Biologic Activity of Autologous, Granulocyte–Macrophage Colony-Stimulating Factor Secreting Alveolar Soft-Part Sarcoma and Clear Cell Sarcoma Vaccines
Purpose: Alveolar soft-part sarcoma (ASPS) and clear cell sarcoma (CCS) are rare mesenchymal malignancies driven by chromosomal translocations that activate members of the microphthalmia transcription factor (MITF) family. However, in contrast to malignant melanoma, little is known about their immun...
Saved in:
Published in | Clinical cancer research Vol. 21; no. 14; pp. 3178 - 3186 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
15.07.2015
|
Subjects | |
Online Access | Get full text |
ISSN | 1078-0432 1557-3265 1557-3265 |
DOI | 10.1158/1078-0432.CCR-14-2932 |
Cover
Loading…
Abstract | Purpose: Alveolar soft-part sarcoma (ASPS) and clear cell sarcoma (CCS) are rare mesenchymal malignancies driven by chromosomal translocations that activate members of the microphthalmia transcription factor (MITF) family. However, in contrast to malignant melanoma, little is known about their immunogenicity. To learn more about the host response to ASPS and CCS, we conducted a phase I clinical trial of vaccination with irradiated, autologous sarcoma cells engineered by adenoviral-mediated gene transfer to secrete granulocyte–macrophage colony-stimulating factor (GM-CSF).
Experimental Design: Metastatic tumors from ASPS and CCS patients were resected, processed to single-cell suspensions, transduced with a replication-defective adenoviral vector encoding GM-CSF, and irradiated. Immunizations were administered subcutaneously and intradermally weekly three times and then every other week.
Results: Vaccines were successfully manufactured for 11 of the 12 enrolled patients. Eleven subjects received from three to 13 immunizations. Toxicities were restricted to grade 1–2 skin reactions at inoculation sites. Vaccination elicited local dendritic cell infiltrates and stimulated T cell–mediated delayed-type hypersensitivity reactions to irradiated, autologous tumor cells. Antibody responses to tissue-type plasminogen activator (tTPA) and angiopoietins-1/2 were detected. Tumor biopsies showed programmed death-1 (PD-1)–positive CD8+ T cells in association with PD ligand-1 (PD-L1)–expressing sarcoma cells. No tumor regressions were observed.
Conclusions: Vaccination with irradiated, GM-CSF–secreting autologous sarcoma cell vaccines is feasible, safe, and biologically active. Concurrent targeting of angiogenic cytokines and antagonism of the PD-1–negative regulatory pathway might intensify immune-mediated tumor destruction. Clin Cancer Res; 21(14); 3178–86. ©2015 AACR. |
---|---|
AbstractList | Alveolar soft-part sarcoma (ASPS) and clear cell sarcoma (CCS) are rare mesenchymal malignancies driven by chromosomal translocations that activate members of the microphthalmia transcription factor (MITF) family. However, in contrast to malignant melanoma, little is known about their immunogenicity. To learn more about the host response to ASPS and CCS, we conducted a phase I clinical trial of vaccination with irradiated, autologous sarcoma cells engineered by adenoviral-mediated gene transfer to secrete granulocyte-macrophage colony-stimulating factor (GM-CSF).
Metastatic tumors from ASPS and CCS patients were resected, processed to single-cell suspensions, transduced with a replication-defective adenoviral vector encoding GM-CSF, and irradiated. Immunizations were administered subcutaneously and intradermally weekly three times and then every other week.
Vaccines were successfully manufactured for 11 of the 12 enrolled patients. Eleven subjects received from three to 13 immunizations. Toxicities were restricted to grade 1-2 skin reactions at inoculation sites. Vaccination elicited local dendritic cell infiltrates and stimulated T cell-mediated delayed-type hypersensitivity reactions to irradiated, autologous tumor cells. Antibody responses to tissue-type plasminogen activator (tTPA) and angiopoietins-1/2 were detected. Tumor biopsies showed programmed death-1 (PD-1)-positive CD8(+) T cells in association with PD ligand-1 (PD-L1)-expressing sarcoma cells. No tumor regressions were observed.
Vaccination with irradiated, GM-CSF-secreting autologous sarcoma cell vaccines is feasible, safe, and biologically active. Concurrent targeting of angiogenic cytokines and antagonism of the PD-1-negative regulatory pathway might intensify immune-mediated tumor destruction. Purpose: Alveolar soft-part sarcoma (ASPS) and clear cell sarcoma (CCS) are rare mesenchymal malignancies driven by chromosomal translocations that activate members of the microphthalmia transcription factor (MITF) family. However, in contrast to malignant melanoma, little is known about their immunogenicity. To learn more about the host response to ASPS and CCS, we conducted a phase I clinical trial of vaccination with irradiated, autologous sarcoma cells engineered by adenoviral-mediated gene transfer to secrete granulocyte–macrophage colony-stimulating factor (GM-CSF). Experimental Design: Metastatic tumors from ASPS and CCS patients were resected, processed to single-cell suspensions, transduced with a replication-defective adenoviral vector encoding GM-CSF, and irradiated. Immunizations were administered subcutaneously and intradermally weekly three times and then every other week. Results: Vaccines were successfully manufactured for 11 of the 12 enrolled patients. Eleven subjects received from three to 13 immunizations. Toxicities were restricted to grade 1–2 skin reactions at inoculation sites. Vaccination elicited local dendritic cell infiltrates and stimulated T cell–mediated delayed-type hypersensitivity reactions to irradiated, autologous tumor cells. Antibody responses to tissue-type plasminogen activator (tTPA) and angiopoietins-1/2 were detected. Tumor biopsies showed programmed death-1 (PD-1)–positive CD8+ T cells in association with PD ligand-1 (PD-L1)–expressing sarcoma cells. No tumor regressions were observed. Conclusions: Vaccination with irradiated, GM-CSF–secreting autologous sarcoma cell vaccines is feasible, safe, and biologically active. Concurrent targeting of angiogenic cytokines and antagonism of the PD-1–negative regulatory pathway might intensify immune-mediated tumor destruction. Clin Cancer Res; 21(14); 3178–86. ©2015 AACR. Alveolar soft-part sarcoma (ASPS) and clear cell sarcoma (CCS) are rare mesenchymal malignancies driven by chromosomal translocations that activate members of the microphthalmia transcription factor (MITF) family. However, in contrast to malignant melanoma, little is known about their immunogenicity. To learn more about the host response to ASPS and CCS, we conducted a phase I clinical trial of vaccination with irradiated, autologous sarcoma cells engineered by adenoviral-mediated gene transfer to secrete granulocyte-macrophage colony-stimulating factor (GM-CSF).PURPOSEAlveolar soft-part sarcoma (ASPS) and clear cell sarcoma (CCS) are rare mesenchymal malignancies driven by chromosomal translocations that activate members of the microphthalmia transcription factor (MITF) family. However, in contrast to malignant melanoma, little is known about their immunogenicity. To learn more about the host response to ASPS and CCS, we conducted a phase I clinical trial of vaccination with irradiated, autologous sarcoma cells engineered by adenoviral-mediated gene transfer to secrete granulocyte-macrophage colony-stimulating factor (GM-CSF).Metastatic tumors from ASPS and CCS patients were resected, processed to single-cell suspensions, transduced with a replication-defective adenoviral vector encoding GM-CSF, and irradiated. Immunizations were administered subcutaneously and intradermally weekly three times and then every other week.EXPERIMENTAL DESIGNMetastatic tumors from ASPS and CCS patients were resected, processed to single-cell suspensions, transduced with a replication-defective adenoviral vector encoding GM-CSF, and irradiated. Immunizations were administered subcutaneously and intradermally weekly three times and then every other week.Vaccines were successfully manufactured for 11 of the 12 enrolled patients. Eleven subjects received from three to 13 immunizations. Toxicities were restricted to grade 1-2 skin reactions at inoculation sites. Vaccination elicited local dendritic cell infiltrates and stimulated T cell-mediated delayed-type hypersensitivity reactions to irradiated, autologous tumor cells. Antibody responses to tissue-type plasminogen activator (tTPA) and angiopoietins-1/2 were detected. Tumor biopsies showed programmed death-1 (PD-1)-positive CD8(+) T cells in association with PD ligand-1 (PD-L1)-expressing sarcoma cells. No tumor regressions were observed.RESULTSVaccines were successfully manufactured for 11 of the 12 enrolled patients. Eleven subjects received from three to 13 immunizations. Toxicities were restricted to grade 1-2 skin reactions at inoculation sites. Vaccination elicited local dendritic cell infiltrates and stimulated T cell-mediated delayed-type hypersensitivity reactions to irradiated, autologous tumor cells. Antibody responses to tissue-type plasminogen activator (tTPA) and angiopoietins-1/2 were detected. Tumor biopsies showed programmed death-1 (PD-1)-positive CD8(+) T cells in association with PD ligand-1 (PD-L1)-expressing sarcoma cells. No tumor regressions were observed.Vaccination with irradiated, GM-CSF-secreting autologous sarcoma cell vaccines is feasible, safe, and biologically active. Concurrent targeting of angiogenic cytokines and antagonism of the PD-1-negative regulatory pathway might intensify immune-mediated tumor destruction.CONCLUSIONSVaccination with irradiated, GM-CSF-secreting autologous sarcoma cell vaccines is feasible, safe, and biologically active. Concurrent targeting of angiogenic cytokines and antagonism of the PD-1-negative regulatory pathway might intensify immune-mediated tumor destruction. |
Author | Neuberg, Donna Nemer, David Raut, Chandrajit P. Hodi, F. Stephen Allsop, Stephen A. Freeman, Gordon J. Dranoff, Glenn Morgan, Jeffrey A. Nakazaki, Yukoh Demetri, George D. Fonseca, Catia Mihm, Martin Goldberg, John M. George, Suzanne Canning, Christine Fisher, David E. Wagner, Andrew J. Lezcano, Cecilia Ritz, Jerome |
Author_xml | – sequence: 1 givenname: John M. surname: Goldberg fullname: Goldberg, John M. – sequence: 2 givenname: David E. surname: Fisher fullname: Fisher, David E. – sequence: 3 givenname: George D. surname: Demetri fullname: Demetri, George D. – sequence: 4 givenname: Donna surname: Neuberg fullname: Neuberg, Donna – sequence: 5 givenname: Stephen A. surname: Allsop fullname: Allsop, Stephen A. – sequence: 6 givenname: Catia surname: Fonseca fullname: Fonseca, Catia – sequence: 7 givenname: Yukoh surname: Nakazaki fullname: Nakazaki, Yukoh – sequence: 8 givenname: David surname: Nemer fullname: Nemer, David – sequence: 9 givenname: Chandrajit P. surname: Raut fullname: Raut, Chandrajit P. – sequence: 10 givenname: Suzanne surname: George fullname: George, Suzanne – sequence: 11 givenname: Jeffrey A. surname: Morgan fullname: Morgan, Jeffrey A. – sequence: 12 givenname: Andrew J. surname: Wagner fullname: Wagner, Andrew J. – sequence: 13 givenname: Gordon J. surname: Freeman fullname: Freeman, Gordon J. – sequence: 14 givenname: Jerome surname: Ritz fullname: Ritz, Jerome – sequence: 15 givenname: Cecilia surname: Lezcano fullname: Lezcano, Cecilia – sequence: 16 givenname: Martin surname: Mihm fullname: Mihm, Martin – sequence: 17 givenname: Christine surname: Canning fullname: Canning, Christine – sequence: 18 givenname: F. Stephen surname: Hodi fullname: Hodi, F. Stephen – sequence: 19 givenname: Glenn surname: Dranoff fullname: Dranoff, Glenn |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25805798$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkctu1DAYhS1URC_wCCAvWZDiu2OxGiJakIpADLC1PI4zGDn21HEqzY536KbPx5Pg0MuCDSv_Ov93LPucY3AQU3QAPMfoFGPevsZItg1ilJx23ZcGs4YoSh6BI8y5bCgR_KDO98whOJ6mnwhhhhF7Ag4JbxGXqj0CN299CmnrLVzZ4q982cM0wNVcFjXN0yt4nk2cQ7L74n7_uv5obE67H2brYFeRuG_WxY9zMMXHLTwztqQM185m91dYhSuXgqlSGkrz2eQC1ybbNBpoYg-74OqucyE8yN-NtT666Sl4PJgwuWd35wn4dvbua_e-ufh0_qFbXTSWIlUaJvCGUKLksKHSCC4klYITLkjfYi7pRjFp-15JKwWivUDMtC2isuWGYakGegJe3t67y-lydlPRo59sfZGJrv5fY6EkwZgpVtEXd-i8GV2vd9mPJu_1fZoV4LdAzWiashseEIz00ppeGtFLI7q2pjHTS2vV9-Yfn_WlJppiycaH_7j_AKtsnjI |
CitedBy_id | crossref_primary_10_1016_j_thorsurg_2015_09_009 crossref_primary_10_1186_s13569_017_0079_1 crossref_primary_10_3892_ol_2019_10575 crossref_primary_10_1007_s10549_022_06562_y crossref_primary_10_1186_s13058_018_1054_3 crossref_primary_10_1080_14737140_2023_2183846 crossref_primary_10_1002_imed_1025 crossref_primary_10_1186_s13045_019_0756_z crossref_primary_10_1016_j_biopha_2018_04_117 crossref_primary_10_1097_MPH_0000000000000571 crossref_primary_10_1080_14737140_2016_1197122 crossref_primary_10_1186_s12957_017_1112_9 crossref_primary_10_18632_oncotarget_12548 crossref_primary_10_1182_bloodadvances_2021006255 crossref_primary_10_1016_j_currproblcancer_2021_100775 crossref_primary_10_3389_fonc_2019_01169 crossref_primary_10_3390_cancers11010001 crossref_primary_10_3389_fonc_2022_1039145 crossref_primary_10_1126_sciadv_abe4362 crossref_primary_10_18632_oncotarget_13202 crossref_primary_10_1080_14712598_2016_1188075 |
Cites_doi | 10.1002/1097-0142(195201)5:1<100::AID-CNCR2820050112>3.0.CO;2-K 10.1002/path.4158 10.1016/j.hoc.2013.07.009 10.1073/pnas.95.22.13141 10.1111/j.1600-065X.2008.00618.x 10.1158/1078-0432.CCR-07-0174 10.1038/nri3726 10.1371/journal.pone.0082870 10.1073/pnas.0603503103 10.1158/1078-0432.CCR-10-3262 10.1371/journal.pone.0048023 10.1084/jem.187.2.265 10.1161/ATVBAHA.108.179655 10.1038/ng0893-341 10.1158/1078-0432.CCR-08-2050 10.1158/0008-5472.CAN-09-1121 10.1245/s10434-010-1186-x 10.1158/0008-5472.CAN-06-2855 10.1093/annonc/mdq644 10.1158/1078-0432.CCR-13-0855 10.1084/jem.188.12.2357 10.1200/JCO.2003.07.005 10.4161/cc.6.14.4484 10.1038/sj.onc.1204074 10.1172/JCI30966 10.1002/cncr.27582 10.1016/j.ccr.2006.04.021 10.1038/nature10673 10.1002/1097-0142(20010201)91:3<585::AID-CNCR1038>3.0.CO;2-0 10.1002/pbc.24683 10.1016/S1470-2045(06)70729-X 10.1200/JCO.2013.48.7462 10.1158/0008-5472.CAN-10-1852 10.1007/s00262-011-1124-1 10.1038/nrc3239 10.1158/1078-0432.CCR-13-2090 10.1097/00008390-199604000-00001 10.1146/annurev.immunol.26.021607.090331 10.1073/pnas.102025999 10.1073/pnas.0530311100 10.1002/1097-0142(19890101)63:1<1::AID-CNCR2820630102>3.0.CO;2-E 10.1158/0008-5472.CAN-07-6622 10.1038/35025220 10.1002/jso.20730 10.1186/1479-5876-11-237 10.1200/JCO.2003.10.108 10.1186/1471-2407-9-22 10.1146/annurev.immunol.25.022106.141609 10.1158/2326-6066.CIR-14-0053 10.1200/JCO.2012.47.4288 |
ContentType | Journal Article |
Copyright | 2015 American Association for Cancer Research. |
Copyright_xml | – notice: 2015 American Association for Cancer Research. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1158/1078-0432.CCR-14-2932 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1557-3265 |
EndPage | 3186 |
ExternalDocumentID | 25805798 10_1158_1078_0432_CCR_14_2932 |
Genre | Clinical Trial, Phase I Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NCATS NIH HHS grantid: KL2 TR000461 – fundername: NCI NIH HHS grantid: P01 CA163222 – fundername: NCI NIH HHS grantid: R01 CA111506 – fundername: NIAMS NIH HHS grantid: R01AR043369 – fundername: NIAMS NIH HHS grantid: R01 AR043369 – fundername: NCI NIH HHS grantid: P01-CA163222 – fundername: NCI NIH HHS grantid: U54 CA163125 – fundername: NCI NIH HHS grantid: U54CA163125 |
GroupedDBID | --- 18M 29B 2FS 2WC 34G 39C 53G 5GY 5RE 5VS 6J9 AAFWJ AAJMC AAYXX ABOCM ACGFO ACIWK ACPRK ACSVP ADBBV ADCOW ADNWM AENEX AFHIN AFOSN AFRAH AFUMD ALMA_UNASSIGNED_HOLDINGS BAWUL BR6 BTFSW CITATION CS3 DIK DU5 E3Z EBS EJD F5P FRP GX1 H13 IH2 KQ8 L7B LSO OK1 P0W P2P QTD RCR RHI RNS SJN TR2 W2D W8F WOQ YKV CGR CUY CVF ECM EIF NPM RHF 7X8 |
ID | FETCH-LOGICAL-c309t-461b23297fb37a656737652562d81573b947cdd97c7603d604a8803785a4179f3 |
ISSN | 1078-0432 1557-3265 |
IngestDate | Fri Jul 11 06:47:25 EDT 2025 Wed Feb 19 02:41:26 EST 2025 Tue Jul 01 03:06:56 EDT 2025 Thu Apr 24 23:11:53 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 14 |
Language | English |
License | 2015 American Association for Cancer Research. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c309t-461b23297fb37a656737652562d81573b947cdd97c7603d604a8803785a4179f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 25805798 |
PQID | 1697211494 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_1697211494 pubmed_primary_25805798 crossref_primary_10_1158_1078_0432_CCR_14_2932 crossref_citationtrail_10_1158_1078_0432_CCR_14_2932 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-07-15 2015-Jul-15 20150715 |
PublicationDateYYYYMMDD | 2015-07-15 |
PublicationDate_xml | – month: 07 year: 2015 text: 2015-07-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Clinical cancer research |
PublicationTitleAlternate | Clin Cancer Res |
PublicationYear | 2015 |
References | Pardoll (2022061102572392300_bib43) 2012; 12 Yamada (2022061102572392300_bib8) 2013; 123 Gasteiger (2022061102572392300_bib46) 2014; 14 Collen (2022061102572392300_bib40) 2009; 29 Dynek (2022061102572392300_bib28) 2008; 68 Jinushi (2022061102572392300_bib38) 2006; 103 Goldberg (2022061102572392300_bib15) 2014; 32 Jäger (2022061102572392300_bib36) 1998; 187 Carmeliet (2022061102572392300_bib49) 2000; 407 Lazar (2022061102572392300_bib18) 2007; 13 Jinushi (2022061102572392300_bib47) 2007; 117 Jinushi (2022061102572392300_bib44) 2008; 222 Stacchiotti (2022061102572392300_bib24) 2009; 15 Stockwin (2022061102572392300_bib19) 2009; 9 Davis (2022061102572392300_bib14) 2010; 70 Zhou (2022061102572392300_bib35) 2012; 61 Schmollinger (2022061102572392300_bib34) 2003; 100 Hodi (2022061102572392300_bib32) 2002; 99 Orbach (2022061102572392300_bib5) 2013; 60 Schoenfeld (2022061102572392300_bib33) 2010; 70 Azizi (2022061102572392300_bib21) 2006; 7 Pennacchioli (2022061102572392300_bib4) 2010; 17 Soiffer (2022061102572392300_bib29) 2003; 21 Covell (2022061102572392300_bib20) 2012; 7 Stacchiotti (2022061102572392300_bib22) 2013; 27 Kim (2022061102572392300_bib52) 2013; 8 Chen (2022061102572392300_bib31) 2013; 19 Kobos (2022061102572392300_bib17) 2013; 229 Keir (2022061102572392300_bib42) 2008; 26 Soiffer (2022061102572392300_bib30) 1998; 95 Stacchiotti (2022061102572392300_bib23) 2011; 22 Segal (2022061102572392300_bib27) 2003; 21 Lieberman (2022061102572392300_bib2) 1989; 63 Malchau (2022061102572392300_bib6) 2007; 95 Hodi (2022061102572392300_bib51) 2014; 2 Mellman (2022061102572392300_bib41) 2011; 480 de Vries (2022061102572392300_bib39) 1996; 6 Rabinovich (2022061102572392300_bib50) 2007; 25 Castelli (2022061102572392300_bib26) 2013; 11 Kummar (2022061102572392300_bib25) 2013; 31 Hung (2022061102572392300_bib45) 1998; 188 Selvarajah (2022061102572392300_bib7) 2014; 20 Zucman (2022061102572392300_bib11) 1993; 4 Wagner (2022061102572392300_bib16) 2012; 118 Davis (2022061102572392300_bib9) 2007; 6 Davis (2022061102572392300_bib48) 2011; 17 Christopherson (2022061102572392300_bib1) 1952; 5 Portera (2022061102572392300_bib3) 2001; 91 Ladanyi (2022061102572392300_bib10) 2001; 20 Mollick (2022061102572392300_bib37) 2003; 3 Davis (2022061102572392300_bib12) 2006; 9 Tsuda (2022061102572392300_bib13) 2007; 67 19605778 - Arterioscler Thromb Vasc Biol. 2009 Aug;29(8):1151-5 24074204 - J Transl Med. 2013;11:237 19146682 - BMC Cancer. 2009;9:22 12947071 - J Clin Oncol. 2003 Sep 1;21(17):3343-50 22437870 - Nat Rev Cancer. 2012 Apr;12(4):252-64 17134371 - Annu Rev Immunol. 2007;25:267-96 24093175 - Hematol Oncol Clin North Am. 2013 Oct;27(5):1049-61 19188185 - Clin Cancer Res. 2009 Feb 1;15(3):1096-104 22193102 - Nature. 2011 Dec 22;480(7378):480-9 22605650 - Cancer. 2012 Dec 1;118(23):5894-902 21242589 - Ann Oncol. 2011 Jul;22(7):1682-90 23630200 - J Clin Oncol. 2013 Jun 20;31(18):2296-302 18094412 - Clin Cancer Res. 2007 Dec 15;13(24):7314-21 23226201 - PLoS One. 2012;7(11):e48023 23857870 - Pediatr Blood Cancer. 2013 Nov;60(11):1826-32 9789055 - Proc Natl Acad Sci U S A. 1998 Oct 27;95(22):13141-6 14886902 - Cancer. 1952 Jan;5(1):100-11 11169942 - Cancer. 2001 Feb 1;91(3):585-91 17192915 - J Surg Oncol. 2007 May 1;95(6):519-22 21543518 - Clin Cancer Res. 2011 Jun 15;17(12):3984-92 17283122 - Cancer Res. 2007 Feb 1;67(3):919-29 16750504 - Lancet Oncol. 2006 Jun;7(6):521-3 12721254 - J Clin Oncol. 2003 May 1;21(9):1775-81 11244503 - Oncogene. 2001 Jan 4;20(1):48-57 11001068 - Nature. 2000 Sep 14;407(6801):249-57 24349382 - PLoS One. 2013;8(12):e82870 9858522 - J Exp Med. 1998 Dec 21;188(12):2357-68 17630504 - Cell Cycle. 2007 Jul 15;6(14):1724-9 9432985 - J Exp Med. 1998 Jan 19;187(2):265-70 2642727 - Cancer. 1989 Jan 1;63(1):1-13 23288701 - J Pathol. 2013 Apr;229(5):743-54 23674495 - Clin Cancer Res. 2013 Jul 1;19(13):3462-73 20068147 - Cancer Res. 2010 Jan 15;70(2):639-45 24550414 - J Clin Oncol. 2014 Dec 1;32(34):e114-6 25132095 - Nat Rev Immunol. 2014 Sep;14(9):631-9 18451137 - Cancer Res. 2008 May 1;68(9):3124-32 21159637 - Cancer Res. 2010 Dec 15;70(24):10150-60 8791264 - Melanoma Res. 1996 Apr;6(2):79-88 22033581 - Cancer Immunol Immunother. 2012 May;61(5):655-65 18173375 - Annu Rev Immunol. 2008;26:677-704 12626761 - Proc Natl Acad Sci U S A. 2003 Mar 18;100(6):3398-403 16754847 - Proc Natl Acad Sci U S A. 2006 Jun 13;103(24):9190-5 11983866 - Proc Natl Acad Sci U S A. 2002 May 14;99(10):6919-24 23281395 - J Clin Invest. 2013 Feb;123(2):600-10 16766266 - Cancer Cell. 2006 Jun;9(6):473-84 18364009 - Immunol Rev. 2008 Apr;222:287-98 24493828 - Clin Cancer Res. 2014 Mar 15;20(6):1521-30 20593242 - Ann Surg Oncol. 2010 Dec;17(12):3229-33 24838938 - Cancer Immunol Res. 2014 Jul;2(7):632-42 8401579 - Nat Genet. 1993 Aug;4(4):341-5 17557120 - J Clin Invest. 2007 Jul;117(7):1902-13 12747745 - Cancer Immun. 2003 Mar 17;3:3 |
References_xml | – volume: 5 start-page: 100 year: 1952 ident: 2022061102572392300_bib1 article-title: Alveolar soft-part sarcomas; structurally characteristic tumors of uncertain histogenesis publication-title: Cancer doi: 10.1002/1097-0142(195201)5:1<100::AID-CNCR2820050112>3.0.CO;2-K – volume: 229 start-page: 743 year: 2013 ident: 2022061102572392300_bib17 article-title: Combining integrated genomics and functional genomics to dissect the biology of a cancer-associated, aberrant transcription factor, the ASPSCR1-TFE3 fusion oncoprotein publication-title: J Pathol doi: 10.1002/path.4158 – volume: 27 start-page: 1049 year: 2013 ident: 2022061102572392300_bib22 article-title: Targeted therapies in rare sarcomas: IMT, ASPS, SFT, PEComa, and CCS publication-title: Hematol Oncol Clin North Am doi: 10.1016/j.hoc.2013.07.009 – volume: 95 start-page: 13141 year: 1998 ident: 2022061102572392300_bib30 article-title: Vaccination with irradiated, autologous melanoma cells engineered to secrete human granulocyte-macrophage colony stimulating factor generates potent anti-tumor immunity in patients with metastatic melanoma publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.95.22.13141 – volume: 222 start-page: 287 year: 2008 ident: 2022061102572392300_bib44 article-title: Enhancing the clinical activity of granulocyte-macrophage colony-stimulating factor-secreting tumor cell vaccines publication-title: Immunol Rev doi: 10.1111/j.1600-065X.2008.00618.x – volume: 13 start-page: 7314 year: 2007 ident: 2022061102572392300_bib18 article-title: Angiogenesis-promoting gene patterns in alveolar soft part sarcoma publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-07-0174 – volume: 14 start-page: 631 year: 2014 ident: 2022061102572392300_bib46 article-title: Interactions between innate and adaptive lymphocytes publication-title: Nat Rev Immunol doi: 10.1038/nri3726 – volume: 8 start-page: e82870 year: 2013 ident: 2022061102572392300_bib52 article-title: Tumor infiltrating PD1-positive lymphocytes and the expression of PD-L1 predict poor prognosis of soft tissue sarcomas publication-title: PLoS ONE doi: 10.1371/journal.pone.0082870 – volume: 103 start-page: 9190 year: 2006 ident: 2022061102572392300_bib38 article-title: Therapy-induced antibodies to MHC class I chain-related protein A antagonize immune suppression and stimulate antitumor cytotoxicity publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0603503103 – volume: 17 start-page: 3984 year: 2011 ident: 2022061102572392300_bib48 article-title: Intratumoral administration of TLR4 agonist absorbed into a cellular vector improves antitumor responses publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-10-3262 – volume: 7 start-page: e48023 year: 2012 ident: 2022061102572392300_bib20 article-title: Bioinformatic analysis of patient-derived ASPS gene expressions and ASPL-TFE3 fusion transcript levels identify potential therapeutic targets publication-title: PLoS ONE doi: 10.1371/journal.pone.0048023 – volume: 187 start-page: 265 year: 1998 ident: 2022061102572392300_bib36 article-title: Simultaneous humoral and cellular immune response against cancer-testis antigen NY-ESO-1: definition of human histocompatibility leukocyte antigen (HLA)-A2-binding peptide epitopes publication-title: J Exp Med doi: 10.1084/jem.187.2.265 – volume: 29 start-page: 1151 year: 2009 ident: 2022061102572392300_bib40 article-title: The tissue-type plasminogen activator story publication-title: Arterioscler Thromb Vasc Biol doi: 10.1161/ATVBAHA.108.179655 – volume: 4 start-page: 341 year: 1993 ident: 2022061102572392300_bib11 article-title: EWS and ATF-1 gene fusion induced by t(12;22) translocation in malignant melanoma of soft parts publication-title: Nat Genet doi: 10.1038/ng0893-341 – volume: 15 start-page: 1096 year: 2009 ident: 2022061102572392300_bib24 article-title: Response to sunitinib malate in advanced alveolar soft part sarcoma publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-08-2050 – volume: 70 start-page: 639 year: 2010 ident: 2022061102572392300_bib14 article-title: Identification of the receptor tyrosine kinase c-Met and its ligand, hepatocyte growth factor, as therapeutic targets in clear cell sarcoma publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-09-1121 – volume: 17 start-page: 3229 year: 2010 ident: 2022061102572392300_bib4 article-title: Alveolar soft part sarcoma: clinical presentation, treatment, and outcome in a series of 33 patients at a single institution publication-title: Ann Surg Oncol doi: 10.1245/s10434-010-1186-x – volume: 67 start-page: 919 year: 2007 ident: 2022061102572392300_bib13 article-title: TFE3 fusions activate MET signaling by transcriptional up-regulation, defining another class of tumors as candidates for therapeutic MET inhibition publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-06-2855 – volume: 22 start-page: 1682 year: 2011 ident: 2022061102572392300_bib23 article-title: Sunitinib in advanced alveolar soft part sarcoma: evidence of a direct antitumor effect publication-title: Ann Oncol doi: 10.1093/annonc/mdq644 – volume: 19 start-page: 3462 year: 2013 ident: 2022061102572392300_bib31 article-title: PD-L1 expression is characteristic of a subset of aggressive B-cell lymphomas and virus-associated malignancies publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-13-0855 – volume: 188 start-page: 2357 year: 1998 ident: 2022061102572392300_bib45 article-title: The central role of CD4+ T cells in the antitumor immune response publication-title: J Exp Med doi: 10.1084/jem.188.12.2357 – volume: 21 start-page: 3343 year: 2003 ident: 2022061102572392300_bib29 article-title: Vaccination with irradiated, autologous melanoma cells engineered to secrete granulocyte-macrophage colony-stimulating factor by adenoviral-mediated gene transfer augments antitumor immunity in patients with metastatic melanoma publication-title: J Clin Oncol doi: 10.1200/JCO.2003.07.005 – volume: 6 start-page: 1724 year: 2007 ident: 2022061102572392300_bib9 article-title: MiT transcription factor associated malignancies in man publication-title: Cell Cycle doi: 10.4161/cc.6.14.4484 – volume: 20 start-page: 48 year: 2001 ident: 2022061102572392300_bib10 article-title: The der(17)t(X;17)(p11;q25) of human alveolar soft part sarcoma fuses the TFE3 transcription factor gene to ASPL, a novel gene at 17q25 publication-title: Oncogene doi: 10.1038/sj.onc.1204074 – volume: 117 start-page: 1902 year: 2007 ident: 2022061102572392300_bib47 article-title: MFG-E8 mediated uptake of apoptotic cells by APCs links the pro- and anti-inflammatory activities of GM-CSF publication-title: J Clin Invest doi: 10.1172/JCI30966 – volume: 118 start-page: 5894 year: 2012 ident: 2022061102572392300_bib16 article-title: Tivantinib (ARQ 197), a selective inhibitor of MET, in patients with microphthalmia transcription factor-associated tumors: results of a multicenter phase 2 trial publication-title: Cancer doi: 10.1002/cncr.27582 – volume: 9 start-page: 473 year: 2006 ident: 2022061102572392300_bib12 article-title: Oncogenic MITF dysregulation in clear cell sarcoma: defining the MiT family of human cancers publication-title: Cancer Cell doi: 10.1016/j.ccr.2006.04.021 – volume: 480 start-page: 480 year: 2011 ident: 2022061102572392300_bib41 article-title: Cancer immunotherapy comes of age publication-title: Nature doi: 10.1038/nature10673 – volume: 91 start-page: 585 year: 2001 ident: 2022061102572392300_bib3 article-title: Alveolar soft part sarcoma: clinical course and patterns of metastasis in 70 patients treated at a single institution publication-title: Cancer doi: 10.1002/1097-0142(20010201)91:3<585::AID-CNCR1038>3.0.CO;2-0 – volume: 60 start-page: 1826 year: 2013 ident: 2022061102572392300_bib5 article-title: Paediatric and adolescent alveolar soft part sarcoma: a joint series from European cooperative groups publication-title: Pediatr Blood Cancer doi: 10.1002/pbc.24683 – volume: 3 start-page: 3 year: 2003 ident: 2022061102572392300_bib37 article-title: MUC1-like tandem repeat proteins are broadly immunogenic in cancer patients publication-title: Cancer Immunity – volume: 7 start-page: 521 year: 2006 ident: 2022061102572392300_bib21 article-title: Vascular-endothelial-growth-factor (VEGF) expression and possible response to angiogenesis inhibitor bevacizumab in metastatic alveolar soft part sarcoma publication-title: Lancet Oncol doi: 10.1016/S1470-2045(06)70729-X – volume: 32 start-page: e114 year: 2014 ident: 2022061102572392300_bib15 article-title: Extended progression-free survival in two patients with alveolar soft part sarcoma exposed to tivantinib publication-title: J Clin Oncol doi: 10.1200/JCO.2013.48.7462 – volume: 70 start-page: 10150 year: 2010 ident: 2022061102572392300_bib33 article-title: Active immunotherapy induces antibody responses that target tumor angiogenesis publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-10-1852 – volume: 61 start-page: 655 year: 2012 ident: 2022061102572392300_bib35 article-title: Immunity to the melanoma inhibitor of apoptosis protein (ML-IAP; livin) in patients with malignant melanoma publication-title: Cancer Immunol Immunother doi: 10.1007/s00262-011-1124-1 – volume: 12 start-page: 252 year: 2012 ident: 2022061102572392300_bib43 article-title: The blockade of immune checkpoints in cancer immunotherapy publication-title: Nat Rev Cancer doi: 10.1038/nrc3239 – volume: 20 start-page: 1521 year: 2014 ident: 2022061102572392300_bib7 article-title: High-resolution array CGH and gene expression profiling of alveolar soft part sarcoma publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-13-2090 – volume: 6 start-page: 79 year: 1996 ident: 2022061102572392300_bib39 article-title: The plasminogen activation system in melanoma cell lines and in melanocytic lesions publication-title: Melanoma Res doi: 10.1097/00008390-199604000-00001 – volume: 26 start-page: 677 year: 2008 ident: 2022061102572392300_bib42 article-title: PD-1 and its ligands in tolerance and immunity publication-title: Annu Rev Immunol doi: 10.1146/annurev.immunol.26.021607.090331 – volume: 99 start-page: 6919 year: 2002 ident: 2022061102572392300_bib32 article-title: ATP6S1 elicits potent humoral responses associated with immune mediated tumor destruction publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.102025999 – volume: 100 start-page: 3398 year: 2003 ident: 2022061102572392300_bib34 article-title: Melanoma inhibitor of apoptosis protein (ML-IAP) is a target for immune-mediated tumor destruction publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0530311100 – volume: 63 start-page: 1 year: 1989 ident: 2022061102572392300_bib2 article-title: Alveolar soft-part sarcoma. A clinico-pathologic study of half a century publication-title: Cancer doi: 10.1002/1097-0142(19890101)63:1<1::AID-CNCR2820630102>3.0.CO;2-E – volume: 123 start-page: 600 year: 2013 ident: 2022061102572392300_bib8 article-title: EWS/ATF1 expression induces sarcomas from neural crest-derived cells in mice publication-title: J Clin Invest – volume: 68 start-page: 3124 year: 2008 ident: 2022061102572392300_bib28 article-title: Microphthalmia-associated transcription factor is a critical transcriptional regulator of melanoma inhibitor of apoptosis in melanomas publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-07-6622 – volume: 407 start-page: 249 year: 2000 ident: 2022061102572392300_bib49 article-title: Angiogenesis in cancer and other diseases publication-title: Nature doi: 10.1038/35025220 – volume: 95 start-page: 519 year: 2007 ident: 2022061102572392300_bib6 article-title: Clear cell sarcoma of soft tissues publication-title: J Surg Oncol doi: 10.1002/jso.20730 – volume: 11 start-page: 237 year: 2013 ident: 2022061102572392300_bib26 article-title: Structured myeloid cells and anti-angiogenic therapy in alveolar soft part sarcoma publication-title: J Transl Med doi: 10.1186/1479-5876-11-237 – volume: 21 start-page: 1775 year: 2003 ident: 2022061102572392300_bib27 article-title: Classification of clear-cell sarcoma as a subtype of melanoma by genomic profiling publication-title: J Clin Oncol doi: 10.1200/JCO.2003.10.108 – volume: 9 start-page: 22 year: 2009 ident: 2022061102572392300_bib19 article-title: Gene expression profiling of alveolar soft-part sarcoma (ASPS) publication-title: BMC Cancer doi: 10.1186/1471-2407-9-22 – volume: 25 start-page: 267 year: 2007 ident: 2022061102572392300_bib50 article-title: Immunosuppressive strategies that are mediated by tumor cells publication-title: Annu Rev Immunol doi: 10.1146/annurev.immunol.25.022106.141609 – volume: 2 start-page: 632 year: 2014 ident: 2022061102572392300_bib51 article-title: Bevacizumab plus ipilimumab in patients with metastatic melanoma publication-title: Cancer Immunol Res doi: 10.1158/2326-6066.CIR-14-0053 – volume: 31 start-page: 2296 year: 2013 ident: 2022061102572392300_bib25 article-title: Cediranib for metastatic alveolar soft part sarcoma publication-title: J Clin Oncol doi: 10.1200/JCO.2012.47.4288 – reference: 23226201 - PLoS One. 2012;7(11):e48023 – reference: 14886902 - Cancer. 1952 Jan;5(1):100-11 – reference: 23857870 - Pediatr Blood Cancer. 2013 Nov;60(11):1826-32 – reference: 18094412 - Clin Cancer Res. 2007 Dec 15;13(24):7314-21 – reference: 24074204 - J Transl Med. 2013;11:237 – reference: 11169942 - Cancer. 2001 Feb 1;91(3):585-91 – reference: 17134371 - Annu Rev Immunol. 2007;25:267-96 – reference: 17283122 - Cancer Res. 2007 Feb 1;67(3):919-29 – reference: 8791264 - Melanoma Res. 1996 Apr;6(2):79-88 – reference: 17557120 - J Clin Invest. 2007 Jul;117(7):1902-13 – reference: 23288701 - J Pathol. 2013 Apr;229(5):743-54 – reference: 23281395 - J Clin Invest. 2013 Feb;123(2):600-10 – reference: 11244503 - Oncogene. 2001 Jan 4;20(1):48-57 – reference: 19146682 - BMC Cancer. 2009;9:22 – reference: 21543518 - Clin Cancer Res. 2011 Jun 15;17(12):3984-92 – reference: 12626761 - Proc Natl Acad Sci U S A. 2003 Mar 18;100(6):3398-403 – reference: 17192915 - J Surg Oncol. 2007 May 1;95(6):519-22 – reference: 16766266 - Cancer Cell. 2006 Jun;9(6):473-84 – reference: 19605778 - Arterioscler Thromb Vasc Biol. 2009 Aug;29(8):1151-5 – reference: 25132095 - Nat Rev Immunol. 2014 Sep;14(9):631-9 – reference: 2642727 - Cancer. 1989 Jan 1;63(1):1-13 – reference: 17630504 - Cell Cycle. 2007 Jul 15;6(14):1724-9 – reference: 22437870 - Nat Rev Cancer. 2012 Apr;12(4):252-64 – reference: 16750504 - Lancet Oncol. 2006 Jun;7(6):521-3 – reference: 8401579 - Nat Genet. 1993 Aug;4(4):341-5 – reference: 9789055 - Proc Natl Acad Sci U S A. 1998 Oct 27;95(22):13141-6 – reference: 23674495 - Clin Cancer Res. 2013 Jul 1;19(13):3462-73 – reference: 24550414 - J Clin Oncol. 2014 Dec 1;32(34):e114-6 – reference: 24093175 - Hematol Oncol Clin North Am. 2013 Oct;27(5):1049-61 – reference: 22605650 - Cancer. 2012 Dec 1;118(23):5894-902 – reference: 24493828 - Clin Cancer Res. 2014 Mar 15;20(6):1521-30 – reference: 9432985 - J Exp Med. 1998 Jan 19;187(2):265-70 – reference: 18364009 - Immunol Rev. 2008 Apr;222:287-98 – reference: 12947071 - J Clin Oncol. 2003 Sep 1;21(17):3343-50 – reference: 20068147 - Cancer Res. 2010 Jan 15;70(2):639-45 – reference: 21242589 - Ann Oncol. 2011 Jul;22(7):1682-90 – reference: 24838938 - Cancer Immunol Res. 2014 Jul;2(7):632-42 – reference: 16754847 - Proc Natl Acad Sci U S A. 2006 Jun 13;103(24):9190-5 – reference: 18173375 - Annu Rev Immunol. 2008;26:677-704 – reference: 20593242 - Ann Surg Oncol. 2010 Dec;17(12):3229-33 – reference: 24349382 - PLoS One. 2013;8(12):e82870 – reference: 11001068 - Nature. 2000 Sep 14;407(6801):249-57 – reference: 18451137 - Cancer Res. 2008 May 1;68(9):3124-32 – reference: 11983866 - Proc Natl Acad Sci U S A. 2002 May 14;99(10):6919-24 – reference: 12721254 - J Clin Oncol. 2003 May 1;21(9):1775-81 – reference: 9858522 - J Exp Med. 1998 Dec 21;188(12):2357-68 – reference: 22193102 - Nature. 2011 Dec 22;480(7378):480-9 – reference: 21159637 - Cancer Res. 2010 Dec 15;70(24):10150-60 – reference: 22033581 - Cancer Immunol Immunother. 2012 May;61(5):655-65 – reference: 23630200 - J Clin Oncol. 2013 Jun 20;31(18):2296-302 – reference: 19188185 - Clin Cancer Res. 2009 Feb 1;15(3):1096-104 – reference: 12747745 - Cancer Immun. 2003 Mar 17;3:3 |
SSID | ssj0014104 |
Score | 2.3102903 |
Snippet | Purpose: Alveolar soft-part sarcoma (ASPS) and clear cell sarcoma (CCS) are rare mesenchymal malignancies driven by chromosomal translocations that activate... Alveolar soft-part sarcoma (ASPS) and clear cell sarcoma (CCS) are rare mesenchymal malignancies driven by chromosomal translocations that activate members of... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 3178 |
SubjectTerms | Adolescent Adult Cancer Vaccines - immunology Cancer Vaccines - therapeutic use Child Enzyme-Linked Immunosorbent Assay Female Granulocyte-Macrophage Colony-Stimulating Factor - immunology Granulocyte-Macrophage Colony-Stimulating Factor - secretion Humans Male Middle Aged Sarcoma, Alveolar Soft Part - therapy Sarcoma, Clear Cell - therapy Soft Tissue Neoplasms - therapy Young Adult |
Title | Biologic Activity of Autologous, Granulocyte–Macrophage Colony-Stimulating Factor Secreting Alveolar Soft-Part Sarcoma and Clear Cell Sarcoma Vaccines |
URI | https://www.ncbi.nlm.nih.gov/pubmed/25805798 https://www.proquest.com/docview/1697211494 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JjtNAEG2FQUJcEDthUyNxMw5eur0cI2cWIWWEmBmUm9Vud2CkjINCgjSc-AcufB8XfoOq3hIgLMPFitpxteN6qa4qV_Uj5GmUNrHKmAiFEDxkpSxCwds8bCWPGlnyIp1iv_P4MDs4YS8mfNLrfduoWlotm4H8uLWv5H-0CmOgV-ySvYBmvVAYgM-gXziChuH4Tzo2RJKnMhhKSwKBfuVKU9JCRG96UES3ggXrfKlcXUM6Fsjb9RardSr4anceHi1PzzSPV_cm2NMMPJiIX-h26GA4-6AwAA6OwGSHL-E-MI8Mv0e3cwUVEk8EFeYA3fBrIfF9_ftNz7dyLZgScbYI7C5DPhu9P5-1rtZMl_OMBx5bnp5dV-AHu_7MSJ0hI9g6uR-M_LlDtXLyRvPOkIS7_EbMMXFqOjytSY5wD2Bms6DKmmkOpjExLBPOjptOa4dXtmGVwUcqNlZ4MGPZ9tWDFzqRYSccVNWrMGYheETJerl0JQI_raK-tlFHVbyoUUyNYmoQAxFWjWIukcsJxDNItbE_8bVIWGvLTHGsmdm2moGY51vv5kcn6jeRkfaQjq-Taza0oUOD0xukp7qb5MrYFm_cIl8cXKmDK51P6Rquz-gGWL9--ryGKf0VptTAlHqYUgdT6mFKLR4pwJRqmFKEqR92ML1NTvZ2j6uD0BKDhDKNymXIsriBSKDMp02aC4hIclgmOTjvSVvEPE-bkuWybctc5lmUtlnEBCxTaV5wgYR70_QO2enmnbpHqGzikpUNxBGsYVKqEuOnRKYsSqaZaqM-Ye5J19Lumo_kLbP6j3ruk4G_7J3ZNuZvFzxxaqzBwONbO9EpePZ1nOEGWzErWZ_cNfr1IhNeYDN5cf-i0z0gV9f_tYdkZ7lYqUfgXS-bxxqZ3wHZV8mJ |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biologic+Activity+of+Autologous%2C+Granulocyte%E2%80%93Macrophage+Colony-Stimulating+Factor+Secreting+Alveolar+Soft-Part+Sarcoma+and+Clear+Cell+Sarcoma+Vaccines&rft.jtitle=Clinical+cancer+research&rft.au=Goldberg%2C+John+M.&rft.au=Fisher%2C+David+E.&rft.au=Demetri%2C+George+D.&rft.au=Neuberg%2C+Donna&rft.date=2015-07-15&rft.issn=1078-0432&rft.eissn=1557-3265&rft.volume=21&rft.issue=14&rft.spage=3178&rft.epage=3186&rft_id=info:doi/10.1158%2F1078-0432.CCR-14-2932&rft.externalDBID=n%2Fa&rft.externalDocID=10_1158_1078_0432_CCR_14_2932 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1078-0432&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1078-0432&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1078-0432&client=summon |