Co-assembly nanoreactor protocol for the efficient synthesis of single-chain nanoparticles

Single-chain nanoparticles (SCNPs) show great promise in biomedical applications, due to their unique properties in ultra-small size, high porosity, and ease of functionalization. Traditional synthesis protocols for SCNPs often result in high polydispersity of size and deviations from globular compa...

Full description

Saved in:
Bibliographic Details
Published inPolymer (Guilford) Vol. 299; p. 126947
Main Authors Zhang, Niboqia, Yu, Linxiuzi, Qian, Hu-Jun, Lu, Zhong-Yuan
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 16.04.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Single-chain nanoparticles (SCNPs) show great promise in biomedical applications, due to their unique properties in ultra-small size, high porosity, and ease of functionalization. Traditional synthesis protocols for SCNPs often result in high polydispersity of size and deviations from globular compact conformations, accompanied by challenges such as high energy consumption and low yield. By means of simulation, we propose an innovative method for the synthesis of SCNPs through a co-assembly nanoreactor. This protocol adeptly avoids intermolecular aggregation of the precursor chain under poor solvent conditions by crosslinking inside the central cavity of nanoreactors formed by co-assembled nanorods, significantly enhancing the quality and efficiency of the SCNP synthesis. Our results pave the way for the synthesis of SCNP with highly controllable size/topology, with potential applications in nanocarrier, drug delivery, and cell uptake, among other fields. [Display omitted] •An innovative method for the synthesis of SCNPs through a co-assembly nanoreactor is proposed via molecular dynamics simulations.•This method can effectively prevent intermolecular coupling of the precursor chains in poor solvent.•The resulted SCNPs maintain a narrow size distribution and globular compact conformations.•The proposed method guarantees high-quality preparation of SCNPs at high polymer concentrations.
AbstractList Single-chain nanoparticles (SCNPs) show great promise in biomedical applications, due to their unique properties in ultra-small size, high porosity, and ease of functionalization. Traditional synthesis protocols for SCNPs often result in high polydispersity of size and deviations from globular compact conformations, accompanied by challenges such as high energy consumption and low yield. By means of simulation, we propose an innovative method for the synthesis of SCNPs through a co-assembly nanoreactor. This protocol adeptly avoids intermolecular aggregation of the precursor chain under poor solvent conditions by crosslinking inside the central cavity of nanoreactors formed by co-assembled nanorods, significantly enhancing the quality and efficiency of the SCNP synthesis. Our results pave the way for the synthesis of SCNP with highly controllable size/topology, with potential applications in nanocarrier, drug delivery, and cell uptake, among other fields. [Display omitted] •An innovative method for the synthesis of SCNPs through a co-assembly nanoreactor is proposed via molecular dynamics simulations.•This method can effectively prevent intermolecular coupling of the precursor chains in poor solvent.•The resulted SCNPs maintain a narrow size distribution and globular compact conformations.•The proposed method guarantees high-quality preparation of SCNPs at high polymer concentrations.
ArticleNumber 126947
Author Qian, Hu-Jun
Zhang, Niboqia
Yu, Linxiuzi
Lu, Zhong-Yuan
Author_xml – sequence: 1
  givenname: Niboqia
  surname: Zhang
  fullname: Zhang, Niboqia
– sequence: 2
  givenname: Linxiuzi
  surname: Yu
  fullname: Yu, Linxiuzi
– sequence: 3
  givenname: Hu-Jun
  surname: Qian
  fullname: Qian, Hu-Jun
– sequence: 4
  givenname: Zhong-Yuan
  orcidid: 0000-0001-7884-0091
  surname: Lu
  fullname: Lu, Zhong-Yuan
  email: luzhy@jlu.edu.cn
BookMark eNqFkMtqwzAQRUVJoUnaTyj4B-zqFduii1JCXxDopt10I2Rp1Cg4kpFEwX9fp8mqm6yGmcu5MGeBZj54QOiW4IpgUt_tqiH04x5iRTHlFaG14M0FmpO2YSWlgszQHGNGS9bW5AotUtphjOmK8jn6WodSpQT7rh8Lr3yIoHQOsRhiyEGHvrDTkrdQgLVOO_C5SKOfDsmlItgiOf_dQ6m3yvm_gkHF7HQP6RpdWtUnuDnNJfp8fvpYv5ab95e39eOm1AyLXNbMYAyqFqzFnaCasa4j3KiONq1uWsoIYZo0jTVWCQGWc9oZ2q5MrbgRHLMluj_26hhSimCldlllF3yOyvWSYHnQJHfypEkeNMmjpole_aOH6PYqjme5hyMH02s_bkrTwY4G4yLoLE1wZxp-AWegiaA
CitedBy_id crossref_primary_10_1016_j_mtchem_2024_102491
Cites_doi 10.1021/acsmacrolett.8b00503
10.1103/PhysRevLett.107.098101
10.1016/j.progpolymsci.2022.101593
10.1021/jacs.8b00122
10.1021/jacs.9b13997
10.1002/1521-4095(200102)13:3<204::AID-ADMA204>3.0.CO;2-9
10.1126/science.237.4813.384
10.1016/j.jconrel.2018.07.041
10.1002/adma.201404788
10.1039/C4SM00459K
10.1021/acsnano.5b03909
10.1021/ja310422w
10.1002/pi.4671
10.1039/C5CS00209E
10.1021/acsmacrolett.1c00558
10.1039/C4PY01217H
10.31635/ccschem.020.202000190
10.1002/marc.201900655
10.1002/adhm.202000892
10.1016/j.biomaterials.2007.12.037
10.1021/mz500354q
10.1021/nn800679z
10.1126/sciadv.aaz4316
10.1021/acs.macromol.5b01456
10.31635/ccschem.019.20180036
10.1002/jcc.23365
10.1038/nchem.1175
10.3390/nano12244494
10.1021/ma4021399
10.1039/C2CC37157J
10.1002/adfm.201805157
10.1063/1.4788616
10.1073/pnas.1521265113
10.1039/C1PY00392E
10.1080/00268976.2018.1434904
10.1007/s13203-014-0046-1
10.1002/jcc.24495
10.1021/acsnano.5b00147
10.1038/s41467-019-13410-z
10.1039/C4SM02475C
10.1016/j.jconrel.2023.02.019
10.1021/acs.macromol.1c02071
10.1016/j.jconrel.2017.01.032
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.polymer.2024.126947
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1873-2291
ExternalDocumentID 10_1016_j_polymer_2024_126947
S0032386124002829
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AARLI
AAXUO
ABFNM
ABMAC
ABXRA
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNCT
ACPRK
ACRLP
ADBBV
ADECG
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRAH
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SEW
SMS
SPC
SPCBC
SPD
SSK
SSM
SSZ
T5K
TN5
WH7
XPP
ZMT
~G-
.-4
29O
53G
6TJ
6TU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDEX
ABDPE
ABJNI
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
H~9
M24
M41
R2-
SCB
SSH
T9H
WUQ
ID FETCH-LOGICAL-c309t-63d00ea69380b92c33bb14dab278c7823113c177fdfa99ef442bd285d6a4d9403
IEDL.DBID .~1
ISSN 0032-3861
IngestDate Thu Apr 24 23:03:58 EDT 2025
Tue Jul 01 02:37:19 EDT 2025
Sat Apr 13 16:38:22 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Single chain nanoparticle
Molecular dynamics simulations
Nanoreactor
Co-assembly
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c309t-63d00ea69380b92c33bb14dab278c7823113c177fdfa99ef442bd285d6a4d9403
ORCID 0000-0001-7884-0091
ParticipantIDs crossref_citationtrail_10_1016_j_polymer_2024_126947
crossref_primary_10_1016_j_polymer_2024_126947
elsevier_sciencedirect_doi_10_1016_j_polymer_2024_126947
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-04-16
PublicationDateYYYYMMDD 2024-04-16
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-16
  day: 16
PublicationDecade 2020
PublicationTitle Polymer (Guilford)
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Ouchi, Badi, Lutz, Sawamoto (b3) 2011; 3
De Jong, Hagens, Krystek, Burger, Sips, Geertsma (b23) 2008; 29
Hosono, Gillissen, Li, Sheiko, Palmans, Meijer (b27) 2013; 135
Yi, Shi, Gao (b30) 2011; 107
Zhu, Liu, Li, Qian, Milano, Lu (b40) 2013; 34
Hanlon, Lyon, Berda (b5) 2016; 49
Jiang, Xie, Dou, Li, Huang, Chen (b38) 2018; 7
Doi, Edwards, Edwards (b45) 1988
Abdulmalik S. A. Altamimi, Alzarea, Almalki, Tariq, Mubeen, Murtaza, Iftikhar, Riaz, Kazmi (b9) 2022; 12
Frank, Prasher, Tuten, Chao, Berda (b17) 2015; 5
de Gennes (b44) 1979
Pomposo (b8) 2014; 63
Liao, Wei, Abriata, Stellacci (b29) 2021; 54
Hui, Yi, Wibowo, Yang, Middelberg, Gao, Zhao (b33) 2020; 6
Hamelmann, Paulusse (b10) 2023; 356
Hamelmann, Paats, Paulusse (b20) 2021; 10
Reisch, Heimburger, Ernst, Runser, Didier, Dujardin, Klymchenko (b21) 2018; 28
Anselmo, Zhang, Kumar, Vogus, Menegatti, Helgeson, Mitragotri (b31) 2015; 9
Zhang, Zhang, You, Zhang, Yu, Zhao, Qian, Lu (b34) 2021; 3
Chen, Zhao, Shi, Lin, Jia, Qian, Lu, Zhang, Li, Sun (b13) 2019; 10
Bai, Xing, Wu, Feng, Hwang, Lee, Phang, Lu, Zimmerman (b22) 2015; 9
Verso, Pomposo, Colmenero, Moreno (b24) 2014; 10
Mecerreyes, Lee, Hawker, Hedrick, Wursch, Volksen, Magbitang, Huang, Miller (b2) 2001; 13
Chen, Li, Shon, Zimmerman (b11) 2020; 142
Zhu, Pan, Li, Liu, Qian, Zhao, Lu, Sun (b41) 2018; 116
Pearce, Anane-Adjei, Cavanagh, Monteiro, Bennett, Taresco, Clarke, Ritchie, Alexander, Grabowska, Alexander (b19) 2020; 9
Zhang, Jia, Shi, Li, Zhao, Qian, Lu (b35) 2020; 41
Pomposo, Perez-Baena, Verso, Moreno, Arbe, Colmenero (b1) 2014; 3
Hansen, McDonald (b48) 1986
Liu, Pujals, Stals, Paulöhrl, Presolski, Meijer, Albertazzi, Palmans (b12) 2018; 140
Arkın, Janke (b43) 2013; 138
Sykes, Dai, Sarsons, Chen, Rocheleau, Hwang, Zheng, Cramb, Rinker, Chan (b18) 2016; 113
McQuarrie (b47) 1976
Shao, Yang (b7) 2022; 133
Hamilton, Harth (b15) 2009; 3
Zhang, Trent Magruder, Lin, Crawford, Grimm, Sciortino, Wilson, Blue, Kannan, Johnston, Baumgartner, Kannan (b37) 2017; 249
Verso, Pomposo, Colmenero, Moreno (b36) 2015; 11
ter, Palmans, Meijer (b14) 2019; 1
Sun, Zhang, Wang, Feng, Liu, Yin, Xu, Wei, Ding, Shi, Jiang (b32) 2015; 27
Chao, Jia, Tuten, Wang, Berda (b28) 2013; 49
Lyon, Prasher, Hanlon, Tuten, Tooley, Frank, Berda (b6) 2015; 6
Gonzalez-Burgos, Latorre-Sanchez, Pomposo (b4) 2015; 44
Rubinstein, Colby (b46) 2003
Kröger, Paulusse (b16) 2018; 286
Altintas, Lejeune, Gerstel, Barner-Kowollik (b26) 2012; 3
Liu, Zhu, Lu (b39) 2016; 37
Rudnick, Gaspari (b42) 1987; 237
Moreno, Verso, Sanchez-Sanchez, Arbe, Colmenero, Pomposo (b25) 2013; 46
Hanlon (10.1016/j.polymer.2024.126947_b5) 2016; 49
Kröger (10.1016/j.polymer.2024.126947_b16) 2018; 286
Abdulmalik S. A. Altamimi (10.1016/j.polymer.2024.126947_b9) 2022; 12
Liu (10.1016/j.polymer.2024.126947_b39) 2016; 37
Pearce (10.1016/j.polymer.2024.126947_b19) 2020; 9
Zhang (10.1016/j.polymer.2024.126947_b35) 2020; 41
Shao (10.1016/j.polymer.2024.126947_b7) 2022; 133
Bai (10.1016/j.polymer.2024.126947_b22) 2015; 9
Ouchi (10.1016/j.polymer.2024.126947_b3) 2011; 3
Pomposo (10.1016/j.polymer.2024.126947_b8) 2014; 63
Yi (10.1016/j.polymer.2024.126947_b30) 2011; 107
Sun (10.1016/j.polymer.2024.126947_b32) 2015; 27
Mecerreyes (10.1016/j.polymer.2024.126947_b2) 2001; 13
Moreno (10.1016/j.polymer.2024.126947_b25) 2013; 46
Hamilton (10.1016/j.polymer.2024.126947_b15) 2009; 3
Lyon (10.1016/j.polymer.2024.126947_b6) 2015; 6
Verso (10.1016/j.polymer.2024.126947_b24) 2014; 10
Gonzalez-Burgos (10.1016/j.polymer.2024.126947_b4) 2015; 44
Hamelmann (10.1016/j.polymer.2024.126947_b10) 2023; 356
Zhu (10.1016/j.polymer.2024.126947_b40) 2013; 34
Anselmo (10.1016/j.polymer.2024.126947_b31) 2015; 9
Altintas (10.1016/j.polymer.2024.126947_b26) 2012; 3
Zhang (10.1016/j.polymer.2024.126947_b34) 2021; 3
Zhang (10.1016/j.polymer.2024.126947_b37) 2017; 249
Sykes (10.1016/j.polymer.2024.126947_b18) 2016; 113
Hamelmann (10.1016/j.polymer.2024.126947_b20) 2021; 10
ter (10.1016/j.polymer.2024.126947_b14) 2019; 1
Hosono (10.1016/j.polymer.2024.126947_b27) 2013; 135
Hansen (10.1016/j.polymer.2024.126947_b48) 1986
Chen (10.1016/j.polymer.2024.126947_b11) 2020; 142
Chen (10.1016/j.polymer.2024.126947_b13) 2019; 10
de Gennes (10.1016/j.polymer.2024.126947_b44) 1979
Verso (10.1016/j.polymer.2024.126947_b36) 2015; 11
De Jong (10.1016/j.polymer.2024.126947_b23) 2008; 29
Arkın (10.1016/j.polymer.2024.126947_b43) 2013; 138
Doi (10.1016/j.polymer.2024.126947_b45) 1988
Liu (10.1016/j.polymer.2024.126947_b12) 2018; 140
Reisch (10.1016/j.polymer.2024.126947_b21) 2018; 28
McQuarrie (10.1016/j.polymer.2024.126947_b47) 1976
Liao (10.1016/j.polymer.2024.126947_b29) 2021; 54
Chao (10.1016/j.polymer.2024.126947_b28) 2013; 49
Rudnick (10.1016/j.polymer.2024.126947_b42) 1987; 237
Hui (10.1016/j.polymer.2024.126947_b33) 2020; 6
Frank (10.1016/j.polymer.2024.126947_b17) 2015; 5
Rubinstein (10.1016/j.polymer.2024.126947_b46) 2003
Pomposo (10.1016/j.polymer.2024.126947_b1) 2014; 3
Zhu (10.1016/j.polymer.2024.126947_b41) 2018; 116
Jiang (10.1016/j.polymer.2024.126947_b38) 2018; 7
References_xml – volume: 10
  start-page: 5552
  year: 2019
  ident: b13
  article-title: An unexpected N-dependence in the viscosity reduction in all-polymer nanocomposite
  publication-title: Nature Commun.
– volume: 9
  year: 2020
  ident: b19
  article-title: Effects of polymer 3D architecture, size, and chemistry on biological transport and drug delivery in vitro and in orthotopic triple negative breast cancer models
  publication-title: Adv. Healthc. Mater.
– volume: 63
  start-page: 589
  year: 2014
  end-page: 592
  ident: b8
  article-title: Bioinspired single-chain polymer nanoparticles
  publication-title: Polym. Int.
– volume: 142
  start-page: 4565
  year: 2020
  end-page: 4569
  ident: b11
  article-title: Single-chain nanoparticle delivers a partner enzyme for concurrent and tandem catalysis in cells
  publication-title: J. Am. Chem. Soc.
– volume: 6
  start-page: 181
  year: 2015
  end-page: 197
  ident: b6
  article-title: A brief user’s guide to single-chain nanoparticles
  publication-title: Polymer Chem.
– volume: 9
  start-page: 3169
  year: 2015
  end-page: 3177
  ident: b31
  article-title: Elasticity of nanoparticles influences their blood circulation, phagocytosis, endocytosis, and targeting
  publication-title: ACS Nano
– volume: 237
  start-page: 384
  year: 1987
  end-page: 389
  ident: b42
  article-title: The shapes of random walks
  publication-title: Science
– volume: 5
  start-page: 9
  year: 2015
  end-page: 17
  ident: b17
  article-title: Characterization of single-chain polymer folding using size exclusion chromatography with multiple modes of detection
  publication-title: Appl. Petrochem. Res.
– volume: 113
  start-page: E1142
  year: 2016
  end-page: E1151
  ident: b18
  article-title: Tailoring nanoparticle designs to target cancer based on tumor pathophysiology
  publication-title: Proc. Natl. Acad. Sci.
– volume: 3
  start-page: 640
  year: 2012
  end-page: 651
  ident: b26
  article-title: Bioinspired dual self-folding of single polymer chains via reversible hydrogen bonding
  publication-title: Polymer Chem.
– volume: 28
  year: 2018
  ident: b21
  article-title: Protein-sized dye-loaded polymer nanoparticles for free particle diffusion in cytosol
  publication-title: Adv. Funct. Mater.
– volume: 37
  start-page: 2634
  year: 2016
  end-page: 2646
  ident: b39
  article-title: And florian müller-plathe. a kinetic chain growth algorithm in coarse-grained simulations
  publication-title: J. Comput. Chem.
– volume: 10
  start-page: 1443
  year: 2021
  end-page: 1449
  ident: b20
  article-title: Cytosolic delivery of single-chain polymer nanoparticles
  publication-title: ACS Macro Lett.
– volume: 9
  start-page: 10227
  year: 2015
  end-page: 10236
  ident: b22
  article-title: Chemical control over cellular uptake of organic nanoparticles by fine tuning surface functional groups
  publication-title: ACS Nano
– volume: 6
  start-page: eaaz4316
  year: 2020
  ident: b33
  article-title: Nanoparticle elasticity regulates phagocytosis and cancer cell uptake
  publication-title: Sci. Adv.
– year: 1986
  ident: b48
  article-title: Theory of Simple Liquids
– volume: 10
  start-page: 4813
  year: 2014
  end-page: 4821
  ident: b24
  article-title: Multi-orthogonal folding of single polymer chains into soft nanoparticles
  publication-title: Soft Matter
– volume: 138
  year: 2013
  ident: b43
  article-title: Gyration tensor based analysis of the shapes of polymer chains in an attractive spherical cage
  publication-title: J. Chem. Phys.
– volume: 29
  start-page: 1912
  year: 2008
  end-page: 1919
  ident: b23
  article-title: Particle size-dependent organ distribution of gold nanoparticles after intravenous administration
  publication-title: Biomaterials
– year: 1988
  ident: b45
  article-title: The Theory of Polymer Dynamics
– volume: 49
  start-page: 2
  year: 2016
  end-page: 14
  ident: b5
  article-title: What is next in single-chain nanoparticles?
  publication-title: Macromolecules
– volume: 3
  start-page: 767
  year: 2014
  end-page: 772
  ident: b1
  article-title: How far are single-chain polymer nanoparticles in solution from the globular state?
  publication-title: ACS Macro Lett.
– volume: 46
  start-page: 9748
  year: 2013
  end-page: 9759
  ident: b25
  article-title: Advantages of orthogonal folding of single polymer chains to soft nanoparticles
  publication-title: Macromolecules
– volume: 286
  start-page: 326
  year: 2018
  end-page: 347
  ident: b16
  article-title: Single-chain polymer nanoparticles in controlled drug delivery and targeted imaging
  publication-title: J. Control. Release
– volume: 12
  start-page: 4494
  year: 2022
  ident: b9
  article-title: Nanoparticles in drug delivery: from history to therapeutic applications
  publication-title: Nanomaterials
– volume: 3
  start-page: 2143
  year: 2021
  end-page: 2154
  ident: b34
  article-title: Controlling the chain folding for the synthesis of single-chain polymer nanoparticles using thermoresponsive polymers
  publication-title: CCS Chem.
– volume: 133
  year: 2022
  ident: b7
  article-title: Progress in polymer single-chain based hybrid nanoparticles
  publication-title: Prog. Polym. Sci.
– volume: 140
  start-page: 3423
  year: 2018
  end-page: 3433
  ident: b12
  article-title: Catalytically active single-chain polymeric nanoparticles: exploring their functions in complex biological media
  publication-title: J. Am. Chem. Soc.
– volume: 1
  start-page: 64
  year: 2019
  end-page: 82
  ident: b14
  article-title: Supramolecular single-chain polymeric nanoparticles
  publication-title: CCS Chem.
– volume: 13
  start-page: 204
  year: 2001
  end-page: 208
  ident: b2
  article-title: A novel approach to functionalized nanoparticles: self-crosslinking of macromolecules in ultradilute solution
  publication-title: Adv. Mater.
– volume: 116
  start-page: 1065
  year: 2018
  end-page: 1077
  ident: b41
  article-title: Employing multi-GPU power for molecular dynamics simulation: An extension of GALAMOST
  publication-title: Mol. Phys.
– year: 2003
  ident: b46
  article-title: Polymer Physics
– volume: 44
  start-page: 6122
  year: 2015
  end-page: 6142
  ident: b4
  article-title: Advances in single chain technology
  publication-title: Chem. Soc. Rev.
– volume: 11
  start-page: 1369
  year: 2015
  end-page: 1375
  ident: b36
  article-title: Simulation guided design of globular single-chain nanoparticles by tuning the solvent quality
  publication-title: Soft Matter
– volume: 41
  year: 2020
  ident: b35
  article-title: Synthesis of polymer single-chain nanoparticle with high compactness in cosolvent condition: a computer simulation study
  publication-title: Macromol. Rapid Commun.
– volume: 249
  start-page: 173
  year: 2017
  end-page: 182
  ident: b37
  article-title: Generation-6 hydroxyl PAMAM dendrimers improve CNS penetration from intravenous administration in a large animal brain injury model
  publication-title: J. Control. Release
– volume: 34
  start-page: 2197
  year: 2013
  end-page: 2211
  ident: b40
  article-title: GALAMOST: GPU-accelerated large-scale molecular simulation toolkit
  publication-title: J. Comput. Chem.
– volume: 3
  start-page: 402
  year: 2009
  end-page: 410
  ident: b15
  article-title: Molecular dendritic transporter nanoparticle vectors provide efficient intracellular delivery of peptides
  publication-title: ACS Nano
– volume: 3
  start-page: 917
  year: 2011
  end-page: 924
  ident: b3
  article-title: Single-chain technology using discrete synthetic macromolecules
  publication-title: Nature Chem.
– volume: 54
  start-page: 11459
  year: 2021
  end-page: 11467
  ident: b29
  article-title: Control and characterization of the compactness of single-chain nanoparticles
  publication-title: Macromolecules
– volume: 356
  start-page: 26
  year: 2023
  end-page: 42
  ident: b10
  article-title: Single-chain polymer nanoparticles in biomedical applications
  publication-title: J. Control. Release
– volume: 7
  start-page: 1278
  year: 2018
  end-page: 1282
  ident: b38
  article-title: Efficient fabrication of puresingle-chain janus particles through, their exclusive self-assembly in mixtures with their analogues
  publication-title: ACS Macro Lett.
– year: 1976
  ident: b47
  article-title: Statistical Mechanics
– volume: 49
  start-page: 4178
  year: 2013
  end-page: 4180
  ident: b28
  article-title: Controlled folding of a novel electroactive polyolefin via multiple sequential orthogonal intra-chain interactions
  publication-title: Chem. Commun.
– year: 1979
  ident: b44
  article-title: Scaling Concepts in Polymer Physics
– volume: 27
  start-page: 1402
  year: 2015
  end-page: 1407
  ident: b32
  article-title: Tunable rigidity of (polymeric core)–(lipid shell) nanoparticles for regulated cellular uptake
  publication-title: Adv. Mater.
– volume: 107
  year: 2011
  ident: b30
  article-title: Cellular uptake of elastic nanoparticles
  publication-title: Phys. Rev. Lett.
– volume: 135
  start-page: 501
  year: 2013
  end-page: 510
  ident: b27
  article-title: Orthogonal self-assembly in folding block copolymers
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 1278
  issue: 11
  year: 2018
  ident: 10.1016/j.polymer.2024.126947_b38
  article-title: Efficient fabrication of puresingle-chain janus particles through, their exclusive self-assembly in mixtures with their analogues
  publication-title: ACS Macro Lett.
  doi: 10.1021/acsmacrolett.8b00503
– year: 1976
  ident: 10.1016/j.polymer.2024.126947_b47
– volume: 107
  issue: 9
  year: 2011
  ident: 10.1016/j.polymer.2024.126947_b30
  article-title: Cellular uptake of elastic nanoparticles
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.107.098101
– volume: 133
  year: 2022
  ident: 10.1016/j.polymer.2024.126947_b7
  article-title: Progress in polymer single-chain based hybrid nanoparticles
  publication-title: Prog. Polym. Sci.
  doi: 10.1016/j.progpolymsci.2022.101593
– volume: 140
  start-page: 3423
  issue: 9
  year: 2018
  ident: 10.1016/j.polymer.2024.126947_b12
  article-title: Catalytically active single-chain polymeric nanoparticles: exploring their functions in complex biological media
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b00122
– volume: 142
  start-page: 4565
  issue: 10
  year: 2020
  ident: 10.1016/j.polymer.2024.126947_b11
  article-title: Single-chain nanoparticle delivers a partner enzyme for concurrent and tandem catalysis in cells
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b13997
– volume: 13
  start-page: 204
  issue: 3
  year: 2001
  ident: 10.1016/j.polymer.2024.126947_b2
  article-title: A novel approach to functionalized nanoparticles: self-crosslinking of macromolecules in ultradilute solution
  publication-title: Adv. Mater.
  doi: 10.1002/1521-4095(200102)13:3<204::AID-ADMA204>3.0.CO;2-9
– volume: 237
  start-page: 384
  issue: 4813
  year: 1987
  ident: 10.1016/j.polymer.2024.126947_b42
  article-title: The shapes of random walks
  publication-title: Science
  doi: 10.1126/science.237.4813.384
– volume: 286
  start-page: 326
  year: 2018
  ident: 10.1016/j.polymer.2024.126947_b16
  article-title: Single-chain polymer nanoparticles in controlled drug delivery and targeted imaging
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2018.07.041
– volume: 27
  start-page: 1402
  issue: 8
  year: 2015
  ident: 10.1016/j.polymer.2024.126947_b32
  article-title: Tunable rigidity of (polymeric core)–(lipid shell) nanoparticles for regulated cellular uptake
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201404788
– volume: 10
  start-page: 4813
  issue: 27
  year: 2014
  ident: 10.1016/j.polymer.2024.126947_b24
  article-title: Multi-orthogonal folding of single polymer chains into soft nanoparticles
  publication-title: Soft Matter
  doi: 10.1039/C4SM00459K
– volume: 9
  start-page: 10227
  issue: 10
  year: 2015
  ident: 10.1016/j.polymer.2024.126947_b22
  article-title: Chemical control over cellular uptake of organic nanoparticles by fine tuning surface functional groups
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b03909
– volume: 135
  start-page: 501
  issue: 1
  year: 2013
  ident: 10.1016/j.polymer.2024.126947_b27
  article-title: Orthogonal self-assembly in folding block copolymers
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja310422w
– volume: 63
  start-page: 589
  issue: 4
  year: 2014
  ident: 10.1016/j.polymer.2024.126947_b8
  article-title: Bioinspired single-chain polymer nanoparticles
  publication-title: Polym. Int.
  doi: 10.1002/pi.4671
– volume: 44
  start-page: 6122
  issue: 17
  year: 2015
  ident: 10.1016/j.polymer.2024.126947_b4
  article-title: Advances in single chain technology
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C5CS00209E
– volume: 10
  start-page: 1443
  issue: 11
  year: 2021
  ident: 10.1016/j.polymer.2024.126947_b20
  article-title: Cytosolic delivery of single-chain polymer nanoparticles
  publication-title: ACS Macro Lett.
  doi: 10.1021/acsmacrolett.1c00558
– volume: 6
  start-page: 181
  issue: 2
  year: 2015
  ident: 10.1016/j.polymer.2024.126947_b6
  article-title: A brief user’s guide to single-chain nanoparticles
  publication-title: Polymer Chem.
  doi: 10.1039/C4PY01217H
– volume: 3
  start-page: 2143
  issue: 8
  year: 2021
  ident: 10.1016/j.polymer.2024.126947_b34
  article-title: Controlling the chain folding for the synthesis of single-chain polymer nanoparticles using thermoresponsive polymers
  publication-title: CCS Chem.
  doi: 10.31635/ccschem.020.202000190
– volume: 41
  issue: 24
  year: 2020
  ident: 10.1016/j.polymer.2024.126947_b35
  article-title: Synthesis of polymer single-chain nanoparticle with high compactness in cosolvent condition: a computer simulation study
  publication-title: Macromol. Rapid Commun.
  doi: 10.1002/marc.201900655
– volume: 9
  issue: 22
  year: 2020
  ident: 10.1016/j.polymer.2024.126947_b19
  article-title: Effects of polymer 3D architecture, size, and chemistry on biological transport and drug delivery in vitro and in orthotopic triple negative breast cancer models
  publication-title: Adv. Healthc. Mater.
  doi: 10.1002/adhm.202000892
– volume: 29
  start-page: 1912
  issue: 12
  year: 2008
  ident: 10.1016/j.polymer.2024.126947_b23
  article-title: Particle size-dependent organ distribution of gold nanoparticles after intravenous administration
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2007.12.037
– volume: 3
  start-page: 767
  issue: 8
  year: 2014
  ident: 10.1016/j.polymer.2024.126947_b1
  article-title: How far are single-chain polymer nanoparticles in solution from the globular state?
  publication-title: ACS Macro Lett.
  doi: 10.1021/mz500354q
– volume: 3
  start-page: 402
  issue: 2
  year: 2009
  ident: 10.1016/j.polymer.2024.126947_b15
  article-title: Molecular dendritic transporter nanoparticle vectors provide efficient intracellular delivery of peptides
  publication-title: ACS Nano
  doi: 10.1021/nn800679z
– volume: 6
  start-page: eaaz4316
  issue: 16
  year: 2020
  ident: 10.1016/j.polymer.2024.126947_b33
  article-title: Nanoparticle elasticity regulates phagocytosis and cancer cell uptake
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aaz4316
– volume: 49
  start-page: 2
  issue: 1
  year: 2016
  ident: 10.1016/j.polymer.2024.126947_b5
  article-title: What is next in single-chain nanoparticles?
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.5b01456
– volume: 1
  start-page: 64
  issue: 1
  year: 2019
  ident: 10.1016/j.polymer.2024.126947_b14
  article-title: Supramolecular single-chain polymeric nanoparticles
  publication-title: CCS Chem.
  doi: 10.31635/ccschem.019.20180036
– volume: 34
  start-page: 2197
  issue: 25
  year: 2013
  ident: 10.1016/j.polymer.2024.126947_b40
  article-title: GALAMOST: GPU-accelerated large-scale molecular simulation toolkit
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.23365
– volume: 3
  start-page: 917
  issue: 12
  year: 2011
  ident: 10.1016/j.polymer.2024.126947_b3
  article-title: Single-chain technology using discrete synthetic macromolecules
  publication-title: Nature Chem.
  doi: 10.1038/nchem.1175
– volume: 12
  start-page: 4494
  issue: 24
  year: 2022
  ident: 10.1016/j.polymer.2024.126947_b9
  article-title: Nanoparticles in drug delivery: from history to therapeutic applications
  publication-title: Nanomaterials
  doi: 10.3390/nano12244494
– volume: 46
  start-page: 9748
  issue: 24
  year: 2013
  ident: 10.1016/j.polymer.2024.126947_b25
  article-title: Advantages of orthogonal folding of single polymer chains to soft nanoparticles
  publication-title: Macromolecules
  doi: 10.1021/ma4021399
– volume: 49
  start-page: 4178
  issue: 39
  year: 2013
  ident: 10.1016/j.polymer.2024.126947_b28
  article-title: Controlled folding of a novel electroactive polyolefin via multiple sequential orthogonal intra-chain interactions
  publication-title: Chem. Commun.
  doi: 10.1039/C2CC37157J
– year: 1988
  ident: 10.1016/j.polymer.2024.126947_b45
– volume: 28
  issue: 48
  year: 2018
  ident: 10.1016/j.polymer.2024.126947_b21
  article-title: Protein-sized dye-loaded polymer nanoparticles for free particle diffusion in cytosol
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201805157
– volume: 138
  issue: 5
  year: 2013
  ident: 10.1016/j.polymer.2024.126947_b43
  article-title: Gyration tensor based analysis of the shapes of polymer chains in an attractive spherical cage
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4788616
– year: 1986
  ident: 10.1016/j.polymer.2024.126947_b48
– volume: 113
  start-page: E1142
  issue: 9
  year: 2016
  ident: 10.1016/j.polymer.2024.126947_b18
  article-title: Tailoring nanoparticle designs to target cancer based on tumor pathophysiology
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1521265113
– volume: 3
  start-page: 640
  issue: 3
  year: 2012
  ident: 10.1016/j.polymer.2024.126947_b26
  article-title: Bioinspired dual self-folding of single polymer chains via reversible hydrogen bonding
  publication-title: Polymer Chem.
  doi: 10.1039/C1PY00392E
– year: 1979
  ident: 10.1016/j.polymer.2024.126947_b44
– volume: 116
  start-page: 1065
  issue: 7–8
  year: 2018
  ident: 10.1016/j.polymer.2024.126947_b41
  article-title: Employing multi-GPU power for molecular dynamics simulation: An extension of GALAMOST
  publication-title: Mol. Phys.
  doi: 10.1080/00268976.2018.1434904
– volume: 5
  start-page: 9
  issue: 1
  year: 2015
  ident: 10.1016/j.polymer.2024.126947_b17
  article-title: Characterization of single-chain polymer folding using size exclusion chromatography with multiple modes of detection
  publication-title: Appl. Petrochem. Res.
  doi: 10.1007/s13203-014-0046-1
– volume: 37
  start-page: 2634
  issue: 30
  year: 2016
  ident: 10.1016/j.polymer.2024.126947_b39
  article-title: And florian müller-plathe. a kinetic chain growth algorithm in coarse-grained simulations
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.24495
– volume: 9
  start-page: 3169
  issue: 3
  year: 2015
  ident: 10.1016/j.polymer.2024.126947_b31
  article-title: Elasticity of nanoparticles influences their blood circulation, phagocytosis, endocytosis, and targeting
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b00147
– volume: 10
  start-page: 5552
  issue: 1
  year: 2019
  ident: 10.1016/j.polymer.2024.126947_b13
  article-title: An unexpected N-dependence in the viscosity reduction in all-polymer nanocomposite
  publication-title: Nature Commun.
  doi: 10.1038/s41467-019-13410-z
– volume: 11
  start-page: 1369
  issue: 7
  year: 2015
  ident: 10.1016/j.polymer.2024.126947_b36
  article-title: Simulation guided design of globular single-chain nanoparticles by tuning the solvent quality
  publication-title: Soft Matter
  doi: 10.1039/C4SM02475C
– volume: 356
  start-page: 26
  year: 2023
  ident: 10.1016/j.polymer.2024.126947_b10
  article-title: Single-chain polymer nanoparticles in biomedical applications
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2023.02.019
– year: 2003
  ident: 10.1016/j.polymer.2024.126947_b46
– volume: 54
  start-page: 11459
  issue: 24
  year: 2021
  ident: 10.1016/j.polymer.2024.126947_b29
  article-title: Control and characterization of the compactness of single-chain nanoparticles
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.1c02071
– volume: 249
  start-page: 173
  year: 2017
  ident: 10.1016/j.polymer.2024.126947_b37
  article-title: Generation-6 hydroxyl PAMAM dendrimers improve CNS penetration from intravenous administration in a large animal brain injury model
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2017.01.032
SSID ssj0002524
Score 2.450432
Snippet Single-chain nanoparticles (SCNPs) show great promise in biomedical applications, due to their unique properties in ultra-small size, high porosity, and ease...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 126947
SubjectTerms Co-assembly
Molecular dynamics simulations
Nanoreactor
Single chain nanoparticle
Title Co-assembly nanoreactor protocol for the efficient synthesis of single-chain nanoparticles
URI https://dx.doi.org/10.1016/j.polymer.2024.126947
Volume 299
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5FD-pBtCq-ycFrtrtJ9pGjLJaq2JOF4mXZbLJYqbvF1kMv_nZn9mEriILHDTshTIaZb5KZL4Rc-RrSHpV7DLwiHt14AYt8pVhmU9h_LX1rsDn5YRgMRvJu7I87JG57YbCssvH9tU-vvHUz0mu02ZtNJtjjK2B-iNCyvg_EDnYZopU7H6syD-7zmolZcIZ_r7p4ei_OrJwuXy3SgnLpeNjUGf4cn9ZiTn-P7DZgkV7X69knHVt0yVbcvtHWJTtrdIIH5CkuGWBh-6qnS1qkRQmAEM_kKZIxlLDjFBAqBcRHbUUcAfGGzpcFDMwnc1rmFM8NppZlz-mkqCaYtXVzh2TUv3mMB6x5O4FlwlULFgjjujYNlIhcrXgmhNaeNKnmYZSFePfnicwLw9zkqVI2l5JrwyPfBKk0SrriiGwUZWGPCQ218HJIogH8GSm00q7xIS-MeBXKuDghstVYkjXE4vi-xTRpK8hekkbRCSo6qRV9QpwvsVnNrPGXQNRuR_LNRBLw_r-Lnv5f9Ixs4xdeIHnBOdlYvL3bC8AhC31ZGdol2by-vR8MPwFaa91A
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLbGOAAHBAPEeObANVubpI8c0QTaeOy0SROXqmlSsWlrJzYO-_c4awtDQiBxTeWosiP7c2J_BrjxFKY9MnUpekV7deP6NPSkpImJ0f5KeEbb5uTnvt8dioeRN6pBp-qFsWWVpe8vfPraW5cr7VKb7fl4bHt8Oe6PEVoU74FbsG3Zqbw6bN_2Hrv9T4fMPFaQMXNGrcBXI0970prn09XMWGZQJlqu7esMfg5RG2Hn_gD2S7xIbotfOoSayRqw06nGtDVgb4NR8AheOjlFOGxmaroiWZzliAnttTyxfAw5Gp0gSCUI-ohZc0dgyCGLVYYLi_GC5CmxVwdTQ5PXeJytN5hXpXPHMLy_G3S6tByfQBPuyCX1uXYcE_uSh46SLOFcKVfoWLEgTAL7_OfyxA2CVKexlCYVginNQk_7sdBSOPwE6lmemVMggeJuink04j8tuJLK0R6mhiFbRzPGmyAqjUVJyS1uR1xMo6qIbBKVio6soqNC0U1ofYrNC3KNvwTCyhzRt1MSYQD4XfTs_6LXsNMdPD9FT73-4zns2i_2Pcn1L6C-fHs3lwhLluqqPHYf91rf8Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Co-assembly+nanoreactor+protocol+for+the+efficient+synthesis+of+single-chain+nanoparticles&rft.jtitle=Polymer+%28Guilford%29&rft.au=Zhang%2C+Niboqia&rft.au=Yu%2C+Linxiuzi&rft.au=Qian%2C+Hu-Jun&rft.au=Lu%2C+Zhong-Yuan&rft.date=2024-04-16&rft.pub=Elsevier+Ltd&rft.issn=0032-3861&rft.eissn=1873-2291&rft.volume=299&rft_id=info:doi/10.1016%2Fj.polymer.2024.126947&rft.externalDocID=S0032386124002829
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-3861&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-3861&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-3861&client=summon