1016/j.eswa.2022.119219 10.1038/s41598-020-59921-4 10.1016/j.cmpbup.2022.100080 10.1016/j.copsyc.2018.12.023 10.1016/j.bspc.2022.104512 10.2147/NDT.S292444 10.1016/j.nicl.2014.12.010 10.1109/LSP.2003.821662 10.1111/jcpp.13396 10.1088/1741-2552/acc902 10.1109/TAFFC.2019.2934412 10.1192/j.eurpsy.2020.68 10.1007/s00429-016-1351-5 10.1016/j.bbe.2015.10.006 10.1177/1087054719859074 |
ContentType | Journal Article |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1080/21622965.2024.2405719 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 2162-2973 |
EndPage | 15 |
ExternalDocumentID | 39352008 10_1080_21622965_2024_2405719 |
Genre | Journal Article |
GroupedDBID | .7I 0BK 0R~ 4.4 AAGDL AAGZJ AAHIA AAMFJ AAMIU AAPUL AAYXX AAZMC ABIVO ABJNI ABLIJ ABRYG ABXUL ABXYU ACGFS ADAHI ADCVX ADKVQ ADYSH AECIN AEFOU AEISY AEMXT AEOZL AEPSL AEYOC AEZRU AFCAL AFHDM AFRVT AGDLA AGRBW AHDSZ AIJEM AIYEW AKBVH ALMA_UNASSIGNED_HOLDINGS ALQZU AMPGV AWYRJ BLEHA BMOTO BOHLJ CCCUG CITATION DEAQA DGFLZ EBS EJD EMOBN EUPTU FMBMU GTTXZ H13 HF~ HZ~ IPNFZ KYCEM LJTGL M4Z O9- RIG RNANH ROSJB RSYQP STATR TBQAZ TDBHL TFH TFL TFW TNTFI TRJHH TUROJ UT9 NPM 7X8 |
ID | FETCH-LOGICAL-c309t-665dd44ad01e6b2a9f97eb04bbeece429e553fedc98dc4308279e753d2f447b23 |
ISSN | 2162-2965 2162-2973 |
IngestDate | Thu Jul 10 23:23:13 EDT 2025 Wed Feb 19 02:10:42 EST 2025 Thu Apr 24 23:02:49 EDT 2025 Tue Jul 01 04:29:29 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | electroencephalography discrete wavelet transform empirical mode decomposition machine learning Attention deficit hyperactivity disorder |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c309t-665dd44ad01e6b2a9f97eb04bbeece429e553fedc98dc4308279e753d2f447b23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 39352008 |
PQID | 3111638259 |
PQPubID | 23479 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_3111638259 pubmed_primary_39352008 crossref_primary_10_1080_21622965_2024_2405719 crossref_citationtrail_10_1080_21622965_2024_2405719 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-Oct-01 |
PublicationDateYYYYMMDD | 2024-10-01 |
PublicationDate_xml | – month: 10 year: 2024 text: 2024-Oct-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Applied neuropsychology. Child |
PublicationTitleAlternate | Appl Neuropsychol Child |
PublicationYear | 2024 |
References | e_1_3_2_27_1 e_1_3_2_28_1 e_1_3_2_29_1 e_1_3_2_20_1 e_1_3_2_21_1 e_1_3_2_22_1 e_1_3_2_23_1 e_1_3_2_24_1 e_1_3_2_25_1 Nouri A. (e_1_3_2_26_1) 2023; 11 e_1_3_2_16_1 Aggarwal S. (e_1_3_2_2_1) 2023; 2 e_1_3_2_9_1 Ekhlasi A. (e_1_3_2_12_1) 2021; 8 e_1_3_2_17_1 e_1_3_2_8_1 e_1_3_2_18_1 e_1_3_2_7_1 e_1_3_2_19_1 e_1_3_2_31_1 e_1_3_2_30_1 e_1_3_2_10_1 e_1_3_2_33_1 e_1_3_2_11_1 e_1_3_2_32_1 e_1_3_2_6_1 e_1_3_2_5_1 e_1_3_2_13_1 e_1_3_2_4_1 e_1_3_2_14_1 e_1_3_2_3_1 e_1_3_2_15_1 |
References_xml | – ident: e_1_3_2_7_1 doi: 10.3390/computation11090180 – ident: e_1_3_2_6_1 doi: 10.1155/2018/9750904 – ident: e_1_3_2_21_1 doi: 10.1016/j.compbiomed.2023.106676 – ident: e_1_3_2_22_1 doi: 10.3389/fnana.2022.936025 – ident: e_1_3_2_27_1 doi: 10.32604/iasc.2021.017478 – volume: 2 start-page: 243 volume-title: Proceedings of the International Conference on Data Science and Applications: ICDSA 2022, Kolkata, India year: 2023 ident: e_1_3_2_2_1 doi: 10.1007/978-981-19-6634-7_18 – ident: e_1_3_2_4_1 doi: 10.3390/biomimetics9030188 – volume: 8 start-page: 115 year: 2021 ident: e_1_3_2_12_1 article-title: Classification of the children with ADHD and healthy children based on the directed phase transfer entropy of EEG signals publication-title: Frontiers in Biomedical Technologies – ident: e_1_3_2_18_1 doi: 10.1098/rspa.1998.0193 – ident: e_1_3_2_24_1 doi: 10.1016/j.cmpb.2020.105738 – ident: e_1_3_2_20_1 doi: 10.1177/1087054715580847 – ident: e_1_3_2_23_1 doi: 10.1007/s11571-023-10028-2 – ident: e_1_3_2_25_1 doi: 10.21227/rzfh-zn36 – ident: e_1_3_2_16_1 doi: 10.1109/ComPE49325.2020.9200194 – ident: e_1_3_2_3_1 doi: 10.1109/TIM.2018.2838158 – ident: e_1_3_2_32_1 doi: 10.1016/j.cmpb.2021.105941 – ident: e_1_3_2_29_1 doi: 10.1016/j.eswa.2022.119219 – ident: e_1_3_2_15_1 doi: 10.1038/s41598-020-59921-4 – ident: e_1_3_2_31_1 doi: 10.1016/j.cmpbup.2022.100080 – ident: e_1_3_2_5_1 doi: 10.1016/j.copsyc.2018.12.023 – ident: e_1_3_2_9_1 doi: 10.1016/j.bspc.2022.104512 – ident: e_1_3_2_8_1 doi: 10.2147/NDT.S292444 – ident: e_1_3_2_10_1 doi: 10.1016/j.nicl.2014.12.010 – ident: e_1_3_2_14_1 doi: 10.1109/LSP.2003.821662 – ident: e_1_3_2_28_1 doi: 10.1111/jcpp.13396 – ident: e_1_3_2_13_1 doi: 10.1088/1741-2552/acc902 – ident: e_1_3_2_30_1 doi: 10.1109/TAFFC.2019.2934412 – ident: e_1_3_2_17_1 doi: 10.1192/j.eurpsy.2020.68 – ident: e_1_3_2_19_1 doi: 10.1007/s00429-016-1351-5 – ident: e_1_3_2_11_1 doi: 10.1016/j.bbe.2015.10.006 – volume: 11 start-page: 14 year: 2023 ident: e_1_3_2_26_1 article-title: Detection of ADHD disorder in children using layer-wise relevance propagation and convolutional neural network: An EEG analysis publication-title: Frontiers in Biomedical Technologies – ident: e_1_3_2_33_1 doi: 10.1177/1087054719859074 |
SSID | ssj0000553558 |
Score | 2.299896 |
Snippet | Attention deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder characterized by repeated patterns of hyperactivity, impulsivity, and... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 1 |
Title | Comparative analysis of electroencephalogram (EEG) data gathered from the frontal region with other brain regions affected by attention deficit hyperactivity disorder (ADHD) through multiresolution analysis and machine learning techniques |
URI | https://www.ncbi.nlm.nih.gov/pubmed/39352008 https://www.proquest.com/docview/3111638259 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JbtswECWyAEUvRZtu6YYp0EMCQ6pMSZZ1DBK3Ror0UCRAboIoUlGTekFkHdKP7jd0hossp-6SXgSBsqhlnoaP9Mwbxt6R3gov8r4nizTwolAKT4go94K0TEkMOuAlrUOefB6Mz6Lj8_h8Y3OnE7XULIRffF-bV_I_VsU2tCtlyd7Bsm2n2ID7aF_cooVx-082PuxId-cddRFb24Y-2nmVa1XqCVHJ0egjrQJQVGjvQlM_pJttgklJWgZa51_HKOsVWp2f1RNUR8K2171ch4AY5krqnCZeUirSolj0KpzY6swrXZRCWnFPuvrB0fiILu9KA-lYRpzt21e0fAJay5_oIE_lqlpc9Fqx2brLpx2J1rKcc-fMb3wj2dyydFVXk-aqMslJ08umrtrR6FOlJpT9LE1xKzxefV1Gy-RXzbUh2vgKL_Hx8DB21l0r4VEbdWddKu8PuMdTU53CV922JOy48X6HD5hs019GGhOaSSdTfz5dzefEfu0IsKLsfWvEbeMg-1ag1XWTUTeZ7WaTbXOc-6Dz3j79cjwet0uHQRyTKD6VTXTP43LThsH7tbe0yrp-M5XSlOr0IXtg50JwYID9iG2o6Q67d2KjPR6zHx18g0MHzEpYh2_YQ3TvA2EbHLaBsA24DxbbYDAMhG3Q2AaNbdteg8M2iBtosQ0W27CCbXDYhj1C9j5YXMMtXC_vHEEGFtfgcA1LXD9hZx9Gp4djz9Yn8YowSBfeYBBLGUW5DPpqIHiO7i1RIoiEUKpQSPQUGqpU6AWHsohIFypJVRKHEv1flAgePmVb09lUPWcwjEopuUqGuSCKnw7LOAwUlzjgBuhN5S6LnP2ywor3Uw2Zb9kfIbTL_Pa0uVGv-dsJbx04Mhxn6M_DfKpmTZ2FSIpwrOYx_uaZQU3bJaX3UxzVi7te7iW7v_xMX7GtxXWjXiPJX4g3FvQ_AdJMAZc |
linkProvider | Taylor & Francis |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparative+analysis+of+electroencephalogram+%28EEG%29+data+gathered+from+the+frontal+region+with+other+brain+regions+affected+by+attention+deficit+hyperactivity+disorder+%28ADHD%29+through+multiresolution+analysis+and+machine+learning+techniques&rft.jtitle=Applied+neuropsychology.+Child&rft.au=Deshmukh%2C+Manjusha&rft.au=Khemchandani%2C+Mahi&rft.au=Thakur%2C+Paramjit+Mahesh&rft.date=2024-10-01&rft.issn=2162-2965&rft.eissn=2162-2973&rft.spage=1&rft.epage=15&rft_id=info:doi/10.1080%2F21622965.2024.2405719&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_21622965_2024_2405719 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-2965&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-2965&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-2965&client=summon |