Stable low-rank matrix recovery via null space properties

The problem of recovering a matrix of low rank from an incomplete and possibly noisy set of linear measurements arises in a number of areas. In order to derive rigorous recovery results, the measurement map is usually modelled probabilistically. We derive sufficient conditions on the minimal amount...

Full description

Saved in:
Bibliographic Details
Published inInformation and inference Vol. 5; no. 4; pp. 405 - 441
Main Authors Kabanava, Maryia, Kueng, Richard, Rauhut, Holger, Terstiege, Ulrich
Format Journal Article
LanguageEnglish
Published Oxford University Press 01.12.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The problem of recovering a matrix of low rank from an incomplete and possibly noisy set of linear measurements arises in a number of areas. In order to derive rigorous recovery results, the measurement map is usually modelled probabilistically. We derive sufficient conditions on the minimal amount of measurements ensuring recovery via convex optimization. We establish our results via certain properties of the null space of the measurement map. In the setting where the measurements are realized as Frobenius inner products with independent standard Gaussian random matrices, we show that $10r(n_1+n_2)$ measurements are enough to uniformly and stably recover an $n_1\times n_2$ matrix of rank at most $r$ . We then significantly generalize this result by only requiring independent mean zero, variance one entries with four finite moments at the cost of replacing $10$ by some universal constant. We also study the case of recovering Hermitian rank- $r$ matrices from measurement matrices proportional to rank-one projectors. For $m\geq Crn$ rank-one projective measurements onto independent standard Gaussian vectors, we show that nuclear norm minimization uniformly and stably reconstructs Hermitian rank- $r$ matrices with high probability. Next, we partially de-randomize this by establishing an analogous statement for projectors onto independent elements of a complex projective 4-designs at the cost of a slightly higher sampling rate $m\geq Crn\log n$ . Moreover, if the Hermitian matrix to be recovered is known to be positive semidefinite, then we show that the nuclear norm minimization approach may be replaced by minimizing the $\ell_q$ -norm of the residual subject to the positive semidefinite constraint (e.g. by a positive semidefinite least squares problem). Then no estimate of the noise level is required a priori. We discuss applications in quantum physics and the phase retrieval problem.
AbstractList The problem of recovering a matrix of low rank from an incomplete and possibly noisy set of linear measurements arises in a number of areas. In order to derive rigorous recovery results, the measurement map is usually modelled probabilistically. We derive sufficient conditions on the minimal amount of measurements ensuring recovery via convex optimization. We establish our results via certain properties of the null space of the measurement map. In the setting where the measurements are realized as Frobenius inner products with independent standard Gaussian random matrices, we show that $10r(n_1+n_2)$ measurements are enough to uniformly and stably recover an $n_1\times n_2$ matrix of rank at most $r$ . We then significantly generalize this result by only requiring independent mean zero, variance one entries with four finite moments at the cost of replacing $10$ by some universal constant. We also study the case of recovering Hermitian rank- $r$ matrices from measurement matrices proportional to rank-one projectors. For $m\geq Crn$ rank-one projective measurements onto independent standard Gaussian vectors, we show that nuclear norm minimization uniformly and stably reconstructs Hermitian rank- $r$ matrices with high probability. Next, we partially de-randomize this by establishing an analogous statement for projectors onto independent elements of a complex projective 4-designs at the cost of a slightly higher sampling rate $m\geq Crn\log n$ . Moreover, if the Hermitian matrix to be recovered is known to be positive semidefinite, then we show that the nuclear norm minimization approach may be replaced by minimizing the $\ell_q$ -norm of the residual subject to the positive semidefinite constraint (e.g. by a positive semidefinite least squares problem). Then no estimate of the noise level is required a priori. We discuss applications in quantum physics and the phase retrieval problem.
Author Terstiege, Ulrich
Kueng, Richard
Kabanava, Maryia
Rauhut, Holger
Author_xml – sequence: 1
  givenname: Maryia
  surname: Kabanava
  fullname: Kabanava, Maryia
  email: kabanava@mathc.rwth-aachen.de
  organization: Lehrstuhl C für Mathematik (Analysis), RWTH Aachen University, Pontdriesch 10, 52062 Aachen, Germany kabanava@mathc.rwth-aachen.de
– sequence: 2
  givenname: Richard
  surname: Kueng
  fullname: Kueng, Richard
  email: kabanava@mathc.rwth-aachen.de
  organization: University of Freiburg, Germany and Institute for Theoretical Physics, University of Cologne, Zülpicher Straβe 77, 50937 Köln, Germany rkueng@thp.uni-koeln.de
– sequence: 3
  givenname: Holger
  surname: Rauhut
  fullname: Rauhut, Holger
  email: rauhut@mathc.rwth-aachen.de
  organization: Lehrstuhl C für Mathematik (Analysis), RWTH Aachen University, Pontdriesch 10, 52062 Aachen, Germany
– sequence: 4
  givenname: Ulrich
  surname: Terstiege
  fullname: Terstiege, Ulrich
  email: terstiege@mathc.rwth-aachen.de
  organization: Lehrstuhl C für Mathematik (Analysis), RWTH Aachen University, Pontdriesch 10, 52062 Aachen, Germany
BookMark eNqFj01LAzEQhoNUsNYevefoJTbZ7NccpagVCh7U8zKbTSCYbpYkbe2_d2XFgyCeZuB93hmeSzLrfa8JuRb8VnCQK7tDi3Zl8chFfkbmGc-B1VWVzX72Mr8gyxhtOxIiL8dsTuAlYes0df7IAvbvdIcp2A8atPIHHU70YJH2e-doHFBpOgQ_6JCsjlfk3KCLevk9F-Tt4f51vWHb58en9d2WKckhsVzIrMJMGa4B27JVha6hNl0pAEUha9CF4Z0asxZlhdBVSolcglC8QzAgF4RNd1XwMQZtmiGMsuHUCN58qTeTejOpj7z8xSubMFnfp4DW_dm6mVp-P_zz4BOkq3Eh
CitedBy_id crossref_primary_10_1016_j_acha_2023_101595
crossref_primary_10_1093_imaiai_iaad050
crossref_primary_10_1002_cpa_21957
crossref_primary_10_1088_1751_8121_ab8111
crossref_primary_10_1007_s11766_020_4136_3
crossref_primary_10_1007_s00041_017_9579_x
crossref_primary_10_1109_TSP_2017_2659644
crossref_primary_10_1007_s00220_017_2950_6
crossref_primary_10_3389_fams_2019_00026
crossref_primary_10_1142_S0219530522500154
crossref_primary_10_1088_1751_8121_aa682e
crossref_primary_10_1142_S0219691320500915
crossref_primary_10_22331_q_2019_08_12_171
crossref_primary_10_1142_S0219530519410094
crossref_primary_10_1007_s10208_020_09479_4
crossref_primary_10_1103_PhysRevLett_121_170502
crossref_primary_10_1109_TSP_2020_3011016
crossref_primary_10_1109_TIT_2017_2746620
crossref_primary_10_1109_MSP_2018_2827108
crossref_primary_10_1093_imaiai_iaab024
crossref_primary_10_1109_TNNLS_2023_3289209
crossref_primary_10_1016_j_acha_2023_03_006
crossref_primary_10_1016_j_laa_2022_07_002
crossref_primary_10_22331_q_2023_07_11_1053
crossref_primary_10_1007_s43670_022_00035_5
crossref_primary_10_1007_s00041_020_09797_9
crossref_primary_10_3389_fams_2021_615573
crossref_primary_10_1137_21M1455000
Cites_doi 10.1109/TIT.2010.2044061
10.1016/j.acha.2015.05.004
10.1007/s00220-013-1671-8
10.1109/ISIT.2011.6033976
10.1103/PhysRevLett.105.150401
10.1109/ISIT.2010.5513471
10.1109/CDC.2008.4739332
10.1007/s00041-009-9065-1
10.1088/1751-8113/48/26/265303
10.1007/978-3-319-19749-4_2
10.1007/978-3-642-20212-4
10.1007/978-0-8176-4948-7_8
10.1093/imrn/rnv096
10.1007/BF01007479
10.1007/BFb0081737
10.1109/18.985947
10.1090/S0002-9939-04-07800-1
10.1093/imaiai/iau005
10.1137/100811404
10.1002/cpa.21432
10.1109/TIT.2015.2429594
10.1145/2699439
10.1007/978-1-4612-0653-8
10.1017/CBO9780511804441
10.1017/CBO9780511794308.006
10.1007/s10208-014-9191-2
10.1088/1367-2630/14/9/095022
10.1109/SAMPTA.2015.7148878
10.1007/s10208-013-9162-z
10.1109/ALLERTON.2010.5706969
10.1088/0305-4470/39/43/009
10.1017/CBO9780511840371
10.1007/s00041-013-9305-2
10.1137/110848074
10.1109/SAMPTA.2015.7148917
10.1214/08-AOS620
10.1109/SAMPTA.2015.7148918
10.1137/070697835
10.1088/1367-2630/15/12/125020
10.1088/1367-2630/15/12/123012
10.1109/TIT.2008.929920
10.1109/CCC.2007.26
10.1016/j.acha.2015.07.007
10.1007/s10107-010-0422-2
10.1109/TIT.2016.2570244
10.1017/CBO9780511976667
10.1007/s10208-012-9135-7
10.1137/040616413
10.1007/s10208-009-9045-5
10.1109/TIT.2011.2111771
10.1002/cpa.20227
10.1109/TIT.2014.2366459
10.1007/s10208-011-9099-z
10.1109/TIT.2015.2399924
10.1007/s00041-014-9361-2
10.1007/s00220-009-0890-5
10.1109/SAMPTA.2015.7148874
ContentType Journal Article
Copyright The authors 2016. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved. 2016
Copyright_xml – notice: The authors 2016. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved. 2016
DBID AAYXX
CITATION
DOI 10.1093/imaiai/iaw014
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
EISSN 2049-8772
EndPage 441
ExternalDocumentID 10_1093_imaiai_iaw014
10.1093/imaiai/iaw014
GroupedDBID 0R~
4.4
48X
AAOGV
AAPQZ
AAPXW
AARHZ
AASNB
AAUAY
AAVAP
ABDBF
ABDTM
ABPTD
ABQLI
ABWST
ABXVV
ACGFS
ACYTK
ADGZP
ADIPN
ADQBN
ADRDM
ADRTK
ADVEK
AEKKA
AETBJ
AFFZL
AGINJ
AGQXC
AJEEA
ALMA_UNASSIGNED_HOLDINGS
ATGXG
BAYMD
BCRHZ
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESX
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
H13
HZ~
JAVBF
KOP
KSI
KSN
NMDNZ
NOMLY
O9-
OCL
ODMLO
OJZSN
OK1
OWPYF
ROX
RUSNO
RXO
YXANX
AAYXX
ABAZT
ABDFA
ABEJV
ABGNP
ABPQP
ABVGC
ABVLG
ACUHS
ACUXJ
ADYJX
AJBYB
AJNCP
ALXQX
AMVHM
ANAKG
CITATION
JXSIZ
NU-
ID FETCH-LOGICAL-c309t-41327a2cf0e9ab6bc5e898fd619a15389e5f0dc9abba37a9d7cc14391c0da9f93
ISSN 2049-8764
IngestDate Thu Apr 24 23:00:51 EDT 2025
Tue Jul 01 03:06:19 EDT 2025
Wed Aug 28 03:22:00 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords low-rank matrix recovery
positive semidefinite least squares problem
phase retrieval
convex optimization
complex projective designs
nuclear norm minimization
random measurements
quantum state tomography
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c309t-41327a2cf0e9ab6bc5e898fd619a15389e5f0dc9abba37a9d7cc14391c0da9f93
OpenAccessLink https://academic.oup.com/imaiai/article-pdf/5/4/405/8395013/iaw014.pdf
PageCount 37
ParticipantIDs crossref_primary_10_1093_imaiai_iaw014
crossref_citationtrail_10_1093_imaiai_iaw014
oup_primary_10_1093_imaiai_iaw014
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20161201
2016-12-00
PublicationDateYYYYMMDD 2016-12-01
PublicationDate_xml – month: 12
  year: 2016
  text: 20161201
  day: 01
PublicationDecade 2010
PublicationTitle Information and inference
PublicationYear 2016
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References 2016121207400539000_5.4.405.47
2016121207400539000_5.4.405.46
2016121207400539000_5.4.405.45
2016121207400539000_5.4.405.44
2016121207400539000_5.4.405.43
2016121207400539000_5.4.405.42
2016121207400539000_5.4.405.41
2016121207400539000_5.4.405.40
Gross (2016121207400539000_5.4.405.30) 2014; 21
Mendelson (2016121207400539000_5.4.405.52) 2015; 62
Lee (2016121207400539000_5.4.405.48) 2010; 56
2016121207400539000_5.4.405.38
2016121207400539000_5.4.405.37
Raskutti (2016121207400539000_5.4.405.58) 2010; 11
2016121207400539000_5.4.405.36
2016121207400539000_5.4.405.35
2016121207400539000_5.4.405.34
2016121207400539000_5.4.405.33
2016121207400539000_5.4.405.32
2016121207400539000_5.4.405.31
2016121207400539000_5.4.405.71
2016121207400539000_5.4.405.70
2016121207400539000_5.4.405.3
2016121207400539000_5.4.405.2
2016121207400539000_5.4.405.5
2016121207400539000_5.4.405.4
2016121207400539000_5.4.405.7
2016121207400539000_5.4.405.6
2016121207400539000_5.4.405.9
2016121207400539000_5.4.405.8
2016121207400539000_5.4.405.1
2016121207400539000_5.4.405.27
2016121207400539000_5.4.405.26
Parikh (2016121207400539000_5.4.405.57) 2014; 1
2016121207400539000_5.4.405.25
2016121207400539000_5.4.405.69
2016121207400539000_5.4.405.24
2016121207400539000_5.4.405.68
Candès (2016121207400539000_5.4.405.14) 2013; 14
2016121207400539000_5.4.405.23
2016121207400539000_5.4.405.22
2016121207400539000_5.4.405.66
2016121207400539000_5.4.405.21
2016121207400539000_5.4.405.65
2016121207400539000_5.4.405.20
2016121207400539000_5.4.405.64
2016121207400539000_5.4.405.63
2016121207400539000_5.4.405.62
2016121207400539000_5.4.405.61
Liu (2016121207400539000_5.4.405.49) 2011; 24
2016121207400539000_5.4.405.60
Tanner (2016121207400539000_5.4.405.67) 2013; 59
2016121207400539000_5.4.405.29
2016121207400539000_5.4.405.28
2016121207400539000_5.4.405.16
2016121207400539000_5.4.405.15
2016121207400539000_5.4.405.59
2016121207400539000_5.4.405.13
2016121207400539000_5.4.405.12
2016121207400539000_5.4.405.56
2016121207400539000_5.4.405.11
2016121207400539000_5.4.405.55
2016121207400539000_5.4.405.10
2016121207400539000_5.4.405.54
2016121207400539000_5.4.405.53
2016121207400539000_5.4.405.51
2016121207400539000_5.4.405.50
Kech (2016121207400539000_5.4.405.39) 2015; 48
2016121207400539000_5.4.405.19
2016121207400539000_5.4.405.18
2016121207400539000_5.4.405.17
References_xml – ident: 2016121207400539000_5.4.405.12
  doi: 10.1109/TIT.2010.2044061
– ident: 2016121207400539000_5.4.405.31
  doi: 10.1016/j.acha.2015.05.004
– ident: 2016121207400539000_5.4.405.33
  doi: 10.1007/s00220-013-1671-8
– volume: 24
  start-page: 1638
  year: 2011
  ident: 2016121207400539000_5.4.405.49
  article-title: Universal low-rank matrix recovery from Pauli measurements.
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: 2016121207400539000_5.4.405.56
  doi: 10.1109/ISIT.2011.6033976
– ident: 2016121207400539000_5.4.405.71
– ident: 2016121207400539000_5.4.405.32
  doi: 10.1103/PhysRevLett.105.150401
– ident: 2016121207400539000_5.4.405.54
  doi: 10.1109/ISIT.2010.5513471
– ident: 2016121207400539000_5.4.405.60
  doi: 10.1109/CDC.2008.4739332
– ident: 2016121207400539000_5.4.405.5
  doi: 10.1007/s00041-009-9065-1
– volume: 48
  start-page: 265
  year: 2015
  ident: 2016121207400539000_5.4.405.39
  article-title: The role of topology in quantum tomography.
  publication-title: J. Phys. A Math. Theor.
  doi: 10.1088/1751-8113/48/26/265303
– ident: 2016121207400539000_5.4.405.43
– volume: 1
  start-page: 123
  year: 2014
  ident: 2016121207400539000_5.4.405.57
  article-title: Proximal algorithms.
  publication-title: Found. Trends Optim.
– volume: 56
  start-page: 4402
  year: 2010
  ident: 2016121207400539000_5.4.405.48
  article-title: ADMiRA: Atomic decomposition for minimum rank approximation.
  publication-title: IEEE Trans. Image Process.
– ident: 2016121207400539000_5.4.405.66
– ident: 2016121207400539000_5.4.405.69
  doi: 10.1007/978-3-319-19749-4_2
– ident: 2016121207400539000_5.4.405.47
  doi: 10.1007/978-3-642-20212-4
– ident: 2016121207400539000_5.4.405.24
– ident: 2016121207400539000_5.4.405.28
  doi: 10.1007/978-0-8176-4948-7_8
– ident: 2016121207400539000_5.4.405.42
  doi: 10.1093/imrn/rnv096
– ident: 2016121207400539000_5.4.405.34
  doi: 10.1007/BF01007479
– ident: 2016121207400539000_5.4.405.29
  doi: 10.1007/BFb0081737
– ident: 2016121207400539000_5.4.405.1
  doi: 10.1109/18.985947
– ident: 2016121207400539000_5.4.405.46
  doi: 10.1090/S0002-9939-04-07800-1
– ident: 2016121207400539000_5.4.405.4
  doi: 10.1093/imaiai/iau005
– ident: 2016121207400539000_5.4.405.27
  doi: 10.1137/100811404
– ident: 2016121207400539000_5.4.405.11
  doi: 10.1002/cpa.21432
– ident: 2016121207400539000_5.4.405.20
  doi: 10.1109/TIT.2015.2429594
– volume: 62
  start-page: 1
  year: 2015
  ident: 2016121207400539000_5.4.405.52
  article-title: Learning without concentration.
  publication-title: J. ACM
  doi: 10.1145/2699439
– ident: 2016121207400539000_5.4.405.7
  doi: 10.1007/978-1-4612-0653-8
– ident: 2016121207400539000_5.4.405.9
  doi: 10.1017/CBO9780511804441
– ident: 2016121207400539000_5.4.405.70
  doi: 10.1017/CBO9780511794308.006
– ident: 2016121207400539000_5.4.405.51
  doi: 10.1007/s10208-014-9191-2
– ident: 2016121207400539000_5.4.405.26
  doi: 10.1088/1367-2630/14/9/095022
– ident: 2016121207400539000_5.4.405.44
  doi: 10.1109/SAMPTA.2015.7148878
– volume: 14
  start-page: 1017
  year: 2013
  ident: 2016121207400539000_5.4.405.14
  article-title: Solving quadratic equations via PhaseLift when there are about as many equations as unknowns.
  publication-title: Found. Comput. Math.
  doi: 10.1007/s10208-013-9162-z
– ident: 2016121207400539000_5.4.405.53
  doi: 10.1109/ALLERTON.2010.5706969
– ident: 2016121207400539000_5.4.405.65
  doi: 10.1088/0305-4470/39/43/009
– volume: 59
  start-page: 7491
  year: 2013
  ident: 2016121207400539000_5.4.405.67
  article-title: Normalized iterative hard thresholding for matrix completion.
  publication-title: SIAM J. Sci. Comput.
– ident: 2016121207400539000_5.4.405.35
  doi: 10.1017/CBO9780511840371
– ident: 2016121207400539000_5.4.405.22
  doi: 10.1007/s00041-013-9305-2
– ident: 2016121207400539000_5.4.405.13
  doi: 10.1137/110848074
– ident: 2016121207400539000_5.4.405.37
  doi: 10.1109/SAMPTA.2015.7148917
– ident: 2016121207400539000_5.4.405.8
  doi: 10.1214/08-AOS620
– ident: 2016121207400539000_5.4.405.36
  doi: 10.1109/SAMPTA.2015.7148918
– ident: 2016121207400539000_5.4.405.41
– ident: 2016121207400539000_5.4.405.59
  doi: 10.1137/070697835
– ident: 2016121207400539000_5.4.405.64
– ident: 2016121207400539000_5.4.405.6
  doi: 10.1088/1367-2630/15/12/125020
– ident: 2016121207400539000_5.4.405.63
  doi: 10.1088/1367-2630/15/12/123012
– ident: 2016121207400539000_5.4.405.10
  doi: 10.1109/TIT.2008.929920
– ident: 2016121207400539000_5.4.405.38
– ident: 2016121207400539000_5.4.405.3
  doi: 10.1109/CCC.2007.26
– ident: 2016121207400539000_5.4.405.45
  doi: 10.1016/j.acha.2015.07.007
– ident: 2016121207400539000_5.4.405.61
  doi: 10.1007/s10107-010-0422-2
– ident: 2016121207400539000_5.4.405.23
  doi: 10.1109/TIT.2016.2570244
– ident: 2016121207400539000_5.4.405.55
  doi: 10.1017/CBO9780511976667
– ident: 2016121207400539000_5.4.405.19
  doi: 10.1007/s10208-012-9135-7
– ident: 2016121207400539000_5.4.405.21
  doi: 10.1137/040616413
– ident: 2016121207400539000_5.4.405.17
  doi: 10.1007/s10208-009-9045-5
– volume: 11
  start-page: 2241
  year: 2010
  ident: 2016121207400539000_5.4.405.58
  article-title: Restricted eigenvalue properties for correlated Gaussian designs.
  publication-title: J. Machine Learn. Res.
– ident: 2016121207400539000_5.4.405.16
  doi: 10.1109/TIT.2011.2111771
– ident: 2016121207400539000_5.4.405.62
  doi: 10.1002/cpa.20227
– ident: 2016121207400539000_5.4.405.2
  doi: 10.1109/TIT.2014.2366459
– ident: 2016121207400539000_5.4.405.18
– ident: 2016121207400539000_5.4.405.68
  doi: 10.1007/s10208-011-9099-z
– ident: 2016121207400539000_5.4.405.15
  doi: 10.1109/TIT.2015.2399924
– volume: 21
  start-page: 229
  year: 2014
  ident: 2016121207400539000_5.4.405.30
  article-title: A partial derandomization of Phaselift using spherical designs.
  publication-title: J. Fourier Anal. Appl.
  doi: 10.1007/s00041-014-9361-2
– ident: 2016121207400539000_5.4.405.25
– ident: 2016121207400539000_5.4.405.50
  doi: 10.1007/s00220-009-0890-5
– ident: 2016121207400539000_5.4.405.40
  doi: 10.1109/SAMPTA.2015.7148874
SSID ssib014146772
ssib051939125
ssj0000941605
Score 2.291711
Snippet The problem of recovering a matrix of low rank from an incomplete and possibly noisy set of linear measurements arises in a number of areas. In order to derive...
SourceID crossref
oup
SourceType Enrichment Source
Index Database
Publisher
StartPage 405
Title Stable low-rank matrix recovery via null space properties
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZY-8LLBALEGENGQryE0Nwcx48bUFUgeGqlvUW2k7BUaVpNvWz8es6pncugoMFLVNmuXfd8-nwcn--YkDdcK1Q0MhfAwt2Iwz5F-Tp2NbgaRRxkOolR7_z1WzyZRZ8v2WV3gr9Xl6zVe_3joK7kf6wKZWBXVMn-g2XbTqEAPoN94QkWhue9bAyeIgqfquXOxbvXnQXm279xcJMLc7l1tqV0athjOkAbGhVRyxWGUduwwXkTxN4KGG0qJisBbLlYKlnLrbTSntuyZfIvm9xQRU-ebw6NNlebPbtPltX3Lv53ir4mntJj1awCCr7qv3Xw414Ex56cAthZIJOalwF5v4zfYVfWA1HUY8rIY71FNzLZr37jc5PrqlzIEi_nHpdy5_lRt3Q1x_W_rGhtnKE5YQ9T00Fqvn5EhgH8yGBAhucXHy_GDf34Ea4anYwYfVvhW7qbmyBM3yht29nbrK0wxsiMMTJj3PFyUDnZc1qmj8ix3W3QcwOdx-RBXj8hwsCGNrChBja0gQ0F2FCEDd3DhnaweUpm40_TDxPX3qDh6tATaxc8lIDLQBdeLqSKlWZ5IpIig12zxKVO5KzwMg11SoZcioxr7aMWW3uZFIUIn5FBvazz54RmKoFl3ReMcRVl3EugNtFCcSlZ4GXBCXnXzDjVNr083nJSpQeNcELets1XJq_Knxq-hr_v721e3LezU_KwA_NLMlhfb_IzcCrX6pUFw08tOXpS
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stable+low-rank+matrix+recovery+via+null+space+properties&rft.jtitle=Information+and+inference&rft.au=Kabanava%2C+Maryia&rft.au=Kueng%2C+Richard&rft.au=Rauhut%2C+Holger&rft.au=Terstiege%2C+Ulrich&rft.date=2016-12-01&rft.issn=2049-8764&rft.eissn=2049-8772&rft.volume=5&rft.issue=4&rft.spage=405&rft.epage=441&rft_id=info:doi/10.1093%2Fimaiai%2Fiaw014&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_imaiai_iaw014
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2049-8764&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2049-8764&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2049-8764&client=summon