Co-assembly nanoreactor protocol for the efficient synthesis of single-chain nanoparticles
Single-chain nanoparticles (SCNPs) show great promise in biomedical applications, due to their unique properties in ultra-small size, high porosity, and ease of functionalization. Traditional synthesis protocols for SCNPs often result in high polydispersity of size and deviations from globular compa...
Saved in:
Published in | Polymer (Guilford) Vol. 299; p. 126947 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
16.04.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Single-chain nanoparticles (SCNPs) show great promise in biomedical applications, due to their unique properties in ultra-small size, high porosity, and ease of functionalization. Traditional synthesis protocols for SCNPs often result in high polydispersity of size and deviations from globular compact conformations, accompanied by challenges such as high energy consumption and low yield. By means of simulation, we propose an innovative method for the synthesis of SCNPs through a co-assembly nanoreactor. This protocol adeptly avoids intermolecular aggregation of the precursor chain under poor solvent conditions by crosslinking inside the central cavity of nanoreactors formed by co-assembled nanorods, significantly enhancing the quality and efficiency of the SCNP synthesis. Our results pave the way for the synthesis of SCNP with highly controllable size/topology, with potential applications in nanocarrier, drug delivery, and cell uptake, among other fields.
[Display omitted]
•An innovative method for the synthesis of SCNPs through a co-assembly nanoreactor is proposed via molecular dynamics simulations.•This method can effectively prevent intermolecular coupling of the precursor chains in poor solvent.•The resulted SCNPs maintain a narrow size distribution and globular compact conformations.•The proposed method guarantees high-quality preparation of SCNPs at high polymer concentrations. |
---|---|
AbstractList | Single-chain nanoparticles (SCNPs) show great promise in biomedical applications, due to their unique properties in ultra-small size, high porosity, and ease of functionalization. Traditional synthesis protocols for SCNPs often result in high polydispersity of size and deviations from globular compact conformations, accompanied by challenges such as high energy consumption and low yield. By means of simulation, we propose an innovative method for the synthesis of SCNPs through a co-assembly nanoreactor. This protocol adeptly avoids intermolecular aggregation of the precursor chain under poor solvent conditions by crosslinking inside the central cavity of nanoreactors formed by co-assembled nanorods, significantly enhancing the quality and efficiency of the SCNP synthesis. Our results pave the way for the synthesis of SCNP with highly controllable size/topology, with potential applications in nanocarrier, drug delivery, and cell uptake, among other fields.
[Display omitted]
•An innovative method for the synthesis of SCNPs through a co-assembly nanoreactor is proposed via molecular dynamics simulations.•This method can effectively prevent intermolecular coupling of the precursor chains in poor solvent.•The resulted SCNPs maintain a narrow size distribution and globular compact conformations.•The proposed method guarantees high-quality preparation of SCNPs at high polymer concentrations. |
ArticleNumber | 126947 |
Author | Qian, Hu-Jun Zhang, Niboqia Yu, Linxiuzi Lu, Zhong-Yuan |
Author_xml | – sequence: 1 givenname: Niboqia surname: Zhang fullname: Zhang, Niboqia – sequence: 2 givenname: Linxiuzi surname: Yu fullname: Yu, Linxiuzi – sequence: 3 givenname: Hu-Jun surname: Qian fullname: Qian, Hu-Jun – sequence: 4 givenname: Zhong-Yuan orcidid: 0000-0001-7884-0091 surname: Lu fullname: Lu, Zhong-Yuan email: luzhy@jlu.edu.cn |
BookMark | eNqFkMtqwzAQRUVJoUnaTyj4B-zqFduii1JCXxDopt10I2Rp1Cg4kpFEwX9fp8mqm6yGmcu5MGeBZj54QOiW4IpgUt_tqiH04x5iRTHlFaG14M0FmpO2YSWlgszQHGNGS9bW5AotUtphjOmK8jn6WodSpQT7rh8Lr3yIoHQOsRhiyEGHvrDTkrdQgLVOO_C5SKOfDsmlItgiOf_dQ6m3yvm_gkHF7HQP6RpdWtUnuDnNJfp8fvpYv5ab95e39eOm1AyLXNbMYAyqFqzFnaCasa4j3KiONq1uWsoIYZo0jTVWCQGWc9oZ2q5MrbgRHLMluj_26hhSimCldlllF3yOyvWSYHnQJHfypEkeNMmjpole_aOH6PYqjme5hyMH02s_bkrTwY4G4yLoLE1wZxp-AWegiaA |
CitedBy_id | crossref_primary_10_1016_j_mtchem_2024_102491 |
Cites_doi | 10.1021/acsmacrolett.8b00503 10.1103/PhysRevLett.107.098101 10.1016/j.progpolymsci.2022.101593 10.1021/jacs.8b00122 10.1021/jacs.9b13997 10.1002/1521-4095(200102)13:3<204::AID-ADMA204>3.0.CO;2-9 10.1126/science.237.4813.384 10.1016/j.jconrel.2018.07.041 10.1002/adma.201404788 10.1039/C4SM00459K 10.1021/acsnano.5b03909 10.1021/ja310422w 10.1002/pi.4671 10.1039/C5CS00209E 10.1021/acsmacrolett.1c00558 10.1039/C4PY01217H 10.31635/ccschem.020.202000190 10.1002/marc.201900655 10.1002/adhm.202000892 10.1016/j.biomaterials.2007.12.037 10.1021/mz500354q 10.1021/nn800679z 10.1126/sciadv.aaz4316 10.1021/acs.macromol.5b01456 10.31635/ccschem.019.20180036 10.1002/jcc.23365 10.1038/nchem.1175 10.3390/nano12244494 10.1021/ma4021399 10.1039/C2CC37157J 10.1002/adfm.201805157 10.1063/1.4788616 10.1073/pnas.1521265113 10.1039/C1PY00392E 10.1080/00268976.2018.1434904 10.1007/s13203-014-0046-1 10.1002/jcc.24495 10.1021/acsnano.5b00147 10.1038/s41467-019-13410-z 10.1039/C4SM02475C 10.1016/j.jconrel.2023.02.019 10.1021/acs.macromol.1c02071 10.1016/j.jconrel.2017.01.032 |
ContentType | Journal Article |
Copyright | 2024 Elsevier Ltd |
Copyright_xml | – notice: 2024 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.polymer.2024.126947 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1873-2291 |
ExternalDocumentID | 10_1016_j_polymer_2024_126947 S0032386124002829 |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AARLI AAXUO ABFNM ABMAC ABXRA ABYKQ ACDAQ ACGFS ACIWK ACNCT ACPRK ACRLP ADBBV ADECG ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRAH AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV AJSZI AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W KOM MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SCC SDF SDG SDP SES SEW SMS SPC SPCBC SPD SSK SSM SSZ T5K TN5 WH7 XPP ZMT ~G- .-4 29O 53G 6TJ 6TU AAQXK AATTM AAXKI AAYWO AAYXX ABDEX ABDPE ABJNI ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ H~9 M24 M41 R2- SCB SSH T9H WUQ |
ID | FETCH-LOGICAL-c309t-63d00ea69380b92c33bb14dab278c7823113c177fdfa99ef442bd285d6a4d9403 |
IEDL.DBID | .~1 |
ISSN | 0032-3861 |
IngestDate | Thu Apr 24 23:03:58 EDT 2025 Tue Jul 01 02:37:19 EDT 2025 Sat Apr 13 16:38:22 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Single chain nanoparticle Molecular dynamics simulations Nanoreactor Co-assembly |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c309t-63d00ea69380b92c33bb14dab278c7823113c177fdfa99ef442bd285d6a4d9403 |
ORCID | 0000-0001-7884-0091 |
ParticipantIDs | crossref_citationtrail_10_1016_j_polymer_2024_126947 crossref_primary_10_1016_j_polymer_2024_126947 elsevier_sciencedirect_doi_10_1016_j_polymer_2024_126947 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-04-16 |
PublicationDateYYYYMMDD | 2024-04-16 |
PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-16 day: 16 |
PublicationDecade | 2020 |
PublicationTitle | Polymer (Guilford) |
PublicationYear | 2024 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Ouchi, Badi, Lutz, Sawamoto (b3) 2011; 3 De Jong, Hagens, Krystek, Burger, Sips, Geertsma (b23) 2008; 29 Hosono, Gillissen, Li, Sheiko, Palmans, Meijer (b27) 2013; 135 Yi, Shi, Gao (b30) 2011; 107 Zhu, Liu, Li, Qian, Milano, Lu (b40) 2013; 34 Hanlon, Lyon, Berda (b5) 2016; 49 Jiang, Xie, Dou, Li, Huang, Chen (b38) 2018; 7 Doi, Edwards, Edwards (b45) 1988 Abdulmalik S. A. Altamimi, Alzarea, Almalki, Tariq, Mubeen, Murtaza, Iftikhar, Riaz, Kazmi (b9) 2022; 12 Frank, Prasher, Tuten, Chao, Berda (b17) 2015; 5 de Gennes (b44) 1979 Pomposo (b8) 2014; 63 Liao, Wei, Abriata, Stellacci (b29) 2021; 54 Hui, Yi, Wibowo, Yang, Middelberg, Gao, Zhao (b33) 2020; 6 Hamelmann, Paulusse (b10) 2023; 356 Hamelmann, Paats, Paulusse (b20) 2021; 10 Reisch, Heimburger, Ernst, Runser, Didier, Dujardin, Klymchenko (b21) 2018; 28 Anselmo, Zhang, Kumar, Vogus, Menegatti, Helgeson, Mitragotri (b31) 2015; 9 Zhang, Zhang, You, Zhang, Yu, Zhao, Qian, Lu (b34) 2021; 3 Chen, Zhao, Shi, Lin, Jia, Qian, Lu, Zhang, Li, Sun (b13) 2019; 10 Bai, Xing, Wu, Feng, Hwang, Lee, Phang, Lu, Zimmerman (b22) 2015; 9 Verso, Pomposo, Colmenero, Moreno (b24) 2014; 10 Mecerreyes, Lee, Hawker, Hedrick, Wursch, Volksen, Magbitang, Huang, Miller (b2) 2001; 13 Chen, Li, Shon, Zimmerman (b11) 2020; 142 Zhu, Pan, Li, Liu, Qian, Zhao, Lu, Sun (b41) 2018; 116 Pearce, Anane-Adjei, Cavanagh, Monteiro, Bennett, Taresco, Clarke, Ritchie, Alexander, Grabowska, Alexander (b19) 2020; 9 Zhang, Jia, Shi, Li, Zhao, Qian, Lu (b35) 2020; 41 Pomposo, Perez-Baena, Verso, Moreno, Arbe, Colmenero (b1) 2014; 3 Hansen, McDonald (b48) 1986 Liu, Pujals, Stals, Paulöhrl, Presolski, Meijer, Albertazzi, Palmans (b12) 2018; 140 Arkın, Janke (b43) 2013; 138 Sykes, Dai, Sarsons, Chen, Rocheleau, Hwang, Zheng, Cramb, Rinker, Chan (b18) 2016; 113 McQuarrie (b47) 1976 Shao, Yang (b7) 2022; 133 Hamilton, Harth (b15) 2009; 3 Zhang, Trent Magruder, Lin, Crawford, Grimm, Sciortino, Wilson, Blue, Kannan, Johnston, Baumgartner, Kannan (b37) 2017; 249 Verso, Pomposo, Colmenero, Moreno (b36) 2015; 11 ter, Palmans, Meijer (b14) 2019; 1 Sun, Zhang, Wang, Feng, Liu, Yin, Xu, Wei, Ding, Shi, Jiang (b32) 2015; 27 Chao, Jia, Tuten, Wang, Berda (b28) 2013; 49 Lyon, Prasher, Hanlon, Tuten, Tooley, Frank, Berda (b6) 2015; 6 Gonzalez-Burgos, Latorre-Sanchez, Pomposo (b4) 2015; 44 Rubinstein, Colby (b46) 2003 Kröger, Paulusse (b16) 2018; 286 Altintas, Lejeune, Gerstel, Barner-Kowollik (b26) 2012; 3 Liu, Zhu, Lu (b39) 2016; 37 Rudnick, Gaspari (b42) 1987; 237 Moreno, Verso, Sanchez-Sanchez, Arbe, Colmenero, Pomposo (b25) 2013; 46 Hanlon (10.1016/j.polymer.2024.126947_b5) 2016; 49 Kröger (10.1016/j.polymer.2024.126947_b16) 2018; 286 Abdulmalik S. A. Altamimi (10.1016/j.polymer.2024.126947_b9) 2022; 12 Liu (10.1016/j.polymer.2024.126947_b39) 2016; 37 Pearce (10.1016/j.polymer.2024.126947_b19) 2020; 9 Zhang (10.1016/j.polymer.2024.126947_b35) 2020; 41 Shao (10.1016/j.polymer.2024.126947_b7) 2022; 133 Bai (10.1016/j.polymer.2024.126947_b22) 2015; 9 Ouchi (10.1016/j.polymer.2024.126947_b3) 2011; 3 Pomposo (10.1016/j.polymer.2024.126947_b8) 2014; 63 Yi (10.1016/j.polymer.2024.126947_b30) 2011; 107 Sun (10.1016/j.polymer.2024.126947_b32) 2015; 27 Mecerreyes (10.1016/j.polymer.2024.126947_b2) 2001; 13 Moreno (10.1016/j.polymer.2024.126947_b25) 2013; 46 Hamilton (10.1016/j.polymer.2024.126947_b15) 2009; 3 Lyon (10.1016/j.polymer.2024.126947_b6) 2015; 6 Verso (10.1016/j.polymer.2024.126947_b24) 2014; 10 Gonzalez-Burgos (10.1016/j.polymer.2024.126947_b4) 2015; 44 Hamelmann (10.1016/j.polymer.2024.126947_b10) 2023; 356 Zhu (10.1016/j.polymer.2024.126947_b40) 2013; 34 Anselmo (10.1016/j.polymer.2024.126947_b31) 2015; 9 Altintas (10.1016/j.polymer.2024.126947_b26) 2012; 3 Zhang (10.1016/j.polymer.2024.126947_b34) 2021; 3 Zhang (10.1016/j.polymer.2024.126947_b37) 2017; 249 Sykes (10.1016/j.polymer.2024.126947_b18) 2016; 113 Hamelmann (10.1016/j.polymer.2024.126947_b20) 2021; 10 ter (10.1016/j.polymer.2024.126947_b14) 2019; 1 Hosono (10.1016/j.polymer.2024.126947_b27) 2013; 135 Hansen (10.1016/j.polymer.2024.126947_b48) 1986 Chen (10.1016/j.polymer.2024.126947_b11) 2020; 142 Chen (10.1016/j.polymer.2024.126947_b13) 2019; 10 de Gennes (10.1016/j.polymer.2024.126947_b44) 1979 Verso (10.1016/j.polymer.2024.126947_b36) 2015; 11 De Jong (10.1016/j.polymer.2024.126947_b23) 2008; 29 Arkın (10.1016/j.polymer.2024.126947_b43) 2013; 138 Doi (10.1016/j.polymer.2024.126947_b45) 1988 Liu (10.1016/j.polymer.2024.126947_b12) 2018; 140 Reisch (10.1016/j.polymer.2024.126947_b21) 2018; 28 McQuarrie (10.1016/j.polymer.2024.126947_b47) 1976 Liao (10.1016/j.polymer.2024.126947_b29) 2021; 54 Chao (10.1016/j.polymer.2024.126947_b28) 2013; 49 Rudnick (10.1016/j.polymer.2024.126947_b42) 1987; 237 Hui (10.1016/j.polymer.2024.126947_b33) 2020; 6 Frank (10.1016/j.polymer.2024.126947_b17) 2015; 5 Rubinstein (10.1016/j.polymer.2024.126947_b46) 2003 Pomposo (10.1016/j.polymer.2024.126947_b1) 2014; 3 Zhu (10.1016/j.polymer.2024.126947_b41) 2018; 116 Jiang (10.1016/j.polymer.2024.126947_b38) 2018; 7 |
References_xml | – volume: 10 start-page: 5552 year: 2019 ident: b13 article-title: An unexpected N-dependence in the viscosity reduction in all-polymer nanocomposite publication-title: Nature Commun. – volume: 9 year: 2020 ident: b19 article-title: Effects of polymer 3D architecture, size, and chemistry on biological transport and drug delivery in vitro and in orthotopic triple negative breast cancer models publication-title: Adv. Healthc. Mater. – volume: 63 start-page: 589 year: 2014 end-page: 592 ident: b8 article-title: Bioinspired single-chain polymer nanoparticles publication-title: Polym. Int. – volume: 142 start-page: 4565 year: 2020 end-page: 4569 ident: b11 article-title: Single-chain nanoparticle delivers a partner enzyme for concurrent and tandem catalysis in cells publication-title: J. Am. Chem. Soc. – volume: 6 start-page: 181 year: 2015 end-page: 197 ident: b6 article-title: A brief user’s guide to single-chain nanoparticles publication-title: Polymer Chem. – volume: 9 start-page: 3169 year: 2015 end-page: 3177 ident: b31 article-title: Elasticity of nanoparticles influences their blood circulation, phagocytosis, endocytosis, and targeting publication-title: ACS Nano – volume: 237 start-page: 384 year: 1987 end-page: 389 ident: b42 article-title: The shapes of random walks publication-title: Science – volume: 5 start-page: 9 year: 2015 end-page: 17 ident: b17 article-title: Characterization of single-chain polymer folding using size exclusion chromatography with multiple modes of detection publication-title: Appl. Petrochem. Res. – volume: 113 start-page: E1142 year: 2016 end-page: E1151 ident: b18 article-title: Tailoring nanoparticle designs to target cancer based on tumor pathophysiology publication-title: Proc. Natl. Acad. Sci. – volume: 3 start-page: 640 year: 2012 end-page: 651 ident: b26 article-title: Bioinspired dual self-folding of single polymer chains via reversible hydrogen bonding publication-title: Polymer Chem. – volume: 28 year: 2018 ident: b21 article-title: Protein-sized dye-loaded polymer nanoparticles for free particle diffusion in cytosol publication-title: Adv. Funct. Mater. – volume: 37 start-page: 2634 year: 2016 end-page: 2646 ident: b39 article-title: And florian müller-plathe. a kinetic chain growth algorithm in coarse-grained simulations publication-title: J. Comput. Chem. – volume: 10 start-page: 1443 year: 2021 end-page: 1449 ident: b20 article-title: Cytosolic delivery of single-chain polymer nanoparticles publication-title: ACS Macro Lett. – volume: 9 start-page: 10227 year: 2015 end-page: 10236 ident: b22 article-title: Chemical control over cellular uptake of organic nanoparticles by fine tuning surface functional groups publication-title: ACS Nano – volume: 6 start-page: eaaz4316 year: 2020 ident: b33 article-title: Nanoparticle elasticity regulates phagocytosis and cancer cell uptake publication-title: Sci. Adv. – year: 1986 ident: b48 article-title: Theory of Simple Liquids – volume: 10 start-page: 4813 year: 2014 end-page: 4821 ident: b24 article-title: Multi-orthogonal folding of single polymer chains into soft nanoparticles publication-title: Soft Matter – volume: 138 year: 2013 ident: b43 article-title: Gyration tensor based analysis of the shapes of polymer chains in an attractive spherical cage publication-title: J. Chem. Phys. – volume: 29 start-page: 1912 year: 2008 end-page: 1919 ident: b23 article-title: Particle size-dependent organ distribution of gold nanoparticles after intravenous administration publication-title: Biomaterials – year: 1988 ident: b45 article-title: The Theory of Polymer Dynamics – volume: 49 start-page: 2 year: 2016 end-page: 14 ident: b5 article-title: What is next in single-chain nanoparticles? publication-title: Macromolecules – volume: 3 start-page: 767 year: 2014 end-page: 772 ident: b1 article-title: How far are single-chain polymer nanoparticles in solution from the globular state? publication-title: ACS Macro Lett. – volume: 46 start-page: 9748 year: 2013 end-page: 9759 ident: b25 article-title: Advantages of orthogonal folding of single polymer chains to soft nanoparticles publication-title: Macromolecules – volume: 286 start-page: 326 year: 2018 end-page: 347 ident: b16 article-title: Single-chain polymer nanoparticles in controlled drug delivery and targeted imaging publication-title: J. Control. Release – volume: 12 start-page: 4494 year: 2022 ident: b9 article-title: Nanoparticles in drug delivery: from history to therapeutic applications publication-title: Nanomaterials – volume: 3 start-page: 2143 year: 2021 end-page: 2154 ident: b34 article-title: Controlling the chain folding for the synthesis of single-chain polymer nanoparticles using thermoresponsive polymers publication-title: CCS Chem. – volume: 133 year: 2022 ident: b7 article-title: Progress in polymer single-chain based hybrid nanoparticles publication-title: Prog. Polym. Sci. – volume: 140 start-page: 3423 year: 2018 end-page: 3433 ident: b12 article-title: Catalytically active single-chain polymeric nanoparticles: exploring their functions in complex biological media publication-title: J. Am. Chem. Soc. – volume: 1 start-page: 64 year: 2019 end-page: 82 ident: b14 article-title: Supramolecular single-chain polymeric nanoparticles publication-title: CCS Chem. – volume: 13 start-page: 204 year: 2001 end-page: 208 ident: b2 article-title: A novel approach to functionalized nanoparticles: self-crosslinking of macromolecules in ultradilute solution publication-title: Adv. Mater. – volume: 116 start-page: 1065 year: 2018 end-page: 1077 ident: b41 article-title: Employing multi-GPU power for molecular dynamics simulation: An extension of GALAMOST publication-title: Mol. Phys. – year: 2003 ident: b46 article-title: Polymer Physics – volume: 44 start-page: 6122 year: 2015 end-page: 6142 ident: b4 article-title: Advances in single chain technology publication-title: Chem. Soc. Rev. – volume: 11 start-page: 1369 year: 2015 end-page: 1375 ident: b36 article-title: Simulation guided design of globular single-chain nanoparticles by tuning the solvent quality publication-title: Soft Matter – volume: 41 year: 2020 ident: b35 article-title: Synthesis of polymer single-chain nanoparticle with high compactness in cosolvent condition: a computer simulation study publication-title: Macromol. Rapid Commun. – volume: 249 start-page: 173 year: 2017 end-page: 182 ident: b37 article-title: Generation-6 hydroxyl PAMAM dendrimers improve CNS penetration from intravenous administration in a large animal brain injury model publication-title: J. Control. Release – volume: 34 start-page: 2197 year: 2013 end-page: 2211 ident: b40 article-title: GALAMOST: GPU-accelerated large-scale molecular simulation toolkit publication-title: J. Comput. Chem. – volume: 3 start-page: 402 year: 2009 end-page: 410 ident: b15 article-title: Molecular dendritic transporter nanoparticle vectors provide efficient intracellular delivery of peptides publication-title: ACS Nano – volume: 3 start-page: 917 year: 2011 end-page: 924 ident: b3 article-title: Single-chain technology using discrete synthetic macromolecules publication-title: Nature Chem. – volume: 54 start-page: 11459 year: 2021 end-page: 11467 ident: b29 article-title: Control and characterization of the compactness of single-chain nanoparticles publication-title: Macromolecules – volume: 356 start-page: 26 year: 2023 end-page: 42 ident: b10 article-title: Single-chain polymer nanoparticles in biomedical applications publication-title: J. Control. Release – volume: 7 start-page: 1278 year: 2018 end-page: 1282 ident: b38 article-title: Efficient fabrication of puresingle-chain janus particles through, their exclusive self-assembly in mixtures with their analogues publication-title: ACS Macro Lett. – year: 1976 ident: b47 article-title: Statistical Mechanics – volume: 49 start-page: 4178 year: 2013 end-page: 4180 ident: b28 article-title: Controlled folding of a novel electroactive polyolefin via multiple sequential orthogonal intra-chain interactions publication-title: Chem. Commun. – year: 1979 ident: b44 article-title: Scaling Concepts in Polymer Physics – volume: 27 start-page: 1402 year: 2015 end-page: 1407 ident: b32 article-title: Tunable rigidity of (polymeric core)–(lipid shell) nanoparticles for regulated cellular uptake publication-title: Adv. Mater. – volume: 107 year: 2011 ident: b30 article-title: Cellular uptake of elastic nanoparticles publication-title: Phys. Rev. Lett. – volume: 135 start-page: 501 year: 2013 end-page: 510 ident: b27 article-title: Orthogonal self-assembly in folding block copolymers publication-title: J. Am. Chem. Soc. – volume: 7 start-page: 1278 issue: 11 year: 2018 ident: 10.1016/j.polymer.2024.126947_b38 article-title: Efficient fabrication of puresingle-chain janus particles through, their exclusive self-assembly in mixtures with their analogues publication-title: ACS Macro Lett. doi: 10.1021/acsmacrolett.8b00503 – year: 1976 ident: 10.1016/j.polymer.2024.126947_b47 – volume: 107 issue: 9 year: 2011 ident: 10.1016/j.polymer.2024.126947_b30 article-title: Cellular uptake of elastic nanoparticles publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.107.098101 – volume: 133 year: 2022 ident: 10.1016/j.polymer.2024.126947_b7 article-title: Progress in polymer single-chain based hybrid nanoparticles publication-title: Prog. Polym. Sci. doi: 10.1016/j.progpolymsci.2022.101593 – volume: 140 start-page: 3423 issue: 9 year: 2018 ident: 10.1016/j.polymer.2024.126947_b12 article-title: Catalytically active single-chain polymeric nanoparticles: exploring their functions in complex biological media publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b00122 – volume: 142 start-page: 4565 issue: 10 year: 2020 ident: 10.1016/j.polymer.2024.126947_b11 article-title: Single-chain nanoparticle delivers a partner enzyme for concurrent and tandem catalysis in cells publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b13997 – volume: 13 start-page: 204 issue: 3 year: 2001 ident: 10.1016/j.polymer.2024.126947_b2 article-title: A novel approach to functionalized nanoparticles: self-crosslinking of macromolecules in ultradilute solution publication-title: Adv. Mater. doi: 10.1002/1521-4095(200102)13:3<204::AID-ADMA204>3.0.CO;2-9 – volume: 237 start-page: 384 issue: 4813 year: 1987 ident: 10.1016/j.polymer.2024.126947_b42 article-title: The shapes of random walks publication-title: Science doi: 10.1126/science.237.4813.384 – volume: 286 start-page: 326 year: 2018 ident: 10.1016/j.polymer.2024.126947_b16 article-title: Single-chain polymer nanoparticles in controlled drug delivery and targeted imaging publication-title: J. Control. Release doi: 10.1016/j.jconrel.2018.07.041 – volume: 27 start-page: 1402 issue: 8 year: 2015 ident: 10.1016/j.polymer.2024.126947_b32 article-title: Tunable rigidity of (polymeric core)–(lipid shell) nanoparticles for regulated cellular uptake publication-title: Adv. Mater. doi: 10.1002/adma.201404788 – volume: 10 start-page: 4813 issue: 27 year: 2014 ident: 10.1016/j.polymer.2024.126947_b24 article-title: Multi-orthogonal folding of single polymer chains into soft nanoparticles publication-title: Soft Matter doi: 10.1039/C4SM00459K – volume: 9 start-page: 10227 issue: 10 year: 2015 ident: 10.1016/j.polymer.2024.126947_b22 article-title: Chemical control over cellular uptake of organic nanoparticles by fine tuning surface functional groups publication-title: ACS Nano doi: 10.1021/acsnano.5b03909 – volume: 135 start-page: 501 issue: 1 year: 2013 ident: 10.1016/j.polymer.2024.126947_b27 article-title: Orthogonal self-assembly in folding block copolymers publication-title: J. Am. Chem. Soc. doi: 10.1021/ja310422w – volume: 63 start-page: 589 issue: 4 year: 2014 ident: 10.1016/j.polymer.2024.126947_b8 article-title: Bioinspired single-chain polymer nanoparticles publication-title: Polym. Int. doi: 10.1002/pi.4671 – volume: 44 start-page: 6122 issue: 17 year: 2015 ident: 10.1016/j.polymer.2024.126947_b4 article-title: Advances in single chain technology publication-title: Chem. Soc. Rev. doi: 10.1039/C5CS00209E – volume: 10 start-page: 1443 issue: 11 year: 2021 ident: 10.1016/j.polymer.2024.126947_b20 article-title: Cytosolic delivery of single-chain polymer nanoparticles publication-title: ACS Macro Lett. doi: 10.1021/acsmacrolett.1c00558 – volume: 6 start-page: 181 issue: 2 year: 2015 ident: 10.1016/j.polymer.2024.126947_b6 article-title: A brief user’s guide to single-chain nanoparticles publication-title: Polymer Chem. doi: 10.1039/C4PY01217H – volume: 3 start-page: 2143 issue: 8 year: 2021 ident: 10.1016/j.polymer.2024.126947_b34 article-title: Controlling the chain folding for the synthesis of single-chain polymer nanoparticles using thermoresponsive polymers publication-title: CCS Chem. doi: 10.31635/ccschem.020.202000190 – volume: 41 issue: 24 year: 2020 ident: 10.1016/j.polymer.2024.126947_b35 article-title: Synthesis of polymer single-chain nanoparticle with high compactness in cosolvent condition: a computer simulation study publication-title: Macromol. Rapid Commun. doi: 10.1002/marc.201900655 – volume: 9 issue: 22 year: 2020 ident: 10.1016/j.polymer.2024.126947_b19 article-title: Effects of polymer 3D architecture, size, and chemistry on biological transport and drug delivery in vitro and in orthotopic triple negative breast cancer models publication-title: Adv. Healthc. Mater. doi: 10.1002/adhm.202000892 – volume: 29 start-page: 1912 issue: 12 year: 2008 ident: 10.1016/j.polymer.2024.126947_b23 article-title: Particle size-dependent organ distribution of gold nanoparticles after intravenous administration publication-title: Biomaterials doi: 10.1016/j.biomaterials.2007.12.037 – volume: 3 start-page: 767 issue: 8 year: 2014 ident: 10.1016/j.polymer.2024.126947_b1 article-title: How far are single-chain polymer nanoparticles in solution from the globular state? publication-title: ACS Macro Lett. doi: 10.1021/mz500354q – volume: 3 start-page: 402 issue: 2 year: 2009 ident: 10.1016/j.polymer.2024.126947_b15 article-title: Molecular dendritic transporter nanoparticle vectors provide efficient intracellular delivery of peptides publication-title: ACS Nano doi: 10.1021/nn800679z – volume: 6 start-page: eaaz4316 issue: 16 year: 2020 ident: 10.1016/j.polymer.2024.126947_b33 article-title: Nanoparticle elasticity regulates phagocytosis and cancer cell uptake publication-title: Sci. Adv. doi: 10.1126/sciadv.aaz4316 – volume: 49 start-page: 2 issue: 1 year: 2016 ident: 10.1016/j.polymer.2024.126947_b5 article-title: What is next in single-chain nanoparticles? publication-title: Macromolecules doi: 10.1021/acs.macromol.5b01456 – volume: 1 start-page: 64 issue: 1 year: 2019 ident: 10.1016/j.polymer.2024.126947_b14 article-title: Supramolecular single-chain polymeric nanoparticles publication-title: CCS Chem. doi: 10.31635/ccschem.019.20180036 – volume: 34 start-page: 2197 issue: 25 year: 2013 ident: 10.1016/j.polymer.2024.126947_b40 article-title: GALAMOST: GPU-accelerated large-scale molecular simulation toolkit publication-title: J. Comput. Chem. doi: 10.1002/jcc.23365 – volume: 3 start-page: 917 issue: 12 year: 2011 ident: 10.1016/j.polymer.2024.126947_b3 article-title: Single-chain technology using discrete synthetic macromolecules publication-title: Nature Chem. doi: 10.1038/nchem.1175 – volume: 12 start-page: 4494 issue: 24 year: 2022 ident: 10.1016/j.polymer.2024.126947_b9 article-title: Nanoparticles in drug delivery: from history to therapeutic applications publication-title: Nanomaterials doi: 10.3390/nano12244494 – volume: 46 start-page: 9748 issue: 24 year: 2013 ident: 10.1016/j.polymer.2024.126947_b25 article-title: Advantages of orthogonal folding of single polymer chains to soft nanoparticles publication-title: Macromolecules doi: 10.1021/ma4021399 – volume: 49 start-page: 4178 issue: 39 year: 2013 ident: 10.1016/j.polymer.2024.126947_b28 article-title: Controlled folding of a novel electroactive polyolefin via multiple sequential orthogonal intra-chain interactions publication-title: Chem. Commun. doi: 10.1039/C2CC37157J – year: 1988 ident: 10.1016/j.polymer.2024.126947_b45 – volume: 28 issue: 48 year: 2018 ident: 10.1016/j.polymer.2024.126947_b21 article-title: Protein-sized dye-loaded polymer nanoparticles for free particle diffusion in cytosol publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201805157 – volume: 138 issue: 5 year: 2013 ident: 10.1016/j.polymer.2024.126947_b43 article-title: Gyration tensor based analysis of the shapes of polymer chains in an attractive spherical cage publication-title: J. Chem. Phys. doi: 10.1063/1.4788616 – year: 1986 ident: 10.1016/j.polymer.2024.126947_b48 – volume: 113 start-page: E1142 issue: 9 year: 2016 ident: 10.1016/j.polymer.2024.126947_b18 article-title: Tailoring nanoparticle designs to target cancer based on tumor pathophysiology publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1521265113 – volume: 3 start-page: 640 issue: 3 year: 2012 ident: 10.1016/j.polymer.2024.126947_b26 article-title: Bioinspired dual self-folding of single polymer chains via reversible hydrogen bonding publication-title: Polymer Chem. doi: 10.1039/C1PY00392E – year: 1979 ident: 10.1016/j.polymer.2024.126947_b44 – volume: 116 start-page: 1065 issue: 7–8 year: 2018 ident: 10.1016/j.polymer.2024.126947_b41 article-title: Employing multi-GPU power for molecular dynamics simulation: An extension of GALAMOST publication-title: Mol. Phys. doi: 10.1080/00268976.2018.1434904 – volume: 5 start-page: 9 issue: 1 year: 2015 ident: 10.1016/j.polymer.2024.126947_b17 article-title: Characterization of single-chain polymer folding using size exclusion chromatography with multiple modes of detection publication-title: Appl. Petrochem. Res. doi: 10.1007/s13203-014-0046-1 – volume: 37 start-page: 2634 issue: 30 year: 2016 ident: 10.1016/j.polymer.2024.126947_b39 article-title: And florian müller-plathe. a kinetic chain growth algorithm in coarse-grained simulations publication-title: J. Comput. Chem. doi: 10.1002/jcc.24495 – volume: 9 start-page: 3169 issue: 3 year: 2015 ident: 10.1016/j.polymer.2024.126947_b31 article-title: Elasticity of nanoparticles influences their blood circulation, phagocytosis, endocytosis, and targeting publication-title: ACS Nano doi: 10.1021/acsnano.5b00147 – volume: 10 start-page: 5552 issue: 1 year: 2019 ident: 10.1016/j.polymer.2024.126947_b13 article-title: An unexpected N-dependence in the viscosity reduction in all-polymer nanocomposite publication-title: Nature Commun. doi: 10.1038/s41467-019-13410-z – volume: 11 start-page: 1369 issue: 7 year: 2015 ident: 10.1016/j.polymer.2024.126947_b36 article-title: Simulation guided design of globular single-chain nanoparticles by tuning the solvent quality publication-title: Soft Matter doi: 10.1039/C4SM02475C – volume: 356 start-page: 26 year: 2023 ident: 10.1016/j.polymer.2024.126947_b10 article-title: Single-chain polymer nanoparticles in biomedical applications publication-title: J. Control. Release doi: 10.1016/j.jconrel.2023.02.019 – year: 2003 ident: 10.1016/j.polymer.2024.126947_b46 – volume: 54 start-page: 11459 issue: 24 year: 2021 ident: 10.1016/j.polymer.2024.126947_b29 article-title: Control and characterization of the compactness of single-chain nanoparticles publication-title: Macromolecules doi: 10.1021/acs.macromol.1c02071 – volume: 249 start-page: 173 year: 2017 ident: 10.1016/j.polymer.2024.126947_b37 article-title: Generation-6 hydroxyl PAMAM dendrimers improve CNS penetration from intravenous administration in a large animal brain injury model publication-title: J. Control. Release doi: 10.1016/j.jconrel.2017.01.032 |
SSID | ssj0002524 |
Score | 2.450432 |
Snippet | Single-chain nanoparticles (SCNPs) show great promise in biomedical applications, due to their unique properties in ultra-small size, high porosity, and ease... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 126947 |
SubjectTerms | Co-assembly Molecular dynamics simulations Nanoreactor Single chain nanoparticle |
Title | Co-assembly nanoreactor protocol for the efficient synthesis of single-chain nanoparticles |
URI | https://dx.doi.org/10.1016/j.polymer.2024.126947 |
Volume | 299 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5FD-pBtCq-ycFrtrtJ9pGjLJaq2JOF4mXZbLJYqbvF1kMv_nZn9mEriILHDTshTIaZb5KZL4Rc-RrSHpV7DLwiHt14AYt8pVhmU9h_LX1rsDn5YRgMRvJu7I87JG57YbCssvH9tU-vvHUz0mu02ZtNJtjjK2B-iNCyvg_EDnYZopU7H6syD-7zmolZcIZ_r7p4ei_OrJwuXy3SgnLpeNjUGf4cn9ZiTn-P7DZgkV7X69knHVt0yVbcvtHWJTtrdIIH5CkuGWBh-6qnS1qkRQmAEM_kKZIxlLDjFBAqBcRHbUUcAfGGzpcFDMwnc1rmFM8NppZlz-mkqCaYtXVzh2TUv3mMB6x5O4FlwlULFgjjujYNlIhcrXgmhNaeNKnmYZSFePfnicwLw9zkqVI2l5JrwyPfBKk0SrriiGwUZWGPCQ218HJIogH8GSm00q7xIS-MeBXKuDghstVYkjXE4vi-xTRpK8hekkbRCSo6qRV9QpwvsVnNrPGXQNRuR_LNRBLw_r-Lnv5f9Ixs4xdeIHnBOdlYvL3bC8AhC31ZGdol2by-vR8MPwFaa91A |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLbGOAAHBAPEeObANVubpI8c0QTaeOy0SROXqmlSsWlrJzYO-_c4awtDQiBxTeWosiP7c2J_BrjxFKY9MnUpekV7deP6NPSkpImJ0f5KeEbb5uTnvt8dioeRN6pBp-qFsWWVpe8vfPraW5cr7VKb7fl4bHt8Oe6PEVoU74FbsG3Zqbw6bN_2Hrv9T4fMPFaQMXNGrcBXI0970prn09XMWGZQJlqu7esMfg5RG2Hn_gD2S7xIbotfOoSayRqw06nGtDVgb4NR8AheOjlFOGxmaroiWZzliAnttTyxfAw5Gp0gSCUI-ohZc0dgyCGLVYYLi_GC5CmxVwdTQ5PXeJytN5hXpXPHMLy_G3S6tByfQBPuyCX1uXYcE_uSh46SLOFcKVfoWLEgTAL7_OfyxA2CVKexlCYVginNQk_7sdBSOPwE6lmemVMggeJuink04j8tuJLK0R6mhiFbRzPGmyAqjUVJyS1uR1xMo6qIbBKVio6soqNC0U1ofYrNC3KNvwTCyhzRt1MSYQD4XfTs_6LXsNMdPD9FT73-4zns2i_2Pcn1L6C-fHs3lwhLluqqPHYf91rf8Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Co-assembly+nanoreactor+protocol+for+the+efficient+synthesis+of+single-chain+nanoparticles&rft.jtitle=Polymer+%28Guilford%29&rft.au=Zhang%2C+Niboqia&rft.au=Yu%2C+Linxiuzi&rft.au=Qian%2C+Hu-Jun&rft.au=Lu%2C+Zhong-Yuan&rft.date=2024-04-16&rft.pub=Elsevier+Ltd&rft.issn=0032-3861&rft.eissn=1873-2291&rft.volume=299&rft_id=info:doi/10.1016%2Fj.polymer.2024.126947&rft.externalDocID=S0032386124002829 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-3861&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-3861&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-3861&client=summon |