Spinodal decomposition and the pseudo-binary decomposition in high-entropy alloys
High-entropy alloys (HEAs) have many attractive properties, while the thermodynamic mechanism and general behavior of the spinodal decomposition in HEAs remain unknown. In this work, we conduct an experimentally consistent calculation of the spinodal decomposition of HEAs. Against the “high mixing e...
Saved in:
Published in | Acta materialia Vol. 248; p. 118775 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
15.04.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | High-entropy alloys (HEAs) have many attractive properties, while the thermodynamic mechanism and general behavior of the spinodal decomposition in HEAs remain unknown. In this work, we conduct an experimentally consistent calculation of the spinodal decomposition of HEAs. Against the “high mixing entropy” theory, we show that increasing the number of elements can increase the possibility of spinodal decomposition, and the effects of the temperature, entropy and enthalpy are clarified. The high entropy effect on the widely observed pseudo-binary decomposition is proposed. These results provide a necessary paradigm to understand and further harness the spinodal decomposition in HEAs.
[Display omitted] |
---|---|
AbstractList | High-entropy alloys (HEAs) have many attractive properties, while the thermodynamic mechanism and general behavior of the spinodal decomposition in HEAs remain unknown. In this work, we conduct an experimentally consistent calculation of the spinodal decomposition of HEAs. Against the “high mixing entropy” theory, we show that increasing the number of elements can increase the possibility of spinodal decomposition, and the effects of the temperature, entropy and enthalpy are clarified. The high entropy effect on the widely observed pseudo-binary decomposition is proposed. These results provide a necessary paradigm to understand and further harness the spinodal decomposition in HEAs.
[Display omitted] |
ArticleNumber | 118775 |
Author | Huang, Liufei Luo, Bosang Si, Jiajia Yao, Ke-Fu Li, Jinfeng Han, Zhidong Yang, Xinglong Lu, Jian Luan, Hengwei Kang, Jingyi Shao, Yang |
Author_xml | – sequence: 1 givenname: Hengwei orcidid: 0000-0003-0095-4528 surname: Luan fullname: Luan, Hengwei organization: School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China – sequence: 2 givenname: Liufei orcidid: 0000-0002-8079-8651 surname: Huang fullname: Huang, Liufei organization: Institute of Materials, China Academy of Engineering Physics, Mianyang 621908, China – sequence: 3 givenname: Jingyi surname: Kang fullname: Kang, Jingyi organization: School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China – sequence: 4 givenname: Bosang surname: Luo fullname: Luo, Bosang organization: School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China – sequence: 5 givenname: Xinglong surname: Yang fullname: Yang, Xinglong organization: School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China – sequence: 6 givenname: Jinfeng surname: Li fullname: Li, Jinfeng organization: Institute of Materials, China Academy of Engineering Physics, Mianyang 621908, China – sequence: 7 givenname: Zhidong surname: Han fullname: Han, Zhidong organization: School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China – sequence: 8 givenname: Jiajia orcidid: 0000-0002-5228-0388 surname: Si fullname: Si, Jiajia organization: School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China – sequence: 9 givenname: Yang surname: Shao fullname: Shao, Yang email: shaoyang@mail.tsinghua.edu.cn organization: School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China – sequence: 10 givenname: Jian surname: Lu fullname: Lu, Jian organization: Department of Mechanical Engineering, City University of Hong Kong, Tat Chee Avenue, Hong Kong 999077, China – sequence: 11 givenname: Ke-Fu surname: Yao fullname: Yao, Ke-Fu email: kfyao@mail.tsinghua.edu.cn organization: School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China |
BookMark | eNqFkN1KAzEQhYNUsK0-grAvsGuySTYNXogU_6Agol6HbH5syjZZkij07U1pr3rTqxlm5hzmfDMw8cEbAG4RbBBE3d2mkSrLrcxNC1vcILRgjF6Aaam4bgnFk9JjyuuOUHIFZiltIEQtI3AKPj5H54OWQ6WNCtsxJJdd8JX0usprU43J_OpQ987LuDu5cb5au591bXyOYdxVchjCLl2DSyuHZG6OdQ6-n5--lq_16v3lbfm4qhWGPNcd6rQlsFPQaq4sJD3tCUa8K1tuuEU9LXPWUYtb3iuoGJMWLzBFhrFe93gO7g--KoaUorFCuSz3j-Uo3SAQFHs6YiOOdMSejjjQKWp6oh6j25aMZ3UPB50p0f6ciSIpZ7wy2kWjstDBnXH4B8aQheM |
CitedBy_id | crossref_primary_10_1016_j_apsusc_2024_160878 crossref_primary_10_1016_j_jmrt_2024_07_090 crossref_primary_10_1016_j_matdes_2023_112508 crossref_primary_10_1016_j_actamat_2024_120302 crossref_primary_10_1007_s44210_024_00047_x crossref_primary_10_1016_j_ijrmhm_2023_106499 crossref_primary_10_1016_j_mtcomm_2025_112020 crossref_primary_10_1021_acsnano_4c03435 crossref_primary_10_1016_j_jallcom_2024_175849 crossref_primary_10_1038_s41467_024_50078_6 crossref_primary_10_1016_j_jmrt_2023_09_289 crossref_primary_10_1038_s44160_024_00690_7 crossref_primary_10_1016_j_jallcom_2023_170091 crossref_primary_10_55713_jmmm_v34i3_2107 crossref_primary_10_1016_j_ijplas_2024_103987 crossref_primary_10_1016_j_matchar_2023_113456 crossref_primary_10_1016_j_matchar_2023_113435 crossref_primary_10_1016_j_matchar_2023_113516 crossref_primary_10_1016_j_matchar_2023_113330 crossref_primary_10_1016_j_jmrt_2024_11_020 crossref_primary_10_1016_j_apsusc_2024_161958 crossref_primary_10_1016_j_jallcom_2025_178460 crossref_primary_10_1039_D3EE02788K crossref_primary_10_1016_j_actbio_2024_06_015 crossref_primary_10_1016_j_matchar_2024_114686 crossref_primary_10_1016_j_matdes_2023_111824 crossref_primary_10_1016_j_msea_2024_146813 crossref_primary_10_1016_j_nucengdes_2024_113324 crossref_primary_10_1016_j_actamat_2024_119729 crossref_primary_10_1016_j_jallcom_2024_174029 crossref_primary_10_1038_s41467_025_56181_6 crossref_primary_10_1016_j_jmrt_2023_10_102 crossref_primary_10_1016_j_actamat_2023_119426 crossref_primary_10_1016_j_matdes_2025_113622 crossref_primary_10_1016_j_jmrt_2024_05_193 crossref_primary_10_1016_j_intermet_2024_108455 |
Cites_doi | 10.1016/j.scriptamat.2019.12.041 10.1016/j.jmrt.2018.04.020 10.1016/j.matchemphys.2020.122700 10.1016/j.intermet.2011.01.004 10.1002/adfm.202007668 10.1016/j.intermet.2010.06.003 10.1007/s10853-022-07058-2 10.1016/0001-6160(53)90059-5 10.1103/PhysRevLett.127.175501 10.1007/s11669-021-00915-8 10.1016/j.intermet.2012.03.005 10.1038/ncomms7529 10.1002/adem.201700048 10.1023/A:1018687811688 10.1103/PhysRevLett.116.135504 10.1016/j.actamat.2015.08.076 10.1016/j.matchemphys.2011.11.021 10.1007/s11669-017-0578-z 10.3390/e18030102 10.1016/j.scriptamat.2006.05.020 10.1016/j.actamat.2016.05.007 10.1038/ncomms13564 10.1016/0001-6160(71)90036-8 10.1016/j.joule.2018.12.015 10.1016/j.matlet.2016.01.096 10.1107/S0021889875009703 10.1166/sam.2016.2793 10.1016/j.actamat.2020.08.023 10.1007/s11669-022-00977-2 10.1016/j.actamat.2010.09.023 10.1126/science.aan5412 10.1016/j.scriptamat.2022.114657 10.1038/s41467-019-11848-9 10.1126/science.1254581 10.1016/j.actamat.2015.11.040 10.1103/PhysRevLett.113.107001 10.1016/j.ultramic.2012.12.015 10.1007/BF02712812 10.1016/S0022-3697(73)80026-5 10.1016/j.apsusc.2018.07.106 10.1063/5.0065522 10.1179/1743284715Y.0000000024 10.1016/0001-6160(72)90140-X 10.1016/j.actamat.2020.07.030 10.1016/j.intermet.2018.04.004 10.1016/j.commatsci.2019.109284 10.1007/s11669-019-00748-6 10.3166/acsm.31.633-648 10.1016/j.calphad.2013.10.006 10.1016/j.matdes.2017.08.022 10.1016/0022-3697(72)90011-X 10.1016/j.matdes.2016.07.073 10.1016/j.pmatsci.2013.10.001 10.1007/s11669-017-0547-6 10.1063/1.1730145 10.1016/j.msea.2017.02.072 10.1073/pnas.1716981114 10.1016/j.actamat.2016.08.081 10.1002/adem.200300567 10.1038/s41467-019-10303-z 10.1016/j.actamat.2017.02.053 10.1016/0956-7151(94)90482-0 10.1016/j.jallcom.2016.09.189 10.1016/j.scriptamat.2021.113804 10.1126/science.aas8815 10.1016/j.matdes.2019.107928 10.1063/1.1744102 10.1016/j.actamat.2013.01.042 10.1016/j.jallcom.2020.153766 |
ContentType | Journal Article |
Copyright | 2023 Acta Materialia Inc. |
Copyright_xml | – notice: 2023 Acta Materialia Inc. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.actamat.2023.118775 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-2453 |
ExternalDocumentID | 10_1016_j_actamat_2023_118775 S1359645423001064 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABMAC ABNEU ABXRA ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AIEXJ AIKHN AITUG AIVDX AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W KOM M41 MAGPM N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SPD SSM SSQ SSZ T5K TN5 XPP ZMT ~G- AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADIYS ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FGOYB R2- SSH T9H ZY4 |
ID | FETCH-LOGICAL-c309t-616df406c0fd9cf04b5b431963099e9f1b5d9c765f329bc0c77af38351e77bdb3 |
IEDL.DBID | .~1 |
ISSN | 1359-6454 |
IngestDate | Tue Jul 01 01:30:20 EDT 2025 Thu Apr 24 23:12:59 EDT 2025 Fri Feb 23 02:40:29 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | High-entropy alloys Phase stability Pseudo-binary decomposition Gibbs phase rule Spinodal decomposition |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c309t-616df406c0fd9cf04b5b431963099e9f1b5d9c765f329bc0c77af38351e77bdb3 |
ORCID | 0000-0002-8079-8651 0000-0003-0095-4528 0000-0002-5228-0388 |
ParticipantIDs | crossref_citationtrail_10_1016_j_actamat_2023_118775 crossref_primary_10_1016_j_actamat_2023_118775 elsevier_sciencedirect_doi_10_1016_j_actamat_2023_118775 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-04-15 |
PublicationDateYYYYMMDD | 2023-04-15 |
PublicationDate_xml | – month: 04 year: 2023 text: 2023-04-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Acta materialia |
PublicationYear | 2023 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Munitz, Samuha, Brosh, Salhov, Derimow, Abbaschian (bib0028) 2018; 97 Koneru, Kadirvel, Wang (bib0044) 2022; 43 Granberg, Nordlund, Ullah, Jin, Lu, Bei, Wang, Djurabekova, Weber, Zhang (bib0008) 2016; 116 Morral (bib0053) 1972; 20 Jien-Wei (bib0072) 2006; 31 Abe, Shimono, Hashimoto, Hono, Onodera (bib0074) 2006; 55 Borkar, Chaudhary, Gwalani, Choudhuri, Mikler, Soni, Alam, Ramanujan, Banerjee (bib0031) 2017; 19 Zhang, Zhang, Tang, Zhu, Ye, Li, Bai (bib0037) 2017; 133 Morral, Chen (bib0042) 2021; 42 Morral, Chen (bib0040) 2017; 38 Morral, Chen (bib0055) 2019; 40 Melnick, Soolshenko (bib0061) 2017; 694 Dewangan, Samal, Kumar (bib0071) 2020; 823 Sugathan, Bhattacharya (bib0058) 2020; 172 Wang, Wang, Wang, Tsai, Lai, Yeh (bib0039) 2012; 26 Na, Lim, Chang, Kim (bib0077) 2016; 8 Gludovatz, Hohenwarter, Catoor, Chang, George, Ritchie (bib0002) 2014; 345 Luan, Shao, Li, Mao, Han, Shao, Yao (bib0018) 2020; 179 He, Wang, Huang, Xu, Chen, Wu, Liu, Nieh, An, Lu (bib0020) 2016; 102 Yeh, Chen, Lin, Gan, Chin, Shun, Tsau, Chang (bib0001) 2004; 6 Yao, Huang, Xie, Lacey, Jacob, Xie, Chen, Nie, Pu, Rehwoldt, Yu, Zachariah, Wang, Shahbazian-Yassar, Li, Hu (bib0013) 2018; 359 Cahn (bib0048) 1959; 30 Takeuchi, Inoue (bib0063) 2010; 18 Kadirvel, Kloenne, Jensen, Fraser, Wang (bib0024) 2021; 119 Laughlin, Hono (bib0025) 2014 Halder (bib0046) 2014 Manzoni, Daoud, Volkl, Glatzel, Wanderka (bib0026) 2013; 132 Mohanty, Samal, Tazuddin, Tiwary, Gurao, Biswas (bib0075) 2015; 31 Miracle, Senkov (bib0017) 2017; 122 Laplanche (bib0021) 2020; 199 Marik, Motla, Varghese, Sajilesh, Singh, Breard, Boullay, Singh (bib0012) 2019; 3 Murty, Yeh, Raganathan (bib0045) 2014 Zhang, Zhang, Chen, Zhu, Cao, Kattner (bib0069) 2014; 45 Senkov, Wilks, Scott, Miracle (bib0003) 2011; 19 Bhattacharyya, Abinandanan (bib0057) 2003; 26 Zhang, Zuo, Tang, Gao, Dahmen, Liaw, Lu (bib0062) 2014; 61 Kumar, Li, Leonard, Bei, Zinkle (bib0006) 2016; 113 Sun, Cava (bib0011) 2019; 3 Otto, Yang, Bei, George (bib0066) 2013; 61 King, Middleburgh, McGregor, Cortie (bib0064) 2016; 104 De Fontaine (bib0050) 1972; 33 Khachaturyan (bib0059) 2013 Morral, Cahn (bib0054) 1971; 19 Senkov, Isheim, Seidman, Pilchak (bib0033) 2016; 18 Gwalani, Choudhuri, Soni, Ren, Styles, Hwang, Nam, Ryu, Hong, Banerjee (bib0019) 2017; 129 Munitz, Meshi, Kaufman (bib0027) 2017; 689 Maier-Paape, Stoth, Wanner (bib0049) 2000; 98 Rao, Dutta, Körmann, Lu, Zhou, Liu, Silva, Wiedwald, Spasova, Farle, Ponge, Gault, Neugebauer, Raabe, Li (bib0032) 2020; 31 Zhou, Tehranchi, Curtin (bib0005) 2021; 127 Glasscott, Pendergast, Goines, Bishop, Hoang, Renault, Dick (bib0015) 2019; 10 Dong, Gao, Lu, Wang, Li (bib0034) 2016; 169 Zhang, Chen, Cao, Zhang, Zhang, Tao, Yang (bib0030) 2019; 8 Singh, Wanderka, Murty, Glatzel, Banhart (bib0029) 2011; 59 Zhang, Zhang, Diao, Gao, Tang, Poplawsky, Liaw (bib0067) 2016; 109 De Fontaine (bib0052) 1975; 8 Kozelj, Vrtnik, Jelen, Jazbec, Jaglicic, Maiti, Feuerbacher, Steurer, Dolinsek (bib0010) 2014; 113 Xie, Yao, Huang, Liu, Zhang, Li, Wang, Shahbazian-Yassar, Hu, Wang (bib0016) 2019; 10 Yang, Zhang (bib0022) 2012; 132 Kadirvel, Koneru, Wang (bib0065) 2022; 214 Yang, Zhao, Tong, Jiao, Wei, Cai, Han, Chen, Hu, Kai, Lu, Liu, Liu (bib0004) 2018; 362 Krishna, Jaiswal, Rahul (bib0023) 2021; 197 Chen, Yan, Meng, Wu, Yao, Zhang (bib0035) 2018; 462 Batchelor, Pedersen, Winther, Castelli, Jacobsen, Rossmeisl (bib0014) 2019; 3 Morral, Chen (bib0041) 2017; 38 Senkov, Miller, Miracle, Woodward (bib0068) 2015; 6 De Fontaine (bib0051) 1973; 34 Li, Li, Wang, Dong, Liaw (bib0043) 2020; 197 Cahn, Hilliard (bib0047) 1958; 28 Guo, Wang, von Rohr, Wang, Cai, Zhou, Yang, Li, Jiang, Wu, Cava, Sun (bib0009) 2017; 114 Lu, Niu, Chen, Jin, Yang, Xiu, Zhang, Gao, Bei, Shi, He, Robertson, Weber, Wang (bib0007) 2016; 7 Wang, Zhao, Xu, Cheng, Hou (bib0036) 2020; 244 Tang, Wang, Li, Liu, Ye, Zhu, Bai, Xiao (bib0038) 2019; 181 Raghavan (bib0060) 2015 Hardy (bib0073) 1953; 1 Chen (bib0056) 1994; 42 Jung, Peter, Gärtner, Dehm, Uhlenwinkel, Jägle (bib0076) 2020; 35 Coutinho, Kunwar, Moelans (bib0070) 2022; 57 Yeh (10.1016/j.actamat.2023.118775_bib0001) 2004; 6 Sun (10.1016/j.actamat.2023.118775_bib0011) 2019; 3 Dong (10.1016/j.actamat.2023.118775_bib0034) 2016; 169 Singh (10.1016/j.actamat.2023.118775_bib0029) 2011; 59 Kozelj (10.1016/j.actamat.2023.118775_bib0010) 2014; 113 Marik (10.1016/j.actamat.2023.118775_bib0012) 2019; 3 Krishna (10.1016/j.actamat.2023.118775_bib0023) 2021; 197 Kadirvel (10.1016/j.actamat.2023.118775_bib0024) 2021; 119 Gludovatz (10.1016/j.actamat.2023.118775_bib0002) 2014; 345 Yang (10.1016/j.actamat.2023.118775_bib0022) 2012; 132 Mohanty (10.1016/j.actamat.2023.118775_bib0075) 2015; 31 De Fontaine (10.1016/j.actamat.2023.118775_bib0052) 1975; 8 Murty (10.1016/j.actamat.2023.118775_bib0045) 2014 Bhattacharyya (10.1016/j.actamat.2023.118775_bib0057) 2003; 26 Jung (10.1016/j.actamat.2023.118775_bib0076) 2020; 35 Lu (10.1016/j.actamat.2023.118775_bib0007) 2016; 7 Chen (10.1016/j.actamat.2023.118775_bib0035) 2018; 462 Wang (10.1016/j.actamat.2023.118775_bib0039) 2012; 26 Granberg (10.1016/j.actamat.2023.118775_bib0008) 2016; 116 Wang (10.1016/j.actamat.2023.118775_bib0036) 2020; 244 Zhou (10.1016/j.actamat.2023.118775_bib0005) 2021; 127 Jien-Wei (10.1016/j.actamat.2023.118775_bib0072) 2006; 31 Morral (10.1016/j.actamat.2023.118775_bib0054) 1971; 19 Morral (10.1016/j.actamat.2023.118775_bib0053) 1972; 20 Morral (10.1016/j.actamat.2023.118775_bib0041) 2017; 38 Rao (10.1016/j.actamat.2023.118775_bib0032) 2020; 31 Glasscott (10.1016/j.actamat.2023.118775_bib0015) 2019; 10 Sugathan (10.1016/j.actamat.2023.118775_bib0058) 2020; 172 Laplanche (10.1016/j.actamat.2023.118775_bib0021) 2020; 199 Kumar (10.1016/j.actamat.2023.118775_bib0006) 2016; 113 Dewangan (10.1016/j.actamat.2023.118775_bib0071) 2020; 823 Cahn (10.1016/j.actamat.2023.118775_bib0047) 1958; 28 Yao (10.1016/j.actamat.2023.118775_bib0013) 2018; 359 Munitz (10.1016/j.actamat.2023.118775_bib0027) 2017; 689 Senkov (10.1016/j.actamat.2023.118775_bib0068) 2015; 6 Borkar (10.1016/j.actamat.2023.118775_bib0031) 2017; 19 Otto (10.1016/j.actamat.2023.118775_bib0066) 2013; 61 Zhang (10.1016/j.actamat.2023.118775_bib0069) 2014; 45 Miracle (10.1016/j.actamat.2023.118775_bib0017) 2017; 122 Kadirvel (10.1016/j.actamat.2023.118775_bib0065) 2022; 214 Tang (10.1016/j.actamat.2023.118775_bib0038) 2019; 181 Cahn (10.1016/j.actamat.2023.118775_bib0048) 1959; 30 Raghavan (10.1016/j.actamat.2023.118775_bib0060) 2015 Gwalani (10.1016/j.actamat.2023.118775_bib0019) 2017; 129 Morral (10.1016/j.actamat.2023.118775_bib0055) 2019; 40 De Fontaine (10.1016/j.actamat.2023.118775_bib0051) 1973; 34 Zhang (10.1016/j.actamat.2023.118775_bib0030) 2019; 8 Coutinho (10.1016/j.actamat.2023.118775_bib0070) 2022; 57 Li (10.1016/j.actamat.2023.118775_bib0043) 2020; 197 Khachaturyan (10.1016/j.actamat.2023.118775_bib0059) 2013 Na (10.1016/j.actamat.2023.118775_bib0077) 2016; 8 King (10.1016/j.actamat.2023.118775_bib0064) 2016; 104 Manzoni (10.1016/j.actamat.2023.118775_bib0026) 2013; 132 Morral (10.1016/j.actamat.2023.118775_bib0040) 2017; 38 He (10.1016/j.actamat.2023.118775_bib0020) 2016; 102 Chen (10.1016/j.actamat.2023.118775_bib0056) 1994; 42 Hardy (10.1016/j.actamat.2023.118775_bib0073) 1953; 1 Zhang (10.1016/j.actamat.2023.118775_bib0067) 2016; 109 Halder (10.1016/j.actamat.2023.118775_bib0046) 2014 Luan (10.1016/j.actamat.2023.118775_bib0018) 2020; 179 Abe (10.1016/j.actamat.2023.118775_bib0074) 2006; 55 Guo (10.1016/j.actamat.2023.118775_bib0009) 2017; 114 Munitz (10.1016/j.actamat.2023.118775_bib0028) 2018; 97 Xie (10.1016/j.actamat.2023.118775_bib0016) 2019; 10 Koneru (10.1016/j.actamat.2023.118775_bib0044) 2022; 43 Melnick (10.1016/j.actamat.2023.118775_bib0061) 2017; 694 Zhang (10.1016/j.actamat.2023.118775_bib0062) 2014; 61 Takeuchi (10.1016/j.actamat.2023.118775_bib0063) 2010; 18 Batchelor (10.1016/j.actamat.2023.118775_bib0014) 2019; 3 Laughlin (10.1016/j.actamat.2023.118775_bib0025) 2014 Morral (10.1016/j.actamat.2023.118775_bib0042) 2021; 42 Yang (10.1016/j.actamat.2023.118775_bib0004) 2018; 362 De Fontaine (10.1016/j.actamat.2023.118775_bib0050) 1972; 33 Senkov (10.1016/j.actamat.2023.118775_bib0033) 2016; 18 Maier-Paape (10.1016/j.actamat.2023.118775_bib0049) 2000; 98 Senkov (10.1016/j.actamat.2023.118775_bib0003) 2011; 19 Zhang (10.1016/j.actamat.2023.118775_bib0037) 2017; 133 |
References_xml | – year: 2013 ident: bib0059 article-title: Theory of Structural Transformations in Solids – volume: 694 start-page: 223 year: 2017 end-page: 227 ident: bib0061 article-title: Thermodynamic design of high-entropy refractory alloys publication-title: J. Alloys Compd. – volume: 18 start-page: 1779 year: 2010 end-page: 1789 ident: bib0063 article-title: Mixing enthalpy of liquid phase calculated by miedema's scheme and approximated with sub-regular solution model for assessing forming ability of amorphous and glassy alloys publication-title: Intermetallics – volume: 97 start-page: 77 year: 2018 end-page: 84 ident: bib0028 article-title: Liquid phase separation phenomena in Al publication-title: Intermetallics – volume: 129 start-page: 170 year: 2017 end-page: 182 ident: bib0019 article-title: Cu assisted stabilization and nucleation of L1 publication-title: Acta Mater – volume: 199 start-page: 193 year: 2020 end-page: 208 ident: bib0021 article-title: Growth kinetics of σ-phase precipitates and underlying diffusion processes in CrMnFeCoNi high-entropy alloys publication-title: Acta Mater – volume: 43 start-page: 753 year: 2022 end-page: 763 ident: bib0044 article-title: High-throughput design of multi-principal element alloys with spinodal decomposition assisted microstructures publication-title: J. Phase Equilibria Diffus – volume: 59 start-page: 182 year: 2011 end-page: 190 ident: bib0029 article-title: Decomposition in multi-component AlCoCrCuFeNi high-entropy alloy publication-title: Acta Mater – volume: 98 start-page: 871 year: 2000 end-page: 896 ident: bib0049 article-title: Spinodal decomposition for multicomponent Cahn-Hilliard systems publication-title: J. Stat. Phys. – volume: 104 start-page: 172 year: 2016 end-page: 179 ident: bib0064 article-title: Predicting the formation and stability of single phase high-entropy alloys publication-title: Acta Mater – volume: 20 start-page: 1069 year: 1972 ident: bib0053 article-title: Stability limits for ternary regular system publication-title: Acta Metall – volume: 244 year: 2020 ident: bib0036 article-title: Evolution of mechanical properties and corrosion resistance of Al publication-title: Mater. Chem. Phys. – volume: 30 start-page: 1121 year: 1959 end-page: 1124 ident: bib0048 article-title: Free energy of a nonuniform system. II. Thermodynamic basis publication-title: J. Chem. Phys. – volume: 34 start-page: 1285 year: 1973 end-page: 1304 ident: bib0051 article-title: An analysis of clustering and ordering in multicomponent solid solutions—II fluctuations and kinetics publication-title: J. Phys. Chem. Solids – volume: 8 start-page: 726 year: 2019 end-page: 736 ident: bib0030 article-title: Concurrence of spinodal decomposition and nano-phase precipitation in a multi-component AlCoCrCuFeNi high-entropy alloy publication-title: J. Mater. Res. Technol.-Jmr&T – year: 2014 ident: bib0046 article-title: Introduction to Chemical Engineering Thermodynamics – volume: 10 start-page: 2650 year: 2019 ident: bib0015 article-title: Electrosynthesis of high-entropy metallic glass nanoparticles for designer, multi-functional electrocatalysis publication-title: Nat. Commun. – volume: 45 start-page: 1 year: 2014 end-page: 10 ident: bib0069 article-title: An understanding of high entropy alloys from phase diagram calculations publication-title: Calphad-Comput. Coupl. Phase Diagram. Thermochem. – volume: 8 start-page: 81 year: 1975 end-page: 86 ident: bib0052 article-title: Clustering and ordering in solid solutions publication-title: J. Appl. Crystallogr. – volume: 6 start-page: 299 year: 2004 end-page: 303 ident: bib0001 article-title: Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes publication-title: Adv. Eng. Mater. – volume: 18 start-page: 102 year: 2016 ident: bib0033 article-title: Development of a refractory high entropy superalloy publication-title: Entropy – volume: 102 start-page: 187 year: 2016 end-page: 196 ident: bib0020 article-title: A precipitation-hardened high-entropy alloy with outstanding tensile properties publication-title: Acta Mater – volume: 132 start-page: 233 year: 2012 end-page: 238 ident: bib0022 article-title: Prediction of high-entropy stabilized solid-solution in multi-component alloys publication-title: Mater. Chem. Phys. – volume: 127 year: 2021 ident: bib0005 article-title: Mechanism and Prediction of Hydrogen Embrittlement in fcc Stainless Steels and High Entropy Alloys publication-title: Phys. Rev. Lett. – volume: 35 year: 2020 ident: bib0076 article-title: Bulk nanostructured AlCoCrFeMnNi chemically complex alloy synthesized by laser-powder bed fusion publication-title: Addit Manuf – volume: 6 start-page: 6529 year: 2015 ident: bib0068 article-title: Accelerated exploration of multi-principal element alloys with solid solution phases publication-title: Nat. Commun. – volume: 689 start-page: 384 year: 2017 end-page: 394 ident: bib0027 article-title: Heat treatments' effects on the microstructure and mechanical properties of an equiatomic Al-Cr-Fe-Mn-Ni high entropy alloy publication-title: Mater. Sci. Eng. a-Struct. Mater. Propert. Microstruct. Process. – volume: 113 year: 2014 ident: bib0010 article-title: Discovery of a superconducting high-entropy alloy publication-title: Phys. Rev. Lett. – volume: 122 start-page: 448 year: 2017 end-page: 511 ident: bib0017 article-title: A critical review of high entropy alloys and related concepts publication-title: Acta Mater – volume: 169 start-page: 62 year: 2016 end-page: 64 ident: bib0034 article-title: A multi-component AlCrFe publication-title: Mater. Lett. – volume: 33 start-page: 297 year: 1972 end-page: 310 ident: bib0050 article-title: An analysis of clustering and ordering in multicomponent solid solutions—I. Stability criteria publication-title: J. Phys. Chem. Solids – volume: 345 start-page: 1153 year: 2014 end-page: 1158 ident: bib0002 article-title: A fracture-resistant high-entropy alloy for cryogenic applications publication-title: Science – volume: 31 start-page: 633 year: 2006 end-page: 648 ident: bib0072 article-title: Recent progress in high entropy alloys publication-title: Ann. Chim. Sci. Mat – volume: 823 year: 2020 ident: bib0071 article-title: Microstructure exploration and an artificial neural network approach for hardness prediction in AlCrFeMnNiW publication-title: J. Alloys Compd. – volume: 26 start-page: 44 year: 2012 end-page: 51 ident: bib0039 article-title: Effects of Al addition on the microstructure and mechanical property of Al publication-title: Intermetallics – volume: 61 start-page: 2628 year: 2013 end-page: 2638 ident: bib0066 article-title: Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys publication-title: Acta Mater – volume: 19 year: 2017 ident: bib0031 article-title: A combinatorial approach for assessing the magnetic properties of high entropy alloys: role of Cr in AlCo publication-title: Adv. Eng. Mater. – volume: 3 start-page: 834 year: 2019 end-page: 845 ident: bib0014 article-title: High-entropy alloys as a discovery platform for electrocatalysis publication-title: Joule – volume: 38 start-page: 319 year: 2017 end-page: 331 ident: bib0041 article-title: High entropy alloys, miscibility gaps and the rose geometry publication-title: J. Phase Equilibria Diffus – volume: 197 year: 2021 ident: bib0023 article-title: Machine learning approach to predict new multiphase high entropy alloys publication-title: Scripta Mater – volume: 31 year: 2020 ident: bib0032 article-title: Beyond solid solution high-entropy alloys: tailoring magnetic properties via spinodal decomposition publication-title: Adv. Funct. Mater. – volume: 197 start-page: 10 year: 2020 end-page: 19 ident: bib0043 article-title: Phase-field simulation of coherent BCC/B2 microstructures in high entropy alloys publication-title: Acta Mater – volume: 462 start-page: 1017 year: 2018 end-page: 1028 ident: bib0035 article-title: Microstructural change and phase transformation in each individual layer of a nano-multilayered AlCrTiSiN high-entropy alloy nitride coating upon annealing publication-title: Appl. Surf. Sci. – volume: 119 year: 2021 ident: bib0024 article-title: Phase-field modelling of transformation pathways and microstructural evolution in multi-principal element alloys publication-title: Appl. Phys. Lett. – volume: 133 start-page: 435 year: 2017 end-page: 443 ident: bib0037 article-title: Microstructure, mechanical properties and energetic characteristics of a novel high-entropy alloy HfZrTiTa publication-title: Mater. Des. – volume: 8 start-page: 1984 year: 2016 end-page: 1988 ident: bib0077 article-title: Effect of trace additions of ti on the microstructure of AlCoCrFeNi-based high entropy alloy publication-title: Sci. Adv. Mater. – volume: 116 year: 2016 ident: bib0008 article-title: Mechanism of radiation damage reduction in equiatomic multicomponent single phase alloys publication-title: Phys. Rev. Lett. – volume: 19 start-page: 698 year: 2011 end-page: 706 ident: bib0003 article-title: Mechanical properties of Nb publication-title: Intermetallics – volume: 3 year: 2019 ident: bib0011 article-title: High-entropy alloy superconductors: status, opportunities, and challenges publication-title: Phys. Rev. Mater. – volume: 3 year: 2019 ident: bib0012 article-title: Superconductivity in a new hexagonal high-entropy alloy publication-title: Phys. Rev. Mater. – volume: 61 start-page: 1 year: 2014 end-page: 93 ident: bib0062 article-title: Microstructures and properties of high-entropy alloys publication-title: Prog. Mater Sci. – volume: 10 start-page: 4011 year: 2019 ident: bib0016 article-title: Highly efficient decomposition of ammonia using high-entropy alloy catalysts publication-title: Nat. Commun. – volume: 7 start-page: 13564 year: 2016 ident: bib0007 article-title: Enhancing radiation tolerance by controlling defect mobility and migration pathways in multicomponent single-phase alloys publication-title: Nat. Commun. – volume: 172 year: 2020 ident: bib0058 article-title: A phase-field study of elastic stress effects on phase separation in ternary alloys publication-title: Comput. Mater. Sci. – volume: 42 start-page: 3503 year: 1994 end-page: 3513 ident: bib0056 article-title: Computer-simulation of spinodal decomposition in ternary-systems publication-title: Acta Metallurgica Et Materialia – volume: 31 start-page: 1214 year: 2015 end-page: 1222 ident: bib0075 article-title: Effect of processing route on phase stability in equiatomic multicomponent Ti publication-title: Mater. Sci. Tech. – volume: 109 start-page: 425 year: 2016 end-page: 433 ident: bib0067 article-title: Understanding phase stability of Al-Co-Cr-Fe-Ni high entropy alloys publication-title: Mater. Des. – volume: 55 start-page: 421 year: 2006 end-page: 424 ident: bib0074 article-title: Phase separation and glass-forming abilities of ternary alloys publication-title: Scripta Mater – volume: 26 start-page: 193 year: 2003 end-page: 197 ident: bib0057 article-title: A study of phase separation in ternary alloys publication-title: Bull. Mater. Sci. – volume: 132 start-page: 212 year: 2013 end-page: 215 ident: bib0026 article-title: Phase separation in equiatomic AlCoCrFeNi high-entropy alloy publication-title: Ultramicroscopy – volume: 114 start-page: 13144 year: 2017 end-page: 13147 ident: bib0009 article-title: Robust zero resistance in a superconducting high-entropy alloy at pressures up to 190GPa publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 1 start-page: 202 year: 1953 end-page: 209 ident: bib0073 article-title: A “sub-regular” solution model and its application to some binary alloy systems publication-title: Acta Metall – volume: 42 start-page: 673 year: 2021 end-page: 695 ident: bib0042 article-title: Stability of high entropy alloys to spinodal decomposition publication-title: J. Phase Equilibria Diffus. – year: 2015 ident: bib0060 article-title: Physical metallurgy: Principles and Practice – volume: 181 year: 2019 ident: bib0038 article-title: Effect of metastability on non-phase-transformation high-entropy alloys publication-title: Mater. Des. – volume: 214 year: 2022 ident: bib0065 article-title: Exploration of spinodal decomposition in multi-principal element alloys (MPEAs) using CALPHAD modeling publication-title: Scripta Mater – volume: 38 start-page: 382 year: 2017 end-page: 390 ident: bib0040 article-title: A regular solution model for a single-phase high entropy and enthalpy alloy publication-title: J. Phase Equilibria Diffus – volume: 179 start-page: 40 year: 2020 end-page: 44 ident: bib0018 article-title: Phase stabilities of high entropy alloys publication-title: Scripta Mater – year: 2014 ident: bib0045 article-title: High-Entropy Alloys – volume: 113 start-page: 230 year: 2016 end-page: 244 ident: bib0006 article-title: Microstructural stability and mechanical behavior of FeNiMnCr high entropy alloy under ion irradiation publication-title: Acta Mater – volume: 19 start-page: 1037 year: 1971 ident: bib0054 article-title: Spinodal decomposition in ternary systems publication-title: Acta Metall – volume: 40 start-page: 532 year: 2019 end-page: 541 ident: bib0055 article-title: Gibbs-schreinemakers-meijering mechanisms for 3-Phase miscibility gap formation publication-title: J. Phase Equilibria Diffus – year: 2014 ident: bib0025 article-title: Physical Metallurgy – volume: 362 start-page: 933 year: 2018 end-page: 937 ident: bib0004 article-title: Multicomponent intermetallic nanoparticles and superb mechanical behaviors of complex alloys publication-title: Science – volume: 359 start-page: 1489 year: 2018 end-page: 1494 ident: bib0013 article-title: Carbothermal shock synthesis of high-entropy-alloy nanoparticles publication-title: Science – volume: 57 start-page: 10600 year: 2022 end-page: 10612 ident: bib0070 article-title: Phase-field approach to simulate BCC-B2 phase separation in the Al publication-title: J. Mater. Sci. – volume: 28 start-page: 258 year: 1958 end-page: 267 ident: bib0047 article-title: Free energy of a nonuniform system. I. Interfacial free energy publication-title: J. Chem. Phys. – volume: 179 start-page: 40 year: 2020 ident: 10.1016/j.actamat.2023.118775_bib0018 article-title: Phase stabilities of high entropy alloys publication-title: Scripta Mater doi: 10.1016/j.scriptamat.2019.12.041 – volume: 8 start-page: 726 issue: 1 year: 2019 ident: 10.1016/j.actamat.2023.118775_bib0030 article-title: Concurrence of spinodal decomposition and nano-phase precipitation in a multi-component AlCoCrCuFeNi high-entropy alloy publication-title: J. Mater. Res. Technol.-Jmr&T doi: 10.1016/j.jmrt.2018.04.020 – volume: 244 year: 2020 ident: 10.1016/j.actamat.2023.118775_bib0036 article-title: Evolution of mechanical properties and corrosion resistance of Al0.6CoFeNiCr0.4 high-entropy alloys at different heat treatment temperature publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2020.122700 – volume: 3 issue: 6 year: 2019 ident: 10.1016/j.actamat.2023.118775_bib0012 article-title: Superconductivity in a new hexagonal high-entropy alloy publication-title: Phys. Rev. Mater. – volume: 19 start-page: 698 issue: 5 year: 2011 ident: 10.1016/j.actamat.2023.118775_bib0003 article-title: Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys publication-title: Intermetallics doi: 10.1016/j.intermet.2011.01.004 – volume: 31 issue: 7 year: 2020 ident: 10.1016/j.actamat.2023.118775_bib0032 article-title: Beyond solid solution high-entropy alloys: tailoring magnetic properties via spinodal decomposition publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202007668 – year: 2014 ident: 10.1016/j.actamat.2023.118775_bib0045 – year: 2015 ident: 10.1016/j.actamat.2023.118775_bib0060 – volume: 18 start-page: 1779 issue: 9 year: 2010 ident: 10.1016/j.actamat.2023.118775_bib0063 article-title: Mixing enthalpy of liquid phase calculated by miedema's scheme and approximated with sub-regular solution model for assessing forming ability of amorphous and glassy alloys publication-title: Intermetallics doi: 10.1016/j.intermet.2010.06.003 – volume: 57 start-page: 10600 issue: 23 year: 2022 ident: 10.1016/j.actamat.2023.118775_bib0070 article-title: Phase-field approach to simulate BCC-B2 phase separation in the AlnCrFe2Ni2 medium-entropy alloy publication-title: J. Mater. Sci. doi: 10.1007/s10853-022-07058-2 – volume: 1 start-page: 202 issue: 2 year: 1953 ident: 10.1016/j.actamat.2023.118775_bib0073 article-title: A “sub-regular” solution model and its application to some binary alloy systems publication-title: Acta Metall doi: 10.1016/0001-6160(53)90059-5 – volume: 127 issue: 17 year: 2021 ident: 10.1016/j.actamat.2023.118775_bib0005 article-title: Mechanism and Prediction of Hydrogen Embrittlement in fcc Stainless Steels and High Entropy Alloys publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.127.175501 – volume: 42 start-page: 673 issue: 5 year: 2021 ident: 10.1016/j.actamat.2023.118775_bib0042 article-title: Stability of high entropy alloys to spinodal decomposition publication-title: J. Phase Equilibria Diffus. doi: 10.1007/s11669-021-00915-8 – volume: 26 start-page: 44 year: 2012 ident: 10.1016/j.actamat.2023.118775_bib0039 article-title: Effects of Al addition on the microstructure and mechanical property of AlxCoCrFeNi high-entropy alloys publication-title: Intermetallics doi: 10.1016/j.intermet.2012.03.005 – volume: 6 start-page: 6529 year: 2015 ident: 10.1016/j.actamat.2023.118775_bib0068 article-title: Accelerated exploration of multi-principal element alloys with solid solution phases publication-title: Nat. Commun. doi: 10.1038/ncomms7529 – volume: 19 issue: 8 year: 2017 ident: 10.1016/j.actamat.2023.118775_bib0031 article-title: A combinatorial approach for assessing the magnetic properties of high entropy alloys: role of Cr in AlCoxCr1-xFeNi publication-title: Adv. Eng. Mater. doi: 10.1002/adem.201700048 – volume: 98 start-page: 871 issue: 3–4 year: 2000 ident: 10.1016/j.actamat.2023.118775_bib0049 article-title: Spinodal decomposition for multicomponent Cahn-Hilliard systems publication-title: J. Stat. Phys. doi: 10.1023/A:1018687811688 – volume: 116 issue: 13 year: 2016 ident: 10.1016/j.actamat.2023.118775_bib0008 article-title: Mechanism of radiation damage reduction in equiatomic multicomponent single phase alloys publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.116.135504 – volume: 102 start-page: 187 year: 2016 ident: 10.1016/j.actamat.2023.118775_bib0020 article-title: A precipitation-hardened high-entropy alloy with outstanding tensile properties publication-title: Acta Mater doi: 10.1016/j.actamat.2015.08.076 – year: 2014 ident: 10.1016/j.actamat.2023.118775_bib0046 – volume: 132 start-page: 233 issue: 2–3 year: 2012 ident: 10.1016/j.actamat.2023.118775_bib0022 article-title: Prediction of high-entropy stabilized solid-solution in multi-component alloys publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2011.11.021 – volume: 38 start-page: 382 issue: 4 year: 2017 ident: 10.1016/j.actamat.2023.118775_bib0040 article-title: A regular solution model for a single-phase high entropy and enthalpy alloy publication-title: J. Phase Equilibria Diffus doi: 10.1007/s11669-017-0578-z – volume: 18 start-page: 102 issue: 3 year: 2016 ident: 10.1016/j.actamat.2023.118775_bib0033 article-title: Development of a refractory high entropy superalloy publication-title: Entropy doi: 10.3390/e18030102 – volume: 55 start-page: 421 issue: 5 year: 2006 ident: 10.1016/j.actamat.2023.118775_bib0074 article-title: Phase separation and glass-forming abilities of ternary alloys publication-title: Scripta Mater doi: 10.1016/j.scriptamat.2006.05.020 – volume: 113 start-page: 230 year: 2016 ident: 10.1016/j.actamat.2023.118775_bib0006 article-title: Microstructural stability and mechanical behavior of FeNiMnCr high entropy alloy under ion irradiation publication-title: Acta Mater doi: 10.1016/j.actamat.2016.05.007 – volume: 7 start-page: 13564 year: 2016 ident: 10.1016/j.actamat.2023.118775_bib0007 article-title: Enhancing radiation tolerance by controlling defect mobility and migration pathways in multicomponent single-phase alloys publication-title: Nat. Commun. doi: 10.1038/ncomms13564 – volume: 19 start-page: 1037 issue: 10 year: 1971 ident: 10.1016/j.actamat.2023.118775_bib0054 article-title: Spinodal decomposition in ternary systems publication-title: Acta Metall doi: 10.1016/0001-6160(71)90036-8 – volume: 3 start-page: 834 issue: 3 year: 2019 ident: 10.1016/j.actamat.2023.118775_bib0014 article-title: High-entropy alloys as a discovery platform for electrocatalysis publication-title: Joule doi: 10.1016/j.joule.2018.12.015 – volume: 169 start-page: 62 year: 2016 ident: 10.1016/j.actamat.2023.118775_bib0034 article-title: A multi-component AlCrFe2Ni2 alloy with excellent mechanical properties publication-title: Mater. Lett. doi: 10.1016/j.matlet.2016.01.096 – volume: 8 start-page: 81 issue: 2 year: 1975 ident: 10.1016/j.actamat.2023.118775_bib0052 article-title: Clustering and ordering in solid solutions publication-title: J. Appl. Crystallogr. doi: 10.1107/S0021889875009703 – volume: 35 year: 2020 ident: 10.1016/j.actamat.2023.118775_bib0076 article-title: Bulk nanostructured AlCoCrFeMnNi chemically complex alloy synthesized by laser-powder bed fusion publication-title: Addit Manuf – volume: 8 start-page: 1984 issue: 10 year: 2016 ident: 10.1016/j.actamat.2023.118775_bib0077 article-title: Effect of trace additions of ti on the microstructure of AlCoCrFeNi-based high entropy alloy publication-title: Sci. Adv. Mater. doi: 10.1166/sam.2016.2793 – volume: 199 start-page: 193 year: 2020 ident: 10.1016/j.actamat.2023.118775_bib0021 article-title: Growth kinetics of σ-phase precipitates and underlying diffusion processes in CrMnFeCoNi high-entropy alloys publication-title: Acta Mater doi: 10.1016/j.actamat.2020.08.023 – volume: 43 start-page: 753 issue: 6 year: 2022 ident: 10.1016/j.actamat.2023.118775_bib0044 article-title: High-throughput design of multi-principal element alloys with spinodal decomposition assisted microstructures publication-title: J. Phase Equilibria Diffus doi: 10.1007/s11669-022-00977-2 – year: 2014 ident: 10.1016/j.actamat.2023.118775_bib0025 – volume: 59 start-page: 182 issue: 1 year: 2011 ident: 10.1016/j.actamat.2023.118775_bib0029 article-title: Decomposition in multi-component AlCoCrCuFeNi high-entropy alloy publication-title: Acta Mater doi: 10.1016/j.actamat.2010.09.023 – volume: 359 start-page: 1489 issue: 6383 year: 2018 ident: 10.1016/j.actamat.2023.118775_bib0013 article-title: Carbothermal shock synthesis of high-entropy-alloy nanoparticles publication-title: Science doi: 10.1126/science.aan5412 – volume: 214 year: 2022 ident: 10.1016/j.actamat.2023.118775_bib0065 article-title: Exploration of spinodal decomposition in multi-principal element alloys (MPEAs) using CALPHAD modeling publication-title: Scripta Mater doi: 10.1016/j.scriptamat.2022.114657 – volume: 10 start-page: 4011 issue: 1 year: 2019 ident: 10.1016/j.actamat.2023.118775_bib0016 article-title: Highly efficient decomposition of ammonia using high-entropy alloy catalysts publication-title: Nat. Commun. doi: 10.1038/s41467-019-11848-9 – volume: 345 start-page: 1153 issue: 6201 year: 2014 ident: 10.1016/j.actamat.2023.118775_bib0002 article-title: A fracture-resistant high-entropy alloy for cryogenic applications publication-title: Science doi: 10.1126/science.1254581 – volume: 104 start-page: 172 year: 2016 ident: 10.1016/j.actamat.2023.118775_bib0064 article-title: Predicting the formation and stability of single phase high-entropy alloys publication-title: Acta Mater doi: 10.1016/j.actamat.2015.11.040 – volume: 113 issue: 10 year: 2014 ident: 10.1016/j.actamat.2023.118775_bib0010 article-title: Discovery of a superconducting high-entropy alloy publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.113.107001 – volume: 132 start-page: 212 year: 2013 ident: 10.1016/j.actamat.2023.118775_bib0026 article-title: Phase separation in equiatomic AlCoCrFeNi high-entropy alloy publication-title: Ultramicroscopy doi: 10.1016/j.ultramic.2012.12.015 – year: 2013 ident: 10.1016/j.actamat.2023.118775_bib0059 – volume: 26 start-page: 193 issue: 1 year: 2003 ident: 10.1016/j.actamat.2023.118775_bib0057 article-title: A study of phase separation in ternary alloys publication-title: Bull. Mater. Sci. doi: 10.1007/BF02712812 – volume: 34 start-page: 1285 issue: 8 year: 1973 ident: 10.1016/j.actamat.2023.118775_bib0051 article-title: An analysis of clustering and ordering in multicomponent solid solutions—II fluctuations and kinetics publication-title: J. Phys. Chem. Solids doi: 10.1016/S0022-3697(73)80026-5 – volume: 462 start-page: 1017 year: 2018 ident: 10.1016/j.actamat.2023.118775_bib0035 article-title: Microstructural change and phase transformation in each individual layer of a nano-multilayered AlCrTiSiN high-entropy alloy nitride coating upon annealing publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2018.07.106 – volume: 119 issue: 17 year: 2021 ident: 10.1016/j.actamat.2023.118775_bib0024 article-title: Phase-field modelling of transformation pathways and microstructural evolution in multi-principal element alloys publication-title: Appl. Phys. Lett. doi: 10.1063/5.0065522 – volume: 31 start-page: 1214 issue: 10 year: 2015 ident: 10.1016/j.actamat.2023.118775_bib0075 article-title: Effect of processing route on phase stability in equiatomic multicomponent Ti20Fe20Ni20Co20Cu20 high entropy alloy publication-title: Mater. Sci. Tech. doi: 10.1179/1743284715Y.0000000024 – volume: 20 start-page: 1069 issue: 8 year: 1972 ident: 10.1016/j.actamat.2023.118775_bib0053 article-title: Stability limits for ternary regular system publication-title: Acta Metall doi: 10.1016/0001-6160(72)90140-X – volume: 3 issue: 9 year: 2019 ident: 10.1016/j.actamat.2023.118775_bib0011 article-title: High-entropy alloy superconductors: status, opportunities, and challenges publication-title: Phys. Rev. Mater. – volume: 197 start-page: 10 year: 2020 ident: 10.1016/j.actamat.2023.118775_bib0043 article-title: Phase-field simulation of coherent BCC/B2 microstructures in high entropy alloys publication-title: Acta Mater doi: 10.1016/j.actamat.2020.07.030 – volume: 97 start-page: 77 year: 2018 ident: 10.1016/j.actamat.2023.118775_bib0028 article-title: Liquid phase separation phenomena in Al2.2CrCuFeNi2 HEA publication-title: Intermetallics doi: 10.1016/j.intermet.2018.04.004 – volume: 172 year: 2020 ident: 10.1016/j.actamat.2023.118775_bib0058 article-title: A phase-field study of elastic stress effects on phase separation in ternary alloys publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2019.109284 – volume: 40 start-page: 532 issue: 4 year: 2019 ident: 10.1016/j.actamat.2023.118775_bib0055 article-title: Gibbs-schreinemakers-meijering mechanisms for 3-Phase miscibility gap formation publication-title: J. Phase Equilibria Diffus doi: 10.1007/s11669-019-00748-6 – volume: 31 start-page: 633 issue: 6 year: 2006 ident: 10.1016/j.actamat.2023.118775_bib0072 article-title: Recent progress in high entropy alloys publication-title: Ann. Chim. Sci. Mat doi: 10.3166/acsm.31.633-648 – volume: 45 start-page: 1 year: 2014 ident: 10.1016/j.actamat.2023.118775_bib0069 article-title: An understanding of high entropy alloys from phase diagram calculations publication-title: Calphad-Comput. Coupl. Phase Diagram. Thermochem. doi: 10.1016/j.calphad.2013.10.006 – volume: 133 start-page: 435 year: 2017 ident: 10.1016/j.actamat.2023.118775_bib0037 article-title: Microstructure, mechanical properties and energetic characteristics of a novel high-entropy alloy HfZrTiTa0.53 publication-title: Mater. Des. doi: 10.1016/j.matdes.2017.08.022 – volume: 33 start-page: 297 issue: 2 year: 1972 ident: 10.1016/j.actamat.2023.118775_bib0050 article-title: An analysis of clustering and ordering in multicomponent solid solutions—I. Stability criteria publication-title: J. Phys. Chem. Solids doi: 10.1016/0022-3697(72)90011-X – volume: 109 start-page: 425 year: 2016 ident: 10.1016/j.actamat.2023.118775_bib0067 article-title: Understanding phase stability of Al-Co-Cr-Fe-Ni high entropy alloys publication-title: Mater. Des. doi: 10.1016/j.matdes.2016.07.073 – volume: 61 start-page: 1 year: 2014 ident: 10.1016/j.actamat.2023.118775_bib0062 article-title: Microstructures and properties of high-entropy alloys publication-title: Prog. Mater Sci. doi: 10.1016/j.pmatsci.2013.10.001 – volume: 38 start-page: 319 issue: 3 year: 2017 ident: 10.1016/j.actamat.2023.118775_bib0041 article-title: High entropy alloys, miscibility gaps and the rose geometry publication-title: J. Phase Equilibria Diffus doi: 10.1007/s11669-017-0547-6 – volume: 30 start-page: 1121 issue: 5 year: 1959 ident: 10.1016/j.actamat.2023.118775_bib0048 article-title: Free energy of a nonuniform system. II. Thermodynamic basis publication-title: J. Chem. Phys. doi: 10.1063/1.1730145 – volume: 689 start-page: 384 year: 2017 ident: 10.1016/j.actamat.2023.118775_bib0027 article-title: Heat treatments' effects on the microstructure and mechanical properties of an equiatomic Al-Cr-Fe-Mn-Ni high entropy alloy publication-title: Mater. Sci. Eng. a-Struct. Mater. Propert. Microstruct. Process. doi: 10.1016/j.msea.2017.02.072 – volume: 114 start-page: 13144 issue: 50 year: 2017 ident: 10.1016/j.actamat.2023.118775_bib0009 article-title: Robust zero resistance in a superconducting high-entropy alloy at pressures up to 190GPa publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1716981114 – volume: 122 start-page: 448 year: 2017 ident: 10.1016/j.actamat.2023.118775_bib0017 article-title: A critical review of high entropy alloys and related concepts publication-title: Acta Mater doi: 10.1016/j.actamat.2016.08.081 – volume: 6 start-page: 299 issue: 5 year: 2004 ident: 10.1016/j.actamat.2023.118775_bib0001 article-title: Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes publication-title: Adv. Eng. Mater. doi: 10.1002/adem.200300567 – volume: 10 start-page: 2650 issue: 1 year: 2019 ident: 10.1016/j.actamat.2023.118775_bib0015 article-title: Electrosynthesis of high-entropy metallic glass nanoparticles for designer, multi-functional electrocatalysis publication-title: Nat. Commun. doi: 10.1038/s41467-019-10303-z – volume: 129 start-page: 170 year: 2017 ident: 10.1016/j.actamat.2023.118775_bib0019 article-title: Cu assisted stabilization and nucleation of L12 precipitates in Al0.3CuFeCrNi2 fcc-based high entropy alloy publication-title: Acta Mater doi: 10.1016/j.actamat.2017.02.053 – volume: 42 start-page: 3503 issue: 10 year: 1994 ident: 10.1016/j.actamat.2023.118775_bib0056 article-title: Computer-simulation of spinodal decomposition in ternary-systems publication-title: Acta Metallurgica Et Materialia doi: 10.1016/0956-7151(94)90482-0 – volume: 694 start-page: 223 year: 2017 ident: 10.1016/j.actamat.2023.118775_bib0061 article-title: Thermodynamic design of high-entropy refractory alloys publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2016.09.189 – volume: 197 year: 2021 ident: 10.1016/j.actamat.2023.118775_bib0023 article-title: Machine learning approach to predict new multiphase high entropy alloys publication-title: Scripta Mater doi: 10.1016/j.scriptamat.2021.113804 – volume: 362 start-page: 933 issue: 6417 year: 2018 ident: 10.1016/j.actamat.2023.118775_bib0004 article-title: Multicomponent intermetallic nanoparticles and superb mechanical behaviors of complex alloys publication-title: Science doi: 10.1126/science.aas8815 – volume: 181 year: 2019 ident: 10.1016/j.actamat.2023.118775_bib0038 article-title: Effect of metastability on non-phase-transformation high-entropy alloys publication-title: Mater. Des. doi: 10.1016/j.matdes.2019.107928 – volume: 28 start-page: 258 issue: 2 year: 1958 ident: 10.1016/j.actamat.2023.118775_bib0047 article-title: Free energy of a nonuniform system. I. Interfacial free energy publication-title: J. Chem. Phys. doi: 10.1063/1.1744102 – volume: 61 start-page: 2628 issue: 7 year: 2013 ident: 10.1016/j.actamat.2023.118775_bib0066 article-title: Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys publication-title: Acta Mater doi: 10.1016/j.actamat.2013.01.042 – volume: 823 year: 2020 ident: 10.1016/j.actamat.2023.118775_bib0071 article-title: Microstructure exploration and an artificial neural network approach for hardness prediction in AlCrFeMnNiWx High-Entropy Alloys publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2020.153766 |
SSID | ssj0012740 |
Score | 2.5766313 |
Snippet | High-entropy alloys (HEAs) have many attractive properties, while the thermodynamic mechanism and general behavior of the spinodal decomposition in HEAs remain... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 118775 |
SubjectTerms | Gibbs phase rule High-entropy alloys Phase stability Pseudo-binary decomposition Spinodal decomposition |
Title | Spinodal decomposition and the pseudo-binary decomposition in high-entropy alloys |
URI | https://dx.doi.org/10.1016/j.actamat.2023.118775 |
Volume | 248 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6KXvQgPrE-Sg5e89jmsd1jKZaqWJBa6C1kX5AiSWjTQy_-dmeapFYRBQ85ZJmBZZid-WZ3HoTcCY9rJngCJw1MYOALYQsupR0Buu4q-JjBe8jncTSaBo-zcNYig6YWBtMqa9tf2fSNta5X3FqabpGm7oT6Icd-VACiMbDBnqBBwFDLnfdtmgeFqKuqFA65jdSfVTzuHLZcJgAMHZwh7uDgbUw3_Mk_7fic4TE5qsGi1a_2c0JaOjslhzstBM_Iy6RIs1wBldKYHl7nYFlJpizAdlax1CuVY_ybLNbfaNLMwm7FNl7w5sXawjf49fKcTIf3r4ORXY9JsKXv8RKCv0gZ8MvSM4pL4wUiFMHmZAH609xQEcI6i0Ljd7mQnmQsMRCYhlQzJpTwL8helmf6kljgznpMeAbiCBkokySR8amglFFJpa97bRI0woll3UMcR1m8xU2y2DyuZRqjTONKpm3ibNmKqonGXwy9RvLxF22IwdD_znr1f9ZrcoB_-FZEwxuyVy5W-hYgRyk6G53qkP3-w9No_AFTxNcC |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60HtSD-MS3OXhNmzXZbPcoYkl9FMQK3kL2BS2SBhsP_ffOmK0vRMFDLpsdWIbdmW92Z74BOFWRtELJAk8amsAkVipUUuswRXR9ZvATju4hbwdp9pBcPfLHBbiY18JQWqW3_Y1Nf7PWfqTjtdmpRqPOPYu5JD4qBNEU2CSLsETsVLwFS-f962zw_piAgVdTLMxlSAIfhTydMa66LhAbtqmNeJt6b1PG4U8u6pPb6a3DmseLwXmzpA1YsOUmrH5iEdyCu_tqVE4MzjKWMsR9GlZQlCZAeBdUU_tiJhQCF8-zb3NGZUCExSHd8U6qWUDP8LPpNjz0LocXWeg7JYQ6jmSN8V9qHLpmHTkjtYsSxVXydrgQAFrpmOI4LlLu4jOpdKSFKBzGppxZIZRR8Q60yklpdyFAj9YVKnIYSujEuKJIXcwUY4JppmPb3YNkrpxcexpx6mbxlM_zxca512lOOs0bne5B-12sang0_hLozjWff9kQOdr630X3_y96AsvZ8PYmv-kPrg9ghf7Q0xHjh9Cqn1_sESKQWh37HfYKvIrZsw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spinodal+decomposition+and+the+pseudo-binary+decomposition+in+high-entropy+alloys&rft.jtitle=Acta+materialia&rft.au=Luan%2C+Hengwei&rft.au=Huang%2C+Liufei&rft.au=Kang%2C+Jingyi&rft.au=Luo%2C+Bosang&rft.date=2023-04-15&rft.pub=Elsevier+Ltd&rft.issn=1359-6454&rft.eissn=1873-2453&rft.volume=248&rft_id=info:doi/10.1016%2Fj.actamat.2023.118775&rft.externalDocID=S1359645423001064 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-6454&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-6454&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-6454&client=summon |