Spinodal decomposition and the pseudo-binary decomposition in high-entropy alloys

High-entropy alloys (HEAs) have many attractive properties, while the thermodynamic mechanism and general behavior of the spinodal decomposition in HEAs remain unknown. In this work, we conduct an experimentally consistent calculation of the spinodal decomposition of HEAs. Against the “high mixing e...

Full description

Saved in:
Bibliographic Details
Published inActa materialia Vol. 248; p. 118775
Main Authors Luan, Hengwei, Huang, Liufei, Kang, Jingyi, Luo, Bosang, Yang, Xinglong, Li, Jinfeng, Han, Zhidong, Si, Jiajia, Shao, Yang, Lu, Jian, Yao, Ke-Fu
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 15.04.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract High-entropy alloys (HEAs) have many attractive properties, while the thermodynamic mechanism and general behavior of the spinodal decomposition in HEAs remain unknown. In this work, we conduct an experimentally consistent calculation of the spinodal decomposition of HEAs. Against the “high mixing entropy” theory, we show that increasing the number of elements can increase the possibility of spinodal decomposition, and the effects of the temperature, entropy and enthalpy are clarified. The high entropy effect on the widely observed pseudo-binary decomposition is proposed. These results provide a necessary paradigm to understand and further harness the spinodal decomposition in HEAs. [Display omitted]
AbstractList High-entropy alloys (HEAs) have many attractive properties, while the thermodynamic mechanism and general behavior of the spinodal decomposition in HEAs remain unknown. In this work, we conduct an experimentally consistent calculation of the spinodal decomposition of HEAs. Against the “high mixing entropy” theory, we show that increasing the number of elements can increase the possibility of spinodal decomposition, and the effects of the temperature, entropy and enthalpy are clarified. The high entropy effect on the widely observed pseudo-binary decomposition is proposed. These results provide a necessary paradigm to understand and further harness the spinodal decomposition in HEAs. [Display omitted]
ArticleNumber 118775
Author Huang, Liufei
Luo, Bosang
Si, Jiajia
Yao, Ke-Fu
Li, Jinfeng
Han, Zhidong
Yang, Xinglong
Lu, Jian
Luan, Hengwei
Kang, Jingyi
Shao, Yang
Author_xml – sequence: 1
  givenname: Hengwei
  orcidid: 0000-0003-0095-4528
  surname: Luan
  fullname: Luan, Hengwei
  organization: School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
– sequence: 2
  givenname: Liufei
  orcidid: 0000-0002-8079-8651
  surname: Huang
  fullname: Huang, Liufei
  organization: Institute of Materials, China Academy of Engineering Physics, Mianyang 621908, China
– sequence: 3
  givenname: Jingyi
  surname: Kang
  fullname: Kang, Jingyi
  organization: School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
– sequence: 4
  givenname: Bosang
  surname: Luo
  fullname: Luo, Bosang
  organization: School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
– sequence: 5
  givenname: Xinglong
  surname: Yang
  fullname: Yang, Xinglong
  organization: School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
– sequence: 6
  givenname: Jinfeng
  surname: Li
  fullname: Li, Jinfeng
  organization: Institute of Materials, China Academy of Engineering Physics, Mianyang 621908, China
– sequence: 7
  givenname: Zhidong
  surname: Han
  fullname: Han, Zhidong
  organization: School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
– sequence: 8
  givenname: Jiajia
  orcidid: 0000-0002-5228-0388
  surname: Si
  fullname: Si, Jiajia
  organization: School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
– sequence: 9
  givenname: Yang
  surname: Shao
  fullname: Shao, Yang
  email: shaoyang@mail.tsinghua.edu.cn
  organization: School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
– sequence: 10
  givenname: Jian
  surname: Lu
  fullname: Lu, Jian
  organization: Department of Mechanical Engineering, City University of Hong Kong, Tat Chee Avenue, Hong Kong 999077, China
– sequence: 11
  givenname: Ke-Fu
  surname: Yao
  fullname: Yao, Ke-Fu
  email: kfyao@mail.tsinghua.edu.cn
  organization: School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
BookMark eNqFkN1KAzEQhYNUsK0-grAvsGuySTYNXogU_6Agol6HbH5syjZZkij07U1pr3rTqxlm5hzmfDMw8cEbAG4RbBBE3d2mkSrLrcxNC1vcILRgjF6Aaam4bgnFk9JjyuuOUHIFZiltIEQtI3AKPj5H54OWQ6WNCtsxJJdd8JX0usprU43J_OpQ987LuDu5cb5au591bXyOYdxVchjCLl2DSyuHZG6OdQ6-n5--lq_16v3lbfm4qhWGPNcd6rQlsFPQaq4sJD3tCUa8K1tuuEU9LXPWUYtb3iuoGJMWLzBFhrFe93gO7g--KoaUorFCuSz3j-Uo3SAQFHs6YiOOdMSejjjQKWp6oh6j25aMZ3UPB50p0f6ciSIpZ7wy2kWjstDBnXH4B8aQheM
CitedBy_id crossref_primary_10_1016_j_apsusc_2024_160878
crossref_primary_10_1016_j_jmrt_2024_07_090
crossref_primary_10_1016_j_matdes_2023_112508
crossref_primary_10_1016_j_actamat_2024_120302
crossref_primary_10_1007_s44210_024_00047_x
crossref_primary_10_1016_j_ijrmhm_2023_106499
crossref_primary_10_1016_j_mtcomm_2025_112020
crossref_primary_10_1021_acsnano_4c03435
crossref_primary_10_1016_j_jallcom_2024_175849
crossref_primary_10_1038_s41467_024_50078_6
crossref_primary_10_1016_j_jmrt_2023_09_289
crossref_primary_10_1038_s44160_024_00690_7
crossref_primary_10_1016_j_jallcom_2023_170091
crossref_primary_10_55713_jmmm_v34i3_2107
crossref_primary_10_1016_j_ijplas_2024_103987
crossref_primary_10_1016_j_matchar_2023_113456
crossref_primary_10_1016_j_matchar_2023_113435
crossref_primary_10_1016_j_matchar_2023_113516
crossref_primary_10_1016_j_matchar_2023_113330
crossref_primary_10_1016_j_jmrt_2024_11_020
crossref_primary_10_1016_j_apsusc_2024_161958
crossref_primary_10_1016_j_jallcom_2025_178460
crossref_primary_10_1039_D3EE02788K
crossref_primary_10_1016_j_actbio_2024_06_015
crossref_primary_10_1016_j_matchar_2024_114686
crossref_primary_10_1016_j_matdes_2023_111824
crossref_primary_10_1016_j_msea_2024_146813
crossref_primary_10_1016_j_nucengdes_2024_113324
crossref_primary_10_1016_j_actamat_2024_119729
crossref_primary_10_1016_j_jallcom_2024_174029
crossref_primary_10_1038_s41467_025_56181_6
crossref_primary_10_1016_j_jmrt_2023_10_102
crossref_primary_10_1016_j_actamat_2023_119426
crossref_primary_10_1016_j_matdes_2025_113622
crossref_primary_10_1016_j_jmrt_2024_05_193
crossref_primary_10_1016_j_intermet_2024_108455
Cites_doi 10.1016/j.scriptamat.2019.12.041
10.1016/j.jmrt.2018.04.020
10.1016/j.matchemphys.2020.122700
10.1016/j.intermet.2011.01.004
10.1002/adfm.202007668
10.1016/j.intermet.2010.06.003
10.1007/s10853-022-07058-2
10.1016/0001-6160(53)90059-5
10.1103/PhysRevLett.127.175501
10.1007/s11669-021-00915-8
10.1016/j.intermet.2012.03.005
10.1038/ncomms7529
10.1002/adem.201700048
10.1023/A:1018687811688
10.1103/PhysRevLett.116.135504
10.1016/j.actamat.2015.08.076
10.1016/j.matchemphys.2011.11.021
10.1007/s11669-017-0578-z
10.3390/e18030102
10.1016/j.scriptamat.2006.05.020
10.1016/j.actamat.2016.05.007
10.1038/ncomms13564
10.1016/0001-6160(71)90036-8
10.1016/j.joule.2018.12.015
10.1016/j.matlet.2016.01.096
10.1107/S0021889875009703
10.1166/sam.2016.2793
10.1016/j.actamat.2020.08.023
10.1007/s11669-022-00977-2
10.1016/j.actamat.2010.09.023
10.1126/science.aan5412
10.1016/j.scriptamat.2022.114657
10.1038/s41467-019-11848-9
10.1126/science.1254581
10.1016/j.actamat.2015.11.040
10.1103/PhysRevLett.113.107001
10.1016/j.ultramic.2012.12.015
10.1007/BF02712812
10.1016/S0022-3697(73)80026-5
10.1016/j.apsusc.2018.07.106
10.1063/5.0065522
10.1179/1743284715Y.0000000024
10.1016/0001-6160(72)90140-X
10.1016/j.actamat.2020.07.030
10.1016/j.intermet.2018.04.004
10.1016/j.commatsci.2019.109284
10.1007/s11669-019-00748-6
10.3166/acsm.31.633-648
10.1016/j.calphad.2013.10.006
10.1016/j.matdes.2017.08.022
10.1016/0022-3697(72)90011-X
10.1016/j.matdes.2016.07.073
10.1016/j.pmatsci.2013.10.001
10.1007/s11669-017-0547-6
10.1063/1.1730145
10.1016/j.msea.2017.02.072
10.1073/pnas.1716981114
10.1016/j.actamat.2016.08.081
10.1002/adem.200300567
10.1038/s41467-019-10303-z
10.1016/j.actamat.2017.02.053
10.1016/0956-7151(94)90482-0
10.1016/j.jallcom.2016.09.189
10.1016/j.scriptamat.2021.113804
10.1126/science.aas8815
10.1016/j.matdes.2019.107928
10.1063/1.1744102
10.1016/j.actamat.2013.01.042
10.1016/j.jallcom.2020.153766
ContentType Journal Article
Copyright 2023 Acta Materialia Inc.
Copyright_xml – notice: 2023 Acta Materialia Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.actamat.2023.118775
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-2453
ExternalDocumentID 10_1016_j_actamat_2023_118775
S1359645423001064
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABMAC
ABNEU
ABXRA
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
KOM
M41
MAGPM
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SPD
SSM
SSQ
SSZ
T5K
TN5
XPP
ZMT
~G-
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FGOYB
R2-
SSH
T9H
ZY4
ID FETCH-LOGICAL-c309t-616df406c0fd9cf04b5b431963099e9f1b5d9c765f329bc0c77af38351e77bdb3
IEDL.DBID .~1
ISSN 1359-6454
IngestDate Tue Jul 01 01:30:20 EDT 2025
Thu Apr 24 23:12:59 EDT 2025
Fri Feb 23 02:40:29 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords High-entropy alloys
Phase stability
Pseudo-binary decomposition
Gibbs phase rule
Spinodal decomposition
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c309t-616df406c0fd9cf04b5b431963099e9f1b5d9c765f329bc0c77af38351e77bdb3
ORCID 0000-0002-8079-8651
0000-0003-0095-4528
0000-0002-5228-0388
ParticipantIDs crossref_citationtrail_10_1016_j_actamat_2023_118775
crossref_primary_10_1016_j_actamat_2023_118775
elsevier_sciencedirect_doi_10_1016_j_actamat_2023_118775
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-04-15
PublicationDateYYYYMMDD 2023-04-15
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-04-15
  day: 15
PublicationDecade 2020
PublicationTitle Acta materialia
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Munitz, Samuha, Brosh, Salhov, Derimow, Abbaschian (bib0028) 2018; 97
Koneru, Kadirvel, Wang (bib0044) 2022; 43
Granberg, Nordlund, Ullah, Jin, Lu, Bei, Wang, Djurabekova, Weber, Zhang (bib0008) 2016; 116
Morral (bib0053) 1972; 20
Jien-Wei (bib0072) 2006; 31
Abe, Shimono, Hashimoto, Hono, Onodera (bib0074) 2006; 55
Borkar, Chaudhary, Gwalani, Choudhuri, Mikler, Soni, Alam, Ramanujan, Banerjee (bib0031) 2017; 19
Zhang, Zhang, Tang, Zhu, Ye, Li, Bai (bib0037) 2017; 133
Morral, Chen (bib0042) 2021; 42
Morral, Chen (bib0040) 2017; 38
Morral, Chen (bib0055) 2019; 40
Melnick, Soolshenko (bib0061) 2017; 694
Dewangan, Samal, Kumar (bib0071) 2020; 823
Sugathan, Bhattacharya (bib0058) 2020; 172
Wang, Wang, Wang, Tsai, Lai, Yeh (bib0039) 2012; 26
Na, Lim, Chang, Kim (bib0077) 2016; 8
Gludovatz, Hohenwarter, Catoor, Chang, George, Ritchie (bib0002) 2014; 345
Luan, Shao, Li, Mao, Han, Shao, Yao (bib0018) 2020; 179
He, Wang, Huang, Xu, Chen, Wu, Liu, Nieh, An, Lu (bib0020) 2016; 102
Yeh, Chen, Lin, Gan, Chin, Shun, Tsau, Chang (bib0001) 2004; 6
Yao, Huang, Xie, Lacey, Jacob, Xie, Chen, Nie, Pu, Rehwoldt, Yu, Zachariah, Wang, Shahbazian-Yassar, Li, Hu (bib0013) 2018; 359
Cahn (bib0048) 1959; 30
Takeuchi, Inoue (bib0063) 2010; 18
Kadirvel, Kloenne, Jensen, Fraser, Wang (bib0024) 2021; 119
Laughlin, Hono (bib0025) 2014
Halder (bib0046) 2014
Manzoni, Daoud, Volkl, Glatzel, Wanderka (bib0026) 2013; 132
Mohanty, Samal, Tazuddin, Tiwary, Gurao, Biswas (bib0075) 2015; 31
Miracle, Senkov (bib0017) 2017; 122
Laplanche (bib0021) 2020; 199
Marik, Motla, Varghese, Sajilesh, Singh, Breard, Boullay, Singh (bib0012) 2019; 3
Murty, Yeh, Raganathan (bib0045) 2014
Zhang, Zhang, Chen, Zhu, Cao, Kattner (bib0069) 2014; 45
Senkov, Wilks, Scott, Miracle (bib0003) 2011; 19
Bhattacharyya, Abinandanan (bib0057) 2003; 26
Zhang, Zuo, Tang, Gao, Dahmen, Liaw, Lu (bib0062) 2014; 61
Kumar, Li, Leonard, Bei, Zinkle (bib0006) 2016; 113
Sun, Cava (bib0011) 2019; 3
Otto, Yang, Bei, George (bib0066) 2013; 61
King, Middleburgh, McGregor, Cortie (bib0064) 2016; 104
De Fontaine (bib0050) 1972; 33
Khachaturyan (bib0059) 2013
Morral, Cahn (bib0054) 1971; 19
Senkov, Isheim, Seidman, Pilchak (bib0033) 2016; 18
Gwalani, Choudhuri, Soni, Ren, Styles, Hwang, Nam, Ryu, Hong, Banerjee (bib0019) 2017; 129
Munitz, Meshi, Kaufman (bib0027) 2017; 689
Maier-Paape, Stoth, Wanner (bib0049) 2000; 98
Rao, Dutta, Körmann, Lu, Zhou, Liu, Silva, Wiedwald, Spasova, Farle, Ponge, Gault, Neugebauer, Raabe, Li (bib0032) 2020; 31
Zhou, Tehranchi, Curtin (bib0005) 2021; 127
Glasscott, Pendergast, Goines, Bishop, Hoang, Renault, Dick (bib0015) 2019; 10
Dong, Gao, Lu, Wang, Li (bib0034) 2016; 169
Zhang, Chen, Cao, Zhang, Zhang, Tao, Yang (bib0030) 2019; 8
Singh, Wanderka, Murty, Glatzel, Banhart (bib0029) 2011; 59
Zhang, Zhang, Diao, Gao, Tang, Poplawsky, Liaw (bib0067) 2016; 109
De Fontaine (bib0052) 1975; 8
Kozelj, Vrtnik, Jelen, Jazbec, Jaglicic, Maiti, Feuerbacher, Steurer, Dolinsek (bib0010) 2014; 113
Xie, Yao, Huang, Liu, Zhang, Li, Wang, Shahbazian-Yassar, Hu, Wang (bib0016) 2019; 10
Yang, Zhang (bib0022) 2012; 132
Kadirvel, Koneru, Wang (bib0065) 2022; 214
Yang, Zhao, Tong, Jiao, Wei, Cai, Han, Chen, Hu, Kai, Lu, Liu, Liu (bib0004) 2018; 362
Krishna, Jaiswal, Rahul (bib0023) 2021; 197
Chen, Yan, Meng, Wu, Yao, Zhang (bib0035) 2018; 462
Batchelor, Pedersen, Winther, Castelli, Jacobsen, Rossmeisl (bib0014) 2019; 3
Morral, Chen (bib0041) 2017; 38
Senkov, Miller, Miracle, Woodward (bib0068) 2015; 6
De Fontaine (bib0051) 1973; 34
Li, Li, Wang, Dong, Liaw (bib0043) 2020; 197
Cahn, Hilliard (bib0047) 1958; 28
Guo, Wang, von Rohr, Wang, Cai, Zhou, Yang, Li, Jiang, Wu, Cava, Sun (bib0009) 2017; 114
Lu, Niu, Chen, Jin, Yang, Xiu, Zhang, Gao, Bei, Shi, He, Robertson, Weber, Wang (bib0007) 2016; 7
Wang, Zhao, Xu, Cheng, Hou (bib0036) 2020; 244
Tang, Wang, Li, Liu, Ye, Zhu, Bai, Xiao (bib0038) 2019; 181
Raghavan (bib0060) 2015
Hardy (bib0073) 1953; 1
Chen (bib0056) 1994; 42
Jung, Peter, Gärtner, Dehm, Uhlenwinkel, Jägle (bib0076) 2020; 35
Coutinho, Kunwar, Moelans (bib0070) 2022; 57
Yeh (10.1016/j.actamat.2023.118775_bib0001) 2004; 6
Sun (10.1016/j.actamat.2023.118775_bib0011) 2019; 3
Dong (10.1016/j.actamat.2023.118775_bib0034) 2016; 169
Singh (10.1016/j.actamat.2023.118775_bib0029) 2011; 59
Kozelj (10.1016/j.actamat.2023.118775_bib0010) 2014; 113
Marik (10.1016/j.actamat.2023.118775_bib0012) 2019; 3
Krishna (10.1016/j.actamat.2023.118775_bib0023) 2021; 197
Kadirvel (10.1016/j.actamat.2023.118775_bib0024) 2021; 119
Gludovatz (10.1016/j.actamat.2023.118775_bib0002) 2014; 345
Yang (10.1016/j.actamat.2023.118775_bib0022) 2012; 132
Mohanty (10.1016/j.actamat.2023.118775_bib0075) 2015; 31
De Fontaine (10.1016/j.actamat.2023.118775_bib0052) 1975; 8
Murty (10.1016/j.actamat.2023.118775_bib0045) 2014
Bhattacharyya (10.1016/j.actamat.2023.118775_bib0057) 2003; 26
Jung (10.1016/j.actamat.2023.118775_bib0076) 2020; 35
Lu (10.1016/j.actamat.2023.118775_bib0007) 2016; 7
Chen (10.1016/j.actamat.2023.118775_bib0035) 2018; 462
Wang (10.1016/j.actamat.2023.118775_bib0039) 2012; 26
Granberg (10.1016/j.actamat.2023.118775_bib0008) 2016; 116
Wang (10.1016/j.actamat.2023.118775_bib0036) 2020; 244
Zhou (10.1016/j.actamat.2023.118775_bib0005) 2021; 127
Jien-Wei (10.1016/j.actamat.2023.118775_bib0072) 2006; 31
Morral (10.1016/j.actamat.2023.118775_bib0054) 1971; 19
Morral (10.1016/j.actamat.2023.118775_bib0053) 1972; 20
Morral (10.1016/j.actamat.2023.118775_bib0041) 2017; 38
Rao (10.1016/j.actamat.2023.118775_bib0032) 2020; 31
Glasscott (10.1016/j.actamat.2023.118775_bib0015) 2019; 10
Sugathan (10.1016/j.actamat.2023.118775_bib0058) 2020; 172
Laplanche (10.1016/j.actamat.2023.118775_bib0021) 2020; 199
Kumar (10.1016/j.actamat.2023.118775_bib0006) 2016; 113
Dewangan (10.1016/j.actamat.2023.118775_bib0071) 2020; 823
Cahn (10.1016/j.actamat.2023.118775_bib0047) 1958; 28
Yao (10.1016/j.actamat.2023.118775_bib0013) 2018; 359
Munitz (10.1016/j.actamat.2023.118775_bib0027) 2017; 689
Senkov (10.1016/j.actamat.2023.118775_bib0068) 2015; 6
Borkar (10.1016/j.actamat.2023.118775_bib0031) 2017; 19
Otto (10.1016/j.actamat.2023.118775_bib0066) 2013; 61
Zhang (10.1016/j.actamat.2023.118775_bib0069) 2014; 45
Miracle (10.1016/j.actamat.2023.118775_bib0017) 2017; 122
Kadirvel (10.1016/j.actamat.2023.118775_bib0065) 2022; 214
Tang (10.1016/j.actamat.2023.118775_bib0038) 2019; 181
Cahn (10.1016/j.actamat.2023.118775_bib0048) 1959; 30
Raghavan (10.1016/j.actamat.2023.118775_bib0060) 2015
Gwalani (10.1016/j.actamat.2023.118775_bib0019) 2017; 129
Morral (10.1016/j.actamat.2023.118775_bib0055) 2019; 40
De Fontaine (10.1016/j.actamat.2023.118775_bib0051) 1973; 34
Zhang (10.1016/j.actamat.2023.118775_bib0030) 2019; 8
Coutinho (10.1016/j.actamat.2023.118775_bib0070) 2022; 57
Li (10.1016/j.actamat.2023.118775_bib0043) 2020; 197
Khachaturyan (10.1016/j.actamat.2023.118775_bib0059) 2013
Na (10.1016/j.actamat.2023.118775_bib0077) 2016; 8
King (10.1016/j.actamat.2023.118775_bib0064) 2016; 104
Manzoni (10.1016/j.actamat.2023.118775_bib0026) 2013; 132
Morral (10.1016/j.actamat.2023.118775_bib0040) 2017; 38
He (10.1016/j.actamat.2023.118775_bib0020) 2016; 102
Chen (10.1016/j.actamat.2023.118775_bib0056) 1994; 42
Hardy (10.1016/j.actamat.2023.118775_bib0073) 1953; 1
Zhang (10.1016/j.actamat.2023.118775_bib0067) 2016; 109
Halder (10.1016/j.actamat.2023.118775_bib0046) 2014
Luan (10.1016/j.actamat.2023.118775_bib0018) 2020; 179
Abe (10.1016/j.actamat.2023.118775_bib0074) 2006; 55
Guo (10.1016/j.actamat.2023.118775_bib0009) 2017; 114
Munitz (10.1016/j.actamat.2023.118775_bib0028) 2018; 97
Xie (10.1016/j.actamat.2023.118775_bib0016) 2019; 10
Koneru (10.1016/j.actamat.2023.118775_bib0044) 2022; 43
Melnick (10.1016/j.actamat.2023.118775_bib0061) 2017; 694
Zhang (10.1016/j.actamat.2023.118775_bib0062) 2014; 61
Takeuchi (10.1016/j.actamat.2023.118775_bib0063) 2010; 18
Batchelor (10.1016/j.actamat.2023.118775_bib0014) 2019; 3
Laughlin (10.1016/j.actamat.2023.118775_bib0025) 2014
Morral (10.1016/j.actamat.2023.118775_bib0042) 2021; 42
Yang (10.1016/j.actamat.2023.118775_bib0004) 2018; 362
De Fontaine (10.1016/j.actamat.2023.118775_bib0050) 1972; 33
Senkov (10.1016/j.actamat.2023.118775_bib0033) 2016; 18
Maier-Paape (10.1016/j.actamat.2023.118775_bib0049) 2000; 98
Senkov (10.1016/j.actamat.2023.118775_bib0003) 2011; 19
Zhang (10.1016/j.actamat.2023.118775_bib0037) 2017; 133
References_xml – year: 2013
  ident: bib0059
  article-title: Theory of Structural Transformations in Solids
– volume: 694
  start-page: 223
  year: 2017
  end-page: 227
  ident: bib0061
  article-title: Thermodynamic design of high-entropy refractory alloys
  publication-title: J. Alloys Compd.
– volume: 18
  start-page: 1779
  year: 2010
  end-page: 1789
  ident: bib0063
  article-title: Mixing enthalpy of liquid phase calculated by miedema's scheme and approximated with sub-regular solution model for assessing forming ability of amorphous and glassy alloys
  publication-title: Intermetallics
– volume: 97
  start-page: 77
  year: 2018
  end-page: 84
  ident: bib0028
  article-title: Liquid phase separation phenomena in Al
  publication-title: Intermetallics
– volume: 129
  start-page: 170
  year: 2017
  end-page: 182
  ident: bib0019
  article-title: Cu assisted stabilization and nucleation of L1
  publication-title: Acta Mater
– volume: 199
  start-page: 193
  year: 2020
  end-page: 208
  ident: bib0021
  article-title: Growth kinetics of σ-phase precipitates and underlying diffusion processes in CrMnFeCoNi high-entropy alloys
  publication-title: Acta Mater
– volume: 43
  start-page: 753
  year: 2022
  end-page: 763
  ident: bib0044
  article-title: High-throughput design of multi-principal element alloys with spinodal decomposition assisted microstructures
  publication-title: J. Phase Equilibria Diffus
– volume: 59
  start-page: 182
  year: 2011
  end-page: 190
  ident: bib0029
  article-title: Decomposition in multi-component AlCoCrCuFeNi high-entropy alloy
  publication-title: Acta Mater
– volume: 98
  start-page: 871
  year: 2000
  end-page: 896
  ident: bib0049
  article-title: Spinodal decomposition for multicomponent Cahn-Hilliard systems
  publication-title: J. Stat. Phys.
– volume: 104
  start-page: 172
  year: 2016
  end-page: 179
  ident: bib0064
  article-title: Predicting the formation and stability of single phase high-entropy alloys
  publication-title: Acta Mater
– volume: 20
  start-page: 1069
  year: 1972
  ident: bib0053
  article-title: Stability limits for ternary regular system
  publication-title: Acta Metall
– volume: 244
  year: 2020
  ident: bib0036
  article-title: Evolution of mechanical properties and corrosion resistance of Al
  publication-title: Mater. Chem. Phys.
– volume: 30
  start-page: 1121
  year: 1959
  end-page: 1124
  ident: bib0048
  article-title: Free energy of a nonuniform system. II. Thermodynamic basis
  publication-title: J. Chem. Phys.
– volume: 34
  start-page: 1285
  year: 1973
  end-page: 1304
  ident: bib0051
  article-title: An analysis of clustering and ordering in multicomponent solid solutions—II fluctuations and kinetics
  publication-title: J. Phys. Chem. Solids
– volume: 8
  start-page: 726
  year: 2019
  end-page: 736
  ident: bib0030
  article-title: Concurrence of spinodal decomposition and nano-phase precipitation in a multi-component AlCoCrCuFeNi high-entropy alloy
  publication-title: J. Mater. Res. Technol.-Jmr&T
– year: 2014
  ident: bib0046
  article-title: Introduction to Chemical Engineering Thermodynamics
– volume: 10
  start-page: 2650
  year: 2019
  ident: bib0015
  article-title: Electrosynthesis of high-entropy metallic glass nanoparticles for designer, multi-functional electrocatalysis
  publication-title: Nat. Commun.
– volume: 45
  start-page: 1
  year: 2014
  end-page: 10
  ident: bib0069
  article-title: An understanding of high entropy alloys from phase diagram calculations
  publication-title: Calphad-Comput. Coupl. Phase Diagram. Thermochem.
– volume: 8
  start-page: 81
  year: 1975
  end-page: 86
  ident: bib0052
  article-title: Clustering and ordering in solid solutions
  publication-title: J. Appl. Crystallogr.
– volume: 6
  start-page: 299
  year: 2004
  end-page: 303
  ident: bib0001
  article-title: Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes
  publication-title: Adv. Eng. Mater.
– volume: 18
  start-page: 102
  year: 2016
  ident: bib0033
  article-title: Development of a refractory high entropy superalloy
  publication-title: Entropy
– volume: 102
  start-page: 187
  year: 2016
  end-page: 196
  ident: bib0020
  article-title: A precipitation-hardened high-entropy alloy with outstanding tensile properties
  publication-title: Acta Mater
– volume: 132
  start-page: 233
  year: 2012
  end-page: 238
  ident: bib0022
  article-title: Prediction of high-entropy stabilized solid-solution in multi-component alloys
  publication-title: Mater. Chem. Phys.
– volume: 127
  year: 2021
  ident: bib0005
  article-title: Mechanism and Prediction of Hydrogen Embrittlement in fcc Stainless Steels and High Entropy Alloys
  publication-title: Phys. Rev. Lett.
– volume: 35
  year: 2020
  ident: bib0076
  article-title: Bulk nanostructured AlCoCrFeMnNi chemically complex alloy synthesized by laser-powder bed fusion
  publication-title: Addit Manuf
– volume: 6
  start-page: 6529
  year: 2015
  ident: bib0068
  article-title: Accelerated exploration of multi-principal element alloys with solid solution phases
  publication-title: Nat. Commun.
– volume: 689
  start-page: 384
  year: 2017
  end-page: 394
  ident: bib0027
  article-title: Heat treatments' effects on the microstructure and mechanical properties of an equiatomic Al-Cr-Fe-Mn-Ni high entropy alloy
  publication-title: Mater. Sci. Eng. a-Struct. Mater. Propert. Microstruct. Process.
– volume: 113
  year: 2014
  ident: bib0010
  article-title: Discovery of a superconducting high-entropy alloy
  publication-title: Phys. Rev. Lett.
– volume: 122
  start-page: 448
  year: 2017
  end-page: 511
  ident: bib0017
  article-title: A critical review of high entropy alloys and related concepts
  publication-title: Acta Mater
– volume: 169
  start-page: 62
  year: 2016
  end-page: 64
  ident: bib0034
  article-title: A multi-component AlCrFe
  publication-title: Mater. Lett.
– volume: 33
  start-page: 297
  year: 1972
  end-page: 310
  ident: bib0050
  article-title: An analysis of clustering and ordering in multicomponent solid solutions—I. Stability criteria
  publication-title: J. Phys. Chem. Solids
– volume: 345
  start-page: 1153
  year: 2014
  end-page: 1158
  ident: bib0002
  article-title: A fracture-resistant high-entropy alloy for cryogenic applications
  publication-title: Science
– volume: 31
  start-page: 633
  year: 2006
  end-page: 648
  ident: bib0072
  article-title: Recent progress in high entropy alloys
  publication-title: Ann. Chim. Sci. Mat
– volume: 823
  year: 2020
  ident: bib0071
  article-title: Microstructure exploration and an artificial neural network approach for hardness prediction in AlCrFeMnNiW
  publication-title: J. Alloys Compd.
– volume: 26
  start-page: 44
  year: 2012
  end-page: 51
  ident: bib0039
  article-title: Effects of Al addition on the microstructure and mechanical property of Al
  publication-title: Intermetallics
– volume: 61
  start-page: 2628
  year: 2013
  end-page: 2638
  ident: bib0066
  article-title: Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys
  publication-title: Acta Mater
– volume: 19
  year: 2017
  ident: bib0031
  article-title: A combinatorial approach for assessing the magnetic properties of high entropy alloys: role of Cr in AlCo
  publication-title: Adv. Eng. Mater.
– volume: 3
  start-page: 834
  year: 2019
  end-page: 845
  ident: bib0014
  article-title: High-entropy alloys as a discovery platform for electrocatalysis
  publication-title: Joule
– volume: 38
  start-page: 319
  year: 2017
  end-page: 331
  ident: bib0041
  article-title: High entropy alloys, miscibility gaps and the rose geometry
  publication-title: J. Phase Equilibria Diffus
– volume: 197
  year: 2021
  ident: bib0023
  article-title: Machine learning approach to predict new multiphase high entropy alloys
  publication-title: Scripta Mater
– volume: 31
  year: 2020
  ident: bib0032
  article-title: Beyond solid solution high-entropy alloys: tailoring magnetic properties via spinodal decomposition
  publication-title: Adv. Funct. Mater.
– volume: 197
  start-page: 10
  year: 2020
  end-page: 19
  ident: bib0043
  article-title: Phase-field simulation of coherent BCC/B2 microstructures in high entropy alloys
  publication-title: Acta Mater
– volume: 462
  start-page: 1017
  year: 2018
  end-page: 1028
  ident: bib0035
  article-title: Microstructural change and phase transformation in each individual layer of a nano-multilayered AlCrTiSiN high-entropy alloy nitride coating upon annealing
  publication-title: Appl. Surf. Sci.
– volume: 119
  year: 2021
  ident: bib0024
  article-title: Phase-field modelling of transformation pathways and microstructural evolution in multi-principal element alloys
  publication-title: Appl. Phys. Lett.
– volume: 133
  start-page: 435
  year: 2017
  end-page: 443
  ident: bib0037
  article-title: Microstructure, mechanical properties and energetic characteristics of a novel high-entropy alloy HfZrTiTa
  publication-title: Mater. Des.
– volume: 8
  start-page: 1984
  year: 2016
  end-page: 1988
  ident: bib0077
  article-title: Effect of trace additions of ti on the microstructure of AlCoCrFeNi-based high entropy alloy
  publication-title: Sci. Adv. Mater.
– volume: 116
  year: 2016
  ident: bib0008
  article-title: Mechanism of radiation damage reduction in equiatomic multicomponent single phase alloys
  publication-title: Phys. Rev. Lett.
– volume: 19
  start-page: 698
  year: 2011
  end-page: 706
  ident: bib0003
  article-title: Mechanical properties of Nb
  publication-title: Intermetallics
– volume: 3
  year: 2019
  ident: bib0011
  article-title: High-entropy alloy superconductors: status, opportunities, and challenges
  publication-title: Phys. Rev. Mater.
– volume: 3
  year: 2019
  ident: bib0012
  article-title: Superconductivity in a new hexagonal high-entropy alloy
  publication-title: Phys. Rev. Mater.
– volume: 61
  start-page: 1
  year: 2014
  end-page: 93
  ident: bib0062
  article-title: Microstructures and properties of high-entropy alloys
  publication-title: Prog. Mater Sci.
– volume: 10
  start-page: 4011
  year: 2019
  ident: bib0016
  article-title: Highly efficient decomposition of ammonia using high-entropy alloy catalysts
  publication-title: Nat. Commun.
– volume: 7
  start-page: 13564
  year: 2016
  ident: bib0007
  article-title: Enhancing radiation tolerance by controlling defect mobility and migration pathways in multicomponent single-phase alloys
  publication-title: Nat. Commun.
– volume: 172
  year: 2020
  ident: bib0058
  article-title: A phase-field study of elastic stress effects on phase separation in ternary alloys
  publication-title: Comput. Mater. Sci.
– volume: 42
  start-page: 3503
  year: 1994
  end-page: 3513
  ident: bib0056
  article-title: Computer-simulation of spinodal decomposition in ternary-systems
  publication-title: Acta Metallurgica Et Materialia
– volume: 31
  start-page: 1214
  year: 2015
  end-page: 1222
  ident: bib0075
  article-title: Effect of processing route on phase stability in equiatomic multicomponent Ti
  publication-title: Mater. Sci. Tech.
– volume: 109
  start-page: 425
  year: 2016
  end-page: 433
  ident: bib0067
  article-title: Understanding phase stability of Al-Co-Cr-Fe-Ni high entropy alloys
  publication-title: Mater. Des.
– volume: 55
  start-page: 421
  year: 2006
  end-page: 424
  ident: bib0074
  article-title: Phase separation and glass-forming abilities of ternary alloys
  publication-title: Scripta Mater
– volume: 26
  start-page: 193
  year: 2003
  end-page: 197
  ident: bib0057
  article-title: A study of phase separation in ternary alloys
  publication-title: Bull. Mater. Sci.
– volume: 132
  start-page: 212
  year: 2013
  end-page: 215
  ident: bib0026
  article-title: Phase separation in equiatomic AlCoCrFeNi high-entropy alloy
  publication-title: Ultramicroscopy
– volume: 114
  start-page: 13144
  year: 2017
  end-page: 13147
  ident: bib0009
  article-title: Robust zero resistance in a superconducting high-entropy alloy at pressures up to 190GPa
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 1
  start-page: 202
  year: 1953
  end-page: 209
  ident: bib0073
  article-title: A “sub-regular” solution model and its application to some binary alloy systems
  publication-title: Acta Metall
– volume: 42
  start-page: 673
  year: 2021
  end-page: 695
  ident: bib0042
  article-title: Stability of high entropy alloys to spinodal decomposition
  publication-title: J. Phase Equilibria Diffus.
– year: 2015
  ident: bib0060
  article-title: Physical metallurgy: Principles and Practice
– volume: 181
  year: 2019
  ident: bib0038
  article-title: Effect of metastability on non-phase-transformation high-entropy alloys
  publication-title: Mater. Des.
– volume: 214
  year: 2022
  ident: bib0065
  article-title: Exploration of spinodal decomposition in multi-principal element alloys (MPEAs) using CALPHAD modeling
  publication-title: Scripta Mater
– volume: 38
  start-page: 382
  year: 2017
  end-page: 390
  ident: bib0040
  article-title: A regular solution model for a single-phase high entropy and enthalpy alloy
  publication-title: J. Phase Equilibria Diffus
– volume: 179
  start-page: 40
  year: 2020
  end-page: 44
  ident: bib0018
  article-title: Phase stabilities of high entropy alloys
  publication-title: Scripta Mater
– year: 2014
  ident: bib0045
  article-title: High-Entropy Alloys
– volume: 113
  start-page: 230
  year: 2016
  end-page: 244
  ident: bib0006
  article-title: Microstructural stability and mechanical behavior of FeNiMnCr high entropy alloy under ion irradiation
  publication-title: Acta Mater
– volume: 19
  start-page: 1037
  year: 1971
  ident: bib0054
  article-title: Spinodal decomposition in ternary systems
  publication-title: Acta Metall
– volume: 40
  start-page: 532
  year: 2019
  end-page: 541
  ident: bib0055
  article-title: Gibbs-schreinemakers-meijering mechanisms for 3-Phase miscibility gap formation
  publication-title: J. Phase Equilibria Diffus
– year: 2014
  ident: bib0025
  article-title: Physical Metallurgy
– volume: 362
  start-page: 933
  year: 2018
  end-page: 937
  ident: bib0004
  article-title: Multicomponent intermetallic nanoparticles and superb mechanical behaviors of complex alloys
  publication-title: Science
– volume: 359
  start-page: 1489
  year: 2018
  end-page: 1494
  ident: bib0013
  article-title: Carbothermal shock synthesis of high-entropy-alloy nanoparticles
  publication-title: Science
– volume: 57
  start-page: 10600
  year: 2022
  end-page: 10612
  ident: bib0070
  article-title: Phase-field approach to simulate BCC-B2 phase separation in the Al
  publication-title: J. Mater. Sci.
– volume: 28
  start-page: 258
  year: 1958
  end-page: 267
  ident: bib0047
  article-title: Free energy of a nonuniform system. I. Interfacial free energy
  publication-title: J. Chem. Phys.
– volume: 179
  start-page: 40
  year: 2020
  ident: 10.1016/j.actamat.2023.118775_bib0018
  article-title: Phase stabilities of high entropy alloys
  publication-title: Scripta Mater
  doi: 10.1016/j.scriptamat.2019.12.041
– volume: 8
  start-page: 726
  issue: 1
  year: 2019
  ident: 10.1016/j.actamat.2023.118775_bib0030
  article-title: Concurrence of spinodal decomposition and nano-phase precipitation in a multi-component AlCoCrCuFeNi high-entropy alloy
  publication-title: J. Mater. Res. Technol.-Jmr&T
  doi: 10.1016/j.jmrt.2018.04.020
– volume: 244
  year: 2020
  ident: 10.1016/j.actamat.2023.118775_bib0036
  article-title: Evolution of mechanical properties and corrosion resistance of Al0.6CoFeNiCr0.4 high-entropy alloys at different heat treatment temperature
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2020.122700
– volume: 3
  issue: 6
  year: 2019
  ident: 10.1016/j.actamat.2023.118775_bib0012
  article-title: Superconductivity in a new hexagonal high-entropy alloy
  publication-title: Phys. Rev. Mater.
– volume: 19
  start-page: 698
  issue: 5
  year: 2011
  ident: 10.1016/j.actamat.2023.118775_bib0003
  article-title: Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys
  publication-title: Intermetallics
  doi: 10.1016/j.intermet.2011.01.004
– volume: 31
  issue: 7
  year: 2020
  ident: 10.1016/j.actamat.2023.118775_bib0032
  article-title: Beyond solid solution high-entropy alloys: tailoring magnetic properties via spinodal decomposition
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202007668
– year: 2014
  ident: 10.1016/j.actamat.2023.118775_bib0045
– year: 2015
  ident: 10.1016/j.actamat.2023.118775_bib0060
– volume: 18
  start-page: 1779
  issue: 9
  year: 2010
  ident: 10.1016/j.actamat.2023.118775_bib0063
  article-title: Mixing enthalpy of liquid phase calculated by miedema's scheme and approximated with sub-regular solution model for assessing forming ability of amorphous and glassy alloys
  publication-title: Intermetallics
  doi: 10.1016/j.intermet.2010.06.003
– volume: 57
  start-page: 10600
  issue: 23
  year: 2022
  ident: 10.1016/j.actamat.2023.118775_bib0070
  article-title: Phase-field approach to simulate BCC-B2 phase separation in the AlnCrFe2Ni2 medium-entropy alloy
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-022-07058-2
– volume: 1
  start-page: 202
  issue: 2
  year: 1953
  ident: 10.1016/j.actamat.2023.118775_bib0073
  article-title: A “sub-regular” solution model and its application to some binary alloy systems
  publication-title: Acta Metall
  doi: 10.1016/0001-6160(53)90059-5
– volume: 127
  issue: 17
  year: 2021
  ident: 10.1016/j.actamat.2023.118775_bib0005
  article-title: Mechanism and Prediction of Hydrogen Embrittlement in fcc Stainless Steels and High Entropy Alloys
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.127.175501
– volume: 42
  start-page: 673
  issue: 5
  year: 2021
  ident: 10.1016/j.actamat.2023.118775_bib0042
  article-title: Stability of high entropy alloys to spinodal decomposition
  publication-title: J. Phase Equilibria Diffus.
  doi: 10.1007/s11669-021-00915-8
– volume: 26
  start-page: 44
  year: 2012
  ident: 10.1016/j.actamat.2023.118775_bib0039
  article-title: Effects of Al addition on the microstructure and mechanical property of AlxCoCrFeNi high-entropy alloys
  publication-title: Intermetallics
  doi: 10.1016/j.intermet.2012.03.005
– volume: 6
  start-page: 6529
  year: 2015
  ident: 10.1016/j.actamat.2023.118775_bib0068
  article-title: Accelerated exploration of multi-principal element alloys with solid solution phases
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms7529
– volume: 19
  issue: 8
  year: 2017
  ident: 10.1016/j.actamat.2023.118775_bib0031
  article-title: A combinatorial approach for assessing the magnetic properties of high entropy alloys: role of Cr in AlCoxCr1-xFeNi
  publication-title: Adv. Eng. Mater.
  doi: 10.1002/adem.201700048
– volume: 98
  start-page: 871
  issue: 3–4
  year: 2000
  ident: 10.1016/j.actamat.2023.118775_bib0049
  article-title: Spinodal decomposition for multicomponent Cahn-Hilliard systems
  publication-title: J. Stat. Phys.
  doi: 10.1023/A:1018687811688
– volume: 116
  issue: 13
  year: 2016
  ident: 10.1016/j.actamat.2023.118775_bib0008
  article-title: Mechanism of radiation damage reduction in equiatomic multicomponent single phase alloys
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.116.135504
– volume: 102
  start-page: 187
  year: 2016
  ident: 10.1016/j.actamat.2023.118775_bib0020
  article-title: A precipitation-hardened high-entropy alloy with outstanding tensile properties
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2015.08.076
– year: 2014
  ident: 10.1016/j.actamat.2023.118775_bib0046
– volume: 132
  start-page: 233
  issue: 2–3
  year: 2012
  ident: 10.1016/j.actamat.2023.118775_bib0022
  article-title: Prediction of high-entropy stabilized solid-solution in multi-component alloys
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2011.11.021
– volume: 38
  start-page: 382
  issue: 4
  year: 2017
  ident: 10.1016/j.actamat.2023.118775_bib0040
  article-title: A regular solution model for a single-phase high entropy and enthalpy alloy
  publication-title: J. Phase Equilibria Diffus
  doi: 10.1007/s11669-017-0578-z
– volume: 18
  start-page: 102
  issue: 3
  year: 2016
  ident: 10.1016/j.actamat.2023.118775_bib0033
  article-title: Development of a refractory high entropy superalloy
  publication-title: Entropy
  doi: 10.3390/e18030102
– volume: 55
  start-page: 421
  issue: 5
  year: 2006
  ident: 10.1016/j.actamat.2023.118775_bib0074
  article-title: Phase separation and glass-forming abilities of ternary alloys
  publication-title: Scripta Mater
  doi: 10.1016/j.scriptamat.2006.05.020
– volume: 113
  start-page: 230
  year: 2016
  ident: 10.1016/j.actamat.2023.118775_bib0006
  article-title: Microstructural stability and mechanical behavior of FeNiMnCr high entropy alloy under ion irradiation
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2016.05.007
– volume: 7
  start-page: 13564
  year: 2016
  ident: 10.1016/j.actamat.2023.118775_bib0007
  article-title: Enhancing radiation tolerance by controlling defect mobility and migration pathways in multicomponent single-phase alloys
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms13564
– volume: 19
  start-page: 1037
  issue: 10
  year: 1971
  ident: 10.1016/j.actamat.2023.118775_bib0054
  article-title: Spinodal decomposition in ternary systems
  publication-title: Acta Metall
  doi: 10.1016/0001-6160(71)90036-8
– volume: 3
  start-page: 834
  issue: 3
  year: 2019
  ident: 10.1016/j.actamat.2023.118775_bib0014
  article-title: High-entropy alloys as a discovery platform for electrocatalysis
  publication-title: Joule
  doi: 10.1016/j.joule.2018.12.015
– volume: 169
  start-page: 62
  year: 2016
  ident: 10.1016/j.actamat.2023.118775_bib0034
  article-title: A multi-component AlCrFe2Ni2 alloy with excellent mechanical properties
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2016.01.096
– volume: 8
  start-page: 81
  issue: 2
  year: 1975
  ident: 10.1016/j.actamat.2023.118775_bib0052
  article-title: Clustering and ordering in solid solutions
  publication-title: J. Appl. Crystallogr.
  doi: 10.1107/S0021889875009703
– volume: 35
  year: 2020
  ident: 10.1016/j.actamat.2023.118775_bib0076
  article-title: Bulk nanostructured AlCoCrFeMnNi chemically complex alloy synthesized by laser-powder bed fusion
  publication-title: Addit Manuf
– volume: 8
  start-page: 1984
  issue: 10
  year: 2016
  ident: 10.1016/j.actamat.2023.118775_bib0077
  article-title: Effect of trace additions of ti on the microstructure of AlCoCrFeNi-based high entropy alloy
  publication-title: Sci. Adv. Mater.
  doi: 10.1166/sam.2016.2793
– volume: 199
  start-page: 193
  year: 2020
  ident: 10.1016/j.actamat.2023.118775_bib0021
  article-title: Growth kinetics of σ-phase precipitates and underlying diffusion processes in CrMnFeCoNi high-entropy alloys
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2020.08.023
– volume: 43
  start-page: 753
  issue: 6
  year: 2022
  ident: 10.1016/j.actamat.2023.118775_bib0044
  article-title: High-throughput design of multi-principal element alloys with spinodal decomposition assisted microstructures
  publication-title: J. Phase Equilibria Diffus
  doi: 10.1007/s11669-022-00977-2
– year: 2014
  ident: 10.1016/j.actamat.2023.118775_bib0025
– volume: 59
  start-page: 182
  issue: 1
  year: 2011
  ident: 10.1016/j.actamat.2023.118775_bib0029
  article-title: Decomposition in multi-component AlCoCrCuFeNi high-entropy alloy
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2010.09.023
– volume: 359
  start-page: 1489
  issue: 6383
  year: 2018
  ident: 10.1016/j.actamat.2023.118775_bib0013
  article-title: Carbothermal shock synthesis of high-entropy-alloy nanoparticles
  publication-title: Science
  doi: 10.1126/science.aan5412
– volume: 214
  year: 2022
  ident: 10.1016/j.actamat.2023.118775_bib0065
  article-title: Exploration of spinodal decomposition in multi-principal element alloys (MPEAs) using CALPHAD modeling
  publication-title: Scripta Mater
  doi: 10.1016/j.scriptamat.2022.114657
– volume: 10
  start-page: 4011
  issue: 1
  year: 2019
  ident: 10.1016/j.actamat.2023.118775_bib0016
  article-title: Highly efficient decomposition of ammonia using high-entropy alloy catalysts
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-11848-9
– volume: 345
  start-page: 1153
  issue: 6201
  year: 2014
  ident: 10.1016/j.actamat.2023.118775_bib0002
  article-title: A fracture-resistant high-entropy alloy for cryogenic applications
  publication-title: Science
  doi: 10.1126/science.1254581
– volume: 104
  start-page: 172
  year: 2016
  ident: 10.1016/j.actamat.2023.118775_bib0064
  article-title: Predicting the formation and stability of single phase high-entropy alloys
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2015.11.040
– volume: 113
  issue: 10
  year: 2014
  ident: 10.1016/j.actamat.2023.118775_bib0010
  article-title: Discovery of a superconducting high-entropy alloy
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.113.107001
– volume: 132
  start-page: 212
  year: 2013
  ident: 10.1016/j.actamat.2023.118775_bib0026
  article-title: Phase separation in equiatomic AlCoCrFeNi high-entropy alloy
  publication-title: Ultramicroscopy
  doi: 10.1016/j.ultramic.2012.12.015
– year: 2013
  ident: 10.1016/j.actamat.2023.118775_bib0059
– volume: 26
  start-page: 193
  issue: 1
  year: 2003
  ident: 10.1016/j.actamat.2023.118775_bib0057
  article-title: A study of phase separation in ternary alloys
  publication-title: Bull. Mater. Sci.
  doi: 10.1007/BF02712812
– volume: 34
  start-page: 1285
  issue: 8
  year: 1973
  ident: 10.1016/j.actamat.2023.118775_bib0051
  article-title: An analysis of clustering and ordering in multicomponent solid solutions—II fluctuations and kinetics
  publication-title: J. Phys. Chem. Solids
  doi: 10.1016/S0022-3697(73)80026-5
– volume: 462
  start-page: 1017
  year: 2018
  ident: 10.1016/j.actamat.2023.118775_bib0035
  article-title: Microstructural change and phase transformation in each individual layer of a nano-multilayered AlCrTiSiN high-entropy alloy nitride coating upon annealing
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2018.07.106
– volume: 119
  issue: 17
  year: 2021
  ident: 10.1016/j.actamat.2023.118775_bib0024
  article-title: Phase-field modelling of transformation pathways and microstructural evolution in multi-principal element alloys
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/5.0065522
– volume: 31
  start-page: 1214
  issue: 10
  year: 2015
  ident: 10.1016/j.actamat.2023.118775_bib0075
  article-title: Effect of processing route on phase stability in equiatomic multicomponent Ti20Fe20Ni20Co20Cu20 high entropy alloy
  publication-title: Mater. Sci. Tech.
  doi: 10.1179/1743284715Y.0000000024
– volume: 20
  start-page: 1069
  issue: 8
  year: 1972
  ident: 10.1016/j.actamat.2023.118775_bib0053
  article-title: Stability limits for ternary regular system
  publication-title: Acta Metall
  doi: 10.1016/0001-6160(72)90140-X
– volume: 3
  issue: 9
  year: 2019
  ident: 10.1016/j.actamat.2023.118775_bib0011
  article-title: High-entropy alloy superconductors: status, opportunities, and challenges
  publication-title: Phys. Rev. Mater.
– volume: 197
  start-page: 10
  year: 2020
  ident: 10.1016/j.actamat.2023.118775_bib0043
  article-title: Phase-field simulation of coherent BCC/B2 microstructures in high entropy alloys
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2020.07.030
– volume: 97
  start-page: 77
  year: 2018
  ident: 10.1016/j.actamat.2023.118775_bib0028
  article-title: Liquid phase separation phenomena in Al2.2CrCuFeNi2 HEA
  publication-title: Intermetallics
  doi: 10.1016/j.intermet.2018.04.004
– volume: 172
  year: 2020
  ident: 10.1016/j.actamat.2023.118775_bib0058
  article-title: A phase-field study of elastic stress effects on phase separation in ternary alloys
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2019.109284
– volume: 40
  start-page: 532
  issue: 4
  year: 2019
  ident: 10.1016/j.actamat.2023.118775_bib0055
  article-title: Gibbs-schreinemakers-meijering mechanisms for 3-Phase miscibility gap formation
  publication-title: J. Phase Equilibria Diffus
  doi: 10.1007/s11669-019-00748-6
– volume: 31
  start-page: 633
  issue: 6
  year: 2006
  ident: 10.1016/j.actamat.2023.118775_bib0072
  article-title: Recent progress in high entropy alloys
  publication-title: Ann. Chim. Sci. Mat
  doi: 10.3166/acsm.31.633-648
– volume: 45
  start-page: 1
  year: 2014
  ident: 10.1016/j.actamat.2023.118775_bib0069
  article-title: An understanding of high entropy alloys from phase diagram calculations
  publication-title: Calphad-Comput. Coupl. Phase Diagram. Thermochem.
  doi: 10.1016/j.calphad.2013.10.006
– volume: 133
  start-page: 435
  year: 2017
  ident: 10.1016/j.actamat.2023.118775_bib0037
  article-title: Microstructure, mechanical properties and energetic characteristics of a novel high-entropy alloy HfZrTiTa0.53
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2017.08.022
– volume: 33
  start-page: 297
  issue: 2
  year: 1972
  ident: 10.1016/j.actamat.2023.118775_bib0050
  article-title: An analysis of clustering and ordering in multicomponent solid solutions—I. Stability criteria
  publication-title: J. Phys. Chem. Solids
  doi: 10.1016/0022-3697(72)90011-X
– volume: 109
  start-page: 425
  year: 2016
  ident: 10.1016/j.actamat.2023.118775_bib0067
  article-title: Understanding phase stability of Al-Co-Cr-Fe-Ni high entropy alloys
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2016.07.073
– volume: 61
  start-page: 1
  year: 2014
  ident: 10.1016/j.actamat.2023.118775_bib0062
  article-title: Microstructures and properties of high-entropy alloys
  publication-title: Prog. Mater Sci.
  doi: 10.1016/j.pmatsci.2013.10.001
– volume: 38
  start-page: 319
  issue: 3
  year: 2017
  ident: 10.1016/j.actamat.2023.118775_bib0041
  article-title: High entropy alloys, miscibility gaps and the rose geometry
  publication-title: J. Phase Equilibria Diffus
  doi: 10.1007/s11669-017-0547-6
– volume: 30
  start-page: 1121
  issue: 5
  year: 1959
  ident: 10.1016/j.actamat.2023.118775_bib0048
  article-title: Free energy of a nonuniform system. II. Thermodynamic basis
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1730145
– volume: 689
  start-page: 384
  year: 2017
  ident: 10.1016/j.actamat.2023.118775_bib0027
  article-title: Heat treatments' effects on the microstructure and mechanical properties of an equiatomic Al-Cr-Fe-Mn-Ni high entropy alloy
  publication-title: Mater. Sci. Eng. a-Struct. Mater. Propert. Microstruct. Process.
  doi: 10.1016/j.msea.2017.02.072
– volume: 114
  start-page: 13144
  issue: 50
  year: 2017
  ident: 10.1016/j.actamat.2023.118775_bib0009
  article-title: Robust zero resistance in a superconducting high-entropy alloy at pressures up to 190GPa
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1716981114
– volume: 122
  start-page: 448
  year: 2017
  ident: 10.1016/j.actamat.2023.118775_bib0017
  article-title: A critical review of high entropy alloys and related concepts
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2016.08.081
– volume: 6
  start-page: 299
  issue: 5
  year: 2004
  ident: 10.1016/j.actamat.2023.118775_bib0001
  article-title: Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes
  publication-title: Adv. Eng. Mater.
  doi: 10.1002/adem.200300567
– volume: 10
  start-page: 2650
  issue: 1
  year: 2019
  ident: 10.1016/j.actamat.2023.118775_bib0015
  article-title: Electrosynthesis of high-entropy metallic glass nanoparticles for designer, multi-functional electrocatalysis
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-10303-z
– volume: 129
  start-page: 170
  year: 2017
  ident: 10.1016/j.actamat.2023.118775_bib0019
  article-title: Cu assisted stabilization and nucleation of L12 precipitates in Al0.3CuFeCrNi2 fcc-based high entropy alloy
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2017.02.053
– volume: 42
  start-page: 3503
  issue: 10
  year: 1994
  ident: 10.1016/j.actamat.2023.118775_bib0056
  article-title: Computer-simulation of spinodal decomposition in ternary-systems
  publication-title: Acta Metallurgica Et Materialia
  doi: 10.1016/0956-7151(94)90482-0
– volume: 694
  start-page: 223
  year: 2017
  ident: 10.1016/j.actamat.2023.118775_bib0061
  article-title: Thermodynamic design of high-entropy refractory alloys
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2016.09.189
– volume: 197
  year: 2021
  ident: 10.1016/j.actamat.2023.118775_bib0023
  article-title: Machine learning approach to predict new multiphase high entropy alloys
  publication-title: Scripta Mater
  doi: 10.1016/j.scriptamat.2021.113804
– volume: 362
  start-page: 933
  issue: 6417
  year: 2018
  ident: 10.1016/j.actamat.2023.118775_bib0004
  article-title: Multicomponent intermetallic nanoparticles and superb mechanical behaviors of complex alloys
  publication-title: Science
  doi: 10.1126/science.aas8815
– volume: 181
  year: 2019
  ident: 10.1016/j.actamat.2023.118775_bib0038
  article-title: Effect of metastability on non-phase-transformation high-entropy alloys
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2019.107928
– volume: 28
  start-page: 258
  issue: 2
  year: 1958
  ident: 10.1016/j.actamat.2023.118775_bib0047
  article-title: Free energy of a nonuniform system. I. Interfacial free energy
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1744102
– volume: 61
  start-page: 2628
  issue: 7
  year: 2013
  ident: 10.1016/j.actamat.2023.118775_bib0066
  article-title: Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2013.01.042
– volume: 823
  year: 2020
  ident: 10.1016/j.actamat.2023.118775_bib0071
  article-title: Microstructure exploration and an artificial neural network approach for hardness prediction in AlCrFeMnNiWx High-Entropy Alloys
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2020.153766
SSID ssj0012740
Score 2.5766313
Snippet High-entropy alloys (HEAs) have many attractive properties, while the thermodynamic mechanism and general behavior of the spinodal decomposition in HEAs remain...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 118775
SubjectTerms Gibbs phase rule
High-entropy alloys
Phase stability
Pseudo-binary decomposition
Spinodal decomposition
Title Spinodal decomposition and the pseudo-binary decomposition in high-entropy alloys
URI https://dx.doi.org/10.1016/j.actamat.2023.118775
Volume 248
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6KXvQgPrE-Sg5e89jmsd1jKZaqWJBa6C1kX5AiSWjTQy_-dmeapFYRBQ85ZJmBZZid-WZ3HoTcCY9rJngCJw1MYOALYQsupR0Buu4q-JjBe8jncTSaBo-zcNYig6YWBtMqa9tf2fSNta5X3FqabpGm7oT6Icd-VACiMbDBnqBBwFDLnfdtmgeFqKuqFA65jdSfVTzuHLZcJgAMHZwh7uDgbUw3_Mk_7fic4TE5qsGi1a_2c0JaOjslhzstBM_Iy6RIs1wBldKYHl7nYFlJpizAdlax1CuVY_ybLNbfaNLMwm7FNl7w5sXawjf49fKcTIf3r4ORXY9JsKXv8RKCv0gZ8MvSM4pL4wUiFMHmZAH609xQEcI6i0Ljd7mQnmQsMRCYhlQzJpTwL8helmf6kljgznpMeAbiCBkokySR8amglFFJpa97bRI0woll3UMcR1m8xU2y2DyuZRqjTONKpm3ibNmKqonGXwy9RvLxF22IwdD_znr1f9ZrcoB_-FZEwxuyVy5W-hYgRyk6G53qkP3-w9No_AFTxNcC
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60HtSD-MS3OXhNmzXZbPcoYkl9FMQK3kL2BS2SBhsP_ffOmK0vRMFDLpsdWIbdmW92Z74BOFWRtELJAk8amsAkVipUUuswRXR9ZvATju4hbwdp9pBcPfLHBbiY18JQWqW3_Y1Nf7PWfqTjtdmpRqPOPYu5JD4qBNEU2CSLsETsVLwFS-f962zw_piAgVdTLMxlSAIfhTydMa66LhAbtqmNeJt6b1PG4U8u6pPb6a3DmseLwXmzpA1YsOUmrH5iEdyCu_tqVE4MzjKWMsR9GlZQlCZAeBdUU_tiJhQCF8-zb3NGZUCExSHd8U6qWUDP8LPpNjz0LocXWeg7JYQ6jmSN8V9qHLpmHTkjtYsSxVXydrgQAFrpmOI4LlLu4jOpdKSFKBzGppxZIZRR8Q60yklpdyFAj9YVKnIYSujEuKJIXcwUY4JppmPb3YNkrpxcexpx6mbxlM_zxca512lOOs0bne5B-12sang0_hLozjWff9kQOdr630X3_y96AsvZ8PYmv-kPrg9ghf7Q0xHjh9Cqn1_sESKQWh37HfYKvIrZsw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spinodal+decomposition+and+the+pseudo-binary+decomposition+in+high-entropy+alloys&rft.jtitle=Acta+materialia&rft.au=Luan%2C+Hengwei&rft.au=Huang%2C+Liufei&rft.au=Kang%2C+Jingyi&rft.au=Luo%2C+Bosang&rft.date=2023-04-15&rft.pub=Elsevier+Ltd&rft.issn=1359-6454&rft.eissn=1873-2453&rft.volume=248&rft_id=info:doi/10.1016%2Fj.actamat.2023.118775&rft.externalDocID=S1359645423001064
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-6454&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-6454&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-6454&client=summon