Ultrafast ppb-level triethylamine detection sensor based on self-assembled hierarchical structures of Ag/WO3 nanoflowers
The development of triethylamine (TEA) gas sensors exhibiting superior selectivity and rapid response is a significant and demanding subject. This study achieved the synthesis of three-dimensional WO3 nanoflower structures by a straightforward hydrothermal approach utilizing Na2WO4-2H2O and oxalic a...
Saved in:
Published in | Journal of alloys and compounds Vol. 1013; p. 178540 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
31.01.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The development of triethylamine (TEA) gas sensors exhibiting superior selectivity and rapid response is a significant and demanding subject. This study achieved the synthesis of three-dimensional WO3 nanoflower structures by a straightforward hydrothermal approach utilizing Na2WO4-2H2O and oxalic acid in HCl solution in a self-assembled way. The WO3 nanoflower hierarchical structure, composed of 2D nanosheets, can be distinctly recognized by characterization techniques such as SEM and TEM, facilitating gas molecule passage and optimizing the utilization of the sensing material. The WO3 sensor demonstrates an exceptionally rapid response time of 2 s and a remarkable response of 254 at 300 ℃ for 100 ppm TEA. Moreover, the material was further optimized by including the noble metal Ag into the WO3 nanoflowers. The test results indicate that the Ag/WO3-2 sample exhibits an exceptionally rapid response time of 1 s, a high response of 837 (Ra/Rg), remarkable selectivity, and enduring stability at 250 ℃ and 100 ppm TEA. Additionally, the sample displays a response rate of 1.84–100 ppb to TEA gas at a temperature of 250 ℃. Investigations are also conducted into how the TEA gas sensor performed in relation to relative humidity. This outstanding sensing capability is largely related to the unique hierarchical WO3 nanoflower structure and the loading of the noble metal Ag. The Ag/WO3 composite offers numerous gas adsorption sites and the catalytic properties of Ag, resulting in a significant enhancement in sensor performance. This study presents a novel and efficient approach for designing TEA sensors that have rapid response times and strong selectivity.
•Unique WO3 nanoflower hierarchical structures consisting of self-assembled stacks of nanosheets were synthesized.•Ag-loaded floral WO3 nanocomposites showed ultrafast response to triethylamine (1 s).•WO3 nanomaterials enabled ppb-level triethylamine response.•The sensing enhancement mechanism of Ag was investigated. |
---|---|
AbstractList | The development of triethylamine (TEA) gas sensors exhibiting superior selectivity and rapid response is a significant and demanding subject. This study achieved the synthesis of three-dimensional WO3 nanoflower structures by a straightforward hydrothermal approach utilizing Na2WO4-2H2O and oxalic acid in HCl solution in a self-assembled way. The WO3 nanoflower hierarchical structure, composed of 2D nanosheets, can be distinctly recognized by characterization techniques such as SEM and TEM, facilitating gas molecule passage and optimizing the utilization of the sensing material. The WO3 sensor demonstrates an exceptionally rapid response time of 2 s and a remarkable response of 254 at 300 ℃ for 100 ppm TEA. Moreover, the material was further optimized by including the noble metal Ag into the WO3 nanoflowers. The test results indicate that the Ag/WO3-2 sample exhibits an exceptionally rapid response time of 1 s, a high response of 837 (Ra/Rg), remarkable selectivity, and enduring stability at 250 ℃ and 100 ppm TEA. Additionally, the sample displays a response rate of 1.84–100 ppb to TEA gas at a temperature of 250 ℃. Investigations are also conducted into how the TEA gas sensor performed in relation to relative humidity. This outstanding sensing capability is largely related to the unique hierarchical WO3 nanoflower structure and the loading of the noble metal Ag. The Ag/WO3 composite offers numerous gas adsorption sites and the catalytic properties of Ag, resulting in a significant enhancement in sensor performance. This study presents a novel and efficient approach for designing TEA sensors that have rapid response times and strong selectivity.
•Unique WO3 nanoflower hierarchical structures consisting of self-assembled stacks of nanosheets were synthesized.•Ag-loaded floral WO3 nanocomposites showed ultrafast response to triethylamine (1 s).•WO3 nanomaterials enabled ppb-level triethylamine response.•The sensing enhancement mechanism of Ag was investigated. |
ArticleNumber | 178540 |
Author | Bi, Mingshu Bi, Yubo Cui, Zhancheng Zhao, Yang Gao, Wei |
Author_xml | – sequence: 1 givenname: Yubo surname: Bi fullname: Bi, Yubo email: byb@dlut.edu.cn organization: School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China – sequence: 2 givenname: Zhancheng surname: Cui fullname: Cui, Zhancheng organization: School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China – sequence: 3 givenname: Yang surname: Zhao fullname: Zhao, Yang organization: China Electronics Technology Group Corporation 13th Research Institute, Shijiazhuang 050000, China – sequence: 4 givenname: Wei surname: Gao fullname: Gao, Wei organization: School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China – sequence: 5 givenname: Mingshu surname: Bi fullname: Bi, Mingshu organization: School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China |
BookMark | eNqF0M9qAjEQBvAcLFRtH6GQF1hNdjc2oYci0n8geKn0GLLJpGaJG0mirW_ftfbUi6dhBr4P5jdCgy50gNAdJRNK6GzaTlrlvQ7bSUlKNqH3nNVkgIZElKzgFefXaJRSSwihoqJD9L32OSqrUsa7XVN4OIDHOTrIm6NXW9cBNpBBZxc6nKBLIeJGJTD4d_e2UCnBtvH9ZeMgqqg3TiuPU457nfcREg4Wzz-nH6sKd6oL1ocviOkGXVnlE9z-zTFaPz-9L16L5erlbTFfFroiIhc1o7UGIRoijLGmKqkpG66BA-GCc86EqlgtCMxE3TCirVGMcMIrY7lmFqoxYudeHUNKEazcRbdV8SgpkScy2co_Mnkik2eyPvfwL6ddVieG3sv5i-nHcxr61w69i0zaQafBuNhjShPchYYfvsOSlg |
CitedBy_id | crossref_primary_10_1016_j_snb_2025_137569 |
Cites_doi | 10.1016/j.cej.2023.142869 10.1016/j.jallcom.2022.165264 10.1007/s00604-023-05699-x 10.1016/j.snb.2018.03.044 10.1016/j.snb.2016.07.012 10.1007/s40145-022-0652-9 10.1016/j.jallcom.2024.174477 10.1016/j.fuel.2013.03.037 10.1016/j.jallcom.2020.154788 10.1016/j.snb.2022.132236 10.1016/j.snb.2021.131262 10.1002/cjoc.202000341 10.1002/admi.202101479 10.1039/D3DT03493C 10.1016/j.jallcom.2021.162534 10.1016/j.snb.2012.07.029 10.1016/j.jallcom.2020.157545 10.1016/j.snb.2020.129425 10.1016/j.snb.2020.128663 10.1016/j.jallcom.2023.171642 10.1016/j.apsusc.2020.147383 10.1016/j.chemphys.2007.03.015 10.1021/cg301469u 10.1016/j.apsusc.2021.151877 10.1016/j.jhazmat.2024.134943 10.1016/j.jiec.2017.12.003 10.1002/smtd.202100515 10.1021/acsanm.1c02377 10.1021/jp710613q 10.1016/j.jhazmat.2010.01.098 10.1016/j.jallcom.2020.153724 10.1016/j.ceramint.2016.09.052 10.1016/j.snb.2019.02.101 10.1016/j.ijhydene.2021.10.201 10.1016/j.jallcom.2021.159286 10.1016/j.colsurfa.2022.130738 10.1016/j.materresbull.2018.09.040 10.1016/j.jallcom.2024.176254 10.1016/j.snb.2021.130557 10.1021/jp051826w 10.1016/j.snb.2022.132406 10.1016/j.ceramint.2024.01.331 10.1016/j.apcatb.2019.117809 10.1016/j.snb.2019.127536 10.1016/j.snb.2021.130510 10.1063/1.3543902 10.1016/j.snb.2010.10.046 10.1021/acs.analchem.9b03534 10.1016/j.vacuum.2023.112640 10.1039/D3TC02524A 10.1016/S0009-2509(01)00095-1 10.1016/j.matlet.2024.137392 10.1246/cl.2011.579 10.1016/j.snb.2023.133790 10.1016/j.jallcom.2021.162189 10.1016/j.jallcom.2021.163167 10.1021/acsanm.2c03230 |
ContentType | Journal Article |
Copyright | 2025 Elsevier B.V. |
Copyright_xml | – notice: 2025 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.jallcom.2025.178540 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Physics |
ExternalDocumentID | 10_1016_j_jallcom_2025_178540 S0925838825000982 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIKJ AAKOC AALRI AAOAW AAQFI AAXKI AAXUO ABFNM ABJNI ABMAC ABXRA ACDAQ ACGFS ACIWK ACNCT ACRLP ADBBV ADEZE AEBSH AEIPS AEKER AENEX AEZYN AFJKZ AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANKPU AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SES SEW SPC SPCBC SPD SSM SSZ T5K TWZ XPP ZMT ~G- 29J AAQXK AATTM AAYWO AAYXX ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEUPX AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- RIG SMS SSH T9H WUQ |
ID | FETCH-LOGICAL-c309t-4514ce99b09ddfd321d2b8ce8e08988859a35490e694b50cfda508083df8c5fe3 |
IEDL.DBID | .~1 |
ISSN | 0925-8388 |
IngestDate | Tue Jul 01 05:40:14 EDT 2025 Thu Apr 24 23:05:00 EDT 2025 Sat Feb 15 15:52:35 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Gas sensing Ultra-fast response Self-assembled hierarchical structures of WO3 nanoflowers ppb concentration Triethylamine |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c309t-4514ce99b09ddfd321d2b8ce8e08988859a35490e694b50cfda508083df8c5fe3 |
ParticipantIDs | crossref_primary_10_1016_j_jallcom_2025_178540 crossref_citationtrail_10_1016_j_jallcom_2025_178540 elsevier_sciencedirect_doi_10_1016_j_jallcom_2025_178540 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-01-31 |
PublicationDateYYYYMMDD | 2025-01-31 |
PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-31 day: 31 |
PublicationDecade | 2020 |
PublicationTitle | Journal of alloys and compounds |
PublicationYear | 2025 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | You, He, Wang, Sun, Sun, Liang, Du, Lu (bib53) 2012; 173 Meghana, Zimba, Nayak (bib14) 2024 Zhao, Yuan, Sun, Wang, Xia, Tang (bib49) 2020; 323 Zhang, Liu, Zhang, Wang, Xu, Du, Yang, Zhang (bib60) 2022; 11 Sun, Shu, Tian, Tong, Bai, Luo, Li, Chen (bib17) 2017; 238 Li, Ma, Hu, Zhang, Fan, Wang, Chu, Xu (bib45) 2021; 4 Martins, Berlier, Bisio, Coluccia, Pastore, Marchese (bib51) 2008; 112 Fang, Sha, Wang, Wan, Xia, Wang (bib54) 2011; 98 Yin, Cao, Zhang, Qu, Zhou (bib20) 2013; 13 Jin, Wang, Wu, Liu, Shi, Zhao, Liu, Fu, Wang, Wang, Liu (bib59) 2023; 659 Zhang, Liu, LV, Shao, Du, Li, Chang (bib22) 2023; 218 Meng, Qiao, Wang, Shen, San, Pan, Meng (bib28) 2022; 577 Liu, Zhang, Fan, Zhu, Yu (bib3) 2021; 331 Zhou, Zhang (bib18) 2021; 5 Duan, Xiao, Wang, Peng, Jin, Sun (bib16) 2021; 346 Cai, Ma, Yang, Cao, Wang, Sheng, Liu (bib2) 2022; 897 Muñoz, Carmona, Balón (bib47) 2007; 335 Wang, Yan (bib37) 2019; 91 Dong, Liu, Sun, Shao, Wang, He, Qi, Pan, Yang (bib23) 2023; 966 Sun, Wang, Zeng, Shang, Zhang (bib35) 2010; 178 Li, Huang, Yu, Wu, Cao, Yanagisawa (bib41) 2011; 40 Wang, Rong, Zhang, Hu, Zi, Zhu, Zhang, Liu (bib44) 2019; 109 Wang, Wang, Zhang, Liang, Yue, Liu, Tan, Chen, Dastan, Yin (bib42) 2024; 1005 Gong, Xiong, Cao, Hu, Qin, Gan, Chen, Jin (bib8) 2024; 991 Ramizy, Salih, A. Dahham, Jasem (bib13) 2024; 377 Agarwal, Kumar, Agrawal, Moinuddin, Kumar, Sharma, Awasthi (bib24) 2021; 346 Wang, Meng, Gao (bib10) 2023; 387 Xu, Ma, Xu, Pei, Han, Liu (bib1) 2021; 868 Zhang, Xin, Meng, Tao (bib52) 2013; 109 Qu, Li, Xu, Li, Wang, Wang, Zhang, Wei (bib15) 2023; 190 Hübner, Simion, Tomescu-Stănoiu, Pokhrel, Bârsan, Weimar (bib40) 2011; 153 Wang, Cheng, Wang, Yang, Su, Li, An, Luo, Wu, Xie (bib11) 2022; 355 Wang, Xiao, Zhang, Liu, Sun, Sun, Li (bib25) 2024 Qin, Liu, Shen, Gui, Bai (bib32) 2022; 894 Han, Liu, Su, Chen, Zeng, Hu, Su, Zhou, Wei, Yang (bib19) 2020; 306 Zhai, Luo, liang, Song, Zhang (bib43) 2021; 857 Lee, Kim, Yoo, Lee (bib31) 2022; 368 Meng, Bi, Xiao, Gao (bib27) 2022; 47 Gu, Cui, Han, Hong, Flytzani-Stephanopoulos, Wang (bib21) 2019; 256 Kadam, Bhopate, Kondalkar, Majhi, Bathula, Tran, Lee (bib26) 2018; 61 Wei, Sun, Song, Yang, Wang (bib36) 2020; 831 Yang, Wang, Sui, Liu, Liu, Li, Bai, Liu, Lu (bib9) 2022; 5 Chen, Li, Tao, Tian, Sun, Gao, Bai, Li (bib38) 2024; 476 Meng, Bi, Gao (bib7) 2022; 370 Groppo, Lamberti, Bordiga, Spoto, Damin, Zecchina (bib48) 2005; 109 Kumar, Khan, Mishra, Chaurasiya, Sharma, Gang, Tiwary, Biswas, Kumar (bib12) 2023; 11 Yang, Fu, Li, Jiao, Zhao, Guo, Zhang, Gao, Cheng (bib57) 2023; 465 Lee, Kim, Yoo, Lee (bib33) 2022; 368 Yang, Yu, Zhang, Sun, Lu, Yan, Liu, Zhou, Liang, Gao, Lu (bib39) 2018; 266 Meng, Liao, Xing, Yuan, Zhang, Zhu, Li (bib4) 2022; 893 Yan, Liu, Liu, Yu, Chen, Zhang, Song, Yang, Zhang, Wang (bib5) 2020; 823 Rege, Yang (bib50) 2001; 56 Gui, Yang, Tian, Zhang, Fang (bib34) 2019; 288 Bi, Zhao, Meng, Cong, Gao (bib6) 2022; 913 Ding, Liu, Liu, Zhang (bib56) 2020; 38 Lou, Wang, Liu, Li, Wang, Li, Zheng, Zhang (bib46) 2022; 9 Wang, Ali Haidry, Xie, Zavabeti, Li, Yin, Lontio Fomekong, Saruhan (bib55) 2020; 533 Dong, Shao, Sun, Pan, Yang (bib58) 2024; 53 Yan, Yang, Dong, Zhang, Xu, Chi, Yang, Xie (bib29) 2024; 50 Mirzaei, Janghorban, Hashemi, Bonyani, Leonardi, Neri (bib30) 2016; 42 Cai (10.1016/j.jallcom.2025.178540_bib2) 2022; 897 Meng (10.1016/j.jallcom.2025.178540_bib27) 2022; 47 Yan (10.1016/j.jallcom.2025.178540_bib29) 2024; 50 Wang (10.1016/j.jallcom.2025.178540_bib44) 2019; 109 Lee (10.1016/j.jallcom.2025.178540_bib31) 2022; 368 Meng (10.1016/j.jallcom.2025.178540_bib4) 2022; 893 Rege (10.1016/j.jallcom.2025.178540_bib50) 2001; 56 Zhang (10.1016/j.jallcom.2025.178540_bib22) 2023; 218 Zhao (10.1016/j.jallcom.2025.178540_bib49) 2020; 323 Dong (10.1016/j.jallcom.2025.178540_bib23) 2023; 966 Gu (10.1016/j.jallcom.2025.178540_bib21) 2019; 256 Zhang (10.1016/j.jallcom.2025.178540_bib60) 2022; 11 Fang (10.1016/j.jallcom.2025.178540_bib54) 2011; 98 Yang (10.1016/j.jallcom.2025.178540_bib39) 2018; 266 Wang (10.1016/j.jallcom.2025.178540_bib42) 2024; 1005 Ding (10.1016/j.jallcom.2025.178540_bib56) 2020; 38 Ramizy (10.1016/j.jallcom.2025.178540_bib13) 2024; 377 You (10.1016/j.jallcom.2025.178540_bib53) 2012; 173 Meng (10.1016/j.jallcom.2025.178540_bib28) 2022; 577 Wei (10.1016/j.jallcom.2025.178540_bib36) 2020; 831 Agarwal (10.1016/j.jallcom.2025.178540_bib24) 2021; 346 Dong (10.1016/j.jallcom.2025.178540_bib58) 2024; 53 Li (10.1016/j.jallcom.2025.178540_bib41) 2011; 40 Kumar (10.1016/j.jallcom.2025.178540_bib12) 2023; 11 Yan (10.1016/j.jallcom.2025.178540_bib5) 2020; 823 Bi (10.1016/j.jallcom.2025.178540_bib6) 2022; 913 Wang (10.1016/j.jallcom.2025.178540_bib25) 2024 Yang (10.1016/j.jallcom.2025.178540_bib9) 2022; 5 Jin (10.1016/j.jallcom.2025.178540_bib59) 2023; 659 Xu (10.1016/j.jallcom.2025.178540_bib1) 2021; 868 Duan (10.1016/j.jallcom.2025.178540_bib16) 2021; 346 Meghana (10.1016/j.jallcom.2025.178540_bib14) 2024 Wang (10.1016/j.jallcom.2025.178540_bib37) 2019; 91 Zhai (10.1016/j.jallcom.2025.178540_bib43) 2021; 857 Muñoz (10.1016/j.jallcom.2025.178540_bib47) 2007; 335 Chen (10.1016/j.jallcom.2025.178540_bib38) 2024; 476 Hübner (10.1016/j.jallcom.2025.178540_bib40) 2011; 153 Sun (10.1016/j.jallcom.2025.178540_bib17) 2017; 238 Zhou (10.1016/j.jallcom.2025.178540_bib18) 2021; 5 Zhang (10.1016/j.jallcom.2025.178540_bib52) 2013; 109 Kadam (10.1016/j.jallcom.2025.178540_bib26) 2018; 61 Wang (10.1016/j.jallcom.2025.178540_bib55) 2020; 533 Sun (10.1016/j.jallcom.2025.178540_bib35) 2010; 178 Qu (10.1016/j.jallcom.2025.178540_bib15) 2023; 190 Gui (10.1016/j.jallcom.2025.178540_bib34) 2019; 288 Martins (10.1016/j.jallcom.2025.178540_bib51) 2008; 112 Qin (10.1016/j.jallcom.2025.178540_bib32) 2022; 894 Groppo (10.1016/j.jallcom.2025.178540_bib48) 2005; 109 Lee (10.1016/j.jallcom.2025.178540_bib33) 2022; 368 Wang (10.1016/j.jallcom.2025.178540_bib10) 2023; 387 Li (10.1016/j.jallcom.2025.178540_bib45) 2021; 4 Gong (10.1016/j.jallcom.2025.178540_bib8) 2024; 991 Yin (10.1016/j.jallcom.2025.178540_bib20) 2013; 13 Mirzaei (10.1016/j.jallcom.2025.178540_bib30) 2016; 42 Lou (10.1016/j.jallcom.2025.178540_bib46) 2022; 9 Liu (10.1016/j.jallcom.2025.178540_bib3) 2021; 331 Wang (10.1016/j.jallcom.2025.178540_bib11) 2022; 355 Yang (10.1016/j.jallcom.2025.178540_bib57) 2023; 465 Han (10.1016/j.jallcom.2025.178540_bib19) 2020; 306 Meng (10.1016/j.jallcom.2025.178540_bib7) 2022; 370 |
References_xml | – volume: 913 year: 2022 ident: bib6 article-title: Synthesis of Ag-functionalized α-Fe publication-title: J. Alloy. Compd. – volume: 40 start-page: 579 year: 2011 end-page: 581 ident: bib41 article-title: Hierarchically structured snowflakelike WO publication-title: Chem. Lett. – volume: 11 start-page: 15119 year: 2023 end-page: 15129 ident: bib12 article-title: 1T and 2H mixed phase WS publication-title: J. Mater. Chem. C. – volume: 323 year: 2020 ident: bib49 article-title: Facile synthesis of tortoise shell-like porous NiCo publication-title: Sens. Actuators B Chem. – volume: 377 year: 2024 ident: bib13 article-title: Fabrication and detection characteristics evaluation of SnO publication-title: Mater. Lett. – volume: 112 start-page: 7193 year: 2008 end-page: 7200 ident: bib51 article-title: Quantification of Brønsted acid sites in microporous catalysts by a combined FTIR and NH publication-title: J. Phys. Chem. C. – volume: 868 year: 2021 ident: bib1 article-title: Transformation synthesis of heterostructured SnS publication-title: J. Alloy. Compd. – volume: 178 start-page: 427 year: 2010 end-page: 433 ident: bib35 article-title: Preparation of ordered mesoporous Ag/WO publication-title: J. Hazard. Mater. – volume: 1005 year: 2024 ident: bib42 article-title: Selective trimethylamine sensors based on Co publication-title: J. Alloy. Compd. – volume: 831 year: 2020 ident: bib36 article-title: Metal-organic frameworks-derived porous α-Fe publication-title: J. Alloy. Compd. – year: 2024 ident: bib25 article-title: Construction of Ag publication-title: J. Alloy. Compd. – volume: 894 year: 2022 ident: bib32 article-title: Enhanced gas sensing performance of Bi publication-title: J. Alloy. Compd. – volume: 5 start-page: 1 year: 2021 end-page: 32 ident: bib18 article-title: Recent progress of nanostructured sensing materials from 0D to 3D: overview of structure–property-application relationship for gas sensors publication-title: Small Methods – volume: 331 year: 2021 ident: bib3 article-title: Triethylamine gas sensor based on Pt-functionalized hierarchical ZnO microspheres publication-title: Sens. Actuators B Chem. – volume: 9 year: 2022 ident: bib46 article-title: Heterogeneous Co publication-title: Adv. Mater. Interfaces – volume: 387 year: 2023 ident: bib10 article-title: Ultrahigh-response sensor based on hierarchical Pd-WO publication-title: Sens. Actuators B Chem. – volume: 288 start-page: 104 year: 2019 end-page: 112 ident: bib34 article-title: P-type Co publication-title: Sens. Actuators, B Chem. – volume: 370 year: 2022 ident: bib7 article-title: Rapid response hydrogen sensor based on Pd@Pt/SnO publication-title: Sens. Actuators B Chem. – volume: 857 year: 2021 ident: bib43 article-title: A superior selective and anti-jamming performance triethylamine sensing sensor based on hierarchical WO publication-title: J. Alloy. Compd. – volume: 53 start-page: 3224 year: 2024 end-page: 3235 ident: bib58 article-title: Preparation of Pt/WO publication-title: Dalt. Trans. – volume: 4 start-page: 10921 year: 2021 end-page: 10930 ident: bib45 article-title: PdPt nanoparticle-functionalized α-Fe publication-title: ACS Appl. Nano Mater. – volume: 823 year: 2020 ident: bib5 article-title: Ag-modified hexagonal nanoflakes-textured hollow octahedron Zn publication-title: J. Alloy. Compd. – volume: 42 start-page: 18974 year: 2016 end-page: 18982 ident: bib30 article-title: A novel gas sensor based on Ag/Fe publication-title: Ceram. Int. – volume: 465 year: 2023 ident: bib57 article-title: Superior triethylamine sensing platform based on MOF activated by carbon dots for photoelectric dual-mode in biphasic system publication-title: Chem. Eng. J. – volume: 355 year: 2022 ident: bib11 article-title: Sea urchins-like WO publication-title: Sens. Actuators B Chem. – volume: 61 start-page: 78 year: 2018 end-page: 86 ident: bib26 article-title: Facile synthesis of Ag-ZnO core–shell nanostructures with enhanced photocatalytic activity publication-title: J. Ind. Eng. Chem. – volume: 50 start-page: 14238 year: 2024 end-page: 14246 ident: bib29 article-title: Rational construction of α-MoO publication-title: Ceram. Int. – volume: 893 year: 2022 ident: bib4 article-title: Preparation of SnO publication-title: J. Alloy. Compd. – volume: 346 year: 2021 ident: bib16 article-title: Hydrogen sensing properties of Pd/SnO publication-title: Sens. Actuators B Chem. – volume: 346 year: 2021 ident: bib24 article-title: An efficient hydrogen gas sensor based on hierarchical Ag/ZnO hollow microstructures publication-title: Sens. Actuators B Chem. – volume: 577 year: 2022 ident: bib28 article-title: NiO-functionalized In publication-title: Appl. Surf. Sci. – year: 2024 ident: bib14 article-title: Enhancement of room temperature sensitivity and reduction of baseline drift in WO publication-title: Ceram. Int. – volume: 91 start-page: 13183 year: 2019 end-page: 13190 ident: bib37 article-title: Improving covalent organic frameworks fluorescence by triethylamine pinpoint surgery as selective biomarker sensor for diabetes mellitus diagnosis publication-title: Anal. Chem. – volume: 153 start-page: 347 year: 2011 end-page: 353 ident: bib40 article-title: Influence of humidity on CO sensing with p-type CuO thick film gas sensors publication-title: Sens. Actuators B Chem. – volume: 266 start-page: 213 year: 2018 end-page: 220 ident: bib39 article-title: Highly sensitive and selective triethylamine gas sensor based on porous SnO publication-title: Sens. Actuators B Chem. – volume: 335 start-page: 37 year: 2007 end-page: 42 ident: bib47 article-title: FTIR study of water clusters in water–triethylamine solutions publication-title: Chem. Phys. – volume: 47 start-page: 3157 year: 2022 end-page: 3169 ident: bib27 article-title: Ultra-fast response and highly selectivity hydrogen gas sensor based on Pd/SnO publication-title: Int. J. Hydrog. Energy – volume: 5 start-page: 15053 year: 2022 end-page: 15061 ident: bib9 article-title: Highly selective and humidity-resistant triethylamine sensors based on Pt and Cr publication-title: ACS Appl. Nano Mater. – volume: 897 year: 2022 ident: bib2 article-title: Preparation of YVO publication-title: J. Alloy. Compd. – volume: 11 start-page: 1860 year: 2022 end-page: 1872 ident: bib60 article-title: Interfacial energy barrier tuning of hierarchical Bi publication-title: J. Adv. Ceram. – volume: 56 start-page: 3781 year: 2001 end-page: 3796 ident: bib50 article-title: A novel FTIR method for studying mixed gas adsorption at low concentrations: H publication-title: Chem. Eng. Sci. – volume: 991 year: 2024 ident: bib8 article-title: Flower-like structured ZnO@ZnIn publication-title: J. Alloy. Compd. – volume: 306 year: 2020 ident: bib19 article-title: Sonochemical synthesis of hierarchical WO publication-title: Sens. Actuators, B Chem. – volume: 533 year: 2020 ident: bib55 article-title: Acetone sensing applications of Ag modified TiO publication-title: Appl. Surf. Sci. – volume: 13 start-page: 759 year: 2013 end-page: 769 ident: bib20 article-title: Synthesis and applications of γ-tungsten oxide hierarchical nanostructures publication-title: Cryst. Growth Des. – volume: 109 start-page: 15024 year: 2005 end-page: 15031 ident: bib48 article-title: FTIR investigation of the H publication-title: J. Phys. Chem. B – volume: 173 start-page: 426 year: 2012 end-page: 432 ident: bib53 article-title: Ultrasensitive and low operating temperature NO publication-title: Sens. Actuators, B Chem. – volume: 190 start-page: 1 year: 2023 end-page: 9 ident: bib15 article-title: Candy-like heterojunction nanocomposite of WO publication-title: Microchim. Acta – volume: 368 year: 2022 ident: bib31 article-title: Pd-WO publication-title: Sens. Actuators B Chem. – volume: 98 start-page: 33103 year: 2011 ident: bib54 article-title: Behind the change of the photoluminescence property of metal-coated ZnO nanowire arrays publication-title: Appl. Phys. Lett. – volume: 238 start-page: 510 year: 2017 end-page: 517 ident: bib17 article-title: Preparation of polypyrrole@WO publication-title: Sens. Actuators, B Chem. – volume: 476 year: 2024 ident: bib38 article-title: Mesoporous CdO/CdGa publication-title: J. Hazard. Mater. – volume: 966 year: 2023 ident: bib23 article-title: Low-temperature and high-efficient detection of triethylamine based on Pt/PtO publication-title: J. Alloy. Compd. – volume: 109 start-page: 265 year: 2019 end-page: 272 ident: bib44 article-title: Molecular imprinting Ag-LaFeO publication-title: Mater. Res. Bull. – volume: 109 start-page: 693 year: 2013 end-page: 701 ident: bib52 article-title: Synthesis, characterization and properties of anti-sintering nickel incorporated MCM-41 methanation catalysts publication-title: Fuel – volume: 38 start-page: 1832 year: 2020 end-page: 1846 ident: bib56 article-title: Oxygen defects in nanostructured metal-oxide gas sensors: recent advances and challenges† publication-title: Chin. J. Chem. – volume: 218 year: 2023 ident: bib22 article-title: Enhanced triethylamine sensing characteristics of In-doped WO publication-title: Vacuum – volume: 256 year: 2019 ident: bib21 article-title: Atomically dispersed Pt (II) on WO publication-title: Appl. Catal. B Environ. – volume: 368 year: 2022 ident: bib33 article-title: Pd-WO publication-title: Sens. Actuators B Chem. – volume: 659 year: 2023 ident: bib59 article-title: Construction of Pt/Ce-In publication-title: Colloids Surf. A Physicochem. Eng. Asp. – volume: 465 year: 2023 ident: 10.1016/j.jallcom.2025.178540_bib57 article-title: Superior triethylamine sensing platform based on MOF activated by carbon dots for photoelectric dual-mode in biphasic system publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2023.142869 – volume: 913 year: 2022 ident: 10.1016/j.jallcom.2025.178540_bib6 article-title: Synthesis of Ag-functionalized α-Fe2O3 nanocomposites for ppb-level triethylamine detection publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2022.165264 – volume: 190 start-page: 1 year: 2023 ident: 10.1016/j.jallcom.2025.178540_bib15 article-title: Candy-like heterojunction nanocomposite of WO3/Fe2O3-based semiconductor gas sensor for the detection of triethylamine publication-title: Microchim. Acta doi: 10.1007/s00604-023-05699-x – volume: 266 start-page: 213 year: 2018 ident: 10.1016/j.jallcom.2025.178540_bib39 article-title: Highly sensitive and selective triethylamine gas sensor based on porous SnO2/Zn2SnO4 composites publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2018.03.044 – volume: 238 start-page: 510 year: 2017 ident: 10.1016/j.jallcom.2025.178540_bib17 article-title: Preparation of polypyrrole@WO3 hybrids with p-n heterojunction and sensing performance to triethylamine at room temperature publication-title: Sens. Actuators, B Chem. doi: 10.1016/j.snb.2016.07.012 – volume: 11 start-page: 1860 year: 2022 ident: 10.1016/j.jallcom.2025.178540_bib60 article-title: Interfacial energy barrier tuning of hierarchical Bi2O3/WO3 heterojunctions for advanced triethylamine sensor publication-title: J. Adv. Ceram. doi: 10.1007/s40145-022-0652-9 – volume: 991 year: 2024 ident: 10.1016/j.jallcom.2025.178540_bib8 article-title: Flower-like structured ZnO@ZnIn2S4 for selective triethylamine sensing and mechanism publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2024.174477 – volume: 109 start-page: 693 year: 2013 ident: 10.1016/j.jallcom.2025.178540_bib52 article-title: Synthesis, characterization and properties of anti-sintering nickel incorporated MCM-41 methanation catalysts publication-title: Fuel doi: 10.1016/j.fuel.2013.03.037 – volume: 831 year: 2020 ident: 10.1016/j.jallcom.2025.178540_bib36 article-title: Metal-organic frameworks-derived porous α-Fe2O3 spindles decorated with Au nanoparticles for enhanced triethylamine gas-sensing performance publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2020.154788 – volume: 368 year: 2022 ident: 10.1016/j.jallcom.2025.178540_bib31 article-title: Pd-WO3 chemiresistive sensor with reinforced self-assembly for hydrogen detection at room temperature publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2022.132236 – volume: 355 year: 2022 ident: 10.1016/j.jallcom.2025.178540_bib11 article-title: Sea urchins-like WO3 as a material for resistive acetone gas sensors publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2021.131262 – volume: 38 start-page: 1832 year: 2020 ident: 10.1016/j.jallcom.2025.178540_bib56 article-title: Oxygen defects in nanostructured metal-oxide gas sensors: recent advances and challenges† publication-title: Chin. J. Chem. doi: 10.1002/cjoc.202000341 – volume: 9 year: 2022 ident: 10.1016/j.jallcom.2025.178540_bib46 article-title: Heterogeneous Co3O4/carbon nanofibers for low temperature triethylamine detection: mechanistic insights by operando DRIFTS and DFT publication-title: Adv. Mater. Interfaces doi: 10.1002/admi.202101479 – volume: 53 start-page: 3224 year: 2024 ident: 10.1016/j.jallcom.2025.178540_bib58 article-title: Preparation of Pt/WO3@ZnO hollow spheres for low-temperature and high-efficiency detection of triethylamine publication-title: Dalt. Trans. doi: 10.1039/D3DT03493C – volume: 368 year: 2022 ident: 10.1016/j.jallcom.2025.178540_bib33 article-title: Pd-WO3 chemiresistive sensor with reinforced self-assembly for hydrogen detection at room temperature publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2022.132236 – year: 2024 ident: 10.1016/j.jallcom.2025.178540_bib14 article-title: Enhancement of room temperature sensitivity and reduction of baseline drift in WO3/g-C3N4 nanocomposite based volatile organic compound gas sensors publication-title: Ceram. Int. – volume: 894 year: 2022 ident: 10.1016/j.jallcom.2025.178540_bib32 article-title: Enhanced gas sensing performance of Bi2MoO6 with introduction of oxygen vacancy: coupling of experiments and first-principles calculations publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2021.162534 – volume: 173 start-page: 426 year: 2012 ident: 10.1016/j.jallcom.2025.178540_bib53 article-title: Ultrasensitive and low operating temperature NO2 gas sensor using nanosheets assembled hierarchical WO3 hollow microspheres publication-title: Sens. Actuators, B Chem. doi: 10.1016/j.snb.2012.07.029 – volume: 857 year: 2021 ident: 10.1016/j.jallcom.2025.178540_bib43 article-title: A superior selective and anti-jamming performance triethylamine sensing sensor based on hierarchical WO3 nanoclusters publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2020.157545 – volume: 331 year: 2021 ident: 10.1016/j.jallcom.2025.178540_bib3 article-title: Triethylamine gas sensor based on Pt-functionalized hierarchical ZnO microspheres publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2020.129425 – volume: 323 year: 2020 ident: 10.1016/j.jallcom.2025.178540_bib49 article-title: Facile synthesis of tortoise shell-like porous NiCo2O4 nanoplate with promising triethylamine gas sensing properties publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2020.128663 – volume: 966 year: 2023 ident: 10.1016/j.jallcom.2025.178540_bib23 article-title: Low-temperature and high-efficient detection of triethylamine based on Pt/PtO2 loaded WO3 gas sensors publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2023.171642 – volume: 533 year: 2020 ident: 10.1016/j.jallcom.2025.178540_bib55 article-title: Acetone sensing applications of Ag modified TiO2 porous nanoparticles synthesized via facile hydrothermal method publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2020.147383 – year: 2024 ident: 10.1016/j.jallcom.2025.178540_bib25 article-title: Construction of Ag2O/WO3-based hollow microsphere p-n heterojunction for continuous detection of ppb-level H2S gas sensor publication-title: J. Alloy. Compd. – volume: 335 start-page: 37 year: 2007 ident: 10.1016/j.jallcom.2025.178540_bib47 article-title: FTIR study of water clusters in water–triethylamine solutions publication-title: Chem. Phys. doi: 10.1016/j.chemphys.2007.03.015 – volume: 13 start-page: 759 year: 2013 ident: 10.1016/j.jallcom.2025.178540_bib20 article-title: Synthesis and applications of γ-tungsten oxide hierarchical nanostructures publication-title: Cryst. Growth Des. doi: 10.1021/cg301469u – volume: 577 year: 2022 ident: 10.1016/j.jallcom.2025.178540_bib28 article-title: NiO-functionalized In2O3 flower-like structures with enhanced trimethylamine gas sensing performance publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2021.151877 – volume: 476 year: 2024 ident: 10.1016/j.jallcom.2025.178540_bib38 article-title: Mesoporous CdO/CdGa2O4 microsphere for rapidly detecting triethylamine at ppb level publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2024.134943 – volume: 61 start-page: 78 year: 2018 ident: 10.1016/j.jallcom.2025.178540_bib26 article-title: Facile synthesis of Ag-ZnO core–shell nanostructures with enhanced photocatalytic activity publication-title: J. Ind. Eng. Chem. doi: 10.1016/j.jiec.2017.12.003 – volume: 5 start-page: 1 year: 2021 ident: 10.1016/j.jallcom.2025.178540_bib18 article-title: Recent progress of nanostructured sensing materials from 0D to 3D: overview of structure–property-application relationship for gas sensors publication-title: Small Methods doi: 10.1002/smtd.202100515 – volume: 4 start-page: 10921 year: 2021 ident: 10.1016/j.jallcom.2025.178540_bib45 article-title: PdPt nanoparticle-functionalized α-Fe2O3 hollow nanorods for triethylamine sensing publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.1c02377 – volume: 112 start-page: 7193 year: 2008 ident: 10.1016/j.jallcom.2025.178540_bib51 article-title: Quantification of Brønsted acid sites in microporous catalysts by a combined FTIR and NH3-TPD study publication-title: J. Phys. Chem. C. doi: 10.1021/jp710613q – volume: 178 start-page: 427 year: 2010 ident: 10.1016/j.jallcom.2025.178540_bib35 article-title: Preparation of ordered mesoporous Ag/WO3 and its highly efficient degradation of acetaldehyde under visible-light irradiation publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2010.01.098 – volume: 823 year: 2020 ident: 10.1016/j.jallcom.2025.178540_bib5 article-title: Ag-modified hexagonal nanoflakes-textured hollow octahedron Zn2SnO4 with enhanced sensing properties for triethylamine publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2020.153724 – volume: 42 start-page: 18974 year: 2016 ident: 10.1016/j.jallcom.2025.178540_bib30 article-title: A novel gas sensor based on Ag/Fe2O3 core-shell nanocomposites publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2016.09.052 – volume: 288 start-page: 104 year: 2019 ident: 10.1016/j.jallcom.2025.178540_bib34 article-title: P-type Co3O4 nanoarrays decorated on the surface of n-type flower-like WO3 nanosheets for high-performance gas sensing publication-title: Sens. Actuators, B Chem. doi: 10.1016/j.snb.2019.02.101 – volume: 47 start-page: 3157 year: 2022 ident: 10.1016/j.jallcom.2025.178540_bib27 article-title: Ultra-fast response and highly selectivity hydrogen gas sensor based on Pd/SnO2 nanoparticles publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2021.10.201 – volume: 868 year: 2021 ident: 10.1016/j.jallcom.2025.178540_bib1 article-title: Transformation synthesis of heterostructured SnS2/ZnS microspheres for ultrafast triethylamine detection publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2021.159286 – volume: 659 year: 2023 ident: 10.1016/j.jallcom.2025.178540_bib59 article-title: Construction of Pt/Ce-In2O3 hierarchical microspheres for superior triethylamine detection at low temperature publication-title: Colloids Surf. A Physicochem. Eng. Asp. doi: 10.1016/j.colsurfa.2022.130738 – volume: 109 start-page: 265 year: 2019 ident: 10.1016/j.jallcom.2025.178540_bib44 article-title: Molecular imprinting Ag-LaFeO3 spheres for highly sensitive acetone gas detection publication-title: Mater. Res. Bull. doi: 10.1016/j.materresbull.2018.09.040 – volume: 1005 year: 2024 ident: 10.1016/j.jallcom.2025.178540_bib42 article-title: Selective trimethylamine sensors based on Co3O4 modified WO3 spheres publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2024.176254 – volume: 346 year: 2021 ident: 10.1016/j.jallcom.2025.178540_bib16 article-title: Hydrogen sensing properties of Pd/SnO2 nano-spherical composites under UV enhancement publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2021.130557 – volume: 109 start-page: 15024 year: 2005 ident: 10.1016/j.jallcom.2025.178540_bib48 article-title: FTIR investigation of the H2, N2, and C2H4 molecular complexes formed on the Cr(II) sites in the phillips catalyst: a preliminary step in the understanding of a complex system publication-title: J. Phys. Chem. B doi: 10.1021/jp051826w – volume: 370 year: 2022 ident: 10.1016/j.jallcom.2025.178540_bib7 article-title: Rapid response hydrogen sensor based on Pd@Pt/SnO2 hybrids at near-ambient temperature publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2022.132406 – volume: 50 start-page: 14238 year: 2024 ident: 10.1016/j.jallcom.2025.178540_bib29 article-title: Rational construction of α-MoO3@WO3 nanosheets and its triethylamine sensing performances publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2024.01.331 – volume: 256 year: 2019 ident: 10.1016/j.jallcom.2025.178540_bib21 article-title: Atomically dispersed Pt (II) on WO3 for highly selective sensing and catalytic oxidation of triethylamine publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2019.117809 – volume: 306 year: 2020 ident: 10.1016/j.jallcom.2025.178540_bib19 article-title: Sonochemical synthesis of hierarchical WO3 flower-like spheres for highly efficient triethylamine detection publication-title: Sens. Actuators, B Chem. doi: 10.1016/j.snb.2019.127536 – volume: 346 year: 2021 ident: 10.1016/j.jallcom.2025.178540_bib24 article-title: An efficient hydrogen gas sensor based on hierarchical Ag/ZnO hollow microstructures publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2021.130510 – volume: 98 start-page: 33103 year: 2011 ident: 10.1016/j.jallcom.2025.178540_bib54 article-title: Behind the change of the photoluminescence property of metal-coated ZnO nanowire arrays publication-title: Appl. Phys. Lett. doi: 10.1063/1.3543902 – volume: 153 start-page: 347 year: 2011 ident: 10.1016/j.jallcom.2025.178540_bib40 article-title: Influence of humidity on CO sensing with p-type CuO thick film gas sensors publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2010.10.046 – volume: 91 start-page: 13183 year: 2019 ident: 10.1016/j.jallcom.2025.178540_bib37 article-title: Improving covalent organic frameworks fluorescence by triethylamine pinpoint surgery as selective biomarker sensor for diabetes mellitus diagnosis publication-title: Anal. Chem. doi: 10.1021/acs.analchem.9b03534 – volume: 218 year: 2023 ident: 10.1016/j.jallcom.2025.178540_bib22 article-title: Enhanced triethylamine sensing characteristics of In-doped WO3 cubic nanoblocks at low operating temperature publication-title: Vacuum doi: 10.1016/j.vacuum.2023.112640 – volume: 11 start-page: 15119 year: 2023 ident: 10.1016/j.jallcom.2025.178540_bib12 article-title: 1T and 2H mixed phase WS2 nanoflakes decorated with quasicrystal nanosheets for NO2 sensors publication-title: J. Mater. Chem. C. doi: 10.1039/D3TC02524A – volume: 56 start-page: 3781 year: 2001 ident: 10.1016/j.jallcom.2025.178540_bib50 article-title: A novel FTIR method for studying mixed gas adsorption at low concentrations: H2O and CO2 on NaX zeolite and γ-alumina publication-title: Chem. Eng. Sci. doi: 10.1016/S0009-2509(01)00095-1 – volume: 377 year: 2024 ident: 10.1016/j.jallcom.2025.178540_bib13 article-title: Fabrication and detection characteristics evaluation of SnO2@WO3 film as an effective NO2 gas sensor publication-title: Mater. Lett. doi: 10.1016/j.matlet.2024.137392 – volume: 40 start-page: 579 year: 2011 ident: 10.1016/j.jallcom.2025.178540_bib41 article-title: Hierarchically structured snowflakelike WO3·0.33H2O particles prepared by a facile, green, and microwave-assisted method publication-title: Chem. Lett. doi: 10.1246/cl.2011.579 – volume: 387 year: 2023 ident: 10.1016/j.jallcom.2025.178540_bib10 article-title: Ultrahigh-response sensor based on hierarchical Pd-WO3 nanoflowers for rapid hydrogen detection publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2023.133790 – volume: 893 year: 2022 ident: 10.1016/j.jallcom.2025.178540_bib4 article-title: Preparation of SnO2/SiO2 nanocomposites by sol-gel method for enhancing the gas sensing performance to triethylamine publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2021.162189 – volume: 897 year: 2022 ident: 10.1016/j.jallcom.2025.178540_bib2 article-title: Preparation of YVO4 octahedral nanomaterials and gas-sensing characteristics to triethylamine publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2021.163167 – volume: 5 start-page: 15053 year: 2022 ident: 10.1016/j.jallcom.2025.178540_bib9 article-title: Highly selective and humidity-resistant triethylamine sensors based on Pt and Cr2O3nanoparticles publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.2c03230 |
SSID | ssj0001931 |
Score | 2.479718 |
Snippet | The development of triethylamine (TEA) gas sensors exhibiting superior selectivity and rapid response is a significant and demanding subject. This study... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 178540 |
SubjectTerms | Gas sensing ppb concentration Self-assembled hierarchical structures of WO3 nanoflowers Triethylamine Ultra-fast response |
Title | Ultrafast ppb-level triethylamine detection sensor based on self-assembled hierarchical structures of Ag/WO3 nanoflowers |
URI | https://dx.doi.org/10.1016/j.jallcom.2025.178540 |
Volume | 1013 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS-RAEC5EWVYPorMuvunDXnvSJp3XcRiUWUX3sDust9BPcYiZwYngyd9uVR7qgrgg5JKmK4Suouqr7ur6AH6ksTVSqZQblWGCooTkWomYu0yEKnGp8ZY29C-vkslUnl_H1ysw7u_CUFll5_tbn954624k6FYzWNzeBr9FHtKZH6Y4BBQy8sNSpmTlw6fXMg8EKA1rHk7mNPv1Fk8wG85UWVLRSIiRf0g89bQH8l58ehNzzrZgswOLbNT-zzasuGoAX8c9R9sANt60ExzAl6ac0yy_weO0rO-VV8uaLRaal1QZxIg6C9WCJoAizLq6qcKq2BIz2fk9o3hmWfNeeo6Y2t3pEkeILLs5bkBtsrbd7APm6Gzu2egm-PsrYpWq5r5s6NZ2YHp2-mc84R3HAjeRyGsuETAZl-da5NZ6G4UnNtSZcZkTWY7ZcZyrCFNI4ZJc6lig6hRCOsRt1mdUqBZ9h9VqXrldYImOcCRNDT7SR17FKX5T2lBozNp0sgeyX9nCdA3IiQejLPpKs1nRKaQghRStQvZg-CK2aDtw_E8g69VW_GNKBUaJj0X3Py96AOv0Rrsz0ckhrKI63BHilVofNwZ5DGujnxeTq2f_Bu1N |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIlR6QLBQUcrDBzhm43WcxDlwqArVlj440BW9BT9RVyG72gQVLvyp_kHGTkKLhEBCqpRLHI1leSYz39ifPQAv89RoLmUeaSkwQZGUR0rSNLKCMpnZXDvjF_SPT7LpjL87S8_W4HI4C-Nplb3v73x68NZ9S9zPZrw8P48_0IL5PT9McTxQEKxnVh7a7xeYtzWvD96gkl8xtv_2dG8a9aUFIp3Qoo044gRti0LRwhhnEjYxTAlthaWiwKQwLWSCmRO1WcFVSnHEEpEMwhXjhOdnJdjvLbjN0V34sgnjH1e8EkREoUwfji7yw7s6NhTPx3NZVZ6lwhBqjCe5CIsufwqI14Lc_n2416NTsttNwANYs_UINvaGonAj2Lx2f-EI7gT-qG4ewrdZ1a6kk01LlksVVZ6KRHytLrQDtDkUIca2gfZVkwZT58WK-ABqSHivXIQg3n5RFbb46txhfwPNh3T3235d2YYsHNn9HH98n5Ba1gtXhfpuj2B2IzO_Bev1oraPgWQqwZY81_hwlziZ5tgnN4wqTBNVtg18mNlS9zee-8IbVTlQ2-Zlr5DSK6TsFLIN419iy-7Kj38JiEFt5W-2W2JY-rvok_8XfQEb09Pjo_Lo4ORwB-76L35pKJk8hXVUjX2GYKlVz4NxEvh003_DT1JRKQY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultrafast+ppb-level+triethylamine+detection+sensor+based+on+self-assembled+hierarchical+structures+of+Ag%2FWO3+nanoflowers&rft.jtitle=Journal+of+alloys+and+compounds&rft.au=Bi%2C+Yubo&rft.au=Cui%2C+Zhancheng&rft.au=Zhao%2C+Yang&rft.au=Gao%2C+Wei&rft.date=2025-01-31&rft.issn=0925-8388&rft.volume=1013&rft.spage=178540&rft_id=info:doi/10.1016%2Fj.jallcom.2025.178540&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jallcom_2025_178540 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-8388&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-8388&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-8388&client=summon |