Site-specific crosslinking reveals Phosphofructokinase-L inhibition drives self-assembly and attenuation of protein interactions
Phosphofructokinase is the central enzyme in glycolysis and constitutes a highly regulated step. The liver isoform (PFKL) compartmentalizes during activation and inhibition in vitro and in vivo, respectively. Compartmentalized PFKL is hypothesized to modulate metabolic flux consistent with its centr...
Saved in:
Published in | Advances in biological regulation Vol. 90; p. 100987 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
01.12.2023
|
Online Access | Get full text |
Cover
Loading…
Abstract | Phosphofructokinase is the central enzyme in glycolysis and constitutes a highly regulated step. The liver isoform (PFKL) compartmentalizes during activation and inhibition in vitro and in vivo, respectively. Compartmentalized PFKL is hypothesized to modulate metabolic flux consistent with its central role as the rate limiting step in glycolysis. PFKL tetramers self-assemble at two interfaces in the monomer (interface 1 and 2), yet how these interfaces contribute to PFKL compartmentalization and drive protein interactions remains unclear. Here, we used site-specific incorporation of noncanonical photocrosslinking amino acids to identify PFKL interactors at interface 1, 2, and the active site. Tandem mass tag-based quantitative interactomics reveals interface 2 as a hotspot for PFKL interactions, particularly with cytoskeletal, glycolytic, and carbohydrate derivative metabolic proteins. Furthermore, PFKL compartmentalization into puncta was observed in human cells using citrate inhibition. Puncta formation attenuated crosslinked protein-protein interactions with the cytoskeleton at interface 2. This result suggests that PFKL compartmentalization sequesters interface 2, but not interface 1, and may modulate associated protein assemblies with the cytoskeleton. |
---|---|
AbstractList | Phosphofructokinase is the central enzyme in glycolysis and constitutes a highly regulated step. The liver isoform (PFKL) compartmentalizes during activation and inhibition in vitro and in vivo, respectively. Compartmentalized PFKL is hypothesized to modulate metabolic flux consistent with its central role as the rate limiting step in glycolysis. PFKL tetramers self-assemble at two interfaces in the monomer (interface 1 and 2), yet how these interfaces contribute to PFKL compartmentalization and drive protein interactions remains unclear. Here, we used site-specific incorporation of noncanonical photocrosslinking amino acids to identify PFKL interactors at interface 1, 2, and the active site. Tandem mass tag-based quantitative interactomics reveals interface 2 as a hotspot for PFKL interactions, particularly with cytoskeletal, glycolytic, and carbohydrate derivative metabolic proteins. Furthermore, PFKL compartmentalization into puncta was observed in human cells using citrate inhibition. Puncta formation attenuated crosslinked protein-protein interactions with the cytoskeleton at interface 2. This result suggests that PFKL compartmentalization sequesters interface 2, but not interface 1, and may modulate associated protein assemblies with the cytoskeleton.Phosphofructokinase is the central enzyme in glycolysis and constitutes a highly regulated step. The liver isoform (PFKL) compartmentalizes during activation and inhibition in vitro and in vivo, respectively. Compartmentalized PFKL is hypothesized to modulate metabolic flux consistent with its central role as the rate limiting step in glycolysis. PFKL tetramers self-assemble at two interfaces in the monomer (interface 1 and 2), yet how these interfaces contribute to PFKL compartmentalization and drive protein interactions remains unclear. Here, we used site-specific incorporation of noncanonical photocrosslinking amino acids to identify PFKL interactors at interface 1, 2, and the active site. Tandem mass tag-based quantitative interactomics reveals interface 2 as a hotspot for PFKL interactions, particularly with cytoskeletal, glycolytic, and carbohydrate derivative metabolic proteins. Furthermore, PFKL compartmentalization into puncta was observed in human cells using citrate inhibition. Puncta formation attenuated crosslinked protein-protein interactions with the cytoskeleton at interface 2. This result suggests that PFKL compartmentalization sequesters interface 2, but not interface 1, and may modulate associated protein assemblies with the cytoskeleton. Phosphofructokinase is the central enzyme in glycolysis and constitutes a highly regulated step. The liver isoform (PFKL) compartmentalizes during activation and inhibition in vitro and in vivo, respectively. Compartmentalized PFKL is hypothesized to modulate metabolic flux consistent with its central role as the rate limiting step in glycolysis. PFKL tetramers self-assemble at two interfaces in the monomer (interface 1 and 2), yet how these interfaces contribute to PFKL compartmentalization and drive protein interactions remains unclear. Here, we used site-specific incorporation of noncanonical photocrosslinking amino acids to identify PFKL interactors at interface 1, 2, and the active site. Tandem mass tag-based quantitative interactomics reveals interface 2 as a hotspot for PFKL interactions, particularly with cytoskeletal, glycolytic, and carbohydrate derivative metabolic proteins. Furthermore, PFKL compartmentalization into puncta was observed in human cells using citrate inhibition. Puncta formation attenuated crosslinked protein-protein interactions with the cytoskeleton at interface 2. This result suggests that PFKL compartmentalization sequesters interface 2, but not interface 1, and may modulate associated protein assemblies with the cytoskeleton. |
ArticleNumber | 100987 |
Author | Shuster, Sydney O Plate, Lars Sivadas, Athira Davis, Caitlin M McDonald, Eli Fritz |
Author_xml | – sequence: 1 givenname: Athira surname: Sivadas fullname: Sivadas, Athira organization: Department of Chemistry, Vanderbilt University, Nashville, TN, USA – sequence: 2 givenname: Eli Fritz surname: McDonald fullname: McDonald, Eli Fritz organization: Department of Chemistry, Vanderbilt University, Nashville, TN, USA; Center for Structural Biology, Vanderbilt University, Nashville, TN, USA – sequence: 3 givenname: Sydney O surname: Shuster fullname: Shuster, Sydney O organization: Department of Chemistry, Yale University, New Haven, CT, USA – sequence: 4 givenname: Caitlin M surname: Davis fullname: Davis, Caitlin M organization: Department of Chemistry, Yale University, New Haven, CT, USA – sequence: 5 givenname: Lars surname: Plate fullname: Plate, Lars email: lars.plate@vanderbilt.edu organization: Department of Chemistry, Vanderbilt University, Nashville, TN, USA; Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA; Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA. Electronic address: lars.plate@vanderbilt.edu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37806136$$D View this record in MEDLINE/PubMed |
BookMark | eNo9kEtPAyEUhYnR-P4FJoalm6k8ZmC6NMZX0kQTdU0Y5mKpU6jAmLjzp0tblQXcnHvOveQ7Qrs-eEDojJIJJVRcLiaLzoU4YYTxopBpK3fQIWOUVfWU17v_NRMH6DSlBSlHlGTd7KMDLlsiKBeH6PvZZajSCoyzzmATQ0qD8-_Ov-EIn6CHhJ_mIa3mwcbR5FA6OkE1w87PXeeyCx730X1CwgkGW-mUYNkNX1j7HuucwY96YwoWr2LI4HyJZojarOV0gvZsWQKnv-8xer29ebm-r2aPdw_XV7PKcDLNVVNuyySjUBs6NUJKSlretJ2gpu_7TrAWNG1kV9pWdsaaWhAjSG8Eb4iu-TG62M4tn_gYIWW1dMnAMGgPYUyKtbJuuSRtU6x8a93QiGDVKrqljl-KErWmrxZqQ1-t6ast_ZI6_10wdkvo_zN_rPkP_7aG-w |
Cites_doi | 10.1186/1471-2091-14-3 10.1371/journal.pone.0015447 10.1038/s41586-020-1998-1 10.3109/10409238109108700 10.1074/mcp.RA120.002168 10.1016/j.biochi.2010.01.023 10.1007/BF00849191 10.1016/j.apsb.2012.06.002 10.1021/bi020110d 10.1073/pnas.1501373112 10.1042/EBC20180008 10.1083/jcb.99.1.222s 10.1016/j.sbi.2013.06.009 10.1126/science.1084772 10.1016/j.bpj.2020.08.002 10.1038/415141a 10.1021/bi00386a028 10.1016/j.chembiol.2020.07.006 10.1073/pnas.0409741102 10.1016/S1096-7192(03)00117-3 10.1083/jcb.201701084 10.1016/S1096-7192(03)00037-4 10.1093/nar/gky1131 10.1016/j.semcancer.2015.10.002 10.1074/mcp.M114.041012 10.1016/j.xpro.2020.100109 10.1023/B:MCBI.0000009860.86969.72 10.1023/B:MCBI.0000009855.14648.2c 10.7554/eLife.27711 10.1038/s41467-020-14586-5 10.1016/j.celrep.2023.112394 10.1038/nmeth.2019 10.1021/acs.jproteome.1c00168 10.1016/j.chembiol.2017.10.001 10.1038/s41586-018-0201-4 10.1038/nsmb.3407 10.3390/biology3030623 10.1242/jcs.248385 10.1021/acsinfecdis.0c00500 10.1007/s13187-013-0486-9 10.1091/mbc.E21-11-0578 10.1016/j.neuron.2016.03.011 10.1016/j.chembiol.2020.03.004 10.1074/jbc.M117.783050 10.1016/j.cell.2021.07.004 10.1074/mcp.M115.053082 10.1126/science.aay5359 10.1016/j.chembiol.2019.04.001 10.15252/msb.20188792 |
ContentType | Journal Article |
Copyright | Copyright © 2023 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: Copyright © 2023 Elsevier Ltd. All rights reserved. |
DBID | NPM AAYXX CITATION 7X8 |
DOI | 10.1016/j.jbior.2023.100987 |
DatabaseName | PubMed CrossRef MEDLINE - Academic |
DatabaseTitle | PubMed CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 2212-4934 |
ExternalDocumentID | 10_1016_j_jbior_2023_100987 37806136 |
Genre | Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1~. 4.4 457 4G. 53G 7-5 8P~ AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAXKI AAXUO ABGSF ABJNI ABMAC ABUDA ABXDB ACDAQ ACGFS ACIUM ACIWK ACPRK ACRLP ADBBV ADEZE ADMUD ADUVX AEBSH AEHWI AEKER AFJKZ AFKWA AFRAH AFTJW AFXIZ AGHFR AGUBO AGYEJ AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC EBS EFJIC EJD FDB FIRID FNPLU FYGXN GBLVA HZ~ K-O KOM M41 MO0 NPM O-L O9- OAUVE P-8 P-9 PC. Q38 RIG ROL SDF SPCBC SSU SSZ T5K ~G- AAYXX CITATION 7X8 |
ID | FETCH-LOGICAL-c309t-5309f2721e4c19c677108358b61cdddb628ea157b4c1f7bcfc460c60dc6350a43 |
ISSN | 2212-4926 2212-4934 |
IngestDate | Fri Oct 25 20:45:59 EDT 2024 Thu Sep 26 16:23:57 EDT 2024 Sat Nov 02 12:30:42 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | Copyright © 2023 Elsevier Ltd. All rights reserved. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c309t-5309f2721e4c19c677108358b61cdddb628ea157b4c1f7bcfc460c60dc6350a43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-4363-6116 |
PMID | 37806136 |
PQID | 2874837085 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2874837085 crossref_primary_10_1016_j_jbior_2023_100987 pubmed_primary_37806136 |
PublicationCentury | 2000 |
PublicationDate | 2023-Dec 2023-12-00 20231201 |
PublicationDateYYYYMMDD | 2023-12-01 |
PublicationDate_xml | – month: 12 year: 2023 text: 2023-Dec |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Advances in biological regulation |
PublicationTitleAlternate | Adv Biol Regul |
PublicationYear | 2023 |
References | 37781627 - bioRxiv. 2023 Sep 20 El-Bacha (10.1016/j.jbior.2023.100987_bib8) 2003; 79 Futran (10.1016/j.jbior.2023.100987_bib9) 2015; 112 Lynch (10.1016/j.jbior.2023.100987_bib28) 2017; 24 Campanella (10.1016/j.jbior.2023.100987_bib3) 2005; 102 Real-Hohn (10.1016/j.jbior.2023.100987_bib40) 2010; 92 Kemp (10.1016/j.jbior.2023.100987_bib22) 1983; 57 Jang (10.1016/j.jbior.2023.100987_bib19) 2021; 120 Shah (10.1016/j.jbior.2023.100987_bib45) 2020; 27 Hashimoto (10.1016/j.jbior.2023.100987_bib14) 2020; 11 Wu (10.1016/j.jbior.2023.100987_bib51) 2020; 27 Kim (10.1016/j.jbior.2023.100987_bib24) 2023 Ovádi (10.1016/j.jbior.2023.100987_bib36) 2004; 256 Ha (10.1016/j.jbior.2023.100987_bib13) 2023 Plate (10.1016/j.jbior.2023.100987_bib39) 2019; 26 Keilhauer (10.1016/j.jbior.2023.100987_bib21) 2015; 14 Gavin (10.1016/j.jbior.2023.100987_bib10) 2002; 415 Chen (10.1016/j.jbior.2023.100987_bib4) 2020; 1 Ovádi (10.1016/j.jbior.2023.100987_bib37) 2004; 256 Kleiner (10.1016/j.jbior.2023.100987_bib25) 2018; 25 Schindelin (10.1016/j.jbior.2023.100987_bib43) 2012; 9 Kohnhorst (10.1016/j.jbior.2023.100987_bib26) 2017; 292 DeWane (10.1016/j.jbior.2023.100987_bib7) 2021; 134 Ho (10.1016/j.jbior.2023.100987_bib16) 2023; 42 Usenik (10.1016/j.jbior.2023.100987_bib48) 2010; 5 Kemp (10.1016/j.jbior.2023.100987_bib23) 2002; 41 Park (10.1016/j.jbior.2023.100987_bib38) 2020; 578 Kastritis (10.1016/j.jbior.2023.100987_bib20) 2018; 62 Davies (10.1016/j.jbior.2023.100987_bib6) 2020; 6 Guo (10.1016/j.jbior.2023.100987_bib12) 2012; 2 Seidel (10.1016/j.jbior.2023.100987_bib44) 2017; 6 Gomes Alves (10.1016/j.jbior.2023.100987_bib11) 2003; 78 Jang (10.1016/j.jbior.2023.100987_bib18) 2016; 90 Makowski (10.1016/j.jbior.2023.100987_bib29) 2016; 15 Masters (10.1016/j.jbior.2023.100987_bib31) 1984; 99 Stoddard (10.1016/j.jbior.2023.100987_bib46) 2020; 367 Wright (10.1016/j.jbior.2023.100987_bib50) 2021; 20 Roberts (10.1016/j.jbior.2023.100987_bib42) 1987; 26 Masters (10.1016/j.jbior.2023.100987_bib32) 1981; 11 Webb (10.1016/j.jbior.2023.100987_bib49) 2017; 216 McDonald (10.1016/j.jbior.2023.100987_bib33) 2022; 33 Hunkeler (10.1016/j.jbior.2023.100987_bib17) 2018; 558 Chin (10.1016/j.jbior.2023.100987_bib5) 2003; 301 Menard (10.1016/j.jbior.2023.100987_bib34) 2014; 3 Richards (10.1016/j.jbior.2023.100987_bib41) 2021; 17 Akram (10.1016/j.jbior.2023.100987_bib1) 2013; 28 Zhang (10.1016/j.jbior.2023.100987_bib52) 2013; 23 Amara (10.1016/j.jbior.2023.100987_bib2) 2021; 184 Szklarczyk (10.1016/j.jbior.2023.100987_bib47) 2019; 47 Hirschey (10.1016/j.jbior.2023.100987_bib15) 2015; 35 Li (10.1016/j.jbior.2023.100987_bib27) 2021; 20 Masters (10.1016/j.jbior.2023.100987_bib30) 1995 Norris (10.1016/j.jbior.2023.100987_bib35) 2013; 14 |
References_xml | – volume: 14 start-page: 3 year: 2013 ident: 10.1016/j.jbior.2023.100987_bib35 article-title: Sensor potency of the moonlighting enzyme-decorated cytoskeleton: the cytoskeleton as a metabolic sensor publication-title: BMC Biochem. doi: 10.1186/1471-2091-14-3 contributor: fullname: Norris – start-page: 203 year: 2023 ident: 10.1016/j.jbior.2023.100987_bib13 article-title: Carbohydrate metabolism I: glycolysis and the tricarboxylic acid cycle contributor: fullname: Ha – volume: 5 year: 2010 ident: 10.1016/j.jbior.2023.100987_bib48 article-title: Evolution of allosteric citrate binding sites on 6-phosphofructo-1-kinase publication-title: PLoS One doi: 10.1371/journal.pone.0015447 contributor: fullname: Usenik – volume: 578 start-page: 621 year: 2020 ident: 10.1016/j.jbior.2023.100987_bib38 article-title: Mechanical regulation of glycolysis via cytoskeleton architecture publication-title: Nature doi: 10.1038/s41586-020-1998-1 contributor: fullname: Park – volume: 11 start-page: 105 year: 1981 ident: 10.1016/j.jbior.2023.100987_bib32 article-title: Interactions between soluble enzymes and subcellular structur publication-title: Crit. Rev. Biochem. doi: 10.3109/10409238109108700 contributor: fullname: Masters – volume: 20 year: 2021 ident: 10.1016/j.jbior.2023.100987_bib50 article-title: Thyroglobulin interactome profiling defines altered proteostasis topology associated with thyroid dyshormonogenesis publication-title: Mol. Cell. Proteomics doi: 10.1074/mcp.RA120.002168 contributor: fullname: Wright – volume: 92 start-page: 538 year: 2010 ident: 10.1016/j.jbior.2023.100987_bib40 article-title: Filamentous actin and its associated binding proteins are the stimulatory site for 6-phosphofructo-1-kinase association within the membrane of human erythrocytes publication-title: Biochimie doi: 10.1016/j.biochi.2010.01.023 contributor: fullname: Real-Hohn – volume: 57 start-page: 147 year: 1983 ident: 10.1016/j.jbior.2023.100987_bib22 article-title: Allosteric regulatory properties of muscle phosphofructokinase publication-title: Mol. Cell. Biochem. doi: 10.1007/BF00849191 contributor: fullname: Kemp – volume: 2 start-page: 358 year: 2012 ident: 10.1016/j.jbior.2023.100987_bib12 article-title: Glycolysis in the control of blood glucose homeostasis publication-title: Acta Pharm. Sin. B doi: 10.1016/j.apsb.2012.06.002 contributor: fullname: Guo – volume: 41 start-page: 9426 year: 2002 ident: 10.1016/j.jbior.2023.100987_bib23 article-title: Evolution of the allosteric ligand sites of mammalian phosphofructo-1-kinase publication-title: Biochemistry doi: 10.1021/bi020110d contributor: fullname: Kemp – volume: 112 start-page: 8590 year: 2015 ident: 10.1016/j.jbior.2023.100987_bib9 article-title: Mapping the binding interface of ERK and transcriptional repressor Capicua using photocrosslinking publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1501373112 contributor: fullname: Futran – volume: 62 start-page: 501 year: 2018 ident: 10.1016/j.jbior.2023.100987_bib20 article-title: Enzymatic complexes across scales publication-title: Essays Biochem. doi: 10.1042/EBC20180008 contributor: fullname: Kastritis – volume: 99 start-page: 222s year: 1984 ident: 10.1016/j.jbior.2023.100987_bib31 article-title: Interactions between glycolytic enzymes and components of the cytomatrix publication-title: J. Cell Biol. doi: 10.1083/jcb.99.1.222s contributor: fullname: Masters – volume: 23 start-page: 581 year: 2013 ident: 10.1016/j.jbior.2023.100987_bib52 article-title: Protein engineering with unnatural amino acids publication-title: Curr. Opin. Struct. Biol. doi: 10.1016/j.sbi.2013.06.009 contributor: fullname: Zhang – volume: 301 start-page: 964 year: 2003 ident: 10.1016/j.jbior.2023.100987_bib5 article-title: An expanded eukaryotic genetic code publication-title: Science doi: 10.1126/science.1084772 contributor: fullname: Chin – year: 2023 ident: 10.1016/j.jbior.2023.100987_bib24 article-title: Elexacaftor/VX-445-mediated CFTR interactome remodeling reveals differential correction driven by mutation-specific translational dynamics (preprint) publication-title: Cell Biol. contributor: fullname: Kim – volume: 120 start-page: 1170 year: 2021 ident: 10.1016/j.jbior.2023.100987_bib19 article-title: Phosphofructokinase relocalizes into subcellular compartments with liquid-like properties in vivo publication-title: Biophys. J. doi: 10.1016/j.bpj.2020.08.002 contributor: fullname: Jang – volume: 415 start-page: 141 year: 2002 ident: 10.1016/j.jbior.2023.100987_bib10 article-title: Functional organization of the yeast proteome by systematic analysis of protein complexes publication-title: Nature doi: 10.1038/415141a contributor: fullname: Gavin – volume: 26 start-page: 3437 year: 1987 ident: 10.1016/j.jbior.2023.100987_bib42 article-title: Binding of phosphofructokinase to filamentous actin publication-title: Biochemistry doi: 10.1021/bi00386a028 contributor: fullname: Roberts – volume: 27 start-page: 1308 year: 2020 ident: 10.1016/j.jbior.2023.100987_bib45 article-title: Site-specific incorporation of genetically encoded photo-crosslinkers locates the heteromeric interface of a GPCR complex in living cells publication-title: Cell Chem. Biol. doi: 10.1016/j.chembiol.2020.07.006 contributor: fullname: Shah – volume: 102 start-page: 2402 year: 2005 ident: 10.1016/j.jbior.2023.100987_bib3 article-title: Assembly and regulation of a glycolytic enzyme complex on the human erythrocyte membrane publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0409741102 contributor: fullname: Campanella – volume: 79 start-page: 294 year: 2003 ident: 10.1016/j.jbior.2023.100987_bib8 article-title: Cellular distribution of phosphofructokinase activity and implications to metabolic regulation in human breast cancer publication-title: Mol. Genet. Metabol. doi: 10.1016/S1096-7192(03)00117-3 contributor: fullname: El-Bacha – volume: 216 start-page: 2305 year: 2017 ident: 10.1016/j.jbior.2023.100987_bib49 article-title: The glycolytic enzyme phosphofructokinase-1 assembles into filaments publication-title: J. Cell Biol. doi: 10.1083/jcb.201701084 contributor: fullname: Webb – volume: 78 start-page: 302 year: 2003 ident: 10.1016/j.jbior.2023.100987_bib11 article-title: Epinephrine modulates cellular distribution of muscle phosphofructokinase publication-title: Mol. Genet. Metabol. doi: 10.1016/S1096-7192(03)00037-4 contributor: fullname: Gomes Alves – volume: 47 start-page: D607 year: 2019 ident: 10.1016/j.jbior.2023.100987_bib47 article-title: STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets publication-title: Nucleic Acids Res. doi: 10.1093/nar/gky1131 contributor: fullname: Szklarczyk – volume: 35 start-page: S129 year: 2015 ident: 10.1016/j.jbior.2023.100987_bib15 article-title: Dysregulated metabolism contributes to oncogenesis publication-title: Semin. Cancer Biol. doi: 10.1016/j.semcancer.2015.10.002 contributor: fullname: Hirschey – volume: 14 start-page: 120 year: 2015 ident: 10.1016/j.jbior.2023.100987_bib21 article-title: Accurate protein complex retrieval by affinity enrichment mass spectrometry (AE-MS) rather than affinity purification mass spectrometry (AP-MS) publication-title: Mol. Cell. Proteomics doi: 10.1074/mcp.M114.041012 contributor: fullname: Keilhauer – volume: 1 year: 2020 ident: 10.1016/j.jbior.2023.100987_bib4 article-title: Protocol for site-specific photo-crosslinking proteomics to identify protein-protein interactions in mammalian cells publication-title: STAR Protoc doi: 10.1016/j.xpro.2020.100109 contributor: fullname: Chen – volume: 256 start-page: 83 year: 2004 ident: 10.1016/j.jbior.2023.100987_bib36 article-title: Functional aspects of cellular microcompartmentation in the development of neurodegeneration: mutation induced aberrant protein-protein associations publication-title: Mol. Cell. Biochem. doi: 10.1023/B:MCBI.0000009860.86969.72 contributor: fullname: Ovádi – volume: 256 start-page: 5 year: 2004 ident: 10.1016/j.jbior.2023.100987_bib37 article-title: On the origin of intracellular compartmentation and organized metabolic systems publication-title: Mol. Cell. Biochem. doi: 10.1023/B:MCBI.0000009855.14648.2c contributor: fullname: Ovádi – volume: 6 year: 2017 ident: 10.1016/j.jbior.2023.100987_bib44 article-title: Structural insight into the activation of a class B G-protein-coupled receptor by peptide hormones in live human cells publication-title: Elife doi: 10.7554/eLife.27711 contributor: fullname: Seidel – volume: 11 start-page: 806 year: 2020 ident: 10.1016/j.jbior.2023.100987_bib14 article-title: Temporal dynamics of protein complex formation and dissociation during human cytomegalovirus infection publication-title: Nat. Commun. doi: 10.1038/s41467-020-14586-5 contributor: fullname: Hashimoto – volume: 42 year: 2023 ident: 10.1016/j.jbior.2023.100987_bib16 article-title: A plasma membrane-associated glycolytic metabolon is functionally coupled to KATP channels in pancreatic α and β cells from humans and mice publication-title: Cell Rep. doi: 10.1016/j.celrep.2023.112394 contributor: fullname: Ho – volume: 9 start-page: 676 year: 2012 ident: 10.1016/j.jbior.2023.100987_bib43 article-title: Fiji: an open-source platform for biological-image analysis publication-title: Nat. Methods doi: 10.1038/nmeth.2019 contributor: fullname: Schindelin – volume: 20 start-page: 2964 year: 2021 ident: 10.1016/j.jbior.2023.100987_bib27 article-title: TMTpro-18plex: the expanded and complete set of TMTpro reagents for sample multiplexing publication-title: J. Proteome Res. doi: 10.1021/acs.jproteome.1c00168 contributor: fullname: Li – volume: 25 start-page: 110 year: 2018 ident: 10.1016/j.jbior.2023.100987_bib25 article-title: A chemical proteomics approach to reveal direct protein-protein interactions in living cells publication-title: Cell Chem. Biol. doi: 10.1016/j.chembiol.2017.10.001 contributor: fullname: Kleiner – volume: 558 start-page: 470 year: 2018 ident: 10.1016/j.jbior.2023.100987_bib17 article-title: Structural basis for regulation of human acetyl-CoA carboxylase publication-title: Nature doi: 10.1038/s41586-018-0201-4 contributor: fullname: Hunkeler – volume: 24 start-page: 507 year: 2017 ident: 10.1016/j.jbior.2023.100987_bib28 article-title: Human CTP synthase filament structure reveals the active enzyme conformation publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.3407 contributor: fullname: Lynch – volume: 3 start-page: 623 year: 2014 ident: 10.1016/j.jbior.2023.100987_bib34 article-title: The structural and functional coordination of glycolytic enzymes in muscle: evidence of a metabolon? publication-title: Biology doi: 10.3390/biology3030623 contributor: fullname: Menard – volume: 134 year: 2021 ident: 10.1016/j.jbior.2023.100987_bib7 article-title: Fueling the cytoskeleton – links between cell metabolism and actin remodeling publication-title: J. Cell Sci. doi: 10.1242/jcs.248385 contributor: fullname: DeWane – volume: 6 start-page: 3174 year: 2020 ident: 10.1016/j.jbior.2023.100987_bib6 article-title: Comparative multiplexed interactomics of SARS-CoV-2 and homologous coronavirus nonstructural proteins identifies unique and shared host-cell dependencies publication-title: ACS Infect. Dis. doi: 10.1021/acsinfecdis.0c00500 contributor: fullname: Davies – volume: 28 start-page: 454 year: 2013 ident: 10.1016/j.jbior.2023.100987_bib1 article-title: Mini-review on glycolysis and cancer publication-title: J. Cancer Educ. doi: 10.1007/s13187-013-0486-9 contributor: fullname: Akram – volume: 33 start-page: ar62 year: 2022 ident: 10.1016/j.jbior.2023.100987_bib33 article-title: Distinct proteostasis states drive pharmacologic chaperone susceptibility for cystic fibrosis transmembrane conductance regulator misfolding mutants publication-title: Mol. Biol. Cell doi: 10.1091/mbc.E21-11-0578 contributor: fullname: McDonald – volume: 90 start-page: 278 year: 2016 ident: 10.1016/j.jbior.2023.100987_bib18 article-title: Glycolytic enzymes localize to synapses under energy stress to support synaptic function publication-title: Neuron doi: 10.1016/j.neuron.2016.03.011 contributor: fullname: Jang – volume: 27 start-page: 571 year: 2020 ident: 10.1016/j.jbior.2023.100987_bib51 article-title: Site-specific photo-crosslinking proteomics reveal regulation of IFITM3 trafficking and turnover by VCP/p97 ATPase publication-title: Cell Chem. Biol. doi: 10.1016/j.chembiol.2020.03.004 contributor: fullname: Wu – volume: 292 start-page: 9191 year: 2017 ident: 10.1016/j.jbior.2023.100987_bib26 article-title: Identification of a multienzyme complex for glucose metabolism in living cells publication-title: J. Biol. Chem. doi: 10.1074/jbc.M117.783050 contributor: fullname: Kohnhorst – start-page: 1 year: 1995 ident: 10.1016/j.jbior.2023.100987_bib30 article-title: On the role of the cytoskeleton in metabolic compartmentation contributor: fullname: Masters – volume: 184 start-page: 4480 year: 2021 ident: 10.1016/j.jbior.2023.100987_bib2 article-title: Selective activation of PFKL suppresses the phagocytic oxidative burst publication-title: Cell doi: 10.1016/j.cell.2021.07.004 contributor: fullname: Amara – volume: 15 start-page: 854 year: 2016 ident: 10.1016/j.jbior.2023.100987_bib29 article-title: Cross-linking immunoprecipitation-MS (xIP-MS): topological analysis of chromatin-associated protein complexes using single affinity purification publication-title: Mol. Cell. Proteomics doi: 10.1074/mcp.M115.053082 contributor: fullname: Makowski – volume: 367 start-page: 1039 year: 2020 ident: 10.1016/j.jbior.2023.100987_bib46 article-title: Polymerization in the actin ATPase clan regulates hexokinase activity in yeast publication-title: Science doi: 10.1126/science.aay5359 contributor: fullname: Stoddard – volume: 26 start-page: 913 year: 2019 ident: 10.1016/j.jbior.2023.100987_bib39 article-title: Quantitative interactome proteomics reveals a molecular basis for ATF6-dependent regulation of a destabilized amyloidogenic protein publication-title: Cell Chem. Biol. doi: 10.1016/j.chembiol.2019.04.001 contributor: fullname: Plate – volume: 17 year: 2021 ident: 10.1016/j.jbior.2023.100987_bib41 article-title: Mass spectrometry‐based protein–protein interaction networks for the study of human diseases publication-title: Mol. Syst. Biol. doi: 10.15252/msb.20188792 contributor: fullname: Richards |
SSID | ssj0000601645 |
Score | 2.3868759 |
Snippet | Phosphofructokinase is the central enzyme in glycolysis and constitutes a highly regulated step. The liver isoform (PFKL) compartmentalizes during activation... |
SourceID | proquest crossref pubmed |
SourceType | Aggregation Database Index Database |
StartPage | 100987 |
Title | Site-specific crosslinking reveals Phosphofructokinase-L inhibition drives self-assembly and attenuation of protein interactions |
URI | https://www.ncbi.nlm.nih.gov/pubmed/37806136 https://www.proquest.com/docview/2874837085 |
Volume | 90 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Li9swEBbp9tJLabt9pC9UKL2kCn5Fto-hZFlKdreQBHIz1sPYIWsvjl3YPZT-gf7njiTbcWgK215EsONH8n2MRqOZbxD6aPkcFl1hTCiNLeKxxCLM8iQJhVp9BJQLjfTFJT1feV_Xk_Vg8KuXtVRXbMzvjtaV_A-qcAxwVVWy_4Bsd1M4AJ8BXxgBYRjvhfEC_EWiaiVVvs9IT3hNLwRVkiKVMvK3tNjdpEWiVGILOAOTFpmPsjzNmE7WGolSC8_u5DYh4EjLa7Y1kkxKeDOvO49SCzpkudaXKE01xK7v2U5NMoFOrzXKThr-0vS67-32L7LvsTBlZNMqzcpuXugHqmfbDHzqrLrrrkrrtofI4lbkYMmu9kH2VihBNQGCx1_0QxmO20sL0RbPgXmUeGET3ZRHjjUm23QYbWyurTRR_aPTgYlMbMYb-N1K_NVxx_tvH4pvX15FZ6v5PFrO1ssH6KEDdktlCI5_2F3ITkvX6LbX3Uu1OlY6Y_CPpxz6On9ZwGhHZvkEPW5WIHhq6PQUDWT-DJ1O87gqrm_xJ6xzgvVmyyn6ecAw3GcYbhiGjzIM7xmGDcPwAcMwMAz3GIaLBDcMw32GPUers9nyyzlpenYQ7lphRSYwJo7v2NLjdsipDx4sOPkBozYXQjDqBDK2Jz6D04nPeAKmwuLUEhw8Xyv23BfoJC9y-QrhkArKk5gFnDOPBSJOLMpihwnXZzDLyCH63P670Y2RZonanMVNpMGIFBiRAWOIPrQIRGBC1b5YnMui3kWq5YPSgAomQ_TSQNPd0PUD5fHS1_e4-g16tGf1W3RSlbV8By5rxd5rIv0GPqKgKA |
link.rule.ids | 315,783,787,27938,27939 |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Site-specific+crosslinking+reveals+Phosphofructokinase-L+inhibition+drives+self-assembly+and+attenuation+of+protein+interactions&rft.jtitle=Advances+in+biological+regulation&rft.au=Sivadas%2C+Athira&rft.au=McDonald%2C+Eli+Fritz&rft.au=Shuster%2C+Sydney+O&rft.au=Davis%2C+Caitlin+M&rft.date=2023-12-01&rft.issn=2212-4934&rft.eissn=2212-4934&rft.volume=90&rft.spage=100987&rft_id=info:doi/10.1016%2Fj.jbior.2023.100987&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2212-4926&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2212-4926&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2212-4926&client=summon |