Comparative analysis of electroencephalogram (EEG) data gathered from the frontal region with other brain regions affected by attention deficit hyperactivity disorder (ADHD) through multiresolution analysis and machine learning techniques

Attention deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder characterized by repeated patterns of hyperactivity, impulsivity, and inattention that limit daily functioning and development. Electroencephalography (EEG) anomalies correspond to changes in brain connection and activi...

Full description

Saved in:
Bibliographic Details
Published inApplied neuropsychology. Child pp. 1 - 15
Main Authors Deshmukh, Manjusha, Khemchandani, Mahi, Thakur, Paramjit Mahesh
Format Journal Article
LanguageEnglish
Published United States 01.10.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Attention deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder characterized by repeated patterns of hyperactivity, impulsivity, and inattention that limit daily functioning and development. Electroencephalography (EEG) anomalies correspond to changes in brain connection and activity. The authors propose utilizing empirical mode decomposition (EMD) and discrete wavelet transform (DWT) for feature extraction and machine learning (ML) algorithms to categorize ADHD and control subjects. For this study, the authors considered freely accessible ADHD data obtained from the IEEE data site. Studies have demonstrated a range of EEG anomalies in ADHD patients, such as variations in power spectra, coherence patterns, and event-related potentials (ERPs). Some of the studies claimed that the brain's prefrontal cortex and frontal regions collaborate in intricate networks, and disorders in either of them exacerbate the symptoms of ADHD. , Based on the research that claimed the brain's prefrontal cortex and frontal regions collaborate in intricate networks, and disorders in either of them exacerbate the symptoms of ADHD, the proposed study examines the optimal position of EEG electrode for identifying ADHD and in addition to monitoring accuracy on frontal/ prefrontal and other regions of brain our study also investigates the position groupings that have the highest effect on accurateness in identification of ADHD. The results demonstrate that the dataset classified with AdaBoost provided values for accuracy, precision, specificity, sensitivity, and F1-score as 1.00, 0.70, 0.70, 0.75, and 0.71, respectively, whereas using random forest (RF) it is 0.98, 0.64, 0.60, 0.81, and 0.71, respectively, in detecting ADHD. After detailed analysis, it is observed that the most accurate results included all electrodes. The authors believe the processes can detect various neurodevelopmental problems in children utilizing EEG signals.
AbstractList Attention deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder characterized by repeated patterns of hyperactivity, impulsivity, and inattention that limit daily functioning and development. Electroencephalography (EEG) anomalies correspond to changes in brain connection and activity. The authors propose utilizing empirical mode decomposition (EMD) and discrete wavelet transform (DWT) for feature extraction and machine learning (ML) algorithms to categorize ADHD and control subjects. For this study, the authors considered freely accessible ADHD data obtained from the IEEE data site. Studies have demonstrated a range of EEG anomalies in ADHD patients, such as variations in power spectra, coherence patterns, and event-related potentials (ERPs). Some of the studies claimed that the brain's prefrontal cortex and frontal regions collaborate in intricate networks, and disorders in either of them exacerbate the symptoms of ADHD. , Based on the research that claimed the brain's prefrontal cortex and frontal regions collaborate in intricate networks, and disorders in either of them exacerbate the symptoms of ADHD, the proposed study examines the optimal position of EEG electrode for identifying ADHD and in addition to monitoring accuracy on frontal/ prefrontal and other regions of brain our study also investigates the position groupings that have the highest effect on accurateness in identification of ADHD. The results demonstrate that the dataset classified with AdaBoost provided values for accuracy, precision, specificity, sensitivity, and F1-score as 1.00, 0.70, 0.70, 0.75, and 0.71, respectively, whereas using random forest (RF) it is 0.98, 0.64, 0.60, 0.81, and 0.71, respectively, in detecting ADHD. After detailed analysis, it is observed that the most accurate results included all electrodes. The authors believe the processes can detect various neurodevelopmental problems in children utilizing EEG signals.Attention deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder characterized by repeated patterns of hyperactivity, impulsivity, and inattention that limit daily functioning and development. Electroencephalography (EEG) anomalies correspond to changes in brain connection and activity. The authors propose utilizing empirical mode decomposition (EMD) and discrete wavelet transform (DWT) for feature extraction and machine learning (ML) algorithms to categorize ADHD and control subjects. For this study, the authors considered freely accessible ADHD data obtained from the IEEE data site. Studies have demonstrated a range of EEG anomalies in ADHD patients, such as variations in power spectra, coherence patterns, and event-related potentials (ERPs). Some of the studies claimed that the brain's prefrontal cortex and frontal regions collaborate in intricate networks, and disorders in either of them exacerbate the symptoms of ADHD. , Based on the research that claimed the brain's prefrontal cortex and frontal regions collaborate in intricate networks, and disorders in either of them exacerbate the symptoms of ADHD, the proposed study examines the optimal position of EEG electrode for identifying ADHD and in addition to monitoring accuracy on frontal/ prefrontal and other regions of brain our study also investigates the position groupings that have the highest effect on accurateness in identification of ADHD. The results demonstrate that the dataset classified with AdaBoost provided values for accuracy, precision, specificity, sensitivity, and F1-score as 1.00, 0.70, 0.70, 0.75, and 0.71, respectively, whereas using random forest (RF) it is 0.98, 0.64, 0.60, 0.81, and 0.71, respectively, in detecting ADHD. After detailed analysis, it is observed that the most accurate results included all electrodes. The authors believe the processes can detect various neurodevelopmental problems in children utilizing EEG signals.
Attention deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder characterized by repeated patterns of hyperactivity, impulsivity, and inattention that limit daily functioning and development. Electroencephalography (EEG) anomalies correspond to changes in brain connection and activity. The authors propose utilizing empirical mode decomposition (EMD) and discrete wavelet transform (DWT) for feature extraction and machine learning (ML) algorithms to categorize ADHD and control subjects. For this study, the authors considered freely accessible ADHD data obtained from the IEEE data site. Studies have demonstrated a range of EEG anomalies in ADHD patients, such as variations in power spectra, coherence patterns, and event-related potentials (ERPs). Some of the studies claimed that the brain's prefrontal cortex and frontal regions collaborate in intricate networks, and disorders in either of them exacerbate the symptoms of ADHD. , Based on the research that claimed the brain's prefrontal cortex and frontal regions collaborate in intricate networks, and disorders in either of them exacerbate the symptoms of ADHD, the proposed study examines the optimal position of EEG electrode for identifying ADHD and in addition to monitoring accuracy on frontal/ prefrontal and other regions of brain our study also investigates the position groupings that have the highest effect on accurateness in identification of ADHD. The results demonstrate that the dataset classified with AdaBoost provided values for accuracy, precision, specificity, sensitivity, and F1-score as 1.00, 0.70, 0.70, 0.75, and 0.71, respectively, whereas using random forest (RF) it is 0.98, 0.64, 0.60, 0.81, and 0.71, respectively, in detecting ADHD. After detailed analysis, it is observed that the most accurate results included all electrodes. The authors believe the processes can detect various neurodevelopmental problems in children utilizing EEG signals.
Author Deshmukh, Manjusha
Khemchandani, Mahi
Thakur, Paramjit Mahesh
Author_xml – sequence: 1
  givenname: Manjusha
  surname: Deshmukh
  fullname: Deshmukh, Manjusha
  organization: Computer Engineering Department, Saraswati College of Engineering, Mumbai, India
– sequence: 2
  givenname: Mahi
  surname: Khemchandani
  fullname: Khemchandani, Mahi
  organization: Information Technology, Saraswati College of Engineering, Mumbai, India
– sequence: 3
  givenname: Paramjit Mahesh
  surname: Thakur
  fullname: Thakur, Paramjit Mahesh
  organization: Mechanical Engineering Department, Saraswati College of Engineering, Mumbai, India
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39352008$$D View this record in MEDLINE/PubMed
BookMark eNqFks9u1DAQxiNURP_QRwD5uD3s4jhxEotTtd22SJW4wDma2JPEyLEX2ynal-YZcOh2D1zwxaPR75sZzXyX2Zl1FrPsQ043OW3oJ5ZXjImKbxhl5YaVlNe5eJNdLPk1E3Vxdoorfp5dh_CDpsd5wXnzLjsvRMEZpc1F9nvrpj14iPoZCVgwh6ADcT1BgzJ6h1bifgTjBg8TWe12DzdEQQQyQBzRoyK9dxNJ8RLYCIZ4HLSz5JeOI3ELRDoP2h7zgUDfp9JJ2R0IxIg2LrjCXksdyXjYoweZ5tHxQJQOzqtUYnV793h3k_p4Nw8jmWYTtcfgzPxXfZocrCITyFFbJAbBW20HElGOVv-cMbzP3vZgAl4f_6vs-_3u2_Zx_fT14cv29mktCyriuqq4UmUJiuZYdQxEL2rsaNl1iBJLJjCtskclRaNkWdCG1QJrXijWl2XdseIqW73U3Xu39I3tpINEY8Cim0Nb5HleFQ3jIqEfj-jcTajavdcT-EP7eqME8BdAeheCx_6E5LRd7NC-2qFd7NAe7ZB0n__Rpf3Csq6Y7mH-o_4Dct7ASQ
CitedBy_id crossref_primary_10_1080_21622965_2025_2470438
Cites_doi 10.3390/computation11090180
10.1155/2018/9750904
10.1016/j.compbiomed.2023.106676
10.3389/fnana.2022.936025
10.32604/iasc.2021.017478
10.1007/978-981-19-6634-7_18
10.3390/biomimetics9030188
10.1098/rspa.1998.0193
10.1016/j.cmpb.2020.105738
10.1177/1087054715580847
10.1007/s11571-023-10028-2
10.21227/rzfh-zn36
10.1109/ComPE49325.2020.9200194
10.1109/TIM.2018.2838158
10.1016/j.cmpb.2021.105941
10.1016/j.eswa.2022.119219
10.1038/s41598-020-59921-4
10.1016/j.cmpbup.2022.100080
10.1016/j.copsyc.2018.12.023
10.1016/j.bspc.2022.104512
10.2147/NDT.S292444
10.1016/j.nicl.2014.12.010
10.1109/LSP.2003.821662
10.1111/jcpp.13396
10.1088/1741-2552/acc902
10.1109/TAFFC.2019.2934412
10.1192/j.eurpsy.2020.68
10.1007/s00429-016-1351-5
10.1016/j.bbe.2015.10.006
10.1177/1087054719859074
ContentType Journal Article
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1080/21622965.2024.2405719
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2162-2973
EndPage 15
ExternalDocumentID 39352008
10_1080_21622965_2024_2405719
Genre Journal Article
GroupedDBID .7I
0BK
0R~
4.4
AAGDL
AAGZJ
AAHIA
AAMFJ
AAMIU
AAPUL
AAYXX
AAZMC
ABIVO
ABJNI
ABLIJ
ABRYG
ABXUL
ABXYU
ACGFS
ADAHI
ADCVX
ADKVQ
ADYSH
AECIN
AEFOU
AEISY
AEMXT
AEOZL
AEPSL
AEYOC
AEZRU
AFCAL
AFHDM
AFRVT
AGDLA
AGRBW
AHDSZ
AIJEM
AIYEW
AKBVH
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AMPGV
AWYRJ
BLEHA
BMOTO
BOHLJ
CCCUG
CITATION
DEAQA
DGFLZ
EBS
EJD
EMOBN
EUPTU
FMBMU
GTTXZ
H13
HF~
HZ~
IPNFZ
KYCEM
LJTGL
M4Z
O9-
RIG
RNANH
ROSJB
RSYQP
STATR
TBQAZ
TDBHL
TFH
TFL
TFW
TNTFI
TRJHH
TUROJ
UT9
NPM
7X8
ID FETCH-LOGICAL-c309t-665dd44ad01e6b2a9f97eb04bbeece429e553fedc98dc4308279e753d2f447b23
ISSN 2162-2965
2162-2973
IngestDate Thu Jul 10 23:23:13 EDT 2025
Wed Feb 19 02:10:42 EST 2025
Thu Apr 24 23:02:49 EDT 2025
Tue Jul 01 04:29:29 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords electroencephalography
discrete wavelet transform
empirical mode decomposition
machine learning
Attention deficit hyperactivity disorder
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c309t-665dd44ad01e6b2a9f97eb04bbeece429e553fedc98dc4308279e753d2f447b23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 39352008
PQID 3111638259
PQPubID 23479
PageCount 15
ParticipantIDs proquest_miscellaneous_3111638259
pubmed_primary_39352008
crossref_primary_10_1080_21622965_2024_2405719
crossref_citationtrail_10_1080_21622965_2024_2405719
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-Oct-01
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-Oct-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Applied neuropsychology. Child
PublicationTitleAlternate Appl Neuropsychol Child
PublicationYear 2024
References e_1_3_2_27_1
e_1_3_2_28_1
e_1_3_2_29_1
e_1_3_2_20_1
e_1_3_2_21_1
e_1_3_2_22_1
e_1_3_2_23_1
e_1_3_2_24_1
e_1_3_2_25_1
Nouri A. (e_1_3_2_26_1) 2023; 11
e_1_3_2_16_1
Aggarwal S. (e_1_3_2_2_1) 2023; 2
e_1_3_2_9_1
Ekhlasi A. (e_1_3_2_12_1) 2021; 8
e_1_3_2_17_1
e_1_3_2_8_1
e_1_3_2_18_1
e_1_3_2_7_1
e_1_3_2_19_1
e_1_3_2_31_1
e_1_3_2_30_1
e_1_3_2_10_1
e_1_3_2_33_1
e_1_3_2_11_1
e_1_3_2_32_1
e_1_3_2_6_1
e_1_3_2_5_1
e_1_3_2_13_1
e_1_3_2_4_1
e_1_3_2_14_1
e_1_3_2_3_1
e_1_3_2_15_1
References_xml – ident: e_1_3_2_7_1
  doi: 10.3390/computation11090180
– ident: e_1_3_2_6_1
  doi: 10.1155/2018/9750904
– ident: e_1_3_2_21_1
  doi: 10.1016/j.compbiomed.2023.106676
– ident: e_1_3_2_22_1
  doi: 10.3389/fnana.2022.936025
– ident: e_1_3_2_27_1
  doi: 10.32604/iasc.2021.017478
– volume: 2
  start-page: 243
  volume-title: Proceedings of the International Conference on Data Science and Applications: ICDSA 2022, Kolkata, India
  year: 2023
  ident: e_1_3_2_2_1
  doi: 10.1007/978-981-19-6634-7_18
– ident: e_1_3_2_4_1
  doi: 10.3390/biomimetics9030188
– volume: 8
  start-page: 115
  year: 2021
  ident: e_1_3_2_12_1
  article-title: Classification of the children with ADHD and healthy children based on the directed phase transfer entropy of EEG signals
  publication-title: Frontiers in Biomedical Technologies
– ident: e_1_3_2_18_1
  doi: 10.1098/rspa.1998.0193
– ident: e_1_3_2_24_1
  doi: 10.1016/j.cmpb.2020.105738
– ident: e_1_3_2_20_1
  doi: 10.1177/1087054715580847
– ident: e_1_3_2_23_1
  doi: 10.1007/s11571-023-10028-2
– ident: e_1_3_2_25_1
  doi: 10.21227/rzfh-zn36
– ident: e_1_3_2_16_1
  doi: 10.1109/ComPE49325.2020.9200194
– ident: e_1_3_2_3_1
  doi: 10.1109/TIM.2018.2838158
– ident: e_1_3_2_32_1
  doi: 10.1016/j.cmpb.2021.105941
– ident: e_1_3_2_29_1
  doi: 10.1016/j.eswa.2022.119219
– ident: e_1_3_2_15_1
  doi: 10.1038/s41598-020-59921-4
– ident: e_1_3_2_31_1
  doi: 10.1016/j.cmpbup.2022.100080
– ident: e_1_3_2_5_1
  doi: 10.1016/j.copsyc.2018.12.023
– ident: e_1_3_2_9_1
  doi: 10.1016/j.bspc.2022.104512
– ident: e_1_3_2_8_1
  doi: 10.2147/NDT.S292444
– ident: e_1_3_2_10_1
  doi: 10.1016/j.nicl.2014.12.010
– ident: e_1_3_2_14_1
  doi: 10.1109/LSP.2003.821662
– ident: e_1_3_2_28_1
  doi: 10.1111/jcpp.13396
– ident: e_1_3_2_13_1
  doi: 10.1088/1741-2552/acc902
– ident: e_1_3_2_30_1
  doi: 10.1109/TAFFC.2019.2934412
– ident: e_1_3_2_17_1
  doi: 10.1192/j.eurpsy.2020.68
– ident: e_1_3_2_19_1
  doi: 10.1007/s00429-016-1351-5
– ident: e_1_3_2_11_1
  doi: 10.1016/j.bbe.2015.10.006
– volume: 11
  start-page: 14
  year: 2023
  ident: e_1_3_2_26_1
  article-title: Detection of ADHD disorder in children using layer-wise relevance propagation and convolutional neural network: An EEG analysis
  publication-title: Frontiers in Biomedical Technologies
– ident: e_1_3_2_33_1
  doi: 10.1177/1087054719859074
SSID ssj0000553558
Score 2.299896
Snippet Attention deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder characterized by repeated patterns of hyperactivity, impulsivity, and...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 1
Title Comparative analysis of electroencephalogram (EEG) data gathered from the frontal region with other brain regions affected by attention deficit hyperactivity disorder (ADHD) through multiresolution analysis and machine learning techniques
URI https://www.ncbi.nlm.nih.gov/pubmed/39352008
https://www.proquest.com/docview/3111638259
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JbtswECWyAEUvRZtu6YYp0EMCQ6pMSZZ1DBK3Ror0UCRAboIoUlGTekFkHdKP7jd0hossp-6SXgSBsqhlnoaP9Mwbxt6R3gov8r4nizTwolAKT4go94K0TEkMOuAlrUOefB6Mz6Lj8_h8Y3OnE7XULIRffF-bV_I_VsU2tCtlyd7Bsm2n2ID7aF_cooVx-082PuxId-cddRFb24Y-2nmVa1XqCVHJ0egjrQJQVGjvQlM_pJttgklJWgZa51_HKOsVWp2f1RNUR8K2171ch4AY5krqnCZeUirSolj0KpzY6swrXZRCWnFPuvrB0fiILu9KA-lYRpzt21e0fAJay5_oIE_lqlpc9Fqx2brLpx2J1rKcc-fMb3wj2dyydFVXk-aqMslJ08umrtrR6FOlJpT9LE1xKzxefV1Gy-RXzbUh2vgKL_Hx8DB21l0r4VEbdWddKu8PuMdTU53CV922JOy48X6HD5hs019GGhOaSSdTfz5dzefEfu0IsKLsfWvEbeMg-1ag1XWTUTeZ7WaTbXOc-6Dz3j79cjwet0uHQRyTKD6VTXTP43LThsH7tbe0yrp-M5XSlOr0IXtg50JwYID9iG2o6Q67d2KjPR6zHx18g0MHzEpYh2_YQ3TvA2EbHLaBsA24DxbbYDAMhG3Q2AaNbdteg8M2iBtosQ0W27CCbXDYhj1C9j5YXMMtXC_vHEEGFtfgcA1LXD9hZx9Gp4djz9Yn8YowSBfeYBBLGUW5DPpqIHiO7i1RIoiEUKpQSPQUGqpU6AWHsohIFypJVRKHEv1flAgePmVb09lUPWcwjEopuUqGuSCKnw7LOAwUlzjgBuhN5S6LnP2ywor3Uw2Zb9kfIbTL_Pa0uVGv-dsJbx04Mhxn6M_DfKpmTZ2FSIpwrOYx_uaZQU3bJaX3UxzVi7te7iW7v_xMX7GtxXWjXiPJX4g3FvQ_AdJMAZc
linkProvider Taylor & Francis
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparative+analysis+of+electroencephalogram+%28EEG%29+data+gathered+from+the+frontal+region+with+other+brain+regions+affected+by+attention+deficit+hyperactivity+disorder+%28ADHD%29+through+multiresolution+analysis+and+machine+learning+techniques&rft.jtitle=Applied+neuropsychology.+Child&rft.au=Deshmukh%2C+Manjusha&rft.au=Khemchandani%2C+Mahi&rft.au=Thakur%2C+Paramjit+Mahesh&rft.date=2024-10-01&rft.issn=2162-2965&rft.eissn=2162-2973&rft.spage=1&rft.epage=15&rft_id=info:doi/10.1080%2F21622965.2024.2405719&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_21622965_2024_2405719
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-2965&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-2965&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-2965&client=summon