Investigation of microstructure and mechanical properties evolution in 7050 aluminum alloy and 316L stainless steel treated by laser shock peening

Laser shock peening (LSP) has been widely applied to enhance the mechanical properties of metallic materials by modifying their sub-surface microstructures. However, controversies still exist on whether grain refinement can be obtained after the LSP process. To investigate the effect caused by LSP i...

Full description

Saved in:
Bibliographic Details
Published inMaterials characterization Vol. 182; p. 111571
Main Authors Jing, Yandong, Fang, Xuewei, Xi, Naiyuan, Feng, Xianlu, Huang, Ke
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.12.2021
Subjects
Online AccessGet full text
ISSN1044-5803
DOI10.1016/j.matchar.2021.111571

Cover

Loading…
Abstract Laser shock peening (LSP) has been widely applied to enhance the mechanical properties of metallic materials by modifying their sub-surface microstructures. However, controversies still exist on whether grain refinement can be obtained after the LSP process. To investigate the effect caused by LSP in metallic materials, a 7050 aluminum alloy and 316L stainless steel, which are typically high and low stacking fault energy (SFE) materials, respectively, were selected for this study. The microstructure modified by different LSP cycles and energy densities in both materials was illustrated by Electron Backscatter Diffraction (EBSD). The result shows that no grain refinement was observed regardless of the laser cycles and energy density. The most evident change was the increase of dislocation density, and higher dislocation density was observed with the increase of LSP cycles and energy density. The hardness and residual stress measurements around the LSPed areas show that LSP can effectively introduce a plastic deformation layer ranging from 600~1300 μm. It was revealed from the tensile tests that the yield strength of both materials was improved after the LSP process with the scarification of their elongations. Moreover, a potential method to calculate the dynamic yield stress of metallic materials was put forward with the help of the LSP process. [Display omitted] •LSP was carried out on both high and low-stacking fault energy materials.•LSP increased the dislocation densities but did not induce grain refinement in the treated area.•Compressive residual stress and increased hardness were obtained at a depth ranging from 600 ~ 1300 μm.•A promising way to measure the dynamic yield stress of metallic materials is put forward.
AbstractList Laser shock peening (LSP) has been widely applied to enhance the mechanical properties of metallic materials by modifying their sub-surface microstructures. However, controversies still exist on whether grain refinement can be obtained after the LSP process. To investigate the effect caused by LSP in metallic materials, a 7050 aluminum alloy and 316L stainless steel, which are typically high and low stacking fault energy (SFE) materials, respectively, were selected for this study. The microstructure modified by different LSP cycles and energy densities in both materials was illustrated by Electron Backscatter Diffraction (EBSD). The result shows that no grain refinement was observed regardless of the laser cycles and energy density. The most evident change was the increase of dislocation density, and higher dislocation density was observed with the increase of LSP cycles and energy density. The hardness and residual stress measurements around the LSPed areas show that LSP can effectively introduce a plastic deformation layer ranging from 600~1300 μm. It was revealed from the tensile tests that the yield strength of both materials was improved after the LSP process with the scarification of their elongations. Moreover, a potential method to calculate the dynamic yield stress of metallic materials was put forward with the help of the LSP process. [Display omitted] •LSP was carried out on both high and low-stacking fault energy materials.•LSP increased the dislocation densities but did not induce grain refinement in the treated area.•Compressive residual stress and increased hardness were obtained at a depth ranging from 600 ~ 1300 μm.•A promising way to measure the dynamic yield stress of metallic materials is put forward.
ArticleNumber 111571
Author Xi, Naiyuan
Huang, Ke
Jing, Yandong
Fang, Xuewei
Feng, Xianlu
Author_xml – sequence: 1
  givenname: Yandong
  surname: Jing
  fullname: Jing, Yandong
  organization: State Key Laboratory of Mechanical Manufacturing System, School of Mechanical Engineering, Xi’an Jiaotong University, 710049 Xi'an, China
– sequence: 2
  givenname: Xuewei
  surname: Fang
  fullname: Fang, Xuewei
  organization: State Key Laboratory of Mechanical Manufacturing System, School of Mechanical Engineering, Xi’an Jiaotong University, 710049 Xi'an, China
– sequence: 3
  givenname: Naiyuan
  surname: Xi
  fullname: Xi, Naiyuan
  organization: State Key Laboratory of Mechanical Manufacturing System, School of Mechanical Engineering, Xi’an Jiaotong University, 710049 Xi'an, China
– sequence: 4
  givenname: Xianlu
  surname: Feng
  fullname: Feng, Xianlu
  organization: State Key Laboratory of Mechanical Manufacturing System, School of Mechanical Engineering, Xi’an Jiaotong University, 710049 Xi'an, China
– sequence: 5
  givenname: Ke
  surname: Huang
  fullname: Huang, Ke
  email: ke.huang@xjtu.edu.cn
  organization: State Key Laboratory of Mechanical Manufacturing System, School of Mechanical Engineering, Xi’an Jiaotong University, 710049 Xi'an, China
BookMark eNqFkEtuwjAURT2gUoF2CZW8AahfnJBEHVQV6gcJqZN2bBnnGUwdG9kOEtvoihs-o04Y3Ts5V7pnRAbOOyTkAdgUGMwet9NWJrWRYZqxDKYAUJQwIENgeT4pKsZvySjGLWNsVkE5JL8Lt8eYzFom4x31mrZGBR9T6FTqAlLpGtpiv-iMkpbugt9hSAYjxb233YkyjpasYFTarjWua_ti_eGEcpgtaUzSOIsx9g3R0hRQJmzo6kCtjBho3Hj1Q3eIzrj1HbnR0ka8v-SYfL-9fs0_JsvP98X8ZTlRnNVpkmnNS83KhvNZxksExXRdlbphK15BVUiZFauiUlpKUJlCgAaznOd1XUNT99SYPJ13j39jQC2USScNKUhjBTBxVCq24qJUHJWKs9KeLv7Ru2BaGQ5Xueczh_21vcEgojLoFDYmoEqi8ebKwh_orJr6
CitedBy_id crossref_primary_10_1016_j_matchar_2024_114354
crossref_primary_10_1016_j_jmrt_2024_02_170
crossref_primary_10_1016_j_jmatprotec_2024_118395
crossref_primary_10_1016_j_msea_2023_145699
crossref_primary_10_1016_j_optlastec_2023_109317
crossref_primary_10_3390_coatings12101556
crossref_primary_10_1016_j_ijhydene_2025_02_422
crossref_primary_10_1016_j_jmapro_2024_07_096
crossref_primary_10_1111_ffe_14440
crossref_primary_10_1016_j_matchar_2023_112907
crossref_primary_10_1016_j_ijfatigue_2022_107033
crossref_primary_10_1016_j_ijmachtools_2023_104029
crossref_primary_10_1016_j_optlastec_2023_110180
crossref_primary_10_1080_17452759_2023_2273955
crossref_primary_10_1002_adem_202201843
crossref_primary_10_1016_j_msea_2023_144599
crossref_primary_10_1080_17452759_2024_2370956
crossref_primary_10_1016_j_jma_2024_04_017
crossref_primary_10_1108_ILT_01_2024_0007
crossref_primary_10_1016_j_jmapro_2025_03_064
crossref_primary_10_1007_s11771_023_5267_y
crossref_primary_10_1016_j_ijmachtools_2023_104061
crossref_primary_10_1007_s40962_023_01248_7
crossref_primary_10_1016_j_jmst_2022_02_024
crossref_primary_10_1177_09544054241309163
crossref_primary_10_1002_pc_29740
crossref_primary_10_1016_j_addma_2023_103652
crossref_primary_10_1016_j_mtcomm_2024_108740
crossref_primary_10_3390_photonics10010096
crossref_primary_10_1016_j_surfin_2024_105672
crossref_primary_10_1109_TIM_2021_3139653
crossref_primary_10_2139_ssrn_4184962
crossref_primary_10_3390_cryst12101451
crossref_primary_10_1016_j_addma_2023_103550
crossref_primary_10_1016_j_jmrt_2024_01_090
crossref_primary_10_1016_j_optlaseng_2024_108531
Cites_doi 10.1023/A:1004331205389
10.1016/j.surfcoat.2020.125698
10.1016/j.measurement.2019.04.082
10.1016/j.msea.2019.138603
10.1016/j.surfcoat.2020.125403
10.1016/j.surfcoat.2019.125284
10.1016/j.msea.2012.05.080
10.1007/s12598-021-01796-z
10.1007/s10853-007-1502-4
10.1016/j.jmatprotec.2018.11.024
10.1016/j.surfcoat.2017.08.009
10.1016/j.matdes.2011.08.022
10.1016/j.matdes.2020.108873
10.1016/j.actamat.2010.01.056
10.1016/S1359-6454(03)00117-4
10.1016/j.optlastec.2019.105784
10.1016/j.ijmecsci.2016.03.022
10.1007/BF00326477
10.1080/14786437008238426
10.1016/j.apsusc.2014.02.128
10.1007/BF02327502
10.1016/j.jmapro.2021.02.049
10.1016/j.optlastec.2019.03.026
10.1016/j.actamat.2017.01.050
10.1016/j.actamat.2012.06.017
10.1016/j.matchar.2018.05.010
10.1016/j.actamat.2014.09.032
10.1016/j.wear.2005.04.014
10.1016/j.msea.2015.08.084
10.1016/j.actamat.2010.06.010
10.1016/S1359-6454(97)00432-1
10.1016/j.jmatprotec.2007.11.147
10.1016/j.msea.2019.05.079
10.1016/S0143-8166(00)00083-X
10.1179/026708301101510087
10.1016/j.msea.2012.04.002
10.1016/j.surfcoat.2018.06.043
10.1016/j.actamat.2005.03.037
10.1016/j.surfcoat.2010.03.015
10.1016/j.jmatprotec.2009.03.004
10.1016/j.optlastec.2020.106446
10.1016/j.ijfatigue.2010.12.016
10.1016/j.matchar.2020.110382
10.1016/j.msea.2020.140168
10.1016/j.msea.2007.02.004
10.1016/j.surfcoat.2008.04.080
10.1007/s11661-015-3035-9
10.1016/0921-5093(95)10084-9
10.1016/j.jmatprotec.2006.03.170
10.1007/BF02641927
10.1016/j.actamat.2010.03.026
10.1016/j.optlaseng.2020.106052
10.1016/j.msea.2013.04.070
10.1016/j.jallcom.2016.04.179
10.1016/j.optlastec.2019.105917
10.1088/1757-899X/89/1/012038
10.1063/1.346783
10.1002/adem.202001216
10.1016/j.actamat.2016.10.044
10.1016/j.matlet.2020.127674
10.1016/j.actamat.2011.03.013
ContentType Journal Article
Copyright 2021 Elsevier Inc.
Copyright_xml – notice: 2021 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.matchar.2021.111571
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
ExternalDocumentID 10_1016_j_matchar_2021_111571
S1044580321006938
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXKI
AAXUO
ABFNM
ABJNI
ABMAC
ABNEU
ABTAH
ABWVN
ABXDB
ABXRA
ACDAQ
ACGFS
ACNNM
ACRLP
ACRPL
ADBBV
ADEZE
ADMUD
ADNMO
AEBSH
AEKER
AENEX
AEZYN
AFJKZ
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HX~
HZ~
IHE
J1W
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SEW
SMS
SPC
SPCBC
SPD
SSM
SSQ
SSZ
T5K
WH7
WUQ
XPP
ZMT
ZY4
~G-
AATTM
AAYWO
AAYXX
AEIPS
AEUPX
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c309t-2ff37f07d336237e1c0f987fd0b38185aa25b58cfaa1c2ce11de24349991d9d33
IEDL.DBID .~1
ISSN 1044-5803
IngestDate Tue Jul 01 01:36:06 EDT 2025
Thu Apr 24 22:57:45 EDT 2025
Sat Dec 28 15:52:41 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Stacking fault energy
Laser shock peening
Plastic deformation
Residual stress
Grain refinement
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c309t-2ff37f07d336237e1c0f987fd0b38185aa25b58cfaa1c2ce11de24349991d9d33
ParticipantIDs crossref_citationtrail_10_1016_j_matchar_2021_111571
crossref_primary_10_1016_j_matchar_2021_111571
elsevier_sciencedirect_doi_10_1016_j_matchar_2021_111571
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2021
2021-12-00
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: December 2021
PublicationDecade 2020
PublicationTitle Materials characterization
PublicationYear 2021
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Meng, Wang, Tan, Cai, Zhou, Liu (bb0120) 2020
Sánchez-Santana, Rubio-González, Gomez-Rosas, Ocaña, Molpeceres, Porro, Morales (bb0135) 2006; 260
Leap, Rankin, Harrison, Hackel, Nemeth, Candela (bb0010) 2011; 33
Srivastava, Hloch, Gubeljak, Milkovic, Chattopadhyaya, Klich (bb0055) 2019; 143
Byun (bb0195) 11, 2003; 51
Wang, Sun, Lu, Chen, Bi, Ni (bb0040) 2020; 385
Thomas, Lindley, Rugg, Jackson (bb0185) 2012; 60
Gill, Telang, Ye, Mannava, Qian, Vasudevan (bb0020) 2018; 142
Ren, Chen, Jiao, Yang, Zhou, Tong (bb0125) 2020; 121
Petronić, Čolić, Đorđević, Milovanović, Burzić, Vučetić (bb0180) 2020; 129
Dorman, Toparli, Smyth, Cini, Fitzpatrick, Irving (bb0085) 2012; 548
Peyre, Fabbro, Merrien, Lieurade (bb0110) 1996; 210
Peyre, Berthe, Scherpereel, Fabbro (bb0115) 1998; 33
Schramm, Reed (bb0235) 1975; 6
Ding, Ye (bb0305) 2006; 178
N. Kalentics, K. Huang, M. Ortega Varela de Seijas, A. Burn, V. Romano, R.E. Logé, Laser shock peening: A promising tool for tailoring metallic microstructures in selective laser melting, J. Mater. Process. Technol. 266 (2019) 612-618, doi
Peyre, Fabbro (bb0005) 1995; 27
Lee, Shin, Oh, Ha, Kim (bb0200) 2010; 58
Kun, Haifeng, Fei, Jiaxiang, Haoxue (bb0325) 2019; 116
Shen, Shukla, Subramaniyan, Zammit, Swanson, Lawrence, Fitzpatrick (bb0145) 2020; 131
Zhang, Xiao, Fang, Zhang, Logé, Huang (bb0280) 2020; 193
Gao, Wu (bb0080) 2011; 59
Marinelli, Martina, Ganguly, Williams (bb0275) 2020; 32
Fang, Li, Li, Huang, Zhang, Lu (bb0270) 2020; 269
Wang, Liu, Ma, Lu, Wang, Lu, Gu, Zhang (bb0320) 2021; 64
Sencer, Maloy, Gray (bb0250) 11, 2005; 53
.
Everaerts, Song, Nagarajan, Korsunsky (bb0100) 2018; 349
Lu, Wu, Sun, Luo, Zhang, Cai, Cui, Luo (bb0175) 2017; 127
Wei, Ling (bb0310) 2014; 301
C.H. Yang, P.D. Hodgson, Q.C. Liu, L. Ye, Geometrical effects on residual stresses in 7050-T7451 aluminum alloy rods subject to laser shock peening, J. Mater. Process. Technol. 201(1-3, 2008) 303-309, doi
Agnoli, Bernacki, Logé, Franchet, Laigo, Bozzolo (bb0265) 2015; 46
Nobre, Kornmeier, Dias, Scholtes (bb0070) 2000; 40
Hammersley, Hackel, Harris (bb0300) 2000; 34
Sun, Che, Cao, Zou, Wu, Guo, Zhu (bb0130) 2020; 383
B.N. Mordyuk, Y.V. Milman, M.O. Iefimov, G.I. Prokopenko, V.V. Silberschmidt, M.I. Danylenko, A.V. Kotko, Characterization of ultrasonically peened and laser-shock peened surface layers of AISI 321 stainless steel, Surf. Coat. Technol. 202(19, 2008) 4875-4883, doi
Lu, Luo, Zhang, Cui, Sun, Zhou, Zhang, You, Chen, Zhong (bb0220) 2010; 58
Moussa, Bernacki, Besnard, Bozzolo (bb0260) 2015; 89
Zabeen, Preuss, Withers (bb0090) 2015; 83
Fang, Zhang, Chen, Huang, Xue, Wang, Zhao, Lu (bb0050) 2021; 800
Shen, Li, Sun, Wang, Zuo (bb0205) 2012; 552
C.Y. Zhang, Y.L. Dong, C. Ye, Recent developments and novel applications of laser shock peening: a review, Adv. Eng. Mater. 2001216, doi
Nikitin, Altenberger (bb0060) 2007; 465
Geng, Dong, Wang, Mei, Tang, Duan (bb0105) 2020; 123
Halilovič, Issa, Wallin, Hallberg, Ristinmaa (bb0095) 2016; 111-112
Shen, Shukla, Nath, Lawrence (bb0140) 2017; 327
Ashby (bb0255) 2006; 21
Peyre, Carboni, Forget, Beranger, Lemaitre, Stuart (bb0160) 16, 2007; 42
Zhou, Ren, Yang, Tong, Chen (bb0190) 2020; 771
Li, Huang, Lin, Wang (bb0150) 11, 2021; 40
Wang, Zhang, Chen, Zhou, Ge, Lu, Li (bb0155) 2015; 647
Mannava, McDaniel, Cowie (bb0015) 1996
Zhou, Li, He, He, Nie, Chen, Lai, An (bb0330) 2013; 578
Rossini, Dassisti, Benyounis, Olabi (bb0245) 2012; 35
Withers, Bhadeshia (bb0290) 2013; 17
Zhang, You, Lu, Cui, Jiang, Ren (bb0165) 2010; 204
Lu, Luo, Zhang, Sun, Gu, Zhou, Ren, Zhang, Zhang, Chen, Cui, Jiang, Feng, Zhang (bb0170) 2010; 58
Lainé, Knowles, Doorbar, Cutts, Rugg (bb0035) 2017; 123
Fabbro, Fournier, Ballard, Devaux, Virmont (bb0240) 1990; 68
Ge, Xiang (bb0025) 2016; 680
Schulthess, Turchi, Gonis, Nieh (bb0210) 1998; 46
Kalentics, Boillat, Peyre, Ćirić-Kostić, Bogojević, Logé (bb0295) 2017; 16
Molnár, Sun, Lu, Li, Engberg, Vitos (bb0215) 2019; 759
Lopez-Sanchez, Tommasi, Barou, Quey (bb0285) 2020; 165
Humphreys, Rohrer, Rollett (bb0230) 2017
Rämö, Kuokkala, Vuoristo (bb0315) 2009; 209
Zhang, Lu, Luo (bb0065) 2013
Nikitin (10.1016/j.matchar.2021.111571_bb0060) 2007; 465
Sun (10.1016/j.matchar.2021.111571_bb0130) 2020; 383
Peyre (10.1016/j.matchar.2021.111571_bb0160) 2007; 42
Zhou (10.1016/j.matchar.2021.111571_bb0190) 2020; 771
Ashby (10.1016/j.matchar.2021.111571_bb0255) 2006; 21
Meng (10.1016/j.matchar.2021.111571_bb0120) 2020
Srivastava (10.1016/j.matchar.2021.111571_bb0055) 2019; 143
Zhou (10.1016/j.matchar.2021.111571_bb0330) 2013; 578
Everaerts (10.1016/j.matchar.2021.111571_bb0100) 2018; 349
Geng (10.1016/j.matchar.2021.111571_bb0105) 2020; 123
Wang (10.1016/j.matchar.2021.111571_bb0155) 2015; 647
Sánchez-Santana (10.1016/j.matchar.2021.111571_bb0135) 2006; 260
Gao (10.1016/j.matchar.2021.111571_bb0080) 2011; 59
Petronić (10.1016/j.matchar.2021.111571_bb0180) 2020; 129
Peyre (10.1016/j.matchar.2021.111571_bb0005) 1995; 27
10.1016/j.matchar.2021.111571_bb0225
Sencer (10.1016/j.matchar.2021.111571_bb0250) 2005; 53
Ge (10.1016/j.matchar.2021.111571_bb0025) 2016; 680
Byun (10.1016/j.matchar.2021.111571_bb0195) 2003; 51
Fang (10.1016/j.matchar.2021.111571_bb0050) 2021; 800
Lu (10.1016/j.matchar.2021.111571_bb0175) 2017; 127
Gill (10.1016/j.matchar.2021.111571_bb0020) 2018; 142
Rämö (10.1016/j.matchar.2021.111571_bb0315) 2009; 209
Fabbro (10.1016/j.matchar.2021.111571_bb0240) 1990; 68
Peyre (10.1016/j.matchar.2021.111571_bb0110) 1996; 210
Rossini (10.1016/j.matchar.2021.111571_bb0245) 2012; 35
Lu (10.1016/j.matchar.2021.111571_bb0220) 2010; 58
Hammersley (10.1016/j.matchar.2021.111571_bb0300) 2000; 34
Ren (10.1016/j.matchar.2021.111571_bb0125) 2020; 121
Zhang (10.1016/j.matchar.2021.111571_bb0165) 2010; 204
Kun (10.1016/j.matchar.2021.111571_bb0325) 2019; 116
Leap (10.1016/j.matchar.2021.111571_bb0010) 2011; 33
Zhang (10.1016/j.matchar.2021.111571_bb0280) 2020; 193
Shen (10.1016/j.matchar.2021.111571_bb0205) 2012; 552
Wei (10.1016/j.matchar.2021.111571_bb0310) 2014; 301
Shen (10.1016/j.matchar.2021.111571_bb0140) 2017; 327
Thomas (10.1016/j.matchar.2021.111571_bb0185) 2012; 60
Agnoli (10.1016/j.matchar.2021.111571_bb0265) 2015; 46
Mannava (10.1016/j.matchar.2021.111571_bb0015) 1996
Kalentics (10.1016/j.matchar.2021.111571_bb0295) 2017; 16
Shen (10.1016/j.matchar.2021.111571_bb0145) 2020; 131
Schramm (10.1016/j.matchar.2021.111571_bb0235) 1975; 6
Moussa (10.1016/j.matchar.2021.111571_bb0260) 2015; 89
10.1016/j.matchar.2021.111571_bb0045
Humphreys (10.1016/j.matchar.2021.111571_bb0230) 2017
Marinelli (10.1016/j.matchar.2021.111571_bb0275) 2020; 32
Wang (10.1016/j.matchar.2021.111571_bb0320) 2021; 64
Nobre (10.1016/j.matchar.2021.111571_bb0070) 2000; 40
Lu (10.1016/j.matchar.2021.111571_bb0170) 2010; 58
Fang (10.1016/j.matchar.2021.111571_bb0270) 2020; 269
Zhang (10.1016/j.matchar.2021.111571_bb0065) 2013
Zabeen (10.1016/j.matchar.2021.111571_bb0090) 2015; 83
Peyre (10.1016/j.matchar.2021.111571_bb0115) 1998; 33
Ding (10.1016/j.matchar.2021.111571_bb0305) 2006; 178
Li (10.1016/j.matchar.2021.111571_bb0150) 2021; 40
Withers (10.1016/j.matchar.2021.111571_bb0290) 2013; 17
Lee (10.1016/j.matchar.2021.111571_bb0200) 2010; 58
Lainé (10.1016/j.matchar.2021.111571_bb0035) 2017; 123
Molnár (10.1016/j.matchar.2021.111571_bb0215) 2019; 759
10.1016/j.matchar.2021.111571_bb0030
Wang (10.1016/j.matchar.2021.111571_bb0040) 2020; 385
10.1016/j.matchar.2021.111571_bb0075
Lopez-Sanchez (10.1016/j.matchar.2021.111571_bb0285) 2020; 165
Halilovič (10.1016/j.matchar.2021.111571_bb0095) 2016; 111-112
Schulthess (10.1016/j.matchar.2021.111571_bb0210) 1998; 46
Dorman (10.1016/j.matchar.2021.111571_bb0085) 2012; 548
References_xml – volume: 46
  start-page: 2215
  year: 1998
  end-page: 2221
  ident: bb0210
  article-title: Systematic study of stacking fault energies of random Al-based alloys
  publication-title: Acta Mater.
– volume: 127
  start-page: 252
  year: 2017
  end-page: 266
  ident: bb0175
  article-title: Microstructural response and grain refinement mechanism of commercially pure titanium subjected to multiple laser shock peening impacts
  publication-title: Acta Mater.
– volume: 123
  start-page: 105917
  year: 2020
  end-page: 105924
  ident: bb0105
  article-title: Evolutions of microstructure, phase, microhardness, and residual stress of multiple laser shock peened Ni-based single crystal superalloy after short-term thermal exposure
  publication-title: Opt. Laser Technol.
– volume: 53
  start-page: 3293
  year: 11, 2005
  end-page: 3303
  ident: bb0250
  article-title: The influence of shock-pulse shape on the structure/property behavior of copper and 316 L austenitic stainless steel
  publication-title: Acta Mater.
– volume: 123
  start-page: 350
  year: 2017
  end-page: 361
  ident: bb0035
  article-title: Microstructural characterisation of metallic shot peened and laser shock peened Ti–6Al–4V
  publication-title: Acta Mater.
– volume: 58
  start-page: 3173
  year: 2010
  end-page: 3186
  ident: bb0200
  article-title: Correlation between stacking fault energy and deformation microstructure in high-interstitial-alloyed austenitic steels
  publication-title: Acta Mater.
– volume: 64
  start-page: 1273
  year: 2021
  end-page: 1286
  ident: bb0320
  article-title: Laser shock micro-bulk forming: Numerical simulation and experimental research
  publication-title: J. Manuf. Processes
– volume: 647
  start-page: 7
  year: 2015
  end-page: 14
  ident: bb0155
  article-title: Effects of laser shock peening on stress corrosion behavior of 7075 aluminum alloy laser welded joints
  publication-title: Mater. Sci. Eng. A
– volume: 68
  start-page: 775
  year: 1990
  end-page: 784
  ident: bb0240
  article-title: Physical study of laser-produced plasma in confined geometry
  publication-title: J. Appl. Phys.
– volume: 210
  start-page: 102
  year: 1996
  end-page: 113
  ident: bb0110
  article-title: Laser shock processing of aluminium alloys. Application to high cycle fatigue behaviour
  publication-title: Mater. Sci. Eng. A
– volume: 143
  start-page: 81
  year: 2019
  end-page: 92
  ident: bb0055
  article-title: Surface integrity and residual stress analysis of pulsed water jet peened stainless steel surfaces
  publication-title: Measurement
– volume: 35
  start-page: 572
  year: 2012
  end-page: 588
  ident: bb0245
  article-title: Methods of measuring residual stresses in components
  publication-title: Mater. Des.
– volume: 771
  start-page: 138603
  year: 2020
  end-page: 138614
  ident: bb0190
  article-title: Tensile behavior of nickel with gradient microstructure produced by laser shock peening
  publication-title: Mater. Sci. Eng. A
– year: 1996
  ident: bb0015
  article-title: Laser shock peened rotor components for turbomachinery
– volume: 34
  start-page: 327
  year: 2000
  end-page: 337
  ident: bb0300
  article-title: Surface prestressing to improve fatigue strength of components by laser shot peening
  publication-title: Opt. Lasers Eng.
– volume: 59
  start-page: 3737
  year: 2011
  end-page: 3747
  ident: bb0080
  article-title: Experimental investigation and fatigue life prediction for 7475-T7351 aluminum alloy with and without shot peening-induced residual stresses
  publication-title: Acta Mater.
– volume: 327
  start-page: 101
  year: 2017
  end-page: 109
  ident: bb0140
  article-title: Improvement in mechanical properties of titanium alloy (Ti-6Al-7Nb) subject to multiple laser shock peening
  publication-title: Surf. Coat. Technol.
– volume: 301
  start-page: 557
  year: 2014
  end-page: 563
  ident: bb0310
  article-title: Numerical modeling of residual stress induced by laser shock processing
  publication-title: Appl. Surf. Sci.
– volume: 46
  start-page: 4405
  year: 2015
  end-page: 4421
  ident: bb0265
  article-title: Selective Growth of Low Stored Energy Grains During δ Sub-solvus Annealing in the Inconel 718 Nickel-Based superalloy
  publication-title: Metall Mater. Trans. A
– volume: 260
  start-page: 847
  year: 2006
  end-page: 854
  ident: bb0135
  article-title: Wear and friction of 6061-T6 aluminum alloy treated by laser shock processing
  publication-title: Wear
– volume: 58
  start-page: 5354
  year: 2010
  end-page: 5362
  ident: bb0170
  article-title: Grain refinement mechanism of multiple laser shock processing impacts on ANSI 304 stainless steel
  publication-title: Acta Mater.
– volume: 193
  start-page: 108873
  year: 2020
  end-page: 108886
  ident: bb0280
  article-title: A critical assessment of experimental investigation of dynamic recrystallization of metallic materials
  publication-title: Mater. Des.
– volume: 58
  start-page: 3984
  year: 2010
  end-page: 3994
  ident: bb0220
  article-title: Grain refinement of LY2 aluminum alloy induced by ultra-high plastic strain during multiple laser shock processing impacts
  publication-title: Acta Mater.
– volume: 121
  start-page: 105784
  year: 2020
  end-page: 105793
  ident: bb0125
  article-title: Fatigue behavior of double-sided laser shock peened Ti-6Al-4V thin blade subjected to foreign object damage
  publication-title: Opt. Laser Technol.
– reference: N. Kalentics, K. Huang, M. Ortega Varela de Seijas, A. Burn, V. Romano, R.E. Logé, Laser shock peening: A promising tool for tailoring metallic microstructures in selective laser melting, J. Mater. Process. Technol. 266 (2019) 612-618, doi:
– volume: 116
  start-page: 189
  year: 2019
  end-page: 195
  ident: bb0325
  article-title: Research on the dynamic yield strength and forming depth of microscale laser shock imprinting
  publication-title: Opt. Laser Technol.
– volume: 111-112
  start-page: 24
  year: 2016
  end-page: 34
  ident: bb0095
  article-title: Prediction of the residual state in 304 austenitic steel after laser shock peening – Effects of plastic deformation and martensitic phase transformation
  publication-title: Int. J. Mech. Sci.
– volume: 269
  start-page: 127674
  year: 2020
  end-page: 127677
  ident: bb0270
  article-title: Effect of post heat treatment on the microstructure and mechanical properties of wire-arc additively manufactured A357 alloy components
  publication-title: Mater. Lett.
– volume: 33
  start-page: 1421
  year: 1998
  end-page: 1429
  ident: bb0115
  article-title: Laser-shock processing of aluminium-coated 55C1 steel in water-confinement regime, characterization and application to high-cycle fatigue behaviour
  publication-title: J. Mater. Sci.
– volume: 129
  start-page: 106052
  year: 2020
  end-page: 106059
  ident: bb0180
  article-title: Effect of laser shock peening with and without protective coating on the microstructure and mechanical properties of Ti-alloy
  publication-title: Opt. Lasers Eng.
– volume: 209
  start-page: 5186
  year: 2009
  end-page: 5194
  ident: bb0315
  article-title: Influence of strain rate and adiabatic heating on the deformation behavior of cold heading steels
  publication-title: J. Mater. Process. Technol.
– volume: 800
  start-page: 140168
  year: 2021
  end-page: 140178
  ident: bb0050
  article-title: Microstructure evolution of wire-arc additively manufactured 2319 aluminum alloy with interlayer hammering
  publication-title: Mater. Sci. Eng.,A
– volume: 16
  start-page: 90
  year: 2017
  end-page: 97
  ident: bb0295
  article-title: Tailoring residual stress profile of Selective Laser Melted parts by Laser Shock Peening
  publication-title: Addit. Manuf.
– volume: 349
  start-page: 719
  year: 2018
  end-page: 724
  ident: bb0100
  article-title: Evaluation of macro- and microscopic residual stresses in laser shock-peened titanium alloy by FIB-DIC ring-core milling with different core diameters
  publication-title: Surf. Coat. Technol.
– volume: 33
  start-page: 788
  year: 2011
  end-page: 799
  ident: bb0010
  article-title: Effects of laser peening on fatigue life in an arrestment hook shank application for Naval aircraft
  publication-title: Int. J. Fatigue
– volume: 131
  year: 2020
  ident: bb0145
  article-title: Residual stresses induced by laser shock peening in orthopaedic Ti-6Al-7Nb alloy
  publication-title: Opt. Laser Technol.
– volume: 6
  start-page: 1345
  year: 1975
  ident: bb0235
  article-title: Stacking fault energies of seven commercial austenitic stainless steels
  publication-title: Metall. Trans. A
– volume: 21
  start-page: 399
  year: 2006
  end-page: 424
  ident: bb0255
  article-title: The deformation of plastically non-homogeneous materials
  publication-title: Philos. Mag
– volume: 27
  start-page: 1213
  year: 1995
  end-page: 1229
  ident: bb0005
  article-title: Laser shock processing: a review of the physics and applications
  publication-title: Opt. Quantum Electron.
– volume: 578
  start-page: 181
  year: 2013
  end-page: 186
  ident: bb0330
  article-title: Deforming TC6 titanium alloys at ultrahigh strain rates during multiple laser shock peening
  publication-title: Mater. Sci. Eng. A
– volume: 51
  start-page: 3063
  year: 11, 2003
  end-page: 3071
  ident: bb0195
  article-title: On the stress dependence of partial dislocation separation and deformation microstructure in austenitic stainless steels
  publication-title: Acta Mater.
– start-page: 125698
  year: 2020
  end-page: 125710
  ident: bb0120
  article-title: Gradient microstructure and vibration fatigue properties of 2024-T351 aluminium alloy treated by laser shock peening
  publication-title: Surf. Coat. Technol.
– volume: 680
  start-page: 544
  year: 2016
  end-page: 552
  ident: bb0025
  article-title: Effect of laser shock peening on microstructure and fatigue crack growth rate of AZ31B magnesium alloy
  publication-title: J. Alloys Compd.
– volume: 40
  start-page: 289
  year: 2000
  end-page: 297
  ident: bb0070
  article-title: Use of the hole-drilling method for measuring residual stresses in highly stressed shot-peened surfaces
  publication-title: Exp. Mech.
– volume: 385
  start-page: 125403
  year: 2020
  end-page: 125421
  ident: bb0040
  article-title: Microstructural characterization and mechanical behavior of ultrasonic impact peened and laser shock peened AISI 316L stainless steel
  publication-title: Surf. Coat. Technol.
– volume: 552
  start-page: 514
  year: 2012
  end-page: 522
  ident: bb0205
  article-title: Twinning and martensite in a 304 austenitic stainless steel
  publication-title: Mater. Sci. Eng. A
– volume: 759
  start-page: 490
  year: 2019
  end-page: 497
  ident: bb0215
  article-title: Effect of temperature on the stacking fault energy and deformation behaviour in 316L austenitic stainless steel
  publication-title: Mater. Sci. Eng. A
– volume: 165
  start-page: 110382
  year: 2020
  end-page: 110397
  ident: bb0285
  article-title: Dislocation-driven recrystallization in AZ31B magnesium alloy imaged by quasi-in situ EBSD in annealing experiments
  publication-title: Mater. Charact.
– volume: 548
  start-page: 142
  year: 2012
  end-page: 151
  ident: bb0085
  article-title: Effect of laser shock peening on residual stress and fatigue life of clad 2024 aluminium sheet containing scribe defects
  publication-title: Mater. Sci. Eng. A
– reference: B.N. Mordyuk, Y.V. Milman, M.O. Iefimov, G.I. Prokopenko, V.V. Silberschmidt, M.I. Danylenko, A.V. Kotko, Characterization of ultrasonically peened and laser-shock peened surface layers of AISI 321 stainless steel, Surf. Coat. Technol. 202(19, 2008) 4875-4883, doi:
– volume: 178
  start-page: 162
  year: 2006
  end-page: 169
  ident: bb0305
  article-title: Simulation of multiple laser shock peening of a 35CD4 steel alloy
  publication-title: J. Mater. Process. Technol.
– reference: C.H. Yang, P.D. Hodgson, Q.C. Liu, L. Ye, Geometrical effects on residual stresses in 7050-T7451 aluminum alloy rods subject to laser shock peening, J. Mater. Process. Technol. 201(1-3, 2008) 303-309, doi:
– start-page: 13
  year: 2017
  end-page: 79
  ident: bb0230
  article-title: Chapter 2 - The Deformed State
  publication-title: Recrystallization and Related Annealing Phenomena (Third Edition)
– volume: 465
  start-page: 176
  year: 2007
  end-page: 182
  ident: bb0060
  article-title: Comparison of the fatigue behavior and residual stress stability of laser-shock peened and deep rolled austenitic stainless steel AISI 304 in the temperature range 25–600°C
  publication-title: Mater. Sci. Eng.,A
– volume: 383
  start-page: 125284
  year: 2020
  end-page: 125293
  ident: bb0130
  article-title: Fatigue behavior of Ti-17 titanium alloy subjected to different laser shock peened regions and its microstructural response
  publication-title: Surf. Coat. Technol.
– volume: 17
  start-page: 366
  year: 2013
  end-page: 375
  ident: bb0290
  article-title: Residual stress. Part 2 – Nature and origins
  publication-title: Mater. Sci. Technol.
– volume: 89
  start-page: 012038
  year: 2015
  end-page: 012045
  ident: bb0260
  article-title: About quantitative EBSD analysis of deformation and recovery substructures in pure Tantalum
  publication-title: IOP Conf. Ser. Mater. Sci. Eng.
– volume: 32
  start-page: 101009
  year: 2020
  end-page: 101016
  ident: bb0275
  article-title: Grain refinement in an unalloyed tantalum structure by combining Wire+Arc additive manufacturing and vertical cold rolling
  publication-title: Addit. Manuf.
– reference: .
– reference: C.Y. Zhang, Y.L. Dong, C. Ye, Recent developments and novel applications of laser shock peening: a review, Adv. Eng. Mater. 2001216, doi:
– volume: 42
  start-page: 6866
  year: 16, 2007
  end-page: 6877
  ident: bb0160
  article-title: Influence of thermal and mechanical surface modifications induced by laser shock processing on the initiation of corrosion pits in 316L stainless steel
  publication-title: J. Mater. Sci.
– year: 2013
  ident: bb0065
  publication-title: Laser Shock Processing of FCC Metals
– volume: 83
  start-page: 216
  year: 2015
  end-page: 226
  ident: bb0090
  article-title: Evolution of a laser shock peened residual stress field locally with foreign object damage and subsequent fatigue crack growth
  publication-title: Acta Mater.
– volume: 142
  start-page: 15
  year: 2018
  end-page: 26
  ident: bb0020
  article-title: Localized plastic deformation and hardening in laser shock peened Inconel alloy 718SPF
  publication-title: Mater. Charact.
– volume: 60
  start-page: 5040
  year: 2012
  end-page: 5048
  ident: bb0185
  article-title: The effect of shot peening on the microstructure and properties of a near-alpha titanium alloy following high temperature exposure
  publication-title: Acta Mater.
– volume: 40
  start-page: 3091
  year: 11, 2021
  end-page: 3106
  ident: bb0150
  article-title: Recent advances in tribological and wear properties of biomedical metallic materials
  publication-title: Rare Met.
– volume: 204
  start-page: 3947
  year: 2010
  end-page: 3953
  ident: bb0165
  article-title: Effects of laser shock processing on stress corrosion cracking susceptibility of AZ31B magnesium alloy
  publication-title: Surf. Coat. Technol.
– volume: 33
  start-page: 1421
  issue: 6
  year: 1998
  ident: 10.1016/j.matchar.2021.111571_bb0115
  article-title: Laser-shock processing of aluminium-coated 55C1 steel in water-confinement regime, characterization and application to high-cycle fatigue behaviour
  publication-title: J. Mater. Sci.
  doi: 10.1023/A:1004331205389
– start-page: 125698
  year: 2020
  ident: 10.1016/j.matchar.2021.111571_bb0120
  article-title: Gradient microstructure and vibration fatigue properties of 2024-T351 aluminium alloy treated by laser shock peening
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2020.125698
– start-page: 13
  year: 2017
  ident: 10.1016/j.matchar.2021.111571_bb0230
  article-title: Chapter 2 - The Deformed State
– volume: 143
  start-page: 81
  year: 2019
  ident: 10.1016/j.matchar.2021.111571_bb0055
  article-title: Surface integrity and residual stress analysis of pulsed water jet peened stainless steel surfaces
  publication-title: Measurement
  doi: 10.1016/j.measurement.2019.04.082
– volume: 771
  start-page: 138603
  year: 2020
  ident: 10.1016/j.matchar.2021.111571_bb0190
  article-title: Tensile behavior of nickel with gradient microstructure produced by laser shock peening
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2019.138603
– volume: 385
  start-page: 125403
  year: 2020
  ident: 10.1016/j.matchar.2021.111571_bb0040
  article-title: Microstructural characterization and mechanical behavior of ultrasonic impact peened and laser shock peened AISI 316L stainless steel
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2020.125403
– volume: 383
  start-page: 125284
  year: 2020
  ident: 10.1016/j.matchar.2021.111571_bb0130
  article-title: Fatigue behavior of Ti-17 titanium alloy subjected to different laser shock peened regions and its microstructural response
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2019.125284
– volume: 552
  start-page: 514
  year: 2012
  ident: 10.1016/j.matchar.2021.111571_bb0205
  article-title: Twinning and martensite in a 304 austenitic stainless steel
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2012.05.080
– year: 2013
  ident: 10.1016/j.matchar.2021.111571_bb0065
– volume: 40
  start-page: 3091
  year: 2021
  ident: 10.1016/j.matchar.2021.111571_bb0150
  article-title: Recent advances in tribological and wear properties of biomedical metallic materials
  publication-title: Rare Met.
  doi: 10.1007/s12598-021-01796-z
– volume: 32
  start-page: 101009
  year: 2020
  ident: 10.1016/j.matchar.2021.111571_bb0275
  article-title: Grain refinement in an unalloyed tantalum structure by combining Wire+Arc additive manufacturing and vertical cold rolling
  publication-title: Addit. Manuf.
– volume: 42
  start-page: 6866
  year: 2007
  ident: 10.1016/j.matchar.2021.111571_bb0160
  article-title: Influence of thermal and mechanical surface modifications induced by laser shock processing on the initiation of corrosion pits in 316L stainless steel
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-007-1502-4
– ident: 10.1016/j.matchar.2021.111571_bb0225
  doi: 10.1016/j.jmatprotec.2018.11.024
– volume: 327
  start-page: 101
  year: 2017
  ident: 10.1016/j.matchar.2021.111571_bb0140
  article-title: Improvement in mechanical properties of titanium alloy (Ti-6Al-7Nb) subject to multiple laser shock peening
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2017.08.009
– volume: 35
  start-page: 572
  year: 2012
  ident: 10.1016/j.matchar.2021.111571_bb0245
  article-title: Methods of measuring residual stresses in components
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2011.08.022
– volume: 193
  start-page: 108873
  year: 2020
  ident: 10.1016/j.matchar.2021.111571_bb0280
  article-title: A critical assessment of experimental investigation of dynamic recrystallization of metallic materials
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2020.108873
– volume: 58
  start-page: 3173
  issue: 8
  year: 2010
  ident: 10.1016/j.matchar.2021.111571_bb0200
  article-title: Correlation between stacking fault energy and deformation microstructure in high-interstitial-alloyed austenitic steels
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2010.01.056
– volume: 51
  start-page: 3063
  year: 2003
  ident: 10.1016/j.matchar.2021.111571_bb0195
  article-title: On the stress dependence of partial dislocation separation and deformation microstructure in austenitic stainless steels
  publication-title: Acta Mater.
  doi: 10.1016/S1359-6454(03)00117-4
– volume: 121
  start-page: 105784
  year: 2020
  ident: 10.1016/j.matchar.2021.111571_bb0125
  article-title: Fatigue behavior of double-sided laser shock peened Ti-6Al-4V thin blade subjected to foreign object damage
  publication-title: Opt. Laser Technol.
  doi: 10.1016/j.optlastec.2019.105784
– year: 1996
  ident: 10.1016/j.matchar.2021.111571_bb0015
– volume: 111-112
  start-page: 24
  year: 2016
  ident: 10.1016/j.matchar.2021.111571_bb0095
  article-title: Prediction of the residual state in 304 austenitic steel after laser shock peening – Effects of plastic deformation and martensitic phase transformation
  publication-title: Int. J. Mech. Sci.
  doi: 10.1016/j.ijmecsci.2016.03.022
– volume: 27
  start-page: 1213
  issue: 12
  year: 1995
  ident: 10.1016/j.matchar.2021.111571_bb0005
  article-title: Laser shock processing: a review of the physics and applications
  publication-title: Opt. Quantum Electron.
  doi: 10.1007/BF00326477
– volume: 21
  start-page: 399
  issue: 170
  year: 2006
  ident: 10.1016/j.matchar.2021.111571_bb0255
  article-title: The deformation of plastically non-homogeneous materials
  publication-title: Philos. Mag
  doi: 10.1080/14786437008238426
– volume: 301
  start-page: 557
  year: 2014
  ident: 10.1016/j.matchar.2021.111571_bb0310
  article-title: Numerical modeling of residual stress induced by laser shock processing
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2014.02.128
– volume: 40
  start-page: 289
  issue: 3
  year: 2000
  ident: 10.1016/j.matchar.2021.111571_bb0070
  article-title: Use of the hole-drilling method for measuring residual stresses in highly stressed shot-peened surfaces
  publication-title: Exp. Mech.
  doi: 10.1007/BF02327502
– volume: 64
  start-page: 1273
  year: 2021
  ident: 10.1016/j.matchar.2021.111571_bb0320
  article-title: Laser shock micro-bulk forming: Numerical simulation and experimental research
  publication-title: J. Manuf. Processes
  doi: 10.1016/j.jmapro.2021.02.049
– volume: 116
  start-page: 189
  year: 2019
  ident: 10.1016/j.matchar.2021.111571_bb0325
  article-title: Research on the dynamic yield strength and forming depth of microscale laser shock imprinting
  publication-title: Opt. Laser Technol.
  doi: 10.1016/j.optlastec.2019.03.026
– volume: 127
  start-page: 252
  year: 2017
  ident: 10.1016/j.matchar.2021.111571_bb0175
  article-title: Microstructural response and grain refinement mechanism of commercially pure titanium subjected to multiple laser shock peening impacts
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2017.01.050
– volume: 60
  start-page: 5040
  issue: 13-14
  year: 2012
  ident: 10.1016/j.matchar.2021.111571_bb0185
  article-title: The effect of shot peening on the microstructure and properties of a near-alpha titanium alloy following high temperature exposure
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2012.06.017
– volume: 142
  start-page: 15
  year: 2018
  ident: 10.1016/j.matchar.2021.111571_bb0020
  article-title: Localized plastic deformation and hardening in laser shock peened Inconel alloy 718SPF
  publication-title: Mater. Charact.
  doi: 10.1016/j.matchar.2018.05.010
– volume: 83
  start-page: 216
  year: 2015
  ident: 10.1016/j.matchar.2021.111571_bb0090
  article-title: Evolution of a laser shock peened residual stress field locally with foreign object damage and subsequent fatigue crack growth
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2014.09.032
– volume: 260
  start-page: 847
  issue: 7-8
  year: 2006
  ident: 10.1016/j.matchar.2021.111571_bb0135
  article-title: Wear and friction of 6061-T6 aluminum alloy treated by laser shock processing
  publication-title: Wear
  doi: 10.1016/j.wear.2005.04.014
– volume: 647
  start-page: 7
  year: 2015
  ident: 10.1016/j.matchar.2021.111571_bb0155
  article-title: Effects of laser shock peening on stress corrosion behavior of 7075 aluminum alloy laser welded joints
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2015.08.084
– volume: 58
  start-page: 5354
  issue: 16
  year: 2010
  ident: 10.1016/j.matchar.2021.111571_bb0170
  article-title: Grain refinement mechanism of multiple laser shock processing impacts on ANSI 304 stainless steel
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2010.06.010
– volume: 46
  start-page: 2215
  issue: 6
  year: 1998
  ident: 10.1016/j.matchar.2021.111571_bb0210
  article-title: Systematic study of stacking fault energies of random Al-based alloys
  publication-title: Acta Mater.
  doi: 10.1016/S1359-6454(97)00432-1
– ident: 10.1016/j.matchar.2021.111571_bb0075
  doi: 10.1016/j.jmatprotec.2007.11.147
– volume: 759
  start-page: 490
  year: 2019
  ident: 10.1016/j.matchar.2021.111571_bb0215
  article-title: Effect of temperature on the stacking fault energy and deformation behaviour in 316L austenitic stainless steel
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2019.05.079
– volume: 34
  start-page: 327
  issue: 4
  year: 2000
  ident: 10.1016/j.matchar.2021.111571_bb0300
  article-title: Surface prestressing to improve fatigue strength of components by laser shot peening
  publication-title: Opt. Lasers Eng.
  doi: 10.1016/S0143-8166(00)00083-X
– volume: 17
  start-page: 366
  issue: 4
  year: 2013
  ident: 10.1016/j.matchar.2021.111571_bb0290
  article-title: Residual stress. Part 2 – Nature and origins
  publication-title: Mater. Sci. Technol.
  doi: 10.1179/026708301101510087
– volume: 548
  start-page: 142
  year: 2012
  ident: 10.1016/j.matchar.2021.111571_bb0085
  article-title: Effect of laser shock peening on residual stress and fatigue life of clad 2024 aluminium sheet containing scribe defects
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2012.04.002
– volume: 349
  start-page: 719
  year: 2018
  ident: 10.1016/j.matchar.2021.111571_bb0100
  article-title: Evaluation of macro- and microscopic residual stresses in laser shock-peened titanium alloy by FIB-DIC ring-core milling with different core diameters
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2018.06.043
– volume: 53
  start-page: 3293
  year: 2005
  ident: 10.1016/j.matchar.2021.111571_bb0250
  article-title: The influence of shock-pulse shape on the structure/property behavior of copper and 316 L austenitic stainless steel
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2005.03.037
– volume: 204
  start-page: 3947
  issue: 24
  year: 2010
  ident: 10.1016/j.matchar.2021.111571_bb0165
  article-title: Effects of laser shock processing on stress corrosion cracking susceptibility of AZ31B magnesium alloy
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2010.03.015
– volume: 209
  start-page: 5186
  issue: 11
  year: 2009
  ident: 10.1016/j.matchar.2021.111571_bb0315
  article-title: Influence of strain rate and adiabatic heating on the deformation behavior of cold heading steels
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/j.jmatprotec.2009.03.004
– volume: 131
  year: 2020
  ident: 10.1016/j.matchar.2021.111571_bb0145
  article-title: Residual stresses induced by laser shock peening in orthopaedic Ti-6Al-7Nb alloy
  publication-title: Opt. Laser Technol.
  doi: 10.1016/j.optlastec.2020.106446
– volume: 33
  start-page: 788
  issue: 6
  year: 2011
  ident: 10.1016/j.matchar.2021.111571_bb0010
  article-title: Effects of laser peening on fatigue life in an arrestment hook shank application for Naval aircraft
  publication-title: Int. J. Fatigue
  doi: 10.1016/j.ijfatigue.2010.12.016
– volume: 165
  start-page: 110382
  year: 2020
  ident: 10.1016/j.matchar.2021.111571_bb0285
  article-title: Dislocation-driven recrystallization in AZ31B magnesium alloy imaged by quasi-in situ EBSD in annealing experiments
  publication-title: Mater. Charact.
  doi: 10.1016/j.matchar.2020.110382
– volume: 800
  start-page: 140168
  year: 2021
  ident: 10.1016/j.matchar.2021.111571_bb0050
  article-title: Microstructure evolution of wire-arc additively manufactured 2319 aluminum alloy with interlayer hammering
  publication-title: Mater. Sci. Eng.,A
  doi: 10.1016/j.msea.2020.140168
– volume: 465
  start-page: 176
  issue: 1-2
  year: 2007
  ident: 10.1016/j.matchar.2021.111571_bb0060
  article-title: Comparison of the fatigue behavior and residual stress stability of laser-shock peened and deep rolled austenitic stainless steel AISI 304 in the temperature range 25–600°C
  publication-title: Mater. Sci. Eng.,A
  doi: 10.1016/j.msea.2007.02.004
– ident: 10.1016/j.matchar.2021.111571_bb0045
  doi: 10.1016/j.surfcoat.2008.04.080
– volume: 46
  start-page: 4405
  issue: 9
  year: 2015
  ident: 10.1016/j.matchar.2021.111571_bb0265
  article-title: Selective Growth of Low Stored Energy Grains During δ Sub-solvus Annealing in the Inconel 718 Nickel-Based superalloy
  publication-title: Metall Mater. Trans. A
  doi: 10.1007/s11661-015-3035-9
– volume: 16
  start-page: 90
  year: 2017
  ident: 10.1016/j.matchar.2021.111571_bb0295
  article-title: Tailoring residual stress profile of Selective Laser Melted parts by Laser Shock Peening
  publication-title: Addit. Manuf.
– volume: 210
  start-page: 102
  issue: 1
  year: 1996
  ident: 10.1016/j.matchar.2021.111571_bb0110
  article-title: Laser shock processing of aluminium alloys. Application to high cycle fatigue behaviour
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/0921-5093(95)10084-9
– volume: 178
  start-page: 162
  issue: 1-3
  year: 2006
  ident: 10.1016/j.matchar.2021.111571_bb0305
  article-title: Simulation of multiple laser shock peening of a 35CD4 steel alloy
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/j.jmatprotec.2006.03.170
– volume: 6
  start-page: 1345
  issue: 7
  year: 1975
  ident: 10.1016/j.matchar.2021.111571_bb0235
  article-title: Stacking fault energies of seven commercial austenitic stainless steels
  publication-title: Metall. Trans. A
  doi: 10.1007/BF02641927
– volume: 58
  start-page: 3984
  issue: 11
  year: 2010
  ident: 10.1016/j.matchar.2021.111571_bb0220
  article-title: Grain refinement of LY2 aluminum alloy induced by ultra-high plastic strain during multiple laser shock processing impacts
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2010.03.026
– volume: 129
  start-page: 106052
  year: 2020
  ident: 10.1016/j.matchar.2021.111571_bb0180
  article-title: Effect of laser shock peening with and without protective coating on the microstructure and mechanical properties of Ti-alloy
  publication-title: Opt. Lasers Eng.
  doi: 10.1016/j.optlaseng.2020.106052
– volume: 578
  start-page: 181
  year: 2013
  ident: 10.1016/j.matchar.2021.111571_bb0330
  article-title: Deforming TC6 titanium alloys at ultrahigh strain rates during multiple laser shock peening
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2013.04.070
– volume: 680
  start-page: 544
  year: 2016
  ident: 10.1016/j.matchar.2021.111571_bb0025
  article-title: Effect of laser shock peening on microstructure and fatigue crack growth rate of AZ31B magnesium alloy
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2016.04.179
– volume: 123
  start-page: 105917
  year: 2020
  ident: 10.1016/j.matchar.2021.111571_bb0105
  article-title: Evolutions of microstructure, phase, microhardness, and residual stress of multiple laser shock peened Ni-based single crystal superalloy after short-term thermal exposure
  publication-title: Opt. Laser Technol.
  doi: 10.1016/j.optlastec.2019.105917
– volume: 89
  start-page: 012038
  year: 2015
  ident: 10.1016/j.matchar.2021.111571_bb0260
  article-title: About quantitative EBSD analysis of deformation and recovery substructures in pure Tantalum
  publication-title: IOP Conf. Ser. Mater. Sci. Eng.
  doi: 10.1088/1757-899X/89/1/012038
– volume: 68
  start-page: 775
  issue: 2
  year: 1990
  ident: 10.1016/j.matchar.2021.111571_bb0240
  article-title: Physical study of laser-produced plasma in confined geometry
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.346783
– ident: 10.1016/j.matchar.2021.111571_bb0030
  doi: 10.1002/adem.202001216
– volume: 123
  start-page: 350
  year: 2017
  ident: 10.1016/j.matchar.2021.111571_bb0035
  article-title: Microstructural characterisation of metallic shot peened and laser shock peened Ti–6Al–4V
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2016.10.044
– volume: 269
  start-page: 127674
  year: 2020
  ident: 10.1016/j.matchar.2021.111571_bb0270
  article-title: Effect of post heat treatment on the microstructure and mechanical properties of wire-arc additively manufactured A357 alloy components
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2020.127674
– volume: 59
  start-page: 3737
  issue: 9
  year: 2011
  ident: 10.1016/j.matchar.2021.111571_bb0080
  article-title: Experimental investigation and fatigue life prediction for 7475-T7351 aluminum alloy with and without shot peening-induced residual stresses
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2011.03.013
SSID ssj0006817
Score 2.4863317
Snippet Laser shock peening (LSP) has been widely applied to enhance the mechanical properties of metallic materials by modifying their sub-surface microstructures....
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 111571
SubjectTerms Grain refinement
Laser shock peening
Plastic deformation
Residual stress
Stacking fault energy
Title Investigation of microstructure and mechanical properties evolution in 7050 aluminum alloy and 316L stainless steel treated by laser shock peening
URI https://dx.doi.org/10.1016/j.matchar.2021.111571
Volume 182
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6kHtSD-MQ3c_CaNo_dJHssxVIf9KKCt5DsA1vaNNQHePFH-IudycNWEAVv2bADy87wfTPJPBg7Nwo5iyvuGBkrh1qeO5m01vG1NOgtc-IdyrYYhoN7fvUgHlZYr6mFobTKGvsrTC_Run7TqW-zU4xGnVsMJLiIXSpCcUMZUMEv5xFZeft9keYRxuXUXdrs0O5FFU9n3EankIqbMEz0PQIPEXk_89MS5_S32GbtLEK3Os82WzH5DlvrNTPadtjGUjvBXfax1DRjlsPMwpTS7aoWsS9zA2muYWqo1pdUAwV9iJ9TR1Uwr7UJwiiHyBUupIhao_xlCvRn_q0UDbzwBsp6qwniIz4ZM4EyU91oyN4AHXEzh6dHhFgoMD7GQ-2x-_7FXW_g1DMXHBW48tnxrQ0i60Y6QGYLIuMp18o4strNSm5PU19kIlY2TT3lK-N52vg8oLjJ0xKl9lkrn-XmgEGYKeHbUKOHiDEgRUZaC8lTqzEqkiI7ZLy56UTVDclpLsYkaTLPxkmtoIQUlFQKOmTtL7Gi6sjxl0DcqDH5ZloJssbvokf_Fz1m67SqMl9OWAtVbU7Rf3nOzkoDPWOr3cvrwfATQjvxQA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9tAEB3R5EB7QCUFQVtgDr2a-Gtt7xFFoFBCLoDEzbL3QwQlThRIpfyN_uLO2GsaJESl3izbT1rtrN7M2DNvAH4YRT4rVrFnZKY8ljz3SmmtF2ppKFqO2e9wtcU4Gd7FP-_F_RYM2l4YLqt03N9wes3W7k7f7WZ_MZn0byiRiEXmcxOKn8go-wBdVqcSHeieXV4Nxy-EnGT14F1-32PA30ae_uMpxYXc30SZYhgwf4g0eNtFbbidi8-w4-JFPGuWtAtbpurB9qAd09aDTxuKgl_g94ZuxrzCucUZV9w1KrGrpcGi0jgz3O7L1sEFf4tfsqgqml_uFOKkwtQXPhZEXJNqNUP-Ob-uoVGQjLBuuZoSRdKVMVOsi9WNxnKNFIubJT49EMviglJkWtQe3F2c3w6Gnhu74KnIl89eaG2UWj_VETm3KDWB8q3MUqv9snbvRRGKUmTKFkWgQmWCQJswjjh1CrQk1D50qnllDgCTUonQJpqCREoDOTnSWsi4sJoSIynKQ4jbnc6V0yTn0RjTvC0-e8ydgXI2UN4Y6BBOX2CLRpTjX4CsNWP-6nTl5Djeh379f-gJbA9vr0f56HJ89Q0-8pOmEOY7dMjs5ojCmefy2B3XP4Nx8_E
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Investigation+of+microstructure+and+mechanical+properties+evolution+in+7050+aluminum+alloy+and+316L+stainless+steel+treated+by+laser+shock+peening&rft.jtitle=Materials+characterization&rft.au=Jing%2C+Yandong&rft.au=Fang%2C+Xuewei&rft.au=Xi%2C+Naiyuan&rft.au=Feng%2C+Xianlu&rft.date=2021-12-01&rft.pub=Elsevier+Inc&rft.issn=1044-5803&rft.volume=182&rft_id=info:doi/10.1016%2Fj.matchar.2021.111571&rft.externalDocID=S1044580321006938
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1044-5803&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1044-5803&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1044-5803&client=summon