Force activates smooth muscle α-actin promoter activity through the Rho signaling pathway
In pressure or volume overload, hypertrophic growth of the myocardium is associated with myofibroblast differentiation, a process in which cardiac fibroblasts express smooth muscle α-actin (SMA). The signaling mechanisms that mediate force-induced myofibroblast differentiation and SMA expression are...
Saved in:
Published in | Journal of cell science Vol. 120; no. 10; pp. 1801 - 1809 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
England
The Company of Biologists Limited
15.05.2007
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In pressure or volume overload, hypertrophic growth of the myocardium is associated with myofibroblast differentiation, a process in which cardiac fibroblasts express smooth muscle α-actin (SMA). The signaling mechanisms that mediate force-induced myofibroblast differentiation and SMA expression are not defined. We examined the role of the Rho-Rho-kinase pathway in force-induced SMA expression in fibroblasts using an in vitro model system that applies static tensile forces (0.65 pN/μm²) to integrins via collagen-coated magnetite beads. Force maximally induced RhoA activation at 10 minutes that was localized to force application sites and required intact actin filaments. Force application induced phosphorylation of LIM kinase (5-10 minutes) and an early dephosphorylation of cofilin (5 minutes) that was followed by prolonged cofilin phosphorylation. These responses were blocked by Y27632, an inhibitor of Rho kinase. Force promoted actin filament assembly at force application sites (10-20 minutes), a process that required Rho kinase and cofilin. Force application induced nuclear translocation of the transcriptional co-activator MRTF-A but not MRTF-B. Nuclear translocation of MRTF-A required Rho kinase and intact actin filaments. Force caused 3.5-fold increases of SMA promoter activity that were completely blocked by transfection of cells with dominant-negative MRTF-A or by inhibition of Rho kinase or by actin filament disassembly. These data indicate that mechanical forces mediate actin assembly through the Rho-Rho-kinase-LIMK cofilin pathway. Force-mediated actin filament assembly promotes nuclear translocation of MRTF and subsequent activation of the SMA promoter to enhance SMA expression. |
---|---|
AbstractList | In pressure or volume overload, hypertrophic growth of the myocardium is associated with myofibroblast differentiation, a process in which cardiac fibroblasts express smooth muscle alpha-actin (SMA). The signaling mechanisms that mediate force-induced myofibroblast differentiation and SMA expression are not defined. We examined the role of the Rho-Rho-kinase pathway in force-induced SMA expression in fibroblasts using an in vitro model system that applies static tensile forces (0.65 pN/microm(2)) to integrins via collagen-coated magnetite beads. Force maximally induced RhoA activation at 10 minutes that was localized to force application sites and required intact actin filaments. Force application induced phosphorylation of LIM kinase (5-10 minutes) and an early dephosphorylation of cofilin (5 minutes) that was followed by prolonged cofilin phosphorylation. These responses were blocked by Y27632, an inhibitor of Rho kinase. Force promoted actin filament assembly at force application sites (10-20 minutes), a process that required Rho kinase and cofilin. Force application induced nuclear translocation of the transcriptional co-activator MRTF-A but not MRTF-B. Nuclear translocation of MRTF-A required Rho kinase and intact actin filaments. Force caused 3.5-fold increases of SMA promoter activity that were completely blocked by transfection of cells with dominant-negative MRTF-A or by inhibition of Rho kinase or by actin filament disassembly. These data indicate that mechanical forces mediate actin assembly through the Rho-Rho-kinase-LIMK cofilin pathway. Force-mediated actin filament assembly promotes nuclear translocation of MRTF and subsequent activation of the SMA promoter to enhance SMA expression. In pressure or volume overload, hypertrophic growth of the myocardium is associated with myofibroblast differentiation, a process in which cardiac fibroblasts express smooth muscle α-actin (SMA). The signaling mechanisms that mediate force-induced myofibroblast differentiation and SMA expression are not defined. We examined the role of the Rho–Rho-kinase pathway in force-induced SMA expression in fibroblasts using an in vitro model system that applies static tensile forces (0.65 pN/μm2) to integrins via collagen-coated magnetite beads. Force maximally induced RhoA activation at 10 minutes that was localized to force application sites and required intact actin filaments. Force application induced phosphorylation of LIM kinase (5-10 minutes) and an early dephosphorylation of cofilin (5 minutes) that was followed by prolonged cofilin phosphorylation. These responses were blocked by Y27632, an inhibitor of Rho kinase. Force promoted actin filament assembly at force application sites (10-20 minutes), a process that required Rho kinase and cofilin. Force application induced nuclear translocation of the transcriptional co-activator MRTF-A but not MRTF-B. Nuclear translocation of MRTF-A required Rho kinase and intact actin filaments. Force caused 3.5-fold increases of SMA promoter activity that were completely blocked by transfection of cells with dominant-negative MRTF-A or by inhibition of Rho kinase or by actin filament disassembly. These data indicate that mechanical forces mediate actin assembly through the Rho–Rho-kinase–LIMK cofilin pathway. Force-mediated actin filament assembly promotes nuclear translocation of MRTF and subsequent activation of the SMA promoter to enhance SMA expression. In pressure or volume overload, hypertrophic growth of the myocardium is associated with myofibroblast differentiation, a process in which cardiac fibroblasts express smooth muscle α-actin (SMA). The signaling mechanisms that mediate force-induced myofibroblast differentiation and SMA expression are not defined. We examined the role of the Rho-Rho-kinase pathway in force-induced SMA expression in fibroblasts using an in vitro model system that applies static tensile forces (0.65 pN/μm²) to integrins via collagen-coated magnetite beads. Force maximally induced RhoA activation at 10 minutes that was localized to force application sites and required intact actin filaments. Force application induced phosphorylation of LIM kinase (5-10 minutes) and an early dephosphorylation of cofilin (5 minutes) that was followed by prolonged cofilin phosphorylation. These responses were blocked by Y27632, an inhibitor of Rho kinase. Force promoted actin filament assembly at force application sites (10-20 minutes), a process that required Rho kinase and cofilin. Force application induced nuclear translocation of the transcriptional co-activator MRTF-A but not MRTF-B. Nuclear translocation of MRTF-A required Rho kinase and intact actin filaments. Force caused 3.5-fold increases of SMA promoter activity that were completely blocked by transfection of cells with dominant-negative MRTF-A or by inhibition of Rho kinase or by actin filament disassembly. These data indicate that mechanical forces mediate actin assembly through the Rho-Rho-kinase-LIMK cofilin pathway. Force-mediated actin filament assembly promotes nuclear translocation of MRTF and subsequent activation of the SMA promoter to enhance SMA expression. |
Author | Zhao, Xiao-Han McCulloch, Christopher A Szászi, Katalin Arora, Pam Laschinger, Carol Kapus, Andras |
Author_xml | – sequence: 1 fullname: Zhao, Xiao-Han – sequence: 2 fullname: Laschinger, Carol – sequence: 3 fullname: Arora, Pam – sequence: 4 fullname: Szászi, Katalin – sequence: 5 fullname: Kapus, Andras – sequence: 6 fullname: McCulloch, Christopher A |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/17456553$$D View this record in MEDLINE/PubMed |
BookMark | eNpF0M1KxDAQwPEgiq4fFx9Ac_IgVCdJ02yPsvgFguDHxUtI28m20jZrkir7WL6Iz2SlC57mMD-G4b9PtnvXIyHHDC4YT_nlexkuAJicZ1tkxlKlkpwJtU1mAJwluRRij-yH8A4Aiudql-wxlcpMSjEjbzfOl0hNGZtPEzHQ0DkXa9oNoWyR_nwnf6uerrzrXEQ_ySauaay9G5b1OJE-1Y6GZtmbtumXdGVi_WXWh2THmjbg0WYekNeb65fFXfLweHu_uHpISgF5TFKLljNEU0mlWCHQohSZsFhWwDNezKXNrDVQKGEKhIqnTFUSEHhh5ryS4oCcTXfHHz8GDFF3TSixbU2PbghagYS5VGyE5xMsvQvBo9Ur33TGrzUD_VdSjyX1VHLEJ5urQ9Fh9U836UZwOgFrnDZL3wT9-syBibGyylSai1--pXxg |
CitedBy_id | crossref_primary_10_1088_1478_3975_12_2_026001 crossref_primary_10_1016_j_yjmcc_2015_11_025 crossref_primary_10_1016_j_trsl_2019_02_006 crossref_primary_10_1158_0008_5472_CAN_19_2914 crossref_primary_10_3390_bioengineering4030072 crossref_primary_10_1096_fj_11_187310 crossref_primary_10_3389_fphys_2016_00547 crossref_primary_10_1016_j_yexcr_2018_06_023 crossref_primary_10_1513_pats_201202_017AW crossref_primary_10_1155_2019_8203950 crossref_primary_10_3389_fbioe_2020_608569 crossref_primary_10_3390_ijms22116040 crossref_primary_10_1074_jbc_M111_297150 crossref_primary_10_1097_MIB_0b013e3182813297 crossref_primary_10_1016_j_bbamcr_2013_10_012 crossref_primary_10_1016_j_yexcr_2010_02_007 crossref_primary_10_1016_j_diff_2013_07_004 crossref_primary_10_1083_jcb_200807096 crossref_primary_10_1155_2017_5389272 crossref_primary_10_1038_s41556_022_00927_7 crossref_primary_10_1152_ajpcell_00323_2009 crossref_primary_10_1016_j_ecoenv_2024_116110 crossref_primary_10_1016_j_yexcr_2007_11_022 crossref_primary_10_1089_ars_2013_5724 crossref_primary_10_1038_ncomms7333 crossref_primary_10_1186_s13036_022_00292_x crossref_primary_10_1152_ajpheart_00129_2009 crossref_primary_10_1007_s11926_009_0017_1 crossref_primary_10_1016_j_jmps_2017_09_013 crossref_primary_10_1038_ncb2254 crossref_primary_10_1016_j_neuron_2015_02_041 crossref_primary_10_18632_oncotarget_17255 crossref_primary_10_3389_fbioe_2022_830722 crossref_primary_10_1177_1535370219854669 crossref_primary_10_1007_s12307_011_0078_3 crossref_primary_10_1038_s41598_017_03337_0 crossref_primary_10_1089_scd_2010_0389 crossref_primary_10_14814_phy2_13863 crossref_primary_10_1103_RevModPhys_85_1327 crossref_primary_10_1002_wdev_359 crossref_primary_10_1165_rcmb_2016_0268OC crossref_primary_10_2119_molmed_2016_00041 crossref_primary_10_1098_rsob_200263 crossref_primary_10_1002_advs_202302327 crossref_primary_10_4061_2010_120623 crossref_primary_10_1007_s12265_012_9397_0 crossref_primary_10_1152_ajpcell_00340_2012 crossref_primary_10_1371_journal_pone_0083188 crossref_primary_10_1152_ajpheart_01178_2009 crossref_primary_10_1016_j_yjmcc_2013_11_015 crossref_primary_10_1128_MCB_00194_16 crossref_primary_10_1007_s12195_018_00565_w crossref_primary_10_1134_S0006297916130071 crossref_primary_10_1111_j_1600_0838_2009_00928_x crossref_primary_10_3389_fcell_2020_00630 crossref_primary_10_1093_cvr_cvt338 crossref_primary_10_1113_jphysiol_2012_249755 crossref_primary_10_1113_JP275033 crossref_primary_10_1016_j_yexcr_2012_03_007 crossref_primary_10_1152_ajplung_00166_2011 crossref_primary_10_1002_adhm_202304254 crossref_primary_10_1016_j_ccr_2011_05_008 crossref_primary_10_1093_europace_euab155 crossref_primary_10_3892_ijmm_2018_3816 crossref_primary_10_1242_jcs_240341 crossref_primary_10_2174_1389450121666200128113547 crossref_primary_10_1002_bies_201900162 crossref_primary_10_1083_jcb_201309092 crossref_primary_10_1242_jcs_260636 crossref_primary_10_1007_s10741_020_09940_0 crossref_primary_10_1021_acs_biomac_7b01237 crossref_primary_10_1016_j_vph_2021_106837 crossref_primary_10_1002_mabi_202300110 crossref_primary_10_1016_j_jmbbm_2016_01_021 crossref_primary_10_1016_j_biomaterials_2020_120331 crossref_primary_10_1002_jcp_23016 crossref_primary_10_3390_jcm12103398 crossref_primary_10_1096_fj_202201992R crossref_primary_10_1126_scisignal_aad2959 crossref_primary_10_1186_s12920_022_01221_z crossref_primary_10_2147_OTT_S231010 crossref_primary_10_1007_s42399_020_00292_2 crossref_primary_10_1091_mbc_E15_06_0417 crossref_primary_10_1167_iovs_17_23580 crossref_primary_10_1091_mbc_E15_12_0833 crossref_primary_10_1124_jpet_114_213520 crossref_primary_10_3389_fphys_2021_732564 crossref_primary_10_1016_j_yexcr_2015_10_029 crossref_primary_10_1016_j_biocel_2010_08_014 crossref_primary_10_1242_jcs_060905 crossref_primary_10_1016_j_jmbbm_2019_103538 crossref_primary_10_1016_j_jbiomech_2009_09_020 crossref_primary_10_1016_j_ymeth_2015_09_025 crossref_primary_10_1242_jcs_093005 crossref_primary_10_1016_j_bbamcr_2009_01_012 crossref_primary_10_1039_D2BM02058K crossref_primary_10_1016_j_bpj_2017_11_3785 crossref_primary_10_1177_20417314231172573 crossref_primary_10_3389_fimmu_2019_01138 crossref_primary_10_1016_j_ceb_2009_08_001 crossref_primary_10_1186_s12931_015_0206_6 crossref_primary_10_1016_j_exer_2015_05_001 crossref_primary_10_1093_cvr_cvq385 crossref_primary_10_1242_jcs_023507 crossref_primary_10_1152_physrev_00037_2007 crossref_primary_10_1007_s12265_012_9406_3 crossref_primary_10_1038_ncomms11642 crossref_primary_10_1083_jcb_201210090 crossref_primary_10_1371_journal_pone_0098116 crossref_primary_10_1242_jcs_170589 crossref_primary_10_1074_jbc_M115_712380 crossref_primary_10_1007_s00403_012_1278_5 crossref_primary_10_1111_j_1743_6109_2008_01011_x crossref_primary_10_4161_sgtp_27539 crossref_primary_10_1161_ATVBAHA_110_212993 crossref_primary_10_1088_0034_4885_75_11_116601 crossref_primary_10_1074_jbc_M109_075218 crossref_primary_10_1038_s41569_022_00799_2 crossref_primary_10_1002_adma_201001747 crossref_primary_10_1038_srep40953 crossref_primary_10_1016_j_pbiomolbio_2008_02_007 crossref_primary_10_1091_mbc_e14_04_0875 crossref_primary_10_3389_fcvm_2018_00174 crossref_primary_10_3389_fcell_2021_682294 crossref_primary_10_1016_j_pharmthera_2017_09_002 crossref_primary_10_1074_jbc_M113_504290 crossref_primary_10_3390_biology2020555 crossref_primary_10_1111_exd_13264 crossref_primary_10_1039_D4RA02717E crossref_primary_10_1007_s13206_022_00073_0 crossref_primary_10_1016_j_bcp_2024_116255 crossref_primary_10_1039_C5BM00329F crossref_primary_10_1073_pnas_1316764110 crossref_primary_10_1002_ijc_28035 crossref_primary_10_1038_hr_2009_173 crossref_primary_10_3390_jcm9051423 crossref_primary_10_1038_nrm2890 crossref_primary_10_3389_fphys_2018_01449 crossref_primary_10_1002_ar_20764 crossref_primary_10_1038_jid_2011_219 crossref_primary_10_1242_jcs_216648 crossref_primary_10_7554_eLife_06126 crossref_primary_10_1167_tvst_7_6_6 crossref_primary_10_1016_j_yjmcc_2012_11_006 crossref_primary_10_1091_mbc_e08_08_0872 crossref_primary_10_1016_j_bbamcr_2008_01_013 crossref_primary_10_1007_s10585_019_09959_0 crossref_primary_10_1101_gad_304501_117 crossref_primary_10_3390_ijms25042135 crossref_primary_10_1371_journal_pone_0137519 crossref_primary_10_1038_s41392_023_01501_9 crossref_primary_10_1161_CIRCRESAHA_110_239343 crossref_primary_10_1021_bi300758e crossref_primary_10_1091_mbc_E18_04_0213 crossref_primary_10_1016_j_molonc_2015_04_003 crossref_primary_10_1016_j_cellsig_2020_109869 crossref_primary_10_1161_CIRCRESAHA_108_180885 crossref_primary_10_1021_acs_biomac_9b00965 crossref_primary_10_1111_prd_12076 crossref_primary_10_3390_cells9122702 crossref_primary_10_1002_jcp_24524 crossref_primary_10_1016_j_carpath_2016_04_004 crossref_primary_10_1242_jcs_208470 crossref_primary_10_1074_jbc_M111_276931 crossref_primary_10_1161_CIRCRESAHA_110_223172 crossref_primary_10_3390_ijms21010090 crossref_primary_10_1002_jcb_25901 crossref_primary_10_1016_j_abb_2008_03_010 crossref_primary_10_1161_ATVBAHA_115_305353 crossref_primary_10_1073_pnas_1718177115 crossref_primary_10_1007_s00018_013_1349_6 crossref_primary_10_1016_j_carbpol_2018_12_096 crossref_primary_10_1242_jcs_044008 crossref_primary_10_3389_fphys_2022_862164 crossref_primary_10_1016_j_bpj_2015_08_025 crossref_primary_10_1016_j_cell_2017_10_008 crossref_primary_10_1016_j_ejphar_2008_01_056 crossref_primary_10_1111_jcmm_13130 crossref_primary_10_1371_journal_pone_0126015 crossref_primary_10_1007_s00441_018_02983_8 crossref_primary_10_3390_ijms21197165 crossref_primary_10_1016_j_biomaterials_2019_119743 crossref_primary_10_1038_s41598_020_66617_2 crossref_primary_10_1063_1_5023410 crossref_primary_10_1016_j_trsl_2011_05_004 crossref_primary_10_1016_j_semcdb_2017_07_041 crossref_primary_10_1161_ATVBAHA_114_303320 crossref_primary_10_1002_jcb_22545 crossref_primary_10_1093_rb_rbae016 crossref_primary_10_1165_rcmb_2012_0050OC crossref_primary_10_1186_s11658_016_0028_7 crossref_primary_10_1136_pgmj_2007_066555 crossref_primary_10_3389_fcell_2022_789841 crossref_primary_10_3109_03008207_2011_642035 crossref_primary_10_3389_fphys_2021_710968 crossref_primary_10_1038_s41598_020_71100_z crossref_primary_10_1073_pnas_1621161114 crossref_primary_10_1098_rsfs_2013_0056 crossref_primary_10_1016_j_bbamcr_2013_11_008 crossref_primary_10_1016_j_yjmcc_2019_05_016 crossref_primary_10_1126_scisignal_2000396 crossref_primary_10_1016_j_cell_2011_05_040 crossref_primary_10_1210_en_2009_0932 crossref_primary_10_1016_j_yexcr_2019_03_027 crossref_primary_10_1098_rstb_2018_0229 crossref_primary_10_1111_boc_201400014 crossref_primary_10_1161_CIRCULATIONAHA_117_031788 crossref_primary_10_1152_ajpcell_00027_2007 crossref_primary_10_1111_exd_14933 crossref_primary_10_1016_j_yjmcc_2014_05_008 crossref_primary_10_1007_s12195_008_0009_7 crossref_primary_10_1016_j_bbamcr_2012_08_023 crossref_primary_10_1016_j_bpj_2012_08_041 crossref_primary_10_1272_jnms_79_46 crossref_primary_10_1016_j_yexmp_2016_09_002 crossref_primary_10_1161_CIRCRESAHA_115_306532 crossref_primary_10_1038_onc_2014_362 crossref_primary_10_1038_ncb2917 crossref_primary_10_1161_CIRCRESAHA_119_311148 crossref_primary_10_1007_s11010_009_0351_7 crossref_primary_10_1371_journal_pone_0214385 crossref_primary_10_3389_fcell_2020_00678 crossref_primary_10_1242_dev_181172 crossref_primary_10_1038_s41584_019_0324_5 crossref_primary_10_1039_B913064K crossref_primary_10_1088_1478_3975_10_6_066003 crossref_primary_10_1161_ATVBAHA_110_209395 crossref_primary_10_1038_embor_2011_141 crossref_primary_10_7600_jpfsm_4_53 crossref_primary_10_1016_j_nano_2013_06_014 crossref_primary_10_1093_cvr_cvq308 crossref_primary_10_1161_ATVBAHA_110_221135 crossref_primary_10_1186_s12860_021_00383_5 crossref_primary_10_1039_D1ME00049G crossref_primary_10_1016_j_yjmcc_2013_10_019 crossref_primary_10_3389_fcell_2019_00063 |
Cites_doi | 10.1016/j.tcb.2007.02.002 10.1074/jbc.M203130200 10.1152/ajpcell.1995.269.5.C1093 10.1016/S0002-9440(10)61776-2 10.1083/jcb.153.6.1175 10.1016/S0014-5793(97)00107-5 10.1016/S0008-6363(98)00305-8 10.1038/31729 10.1083/jcb.200203126 10.1091/mbc.02-06-0092 10.1016/S0008-6363(95)00232-4 10.1016/S0008-6363(00)00030-4 10.1016/S0092-8674(03)00278-2 10.1242/jcs.110.1.11 10.1083/jcb.200210135 10.1074/jbc.M410819200 10.1126/science.1081412 10.1016/S0092-8674(00)80043-4 10.1006/excr.2001.5445 10.1242/jcs.100.1.187 10.1152/ajpheart.00387.2003 10.1128/MCB.23.18.6597-6608.2003 10.1161/01.RES.84.7.852 10.1042/bst0230456 10.1101/gad.1428006 10.1016/S0962-8924(99)01619-0 10.1165/rcmb.4754 10.1083/jcb.136.6.1165 10.1007/978-3-642-72477-0_16 10.1161/01.RES.0000078780.65824.8B 10.1016/j.devcel.2004.05.020 10.1074/jbc.M200715200 10.1128/MCB.25.8.3173-3181.2005 10.1074/jbc.272.16.10704 10.1172/JCI5367 10.1006/excr.1999.4543 10.1038/40418 10.1038/nrm809 10.1083/jcb.200312168 10.1083/jcb.133.6.1403 10.1042/bj3410647 10.1177/40.10.1527379 |
ContentType | Journal Article |
DBID | FBQ CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 |
DOI | 10.1242/jcs.001586 |
DatabaseName | AGRIS Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1477-9137 |
EndPage | 1809 |
ExternalDocumentID | 10_1242_jcs_001586 17456553 US201300776749 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -DZ -~X .55 .GJ 0R~ 18M 2WC 34G 39C 3O- 4.4 4R4 53G 5GY 5RE 5VS 85S ABDNZ ABEFU ABJNI ABPPZ ABPTK ABSGY ABTAH ACGFO ACGFS ACIWK ACNCT ACPRK ACYGS ADBBV ADCOW AENEX AEQTP AETEA AFFNX AFRAH AGGIJ AHERT AI. ALMA_UNASSIGNED_HOLDINGS BAWUL BTFSW C1A CS3 DIK DU5 E3Z EBS EJD F5P F9R FBQ GX1 HZ~ IH2 INIJC KQ8 MVM O9- OHT OK1 P2P R.V RCB RHF RHI RNS SJN TN5 TR2 UPT VH1 W2D W8F WH7 WOQ X7M XOL YQI YQT ZA5 ZGI ZXP ZY4 ~02 ~KM AEILP CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 |
ID | FETCH-LOGICAL-c309t-4fef21eead5771b3efe5363fecd0262b85f6ffa0b73abe0d2417d50e02ba82d53 |
ISSN | 0021-9533 |
IngestDate | Sun Sep 29 07:40:38 EDT 2024 Thu Sep 12 18:12:18 EDT 2024 Sat Sep 28 07:45:40 EDT 2024 Wed Dec 27 19:02:10 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c309t-4fef21eead5771b3efe5363fecd0262b85f6ffa0b73abe0d2417d50e02ba82d53 |
Notes | http://jcs.biologists.org/ ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 17456553 |
PQID | 70508571 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_70508571 crossref_primary_10_1242_jcs_001586 pubmed_primary_17456553 fao_agris_US201300776749 |
PublicationCentury | 2000 |
PublicationDate | 2007-05-15 |
PublicationDateYYYYMMDD | 2007-05-15 |
PublicationDate_xml | – month: 05 year: 2007 text: 2007-05-15 day: 15 |
PublicationDecade | 2000 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Journal of cell science |
PublicationTitleAlternate | J Cell Sci |
PublicationYear | 2007 |
Publisher | The Company of Biologists Limited |
Publisher_xml | – name: The Company of Biologists Limited |
References | 2021042519450014500_REF29 2021042519450014500_REF9 2021042519450014500_REF31 2021042519450014500_REF30 2021042519450014500_REF15 2021042519450014500_REF37 2021042519450014500_REF14 2021042519450014500_REF36 2021042519450014500_REF17 2021042519450014500_REF39 2021042519450014500_REF16 2021042519450014500_REF38 2021042519450014500_REF11 2021042519450014500_REF33 2021042519450014500_REF10 2021042519450014500_REF32 2021042519450014500_REF13 2021042519450014500_REF35 2021042519450014500_REF12 2021042519450014500_REF34 2021042519450014500_REF19 2021042519450014500_REF18 2021042519450014500_REF2 2021042519450014500_REF40 2021042519450014500_REF1 2021042519450014500_REF4 2021042519450014500_REF20 2021042519450014500_REF42 2021042519450014500_REF3 2021042519450014500_REF41 2021042519450014500_REF6 2021042519450014500_REF5 2021042519450014500_REF8 2021042519450014500_REF7 2021042519450014500_REF26 2021042519450014500_REF25 2021042519450014500_REF28 2021042519450014500_REF27 2021042519450014500_REF22 2021042519450014500_REF44 2021042519450014500_REF21 2021042519450014500_REF43 2021042519450014500_REF24 2021042519450014500_REF23 2021042519450014500_REF45 |
References_xml | – ident: 2021042519450014500_REF7 doi: 10.1016/j.tcb.2007.02.002 – ident: 2021042519450014500_REF42 doi: 10.1074/jbc.M203130200 – ident: 2021042519450014500_REF23 – ident: 2021042519450014500_REF13 doi: 10.1152/ajpcell.1995.269.5.C1093 – ident: 2021042519450014500_REF17 doi: 10.1016/S0002-9440(10)61776-2 – ident: 2021042519450014500_REF9 – ident: 2021042519450014500_REF34 doi: 10.1083/jcb.153.6.1175 – ident: 2021042519450014500_REF18 doi: 10.1016/S0014-5793(97)00107-5 – ident: 2021042519450014500_REF30 doi: 10.1016/S0008-6363(98)00305-8 – ident: 2021042519450014500_REF1 doi: 10.1038/31729 – ident: 2021042519450014500_REF11 doi: 10.1083/jcb.200203126 – ident: 2021042519450014500_REF8 doi: 10.1091/mbc.02-06-0092 – ident: 2021042519450014500_REF39 doi: 10.1016/S0008-6363(95)00232-4 – ident: 2021042519450014500_REF28 doi: 10.1016/S0008-6363(00)00030-4 – ident: 2021042519450014500_REF29 doi: 10.1016/S0092-8674(03)00278-2 – ident: 2021042519450014500_REF14 doi: 10.1242/jcs.110.1.11 – ident: 2021042519450014500_REF45 doi: 10.1083/jcb.200210135 – ident: 2021042519450014500_REF44 doi: 10.1074/jbc.M410819200 – ident: 2021042519450014500_REF38 doi: 10.1126/science.1081412 – ident: 2021042519450014500_REF5 doi: 10.1016/S0092-8674(00)80043-4 – ident: 2021042519450014500_REF16 doi: 10.1006/excr.2001.5445 – ident: 2021042519450014500_REF32 doi: 10.1242/jcs.100.1.187 – ident: 2021042519450014500_REF43 doi: 10.1152/ajpheart.00387.2003 – ident: 2021042519450014500_REF4 doi: 10.1128/MCB.23.18.6597-6608.2003 – ident: 2021042519450014500_REF27 doi: 10.1161/01.RES.84.7.852 – ident: 2021042519450014500_REF31 doi: 10.1042/bst0230456 – ident: 2021042519450014500_REF33 doi: 10.1101/gad.1428006 – ident: 2021042519450014500_REF2 doi: 10.1016/S0962-8924(99)01619-0 – ident: 2021042519450014500_REF36 doi: 10.1165/rcmb.4754 – ident: 2021042519450014500_REF40 doi: 10.1083/jcb.136.6.1165 – ident: 2021042519450014500_REF10 doi: 10.1007/978-3-642-72477-0_16 – ident: 2021042519450014500_REF26 doi: 10.1161/01.RES.0000078780.65824.8B – ident: 2021042519450014500_REF37 doi: 10.1016/j.devcel.2004.05.020 – ident: 2021042519450014500_REF19 doi: 10.1074/jbc.M200715200 – ident: 2021042519450014500_REF21 doi: 10.1128/MCB.25.8.3173-3181.2005 – ident: 2021042519450014500_REF15 doi: 10.1074/jbc.272.16.10704 – ident: 2021042519450014500_REF25 doi: 10.1172/JCI5367 – ident: 2021042519450014500_REF35 doi: 10.1006/excr.1999.4543 – ident: 2021042519450014500_REF22 doi: 10.1038/40418 – ident: 2021042519450014500_REF41 doi: 10.1038/nrm809 – ident: 2021042519450014500_REF3 doi: 10.1083/jcb.200312168 – ident: 2021042519450014500_REF6 doi: 10.1083/jcb.133.6.1403 – ident: 2021042519450014500_REF24 doi: 10.1042/bj3410647 – ident: 2021042519450014500_REF20 doi: 10.1177/40.10.1527379 – ident: 2021042519450014500_REF12 |
SSID | ssj0007297 |
Score | 2.4278164 |
Snippet | In pressure or volume overload, hypertrophic growth of the myocardium is associated with myofibroblast differentiation, a process in which cardiac fibroblasts... |
SourceID | proquest crossref pubmed fao |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 1801 |
SubjectTerms | Actin Cytoskeleton - metabolism Actins - genetics Actins - metabolism Animals Cardiomegaly - genetics Cardiomegaly - metabolism Cardiomegaly - physiopathology Cell Culture Techniques Cell Differentiation - physiology Cofilin 1 - metabolism Enzyme Inhibitors - pharmacology Fibroblasts - metabolism Lim Kinases Mechanotransduction, Cellular - physiology Myoblasts, Cardiac - metabolism Phosphorylation Pressure - adverse effects Promoter Regions, Genetic - genetics Protein Kinases - metabolism Rats rho GTP-Binding Proteins - metabolism rhoA GTP-Binding Protein - metabolism Signal Transduction - physiology Stress, Mechanical Tensile Strength - physiology Trans-Activators - metabolism Transcriptional Activation - genetics |
Title | Force activates smooth muscle α-actin promoter activity through the Rho signaling pathway |
URI | https://www.ncbi.nlm.nih.gov/pubmed/17456553 https://search.proquest.com/docview/70508571 |
Volume | 120 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jj9MwFLaYQUhcEPuU1RLcooDt1E56RIhRBQKxTKVeUOR4gTm0GTXpjOiv53nJUmAk4JJUcRRH7319eftD6Hmmp0LkiqZiqkU6tcqmlVAqFbqQmhJplW_2_P6DmC-mb5d8ObiyfXVJW71Quz_WlfwPV-Ea8NVVyf4DZ_uHwgX4DfyFI3AYjn_F4-N6o0I7jHOnMibNqgbCJ6ttAzcmvow2das-DQt4YjbhZqd5dwN6nOL5-XuduEQOGWrTQSm8kHvh3pHa6jz9SfxujrzO3uO6PJV1Oh9l-cjGp2p2xYYhtyQCrPYTjkCFXfVenp0P29NmdxoTPdwL7fklchdSD5WZfZ0AdcHhbE_WMjIC1cc2iTmtQXrSIjg2fhProEc4sa4aFzjioXf2iL9nK89gMK5APQ29h39pot0tHaCrDCSSE4XvPg1t5cHCiLN9wyvHPraw7cthU9dfNj5mT4k5sLK-3D7xesrJTXQjcgq_Cmi5ha6Y9W10LYwc_XEHffWYwT1mcMAMDpjBI8zgDjO4wwyOmIGzwYAZ3GMGR8zcRYvjNyev52kcsZGqjMxa-HMay6gBccLznFaZsYZnIrNGaTDOWVVwK6yVpMozWRmiQd_LNSeGsEoWTPPsHjpc12tzhDArwDYvODcMrABreZGrmbBUkEKD2SvUBD3raFaehU4qpbNAgcglELkMRJ6gIyBnKb_BJ65cfGEusB46Ts0m6GlH4xJkoIO7XJt625Q54W5QA52g-4H0wwaRYQ8uXXmIrg_ofYQO283WPAY9s62eeIz8BFMHfIE |
link.rule.ids | 315,783,787,27936,27937 |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Force+activates+smooth+muscle+alpha-actin+promoter+activity+through+the+Rho+signaling+pathway&rft.jtitle=Journal+of+cell+science&rft.au=Zhao%2C+Xiao-Han&rft.au=Laschinger%2C+Carol&rft.au=Arora%2C+Pam&rft.au=Sz%C3%A1szi%2C+Katalin&rft.date=2007-05-15&rft.issn=0021-9533&rft.volume=120&rft.issue=Pt+10&rft.spage=1801&rft_id=info:doi/10.1242%2Fjcs.001586&rft_id=info%3Apmid%2F17456553&rft.externalDocID=17456553 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9533&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9533&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9533&client=summon |