Stable low-rank matrix recovery via null space properties
The problem of recovering a matrix of low rank from an incomplete and possibly noisy set of linear measurements arises in a number of areas. In order to derive rigorous recovery results, the measurement map is usually modelled probabilistically. We derive sufficient conditions on the minimal amount...
Saved in:
Published in | Information and inference Vol. 5; no. 4; pp. 405 - 441 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Oxford University Press
01.12.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The problem of recovering a matrix of low rank from an incomplete and possibly noisy set of linear measurements arises in a number of areas. In order to derive rigorous recovery results, the measurement map is usually modelled probabilistically. We derive sufficient conditions on the minimal amount of measurements ensuring recovery via convex optimization. We establish our results via certain properties of the null space of the measurement map. In the setting where the measurements are realized as Frobenius inner products with independent standard Gaussian random matrices, we show that
$10r(n_1+n_2)$
measurements are enough to uniformly and stably recover an
$n_1\times n_2$
matrix of rank at most
$r$
. We then significantly generalize this result by only requiring independent mean zero, variance one entries with four finite moments at the cost of replacing
$10$
by some universal constant. We also study the case of recovering Hermitian rank-
$r$
matrices from measurement matrices proportional to rank-one projectors. For
$m\geq Crn$
rank-one projective measurements onto independent standard Gaussian vectors, we show that nuclear norm minimization uniformly and stably reconstructs Hermitian rank-
$r$
matrices with high probability. Next, we partially de-randomize this by establishing an analogous statement for projectors onto independent elements of a complex projective 4-designs at the cost of a slightly higher sampling rate
$m\geq Crn\log n$
. Moreover, if the Hermitian matrix to be recovered is known to be positive semidefinite, then we show that the nuclear norm minimization approach may be replaced by minimizing the
$\ell_q$
-norm of the residual subject to the positive semidefinite constraint (e.g. by a positive semidefinite least squares problem). Then no estimate of the noise level is required a priori. We discuss applications in quantum physics and the phase retrieval problem. |
---|---|
AbstractList | The problem of recovering a matrix of low rank from an incomplete and possibly noisy set of linear measurements arises in a number of areas. In order to derive rigorous recovery results, the measurement map is usually modelled probabilistically. We derive sufficient conditions on the minimal amount of measurements ensuring recovery via convex optimization. We establish our results via certain properties of the null space of the measurement map. In the setting where the measurements are realized as Frobenius inner products with independent standard Gaussian random matrices, we show that
$10r(n_1+n_2)$
measurements are enough to uniformly and stably recover an
$n_1\times n_2$
matrix of rank at most
$r$
. We then significantly generalize this result by only requiring independent mean zero, variance one entries with four finite moments at the cost of replacing
$10$
by some universal constant. We also study the case of recovering Hermitian rank-
$r$
matrices from measurement matrices proportional to rank-one projectors. For
$m\geq Crn$
rank-one projective measurements onto independent standard Gaussian vectors, we show that nuclear norm minimization uniformly and stably reconstructs Hermitian rank-
$r$
matrices with high probability. Next, we partially de-randomize this by establishing an analogous statement for projectors onto independent elements of a complex projective 4-designs at the cost of a slightly higher sampling rate
$m\geq Crn\log n$
. Moreover, if the Hermitian matrix to be recovered is known to be positive semidefinite, then we show that the nuclear norm minimization approach may be replaced by minimizing the
$\ell_q$
-norm of the residual subject to the positive semidefinite constraint (e.g. by a positive semidefinite least squares problem). Then no estimate of the noise level is required a priori. We discuss applications in quantum physics and the phase retrieval problem. |
Author | Terstiege, Ulrich Kueng, Richard Kabanava, Maryia Rauhut, Holger |
Author_xml | – sequence: 1 givenname: Maryia surname: Kabanava fullname: Kabanava, Maryia email: kabanava@mathc.rwth-aachen.de organization: Lehrstuhl C für Mathematik (Analysis), RWTH Aachen University, Pontdriesch 10, 52062 Aachen, Germany kabanava@mathc.rwth-aachen.de – sequence: 2 givenname: Richard surname: Kueng fullname: Kueng, Richard email: kabanava@mathc.rwth-aachen.de organization: University of Freiburg, Germany and Institute for Theoretical Physics, University of Cologne, Zülpicher Straβe 77, 50937 Köln, Germany rkueng@thp.uni-koeln.de – sequence: 3 givenname: Holger surname: Rauhut fullname: Rauhut, Holger email: rauhut@mathc.rwth-aachen.de organization: Lehrstuhl C für Mathematik (Analysis), RWTH Aachen University, Pontdriesch 10, 52062 Aachen, Germany – sequence: 4 givenname: Ulrich surname: Terstiege fullname: Terstiege, Ulrich email: terstiege@mathc.rwth-aachen.de organization: Lehrstuhl C für Mathematik (Analysis), RWTH Aachen University, Pontdriesch 10, 52062 Aachen, Germany |
BookMark | eNqFj01LAzEQhoNUsNYevefoJTbZ7NccpagVCh7U8zKbTSCYbpYkbe2_d2XFgyCeZuB93hmeSzLrfa8JuRb8VnCQK7tDi3Zl8chFfkbmGc-B1VWVzX72Mr8gyxhtOxIiL8dsTuAlYes0df7IAvbvdIcp2A8atPIHHU70YJH2e-doHFBpOgQ_6JCsjlfk3KCLevk9F-Tt4f51vWHb58en9d2WKckhsVzIrMJMGa4B27JVha6hNl0pAEUha9CF4Z0asxZlhdBVSolcglC8QzAgF4RNd1XwMQZtmiGMsuHUCN58qTeTejOpj7z8xSubMFnfp4DW_dm6mVp-P_zz4BOkq3Eh |
CitedBy_id | crossref_primary_10_1016_j_acha_2023_101595 crossref_primary_10_1093_imaiai_iaad050 crossref_primary_10_1002_cpa_21957 crossref_primary_10_1088_1751_8121_ab8111 crossref_primary_10_1007_s11766_020_4136_3 crossref_primary_10_1007_s00041_017_9579_x crossref_primary_10_1109_TSP_2017_2659644 crossref_primary_10_1007_s00220_017_2950_6 crossref_primary_10_3389_fams_2019_00026 crossref_primary_10_1142_S0219530522500154 crossref_primary_10_1088_1751_8121_aa682e crossref_primary_10_1142_S0219691320500915 crossref_primary_10_22331_q_2019_08_12_171 crossref_primary_10_1142_S0219530519410094 crossref_primary_10_1007_s10208_020_09479_4 crossref_primary_10_1103_PhysRevLett_121_170502 crossref_primary_10_1109_TSP_2020_3011016 crossref_primary_10_1109_TIT_2017_2746620 crossref_primary_10_1109_MSP_2018_2827108 crossref_primary_10_1093_imaiai_iaab024 crossref_primary_10_1109_TNNLS_2023_3289209 crossref_primary_10_1016_j_acha_2023_03_006 crossref_primary_10_1016_j_laa_2022_07_002 crossref_primary_10_22331_q_2023_07_11_1053 crossref_primary_10_1007_s43670_022_00035_5 crossref_primary_10_1007_s00041_020_09797_9 crossref_primary_10_3389_fams_2021_615573 crossref_primary_10_1137_21M1455000 |
Cites_doi | 10.1109/TIT.2010.2044061 10.1016/j.acha.2015.05.004 10.1007/s00220-013-1671-8 10.1109/ISIT.2011.6033976 10.1103/PhysRevLett.105.150401 10.1109/ISIT.2010.5513471 10.1109/CDC.2008.4739332 10.1007/s00041-009-9065-1 10.1088/1751-8113/48/26/265303 10.1007/978-3-319-19749-4_2 10.1007/978-3-642-20212-4 10.1007/978-0-8176-4948-7_8 10.1093/imrn/rnv096 10.1007/BF01007479 10.1007/BFb0081737 10.1109/18.985947 10.1090/S0002-9939-04-07800-1 10.1093/imaiai/iau005 10.1137/100811404 10.1002/cpa.21432 10.1109/TIT.2015.2429594 10.1145/2699439 10.1007/978-1-4612-0653-8 10.1017/CBO9780511804441 10.1017/CBO9780511794308.006 10.1007/s10208-014-9191-2 10.1088/1367-2630/14/9/095022 10.1109/SAMPTA.2015.7148878 10.1007/s10208-013-9162-z 10.1109/ALLERTON.2010.5706969 10.1088/0305-4470/39/43/009 10.1017/CBO9780511840371 10.1007/s00041-013-9305-2 10.1137/110848074 10.1109/SAMPTA.2015.7148917 10.1214/08-AOS620 10.1109/SAMPTA.2015.7148918 10.1137/070697835 10.1088/1367-2630/15/12/125020 10.1088/1367-2630/15/12/123012 10.1109/TIT.2008.929920 10.1109/CCC.2007.26 10.1016/j.acha.2015.07.007 10.1007/s10107-010-0422-2 10.1109/TIT.2016.2570244 10.1017/CBO9780511976667 10.1007/s10208-012-9135-7 10.1137/040616413 10.1007/s10208-009-9045-5 10.1109/TIT.2011.2111771 10.1002/cpa.20227 10.1109/TIT.2014.2366459 10.1007/s10208-011-9099-z 10.1109/TIT.2015.2399924 10.1007/s00041-014-9361-2 10.1007/s00220-009-0890-5 10.1109/SAMPTA.2015.7148874 |
ContentType | Journal Article |
Copyright | The authors 2016. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved. 2016 |
Copyright_xml | – notice: The authors 2016. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved. 2016 |
DBID | AAYXX CITATION |
DOI | 10.1093/imaiai/iaw014 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2049-8772 |
EndPage | 441 |
ExternalDocumentID | 10_1093_imaiai_iaw014 10.1093/imaiai/iaw014 |
GroupedDBID | 0R~ 4.4 48X AAOGV AAPQZ AAPXW AARHZ AASNB AAUAY AAVAP ABDBF ABDTM ABPTD ABQLI ABWST ABXVV ACGFS ACYTK ADGZP ADIPN ADQBN ADRDM ADRTK ADVEK AEKKA AETBJ AFFZL AGINJ AGQXC AJEEA ALMA_UNASSIGNED_HOLDINGS ATGXG BAYMD BCRHZ BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESX FLIZI FLUFQ FOEOM FQBLK GAUVT H13 HZ~ JAVBF KOP KSI KSN NMDNZ NOMLY O9- OCL ODMLO OJZSN OK1 OWPYF ROX RUSNO RXO YXANX AAYXX ABAZT ABDFA ABEJV ABGNP ABPQP ABVGC ABVLG ACUHS ACUXJ ADYJX AJBYB AJNCP ALXQX AMVHM ANAKG CITATION JXSIZ NU- |
ID | FETCH-LOGICAL-c309t-41327a2cf0e9ab6bc5e898fd619a15389e5f0dc9abba37a9d7cc14391c0da9f93 |
ISSN | 2049-8764 |
IngestDate | Thu Apr 24 23:00:51 EDT 2025 Tue Jul 01 03:06:19 EDT 2025 Wed Aug 28 03:22:00 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | low-rank matrix recovery positive semidefinite least squares problem phase retrieval convex optimization complex projective designs nuclear norm minimization random measurements quantum state tomography |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c309t-41327a2cf0e9ab6bc5e898fd619a15389e5f0dc9abba37a9d7cc14391c0da9f93 |
OpenAccessLink | https://academic.oup.com/imaiai/article-pdf/5/4/405/8395013/iaw014.pdf |
PageCount | 37 |
ParticipantIDs | crossref_primary_10_1093_imaiai_iaw014 crossref_citationtrail_10_1093_imaiai_iaw014 oup_primary_10_1093_imaiai_iaw014 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20161201 2016-12-00 |
PublicationDateYYYYMMDD | 2016-12-01 |
PublicationDate_xml | – month: 12 year: 2016 text: 20161201 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Information and inference |
PublicationYear | 2016 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | 2016121207400539000_5.4.405.47 2016121207400539000_5.4.405.46 2016121207400539000_5.4.405.45 2016121207400539000_5.4.405.44 2016121207400539000_5.4.405.43 2016121207400539000_5.4.405.42 2016121207400539000_5.4.405.41 2016121207400539000_5.4.405.40 Gross (2016121207400539000_5.4.405.30) 2014; 21 Mendelson (2016121207400539000_5.4.405.52) 2015; 62 Lee (2016121207400539000_5.4.405.48) 2010; 56 2016121207400539000_5.4.405.38 2016121207400539000_5.4.405.37 Raskutti (2016121207400539000_5.4.405.58) 2010; 11 2016121207400539000_5.4.405.36 2016121207400539000_5.4.405.35 2016121207400539000_5.4.405.34 2016121207400539000_5.4.405.33 2016121207400539000_5.4.405.32 2016121207400539000_5.4.405.31 2016121207400539000_5.4.405.71 2016121207400539000_5.4.405.70 2016121207400539000_5.4.405.3 2016121207400539000_5.4.405.2 2016121207400539000_5.4.405.5 2016121207400539000_5.4.405.4 2016121207400539000_5.4.405.7 2016121207400539000_5.4.405.6 2016121207400539000_5.4.405.9 2016121207400539000_5.4.405.8 2016121207400539000_5.4.405.1 2016121207400539000_5.4.405.27 2016121207400539000_5.4.405.26 Parikh (2016121207400539000_5.4.405.57) 2014; 1 2016121207400539000_5.4.405.25 2016121207400539000_5.4.405.69 2016121207400539000_5.4.405.24 2016121207400539000_5.4.405.68 Candès (2016121207400539000_5.4.405.14) 2013; 14 2016121207400539000_5.4.405.23 2016121207400539000_5.4.405.22 2016121207400539000_5.4.405.66 2016121207400539000_5.4.405.21 2016121207400539000_5.4.405.65 2016121207400539000_5.4.405.20 2016121207400539000_5.4.405.64 2016121207400539000_5.4.405.63 2016121207400539000_5.4.405.62 2016121207400539000_5.4.405.61 Liu (2016121207400539000_5.4.405.49) 2011; 24 2016121207400539000_5.4.405.60 Tanner (2016121207400539000_5.4.405.67) 2013; 59 2016121207400539000_5.4.405.29 2016121207400539000_5.4.405.28 2016121207400539000_5.4.405.16 2016121207400539000_5.4.405.15 2016121207400539000_5.4.405.59 2016121207400539000_5.4.405.13 2016121207400539000_5.4.405.12 2016121207400539000_5.4.405.56 2016121207400539000_5.4.405.11 2016121207400539000_5.4.405.55 2016121207400539000_5.4.405.10 2016121207400539000_5.4.405.54 2016121207400539000_5.4.405.53 2016121207400539000_5.4.405.51 2016121207400539000_5.4.405.50 Kech (2016121207400539000_5.4.405.39) 2015; 48 2016121207400539000_5.4.405.19 2016121207400539000_5.4.405.18 2016121207400539000_5.4.405.17 |
References_xml | – ident: 2016121207400539000_5.4.405.12 doi: 10.1109/TIT.2010.2044061 – ident: 2016121207400539000_5.4.405.31 doi: 10.1016/j.acha.2015.05.004 – ident: 2016121207400539000_5.4.405.33 doi: 10.1007/s00220-013-1671-8 – volume: 24 start-page: 1638 year: 2011 ident: 2016121207400539000_5.4.405.49 article-title: Universal low-rank matrix recovery from Pauli measurements. publication-title: Adv. Neural Inf. Process. Syst. – ident: 2016121207400539000_5.4.405.56 doi: 10.1109/ISIT.2011.6033976 – ident: 2016121207400539000_5.4.405.71 – ident: 2016121207400539000_5.4.405.32 doi: 10.1103/PhysRevLett.105.150401 – ident: 2016121207400539000_5.4.405.54 doi: 10.1109/ISIT.2010.5513471 – ident: 2016121207400539000_5.4.405.60 doi: 10.1109/CDC.2008.4739332 – ident: 2016121207400539000_5.4.405.5 doi: 10.1007/s00041-009-9065-1 – volume: 48 start-page: 265 year: 2015 ident: 2016121207400539000_5.4.405.39 article-title: The role of topology in quantum tomography. publication-title: J. Phys. A Math. Theor. doi: 10.1088/1751-8113/48/26/265303 – ident: 2016121207400539000_5.4.405.43 – volume: 1 start-page: 123 year: 2014 ident: 2016121207400539000_5.4.405.57 article-title: Proximal algorithms. publication-title: Found. Trends Optim. – volume: 56 start-page: 4402 year: 2010 ident: 2016121207400539000_5.4.405.48 article-title: ADMiRA: Atomic decomposition for minimum rank approximation. publication-title: IEEE Trans. Image Process. – ident: 2016121207400539000_5.4.405.66 – ident: 2016121207400539000_5.4.405.69 doi: 10.1007/978-3-319-19749-4_2 – ident: 2016121207400539000_5.4.405.47 doi: 10.1007/978-3-642-20212-4 – ident: 2016121207400539000_5.4.405.24 – ident: 2016121207400539000_5.4.405.28 doi: 10.1007/978-0-8176-4948-7_8 – ident: 2016121207400539000_5.4.405.42 doi: 10.1093/imrn/rnv096 – ident: 2016121207400539000_5.4.405.34 doi: 10.1007/BF01007479 – ident: 2016121207400539000_5.4.405.29 doi: 10.1007/BFb0081737 – ident: 2016121207400539000_5.4.405.1 doi: 10.1109/18.985947 – ident: 2016121207400539000_5.4.405.46 doi: 10.1090/S0002-9939-04-07800-1 – ident: 2016121207400539000_5.4.405.4 doi: 10.1093/imaiai/iau005 – ident: 2016121207400539000_5.4.405.27 doi: 10.1137/100811404 – ident: 2016121207400539000_5.4.405.11 doi: 10.1002/cpa.21432 – ident: 2016121207400539000_5.4.405.20 doi: 10.1109/TIT.2015.2429594 – volume: 62 start-page: 1 year: 2015 ident: 2016121207400539000_5.4.405.52 article-title: Learning without concentration. publication-title: J. ACM doi: 10.1145/2699439 – ident: 2016121207400539000_5.4.405.7 doi: 10.1007/978-1-4612-0653-8 – ident: 2016121207400539000_5.4.405.9 doi: 10.1017/CBO9780511804441 – ident: 2016121207400539000_5.4.405.70 doi: 10.1017/CBO9780511794308.006 – ident: 2016121207400539000_5.4.405.51 doi: 10.1007/s10208-014-9191-2 – ident: 2016121207400539000_5.4.405.26 doi: 10.1088/1367-2630/14/9/095022 – ident: 2016121207400539000_5.4.405.44 doi: 10.1109/SAMPTA.2015.7148878 – volume: 14 start-page: 1017 year: 2013 ident: 2016121207400539000_5.4.405.14 article-title: Solving quadratic equations via PhaseLift when there are about as many equations as unknowns. publication-title: Found. Comput. Math. doi: 10.1007/s10208-013-9162-z – ident: 2016121207400539000_5.4.405.53 doi: 10.1109/ALLERTON.2010.5706969 – ident: 2016121207400539000_5.4.405.65 doi: 10.1088/0305-4470/39/43/009 – volume: 59 start-page: 7491 year: 2013 ident: 2016121207400539000_5.4.405.67 article-title: Normalized iterative hard thresholding for matrix completion. publication-title: SIAM J. Sci. Comput. – ident: 2016121207400539000_5.4.405.35 doi: 10.1017/CBO9780511840371 – ident: 2016121207400539000_5.4.405.22 doi: 10.1007/s00041-013-9305-2 – ident: 2016121207400539000_5.4.405.13 doi: 10.1137/110848074 – ident: 2016121207400539000_5.4.405.37 doi: 10.1109/SAMPTA.2015.7148917 – ident: 2016121207400539000_5.4.405.8 doi: 10.1214/08-AOS620 – ident: 2016121207400539000_5.4.405.36 doi: 10.1109/SAMPTA.2015.7148918 – ident: 2016121207400539000_5.4.405.41 – ident: 2016121207400539000_5.4.405.59 doi: 10.1137/070697835 – ident: 2016121207400539000_5.4.405.64 – ident: 2016121207400539000_5.4.405.6 doi: 10.1088/1367-2630/15/12/125020 – ident: 2016121207400539000_5.4.405.63 doi: 10.1088/1367-2630/15/12/123012 – ident: 2016121207400539000_5.4.405.10 doi: 10.1109/TIT.2008.929920 – ident: 2016121207400539000_5.4.405.38 – ident: 2016121207400539000_5.4.405.3 doi: 10.1109/CCC.2007.26 – ident: 2016121207400539000_5.4.405.45 doi: 10.1016/j.acha.2015.07.007 – ident: 2016121207400539000_5.4.405.61 doi: 10.1007/s10107-010-0422-2 – ident: 2016121207400539000_5.4.405.23 doi: 10.1109/TIT.2016.2570244 – ident: 2016121207400539000_5.4.405.55 doi: 10.1017/CBO9780511976667 – ident: 2016121207400539000_5.4.405.19 doi: 10.1007/s10208-012-9135-7 – ident: 2016121207400539000_5.4.405.21 doi: 10.1137/040616413 – ident: 2016121207400539000_5.4.405.17 doi: 10.1007/s10208-009-9045-5 – volume: 11 start-page: 2241 year: 2010 ident: 2016121207400539000_5.4.405.58 article-title: Restricted eigenvalue properties for correlated Gaussian designs. publication-title: J. Machine Learn. Res. – ident: 2016121207400539000_5.4.405.16 doi: 10.1109/TIT.2011.2111771 – ident: 2016121207400539000_5.4.405.62 doi: 10.1002/cpa.20227 – ident: 2016121207400539000_5.4.405.2 doi: 10.1109/TIT.2014.2366459 – ident: 2016121207400539000_5.4.405.18 – ident: 2016121207400539000_5.4.405.68 doi: 10.1007/s10208-011-9099-z – ident: 2016121207400539000_5.4.405.15 doi: 10.1109/TIT.2015.2399924 – volume: 21 start-page: 229 year: 2014 ident: 2016121207400539000_5.4.405.30 article-title: A partial derandomization of Phaselift using spherical designs. publication-title: J. Fourier Anal. Appl. doi: 10.1007/s00041-014-9361-2 – ident: 2016121207400539000_5.4.405.25 – ident: 2016121207400539000_5.4.405.50 doi: 10.1007/s00220-009-0890-5 – ident: 2016121207400539000_5.4.405.40 doi: 10.1109/SAMPTA.2015.7148874 |
SSID | ssib014146772 ssib051939125 ssj0000941605 |
Score | 2.291711 |
Snippet | The problem of recovering a matrix of low rank from an incomplete and possibly noisy set of linear measurements arises in a number of areas. In order to derive... |
SourceID | crossref oup |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 405 |
Title | Stable low-rank matrix recovery via null space properties |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZY-8LLBALEGENGQryE0Nwcx48bUFUgeGqlvUW2k7BUaVpNvWz8es6pncugoMFLVNmuXfd8-nwcn--YkDdcK1Q0MhfAwt2Iwz5F-Tp2NbgaRRxkOolR7_z1WzyZRZ8v2WV3gr9Xl6zVe_3joK7kf6wKZWBXVMn-g2XbTqEAPoN94QkWhue9bAyeIgqfquXOxbvXnQXm279xcJMLc7l1tqV0athjOkAbGhVRyxWGUduwwXkTxN4KGG0qJisBbLlYKlnLrbTSntuyZfIvm9xQRU-ebw6NNlebPbtPltX3Lv53ir4mntJj1awCCr7qv3Xw414Ex56cAthZIJOalwF5v4zfYVfWA1HUY8rIY71FNzLZr37jc5PrqlzIEi_nHpdy5_lRt3Q1x_W_rGhtnKE5YQ9T00Fqvn5EhgH8yGBAhucXHy_GDf34Ea4anYwYfVvhW7qbmyBM3yht29nbrK0wxsiMMTJj3PFyUDnZc1qmj8ix3W3QcwOdx-RBXj8hwsCGNrChBja0gQ0F2FCEDd3DhnaweUpm40_TDxPX3qDh6tATaxc8lIDLQBdeLqSKlWZ5IpIig12zxKVO5KzwMg11SoZcioxr7aMWW3uZFIUIn5FBvazz54RmKoFl3ReMcRVl3EugNtFCcSlZ4GXBCXnXzDjVNr083nJSpQeNcELets1XJq_Knxq-hr_v721e3LezU_KwA_NLMlhfb_IzcCrX6pUFw08tOXpS |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stable+low-rank+matrix+recovery+via+null+space+properties&rft.jtitle=Information+and+inference&rft.au=Kabanava%2C+Maryia&rft.au=Kueng%2C+Richard&rft.au=Rauhut%2C+Holger&rft.au=Terstiege%2C+Ulrich&rft.date=2016-12-01&rft.issn=2049-8764&rft.eissn=2049-8772&rft.volume=5&rft.issue=4&rft.spage=405&rft.epage=441&rft_id=info:doi/10.1093%2Fimaiai%2Fiaw014&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_imaiai_iaw014 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2049-8764&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2049-8764&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2049-8764&client=summon |