Force activates smooth muscle α-actin promoter activity through the Rho signaling pathway

In pressure or volume overload, hypertrophic growth of the myocardium is associated with myofibroblast differentiation, a process in which cardiac fibroblasts express smooth muscle α-actin (SMA). The signaling mechanisms that mediate force-induced myofibroblast differentiation and SMA expression are...

Full description

Saved in:
Bibliographic Details
Published inJournal of cell science Vol. 120; no. 10; pp. 1801 - 1809
Main Authors Zhao, Xiao-Han, Laschinger, Carol, Arora, Pam, Szászi, Katalin, Kapus, Andras, McCulloch, Christopher A
Format Journal Article
LanguageEnglish
Published England The Company of Biologists Limited 15.05.2007
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In pressure or volume overload, hypertrophic growth of the myocardium is associated with myofibroblast differentiation, a process in which cardiac fibroblasts express smooth muscle α-actin (SMA). The signaling mechanisms that mediate force-induced myofibroblast differentiation and SMA expression are not defined. We examined the role of the Rho-Rho-kinase pathway in force-induced SMA expression in fibroblasts using an in vitro model system that applies static tensile forces (0.65 pN/μm²) to integrins via collagen-coated magnetite beads. Force maximally induced RhoA activation at 10 minutes that was localized to force application sites and required intact actin filaments. Force application induced phosphorylation of LIM kinase (5-10 minutes) and an early dephosphorylation of cofilin (5 minutes) that was followed by prolonged cofilin phosphorylation. These responses were blocked by Y27632, an inhibitor of Rho kinase. Force promoted actin filament assembly at force application sites (10-20 minutes), a process that required Rho kinase and cofilin. Force application induced nuclear translocation of the transcriptional co-activator MRTF-A but not MRTF-B. Nuclear translocation of MRTF-A required Rho kinase and intact actin filaments. Force caused 3.5-fold increases of SMA promoter activity that were completely blocked by transfection of cells with dominant-negative MRTF-A or by inhibition of Rho kinase or by actin filament disassembly. These data indicate that mechanical forces mediate actin assembly through the Rho-Rho-kinase-LIMK cofilin pathway. Force-mediated actin filament assembly promotes nuclear translocation of MRTF and subsequent activation of the SMA promoter to enhance SMA expression.
AbstractList In pressure or volume overload, hypertrophic growth of the myocardium is associated with myofibroblast differentiation, a process in which cardiac fibroblasts express smooth muscle alpha-actin (SMA). The signaling mechanisms that mediate force-induced myofibroblast differentiation and SMA expression are not defined. We examined the role of the Rho-Rho-kinase pathway in force-induced SMA expression in fibroblasts using an in vitro model system that applies static tensile forces (0.65 pN/microm(2)) to integrins via collagen-coated magnetite beads. Force maximally induced RhoA activation at 10 minutes that was localized to force application sites and required intact actin filaments. Force application induced phosphorylation of LIM kinase (5-10 minutes) and an early dephosphorylation of cofilin (5 minutes) that was followed by prolonged cofilin phosphorylation. These responses were blocked by Y27632, an inhibitor of Rho kinase. Force promoted actin filament assembly at force application sites (10-20 minutes), a process that required Rho kinase and cofilin. Force application induced nuclear translocation of the transcriptional co-activator MRTF-A but not MRTF-B. Nuclear translocation of MRTF-A required Rho kinase and intact actin filaments. Force caused 3.5-fold increases of SMA promoter activity that were completely blocked by transfection of cells with dominant-negative MRTF-A or by inhibition of Rho kinase or by actin filament disassembly. These data indicate that mechanical forces mediate actin assembly through the Rho-Rho-kinase-LIMK cofilin pathway. Force-mediated actin filament assembly promotes nuclear translocation of MRTF and subsequent activation of the SMA promoter to enhance SMA expression.
In pressure or volume overload, hypertrophic growth of the myocardium is associated with myofibroblast differentiation, a process in which cardiac fibroblasts express smooth muscle α-actin (SMA). The signaling mechanisms that mediate force-induced myofibroblast differentiation and SMA expression are not defined. We examined the role of the Rho–Rho-kinase pathway in force-induced SMA expression in fibroblasts using an in vitro model system that applies static tensile forces (0.65 pN/μm2) to integrins via collagen-coated magnetite beads. Force maximally induced RhoA activation at 10 minutes that was localized to force application sites and required intact actin filaments. Force application induced phosphorylation of LIM kinase (5-10 minutes) and an early dephosphorylation of cofilin (5 minutes) that was followed by prolonged cofilin phosphorylation. These responses were blocked by Y27632, an inhibitor of Rho kinase. Force promoted actin filament assembly at force application sites (10-20 minutes), a process that required Rho kinase and cofilin. Force application induced nuclear translocation of the transcriptional co-activator MRTF-A but not MRTF-B. Nuclear translocation of MRTF-A required Rho kinase and intact actin filaments. Force caused 3.5-fold increases of SMA promoter activity that were completely blocked by transfection of cells with dominant-negative MRTF-A or by inhibition of Rho kinase or by actin filament disassembly. These data indicate that mechanical forces mediate actin assembly through the Rho–Rho-kinase–LIMK cofilin pathway. Force-mediated actin filament assembly promotes nuclear translocation of MRTF and subsequent activation of the SMA promoter to enhance SMA expression.
In pressure or volume overload, hypertrophic growth of the myocardium is associated with myofibroblast differentiation, a process in which cardiac fibroblasts express smooth muscle α-actin (SMA). The signaling mechanisms that mediate force-induced myofibroblast differentiation and SMA expression are not defined. We examined the role of the Rho-Rho-kinase pathway in force-induced SMA expression in fibroblasts using an in vitro model system that applies static tensile forces (0.65 pN/μm²) to integrins via collagen-coated magnetite beads. Force maximally induced RhoA activation at 10 minutes that was localized to force application sites and required intact actin filaments. Force application induced phosphorylation of LIM kinase (5-10 minutes) and an early dephosphorylation of cofilin (5 minutes) that was followed by prolonged cofilin phosphorylation. These responses were blocked by Y27632, an inhibitor of Rho kinase. Force promoted actin filament assembly at force application sites (10-20 minutes), a process that required Rho kinase and cofilin. Force application induced nuclear translocation of the transcriptional co-activator MRTF-A but not MRTF-B. Nuclear translocation of MRTF-A required Rho kinase and intact actin filaments. Force caused 3.5-fold increases of SMA promoter activity that were completely blocked by transfection of cells with dominant-negative MRTF-A or by inhibition of Rho kinase or by actin filament disassembly. These data indicate that mechanical forces mediate actin assembly through the Rho-Rho-kinase-LIMK cofilin pathway. Force-mediated actin filament assembly promotes nuclear translocation of MRTF and subsequent activation of the SMA promoter to enhance SMA expression.
Author Zhao, Xiao-Han
McCulloch, Christopher A
Szászi, Katalin
Arora, Pam
Laschinger, Carol
Kapus, Andras
Author_xml – sequence: 1
  fullname: Zhao, Xiao-Han
– sequence: 2
  fullname: Laschinger, Carol
– sequence: 3
  fullname: Arora, Pam
– sequence: 4
  fullname: Szászi, Katalin
– sequence: 5
  fullname: Kapus, Andras
– sequence: 6
  fullname: McCulloch, Christopher A
BackLink https://www.ncbi.nlm.nih.gov/pubmed/17456553$$D View this record in MEDLINE/PubMed
BookMark eNpF0M1KxDAQwPEgiq4fFx9Ac_IgVCdJ02yPsvgFguDHxUtI28m20jZrkir7WL6Iz2SlC57mMD-G4b9PtnvXIyHHDC4YT_nlexkuAJicZ1tkxlKlkpwJtU1mAJwluRRij-yH8A4Aiudql-wxlcpMSjEjbzfOl0hNGZtPEzHQ0DkXa9oNoWyR_nwnf6uerrzrXEQ_ySauaay9G5b1OJE-1Y6GZtmbtumXdGVi_WXWh2THmjbg0WYekNeb65fFXfLweHu_uHpISgF5TFKLljNEU0mlWCHQohSZsFhWwDNezKXNrDVQKGEKhIqnTFUSEHhh5ryS4oCcTXfHHz8GDFF3TSixbU2PbghagYS5VGyE5xMsvQvBo9Ur33TGrzUD_VdSjyX1VHLEJ5urQ9Fh9U836UZwOgFrnDZL3wT9-syBibGyylSai1--pXxg
CitedBy_id crossref_primary_10_1088_1478_3975_12_2_026001
crossref_primary_10_1016_j_yjmcc_2015_11_025
crossref_primary_10_1016_j_trsl_2019_02_006
crossref_primary_10_1158_0008_5472_CAN_19_2914
crossref_primary_10_3390_bioengineering4030072
crossref_primary_10_1096_fj_11_187310
crossref_primary_10_3389_fphys_2016_00547
crossref_primary_10_1016_j_yexcr_2018_06_023
crossref_primary_10_1513_pats_201202_017AW
crossref_primary_10_1155_2019_8203950
crossref_primary_10_3389_fbioe_2020_608569
crossref_primary_10_3390_ijms22116040
crossref_primary_10_1074_jbc_M111_297150
crossref_primary_10_1097_MIB_0b013e3182813297
crossref_primary_10_1016_j_bbamcr_2013_10_012
crossref_primary_10_1016_j_yexcr_2010_02_007
crossref_primary_10_1016_j_diff_2013_07_004
crossref_primary_10_1083_jcb_200807096
crossref_primary_10_1155_2017_5389272
crossref_primary_10_1038_s41556_022_00927_7
crossref_primary_10_1152_ajpcell_00323_2009
crossref_primary_10_1016_j_ecoenv_2024_116110
crossref_primary_10_1016_j_yexcr_2007_11_022
crossref_primary_10_1089_ars_2013_5724
crossref_primary_10_1038_ncomms7333
crossref_primary_10_1186_s13036_022_00292_x
crossref_primary_10_1152_ajpheart_00129_2009
crossref_primary_10_1007_s11926_009_0017_1
crossref_primary_10_1016_j_jmps_2017_09_013
crossref_primary_10_1038_ncb2254
crossref_primary_10_1016_j_neuron_2015_02_041
crossref_primary_10_18632_oncotarget_17255
crossref_primary_10_3389_fbioe_2022_830722
crossref_primary_10_1177_1535370219854669
crossref_primary_10_1007_s12307_011_0078_3
crossref_primary_10_1038_s41598_017_03337_0
crossref_primary_10_1089_scd_2010_0389
crossref_primary_10_14814_phy2_13863
crossref_primary_10_1103_RevModPhys_85_1327
crossref_primary_10_1002_wdev_359
crossref_primary_10_1165_rcmb_2016_0268OC
crossref_primary_10_2119_molmed_2016_00041
crossref_primary_10_1098_rsob_200263
crossref_primary_10_1002_advs_202302327
crossref_primary_10_4061_2010_120623
crossref_primary_10_1007_s12265_012_9397_0
crossref_primary_10_1152_ajpcell_00340_2012
crossref_primary_10_1371_journal_pone_0083188
crossref_primary_10_1152_ajpheart_01178_2009
crossref_primary_10_1016_j_yjmcc_2013_11_015
crossref_primary_10_1128_MCB_00194_16
crossref_primary_10_1007_s12195_018_00565_w
crossref_primary_10_1134_S0006297916130071
crossref_primary_10_1111_j_1600_0838_2009_00928_x
crossref_primary_10_3389_fcell_2020_00630
crossref_primary_10_1093_cvr_cvt338
crossref_primary_10_1113_jphysiol_2012_249755
crossref_primary_10_1113_JP275033
crossref_primary_10_1016_j_yexcr_2012_03_007
crossref_primary_10_1152_ajplung_00166_2011
crossref_primary_10_1002_adhm_202304254
crossref_primary_10_1016_j_ccr_2011_05_008
crossref_primary_10_1093_europace_euab155
crossref_primary_10_3892_ijmm_2018_3816
crossref_primary_10_1242_jcs_240341
crossref_primary_10_2174_1389450121666200128113547
crossref_primary_10_1002_bies_201900162
crossref_primary_10_1083_jcb_201309092
crossref_primary_10_1242_jcs_260636
crossref_primary_10_1007_s10741_020_09940_0
crossref_primary_10_1021_acs_biomac_7b01237
crossref_primary_10_1016_j_vph_2021_106837
crossref_primary_10_1002_mabi_202300110
crossref_primary_10_1016_j_jmbbm_2016_01_021
crossref_primary_10_1016_j_biomaterials_2020_120331
crossref_primary_10_1002_jcp_23016
crossref_primary_10_3390_jcm12103398
crossref_primary_10_1096_fj_202201992R
crossref_primary_10_1126_scisignal_aad2959
crossref_primary_10_1186_s12920_022_01221_z
crossref_primary_10_2147_OTT_S231010
crossref_primary_10_1007_s42399_020_00292_2
crossref_primary_10_1091_mbc_E15_06_0417
crossref_primary_10_1167_iovs_17_23580
crossref_primary_10_1091_mbc_E15_12_0833
crossref_primary_10_1124_jpet_114_213520
crossref_primary_10_3389_fphys_2021_732564
crossref_primary_10_1016_j_yexcr_2015_10_029
crossref_primary_10_1016_j_biocel_2010_08_014
crossref_primary_10_1242_jcs_060905
crossref_primary_10_1016_j_jmbbm_2019_103538
crossref_primary_10_1016_j_jbiomech_2009_09_020
crossref_primary_10_1016_j_ymeth_2015_09_025
crossref_primary_10_1242_jcs_093005
crossref_primary_10_1016_j_bbamcr_2009_01_012
crossref_primary_10_1039_D2BM02058K
crossref_primary_10_1016_j_bpj_2017_11_3785
crossref_primary_10_1177_20417314231172573
crossref_primary_10_3389_fimmu_2019_01138
crossref_primary_10_1016_j_ceb_2009_08_001
crossref_primary_10_1186_s12931_015_0206_6
crossref_primary_10_1016_j_exer_2015_05_001
crossref_primary_10_1093_cvr_cvq385
crossref_primary_10_1242_jcs_023507
crossref_primary_10_1152_physrev_00037_2007
crossref_primary_10_1007_s12265_012_9406_3
crossref_primary_10_1038_ncomms11642
crossref_primary_10_1083_jcb_201210090
crossref_primary_10_1371_journal_pone_0098116
crossref_primary_10_1242_jcs_170589
crossref_primary_10_1074_jbc_M115_712380
crossref_primary_10_1007_s00403_012_1278_5
crossref_primary_10_1111_j_1743_6109_2008_01011_x
crossref_primary_10_4161_sgtp_27539
crossref_primary_10_1161_ATVBAHA_110_212993
crossref_primary_10_1088_0034_4885_75_11_116601
crossref_primary_10_1074_jbc_M109_075218
crossref_primary_10_1038_s41569_022_00799_2
crossref_primary_10_1002_adma_201001747
crossref_primary_10_1038_srep40953
crossref_primary_10_1016_j_pbiomolbio_2008_02_007
crossref_primary_10_1091_mbc_e14_04_0875
crossref_primary_10_3389_fcvm_2018_00174
crossref_primary_10_3389_fcell_2021_682294
crossref_primary_10_1016_j_pharmthera_2017_09_002
crossref_primary_10_1074_jbc_M113_504290
crossref_primary_10_3390_biology2020555
crossref_primary_10_1111_exd_13264
crossref_primary_10_1039_D4RA02717E
crossref_primary_10_1007_s13206_022_00073_0
crossref_primary_10_1016_j_bcp_2024_116255
crossref_primary_10_1039_C5BM00329F
crossref_primary_10_1073_pnas_1316764110
crossref_primary_10_1002_ijc_28035
crossref_primary_10_1038_hr_2009_173
crossref_primary_10_3390_jcm9051423
crossref_primary_10_1038_nrm2890
crossref_primary_10_3389_fphys_2018_01449
crossref_primary_10_1002_ar_20764
crossref_primary_10_1038_jid_2011_219
crossref_primary_10_1242_jcs_216648
crossref_primary_10_7554_eLife_06126
crossref_primary_10_1167_tvst_7_6_6
crossref_primary_10_1016_j_yjmcc_2012_11_006
crossref_primary_10_1091_mbc_e08_08_0872
crossref_primary_10_1016_j_bbamcr_2008_01_013
crossref_primary_10_1007_s10585_019_09959_0
crossref_primary_10_1101_gad_304501_117
crossref_primary_10_3390_ijms25042135
crossref_primary_10_1371_journal_pone_0137519
crossref_primary_10_1038_s41392_023_01501_9
crossref_primary_10_1161_CIRCRESAHA_110_239343
crossref_primary_10_1021_bi300758e
crossref_primary_10_1091_mbc_E18_04_0213
crossref_primary_10_1016_j_molonc_2015_04_003
crossref_primary_10_1016_j_cellsig_2020_109869
crossref_primary_10_1161_CIRCRESAHA_108_180885
crossref_primary_10_1021_acs_biomac_9b00965
crossref_primary_10_1111_prd_12076
crossref_primary_10_3390_cells9122702
crossref_primary_10_1002_jcp_24524
crossref_primary_10_1016_j_carpath_2016_04_004
crossref_primary_10_1242_jcs_208470
crossref_primary_10_1074_jbc_M111_276931
crossref_primary_10_1161_CIRCRESAHA_110_223172
crossref_primary_10_3390_ijms21010090
crossref_primary_10_1002_jcb_25901
crossref_primary_10_1016_j_abb_2008_03_010
crossref_primary_10_1161_ATVBAHA_115_305353
crossref_primary_10_1073_pnas_1718177115
crossref_primary_10_1007_s00018_013_1349_6
crossref_primary_10_1016_j_carbpol_2018_12_096
crossref_primary_10_1242_jcs_044008
crossref_primary_10_3389_fphys_2022_862164
crossref_primary_10_1016_j_bpj_2015_08_025
crossref_primary_10_1016_j_cell_2017_10_008
crossref_primary_10_1016_j_ejphar_2008_01_056
crossref_primary_10_1111_jcmm_13130
crossref_primary_10_1371_journal_pone_0126015
crossref_primary_10_1007_s00441_018_02983_8
crossref_primary_10_3390_ijms21197165
crossref_primary_10_1016_j_biomaterials_2019_119743
crossref_primary_10_1038_s41598_020_66617_2
crossref_primary_10_1063_1_5023410
crossref_primary_10_1016_j_trsl_2011_05_004
crossref_primary_10_1016_j_semcdb_2017_07_041
crossref_primary_10_1161_ATVBAHA_114_303320
crossref_primary_10_1002_jcb_22545
crossref_primary_10_1093_rb_rbae016
crossref_primary_10_1165_rcmb_2012_0050OC
crossref_primary_10_1186_s11658_016_0028_7
crossref_primary_10_1136_pgmj_2007_066555
crossref_primary_10_3389_fcell_2022_789841
crossref_primary_10_3109_03008207_2011_642035
crossref_primary_10_3389_fphys_2021_710968
crossref_primary_10_1038_s41598_020_71100_z
crossref_primary_10_1073_pnas_1621161114
crossref_primary_10_1098_rsfs_2013_0056
crossref_primary_10_1016_j_bbamcr_2013_11_008
crossref_primary_10_1016_j_yjmcc_2019_05_016
crossref_primary_10_1126_scisignal_2000396
crossref_primary_10_1016_j_cell_2011_05_040
crossref_primary_10_1210_en_2009_0932
crossref_primary_10_1016_j_yexcr_2019_03_027
crossref_primary_10_1098_rstb_2018_0229
crossref_primary_10_1111_boc_201400014
crossref_primary_10_1161_CIRCULATIONAHA_117_031788
crossref_primary_10_1152_ajpcell_00027_2007
crossref_primary_10_1111_exd_14933
crossref_primary_10_1016_j_yjmcc_2014_05_008
crossref_primary_10_1007_s12195_008_0009_7
crossref_primary_10_1016_j_bbamcr_2012_08_023
crossref_primary_10_1016_j_bpj_2012_08_041
crossref_primary_10_1272_jnms_79_46
crossref_primary_10_1016_j_yexmp_2016_09_002
crossref_primary_10_1161_CIRCRESAHA_115_306532
crossref_primary_10_1038_onc_2014_362
crossref_primary_10_1038_ncb2917
crossref_primary_10_1161_CIRCRESAHA_119_311148
crossref_primary_10_1007_s11010_009_0351_7
crossref_primary_10_1371_journal_pone_0214385
crossref_primary_10_3389_fcell_2020_00678
crossref_primary_10_1242_dev_181172
crossref_primary_10_1038_s41584_019_0324_5
crossref_primary_10_1039_B913064K
crossref_primary_10_1088_1478_3975_10_6_066003
crossref_primary_10_1161_ATVBAHA_110_209395
crossref_primary_10_1038_embor_2011_141
crossref_primary_10_7600_jpfsm_4_53
crossref_primary_10_1016_j_nano_2013_06_014
crossref_primary_10_1093_cvr_cvq308
crossref_primary_10_1161_ATVBAHA_110_221135
crossref_primary_10_1186_s12860_021_00383_5
crossref_primary_10_1039_D1ME00049G
crossref_primary_10_1016_j_yjmcc_2013_10_019
crossref_primary_10_3389_fcell_2019_00063
Cites_doi 10.1016/j.tcb.2007.02.002
10.1074/jbc.M203130200
10.1152/ajpcell.1995.269.5.C1093
10.1016/S0002-9440(10)61776-2
10.1083/jcb.153.6.1175
10.1016/S0014-5793(97)00107-5
10.1016/S0008-6363(98)00305-8
10.1038/31729
10.1083/jcb.200203126
10.1091/mbc.02-06-0092
10.1016/S0008-6363(95)00232-4
10.1016/S0008-6363(00)00030-4
10.1016/S0092-8674(03)00278-2
10.1242/jcs.110.1.11
10.1083/jcb.200210135
10.1074/jbc.M410819200
10.1126/science.1081412
10.1016/S0092-8674(00)80043-4
10.1006/excr.2001.5445
10.1242/jcs.100.1.187
10.1152/ajpheart.00387.2003
10.1128/MCB.23.18.6597-6608.2003
10.1161/01.RES.84.7.852
10.1042/bst0230456
10.1101/gad.1428006
10.1016/S0962-8924(99)01619-0
10.1165/rcmb.4754
10.1083/jcb.136.6.1165
10.1007/978-3-642-72477-0_16
10.1161/01.RES.0000078780.65824.8B
10.1016/j.devcel.2004.05.020
10.1074/jbc.M200715200
10.1128/MCB.25.8.3173-3181.2005
10.1074/jbc.272.16.10704
10.1172/JCI5367
10.1006/excr.1999.4543
10.1038/40418
10.1038/nrm809
10.1083/jcb.200312168
10.1083/jcb.133.6.1403
10.1042/bj3410647
10.1177/40.10.1527379
ContentType Journal Article
DBID FBQ
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
DOI 10.1242/jcs.001586
DatabaseName AGRIS
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE
CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1477-9137
EndPage 1809
ExternalDocumentID 10_1242_jcs_001586
17456553
US201300776749
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
18M
2WC
34G
39C
3O-
4.4
4R4
53G
5GY
5RE
5VS
85S
ABDNZ
ABEFU
ABJNI
ABPPZ
ABPTK
ABSGY
ABTAH
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
ACYGS
ADBBV
ADCOW
AENEX
AEQTP
AETEA
AFFNX
AFRAH
AGGIJ
AHERT
AI.
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BTFSW
C1A
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
F9R
FBQ
GX1
HZ~
IH2
INIJC
KQ8
MVM
O9-
OHT
OK1
P2P
R.V
RCB
RHF
RHI
RNS
SJN
TN5
TR2
UPT
VH1
W2D
W8F
WH7
WOQ
X7M
XOL
YQI
YQT
ZA5
ZGI
ZXP
ZY4
~02
~KM
AEILP
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
ID FETCH-LOGICAL-c309t-4fef21eead5771b3efe5363fecd0262b85f6ffa0b73abe0d2417d50e02ba82d53
ISSN 0021-9533
IngestDate Sun Sep 29 07:40:38 EDT 2024
Thu Sep 12 18:12:18 EDT 2024
Sat Sep 28 07:45:40 EDT 2024
Wed Dec 27 19:02:10 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c309t-4fef21eead5771b3efe5363fecd0262b85f6ffa0b73abe0d2417d50e02ba82d53
Notes http://jcs.biologists.org/
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 17456553
PQID 70508571
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_70508571
crossref_primary_10_1242_jcs_001586
pubmed_primary_17456553
fao_agris_US201300776749
PublicationCentury 2000
PublicationDate 2007-05-15
PublicationDateYYYYMMDD 2007-05-15
PublicationDate_xml – month: 05
  year: 2007
  text: 2007-05-15
  day: 15
PublicationDecade 2000
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Journal of cell science
PublicationTitleAlternate J Cell Sci
PublicationYear 2007
Publisher The Company of Biologists Limited
Publisher_xml – name: The Company of Biologists Limited
References 2021042519450014500_REF29
2021042519450014500_REF9
2021042519450014500_REF31
2021042519450014500_REF30
2021042519450014500_REF15
2021042519450014500_REF37
2021042519450014500_REF14
2021042519450014500_REF36
2021042519450014500_REF17
2021042519450014500_REF39
2021042519450014500_REF16
2021042519450014500_REF38
2021042519450014500_REF11
2021042519450014500_REF33
2021042519450014500_REF10
2021042519450014500_REF32
2021042519450014500_REF13
2021042519450014500_REF35
2021042519450014500_REF12
2021042519450014500_REF34
2021042519450014500_REF19
2021042519450014500_REF18
2021042519450014500_REF2
2021042519450014500_REF40
2021042519450014500_REF1
2021042519450014500_REF4
2021042519450014500_REF20
2021042519450014500_REF42
2021042519450014500_REF3
2021042519450014500_REF41
2021042519450014500_REF6
2021042519450014500_REF5
2021042519450014500_REF8
2021042519450014500_REF7
2021042519450014500_REF26
2021042519450014500_REF25
2021042519450014500_REF28
2021042519450014500_REF27
2021042519450014500_REF22
2021042519450014500_REF44
2021042519450014500_REF21
2021042519450014500_REF43
2021042519450014500_REF24
2021042519450014500_REF23
2021042519450014500_REF45
References_xml – ident: 2021042519450014500_REF7
  doi: 10.1016/j.tcb.2007.02.002
– ident: 2021042519450014500_REF42
  doi: 10.1074/jbc.M203130200
– ident: 2021042519450014500_REF23
– ident: 2021042519450014500_REF13
  doi: 10.1152/ajpcell.1995.269.5.C1093
– ident: 2021042519450014500_REF17
  doi: 10.1016/S0002-9440(10)61776-2
– ident: 2021042519450014500_REF9
– ident: 2021042519450014500_REF34
  doi: 10.1083/jcb.153.6.1175
– ident: 2021042519450014500_REF18
  doi: 10.1016/S0014-5793(97)00107-5
– ident: 2021042519450014500_REF30
  doi: 10.1016/S0008-6363(98)00305-8
– ident: 2021042519450014500_REF1
  doi: 10.1038/31729
– ident: 2021042519450014500_REF11
  doi: 10.1083/jcb.200203126
– ident: 2021042519450014500_REF8
  doi: 10.1091/mbc.02-06-0092
– ident: 2021042519450014500_REF39
  doi: 10.1016/S0008-6363(95)00232-4
– ident: 2021042519450014500_REF28
  doi: 10.1016/S0008-6363(00)00030-4
– ident: 2021042519450014500_REF29
  doi: 10.1016/S0092-8674(03)00278-2
– ident: 2021042519450014500_REF14
  doi: 10.1242/jcs.110.1.11
– ident: 2021042519450014500_REF45
  doi: 10.1083/jcb.200210135
– ident: 2021042519450014500_REF44
  doi: 10.1074/jbc.M410819200
– ident: 2021042519450014500_REF38
  doi: 10.1126/science.1081412
– ident: 2021042519450014500_REF5
  doi: 10.1016/S0092-8674(00)80043-4
– ident: 2021042519450014500_REF16
  doi: 10.1006/excr.2001.5445
– ident: 2021042519450014500_REF32
  doi: 10.1242/jcs.100.1.187
– ident: 2021042519450014500_REF43
  doi: 10.1152/ajpheart.00387.2003
– ident: 2021042519450014500_REF4
  doi: 10.1128/MCB.23.18.6597-6608.2003
– ident: 2021042519450014500_REF27
  doi: 10.1161/01.RES.84.7.852
– ident: 2021042519450014500_REF31
  doi: 10.1042/bst0230456
– ident: 2021042519450014500_REF33
  doi: 10.1101/gad.1428006
– ident: 2021042519450014500_REF2
  doi: 10.1016/S0962-8924(99)01619-0
– ident: 2021042519450014500_REF36
  doi: 10.1165/rcmb.4754
– ident: 2021042519450014500_REF40
  doi: 10.1083/jcb.136.6.1165
– ident: 2021042519450014500_REF10
  doi: 10.1007/978-3-642-72477-0_16
– ident: 2021042519450014500_REF26
  doi: 10.1161/01.RES.0000078780.65824.8B
– ident: 2021042519450014500_REF37
  doi: 10.1016/j.devcel.2004.05.020
– ident: 2021042519450014500_REF19
  doi: 10.1074/jbc.M200715200
– ident: 2021042519450014500_REF21
  doi: 10.1128/MCB.25.8.3173-3181.2005
– ident: 2021042519450014500_REF15
  doi: 10.1074/jbc.272.16.10704
– ident: 2021042519450014500_REF25
  doi: 10.1172/JCI5367
– ident: 2021042519450014500_REF35
  doi: 10.1006/excr.1999.4543
– ident: 2021042519450014500_REF22
  doi: 10.1038/40418
– ident: 2021042519450014500_REF41
  doi: 10.1038/nrm809
– ident: 2021042519450014500_REF3
  doi: 10.1083/jcb.200312168
– ident: 2021042519450014500_REF6
  doi: 10.1083/jcb.133.6.1403
– ident: 2021042519450014500_REF24
  doi: 10.1042/bj3410647
– ident: 2021042519450014500_REF20
  doi: 10.1177/40.10.1527379
– ident: 2021042519450014500_REF12
SSID ssj0007297
Score 2.4278164
Snippet In pressure or volume overload, hypertrophic growth of the myocardium is associated with myofibroblast differentiation, a process in which cardiac fibroblasts...
SourceID proquest
crossref
pubmed
fao
SourceType Aggregation Database
Index Database
Publisher
StartPage 1801
SubjectTerms Actin Cytoskeleton - metabolism
Actins - genetics
Actins - metabolism
Animals
Cardiomegaly - genetics
Cardiomegaly - metabolism
Cardiomegaly - physiopathology
Cell Culture Techniques
Cell Differentiation - physiology
Cofilin 1 - metabolism
Enzyme Inhibitors - pharmacology
Fibroblasts - metabolism
Lim Kinases
Mechanotransduction, Cellular - physiology
Myoblasts, Cardiac - metabolism
Phosphorylation
Pressure - adverse effects
Promoter Regions, Genetic - genetics
Protein Kinases - metabolism
Rats
rho GTP-Binding Proteins - metabolism
rhoA GTP-Binding Protein - metabolism
Signal Transduction - physiology
Stress, Mechanical
Tensile Strength - physiology
Trans-Activators - metabolism
Transcriptional Activation - genetics
Title Force activates smooth muscle α-actin promoter activity through the Rho signaling pathway
URI https://www.ncbi.nlm.nih.gov/pubmed/17456553
https://search.proquest.com/docview/70508571
Volume 120
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jj9MwFLaYQUhcEPuU1RLcooDt1E56RIhRBQKxTKVeUOR4gTm0GTXpjOiv53nJUmAk4JJUcRRH7319eftD6Hmmp0LkiqZiqkU6tcqmlVAqFbqQmhJplW_2_P6DmC-mb5d8ObiyfXVJW71Quz_WlfwPV-Ea8NVVyf4DZ_uHwgX4DfyFI3AYjn_F4-N6o0I7jHOnMibNqgbCJ6ttAzcmvow2das-DQt4YjbhZqd5dwN6nOL5-XuduEQOGWrTQSm8kHvh3pHa6jz9SfxujrzO3uO6PJV1Oh9l-cjGp2p2xYYhtyQCrPYTjkCFXfVenp0P29NmdxoTPdwL7fklchdSD5WZfZ0AdcHhbE_WMjIC1cc2iTmtQXrSIjg2fhProEc4sa4aFzjioXf2iL9nK89gMK5APQ29h39pot0tHaCrDCSSE4XvPg1t5cHCiLN9wyvHPraw7cthU9dfNj5mT4k5sLK-3D7xesrJTXQjcgq_Cmi5ha6Y9W10LYwc_XEHffWYwT1mcMAMDpjBI8zgDjO4wwyOmIGzwYAZ3GMGR8zcRYvjNyev52kcsZGqjMxa-HMay6gBccLznFaZsYZnIrNGaTDOWVVwK6yVpMozWRmiQd_LNSeGsEoWTPPsHjpc12tzhDArwDYvODcMrABreZGrmbBUkEKD2SvUBD3raFaehU4qpbNAgcglELkMRJ6gIyBnKb_BJ65cfGEusB46Ts0m6GlH4xJkoIO7XJt625Q54W5QA52g-4H0wwaRYQ8uXXmIrg_ofYQO283WPAY9s62eeIz8BFMHfIE
link.rule.ids 315,783,787,27936,27937
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Force+activates+smooth+muscle+alpha-actin+promoter+activity+through+the+Rho+signaling+pathway&rft.jtitle=Journal+of+cell+science&rft.au=Zhao%2C+Xiao-Han&rft.au=Laschinger%2C+Carol&rft.au=Arora%2C+Pam&rft.au=Sz%C3%A1szi%2C+Katalin&rft.date=2007-05-15&rft.issn=0021-9533&rft.volume=120&rft.issue=Pt+10&rft.spage=1801&rft_id=info:doi/10.1242%2Fjcs.001586&rft_id=info%3Apmid%2F17456553&rft.externalDocID=17456553
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9533&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9533&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9533&client=summon