Investigation of microstructure and mechanical properties evolution in 7050 aluminum alloy and 316L stainless steel treated by laser shock peening
Laser shock peening (LSP) has been widely applied to enhance the mechanical properties of metallic materials by modifying their sub-surface microstructures. However, controversies still exist on whether grain refinement can be obtained after the LSP process. To investigate the effect caused by LSP i...
Saved in:
Published in | Materials characterization Vol. 182; p. 111571 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
01.12.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 1044-5803 |
DOI | 10.1016/j.matchar.2021.111571 |
Cover
Loading…
Abstract | Laser shock peening (LSP) has been widely applied to enhance the mechanical properties of metallic materials by modifying their sub-surface microstructures. However, controversies still exist on whether grain refinement can be obtained after the LSP process. To investigate the effect caused by LSP in metallic materials, a 7050 aluminum alloy and 316L stainless steel, which are typically high and low stacking fault energy (SFE) materials, respectively, were selected for this study. The microstructure modified by different LSP cycles and energy densities in both materials was illustrated by Electron Backscatter Diffraction (EBSD). The result shows that no grain refinement was observed regardless of the laser cycles and energy density. The most evident change was the increase of dislocation density, and higher dislocation density was observed with the increase of LSP cycles and energy density. The hardness and residual stress measurements around the LSPed areas show that LSP can effectively introduce a plastic deformation layer ranging from 600~1300 μm. It was revealed from the tensile tests that the yield strength of both materials was improved after the LSP process with the scarification of their elongations. Moreover, a potential method to calculate the dynamic yield stress of metallic materials was put forward with the help of the LSP process.
[Display omitted]
•LSP was carried out on both high and low-stacking fault energy materials.•LSP increased the dislocation densities but did not induce grain refinement in the treated area.•Compressive residual stress and increased hardness were obtained at a depth ranging from 600 ~ 1300 μm.•A promising way to measure the dynamic yield stress of metallic materials is put forward. |
---|---|
AbstractList | Laser shock peening (LSP) has been widely applied to enhance the mechanical properties of metallic materials by modifying their sub-surface microstructures. However, controversies still exist on whether grain refinement can be obtained after the LSP process. To investigate the effect caused by LSP in metallic materials, a 7050 aluminum alloy and 316L stainless steel, which are typically high and low stacking fault energy (SFE) materials, respectively, were selected for this study. The microstructure modified by different LSP cycles and energy densities in both materials was illustrated by Electron Backscatter Diffraction (EBSD). The result shows that no grain refinement was observed regardless of the laser cycles and energy density. The most evident change was the increase of dislocation density, and higher dislocation density was observed with the increase of LSP cycles and energy density. The hardness and residual stress measurements around the LSPed areas show that LSP can effectively introduce a plastic deformation layer ranging from 600~1300 μm. It was revealed from the tensile tests that the yield strength of both materials was improved after the LSP process with the scarification of their elongations. Moreover, a potential method to calculate the dynamic yield stress of metallic materials was put forward with the help of the LSP process.
[Display omitted]
•LSP was carried out on both high and low-stacking fault energy materials.•LSP increased the dislocation densities but did not induce grain refinement in the treated area.•Compressive residual stress and increased hardness were obtained at a depth ranging from 600 ~ 1300 μm.•A promising way to measure the dynamic yield stress of metallic materials is put forward. |
ArticleNumber | 111571 |
Author | Xi, Naiyuan Huang, Ke Jing, Yandong Fang, Xuewei Feng, Xianlu |
Author_xml | – sequence: 1 givenname: Yandong surname: Jing fullname: Jing, Yandong organization: State Key Laboratory of Mechanical Manufacturing System, School of Mechanical Engineering, Xi’an Jiaotong University, 710049 Xi'an, China – sequence: 2 givenname: Xuewei surname: Fang fullname: Fang, Xuewei organization: State Key Laboratory of Mechanical Manufacturing System, School of Mechanical Engineering, Xi’an Jiaotong University, 710049 Xi'an, China – sequence: 3 givenname: Naiyuan surname: Xi fullname: Xi, Naiyuan organization: State Key Laboratory of Mechanical Manufacturing System, School of Mechanical Engineering, Xi’an Jiaotong University, 710049 Xi'an, China – sequence: 4 givenname: Xianlu surname: Feng fullname: Feng, Xianlu organization: State Key Laboratory of Mechanical Manufacturing System, School of Mechanical Engineering, Xi’an Jiaotong University, 710049 Xi'an, China – sequence: 5 givenname: Ke surname: Huang fullname: Huang, Ke email: ke.huang@xjtu.edu.cn organization: State Key Laboratory of Mechanical Manufacturing System, School of Mechanical Engineering, Xi’an Jiaotong University, 710049 Xi'an, China |
BookMark | eNqFkEtuwjAURT2gUoF2CZW8AahfnJBEHVQV6gcJqZN2bBnnGUwdG9kOEtvoihs-o04Y3Ts5V7pnRAbOOyTkAdgUGMwet9NWJrWRYZqxDKYAUJQwIENgeT4pKsZvySjGLWNsVkE5JL8Lt8eYzFom4x31mrZGBR9T6FTqAlLpGtpiv-iMkpbugt9hSAYjxb233YkyjpasYFTarjWua_ti_eGEcpgtaUzSOIsx9g3R0hRQJmzo6kCtjBho3Hj1Q3eIzrj1HbnR0ka8v-SYfL-9fs0_JsvP98X8ZTlRnNVpkmnNS83KhvNZxksExXRdlbphK15BVUiZFauiUlpKUJlCgAaznOd1XUNT99SYPJ13j39jQC2USScNKUhjBTBxVCq24qJUHJWKs9KeLv7Ru2BaGQ5Xueczh_21vcEgojLoFDYmoEqi8ebKwh_orJr6 |
CitedBy_id | crossref_primary_10_1016_j_matchar_2024_114354 crossref_primary_10_1016_j_jmrt_2024_02_170 crossref_primary_10_1016_j_jmatprotec_2024_118395 crossref_primary_10_1016_j_msea_2023_145699 crossref_primary_10_1016_j_optlastec_2023_109317 crossref_primary_10_3390_coatings12101556 crossref_primary_10_1016_j_ijhydene_2025_02_422 crossref_primary_10_1016_j_jmapro_2024_07_096 crossref_primary_10_1111_ffe_14440 crossref_primary_10_1016_j_matchar_2023_112907 crossref_primary_10_1016_j_ijfatigue_2022_107033 crossref_primary_10_1016_j_ijmachtools_2023_104029 crossref_primary_10_1016_j_optlastec_2023_110180 crossref_primary_10_1080_17452759_2023_2273955 crossref_primary_10_1002_adem_202201843 crossref_primary_10_1016_j_msea_2023_144599 crossref_primary_10_1080_17452759_2024_2370956 crossref_primary_10_1016_j_jma_2024_04_017 crossref_primary_10_1108_ILT_01_2024_0007 crossref_primary_10_1016_j_jmapro_2025_03_064 crossref_primary_10_1007_s11771_023_5267_y crossref_primary_10_1016_j_ijmachtools_2023_104061 crossref_primary_10_1007_s40962_023_01248_7 crossref_primary_10_1016_j_jmst_2022_02_024 crossref_primary_10_1177_09544054241309163 crossref_primary_10_1002_pc_29740 crossref_primary_10_1016_j_addma_2023_103652 crossref_primary_10_1016_j_mtcomm_2024_108740 crossref_primary_10_3390_photonics10010096 crossref_primary_10_1016_j_surfin_2024_105672 crossref_primary_10_1109_TIM_2021_3139653 crossref_primary_10_2139_ssrn_4184962 crossref_primary_10_3390_cryst12101451 crossref_primary_10_1016_j_addma_2023_103550 crossref_primary_10_1016_j_jmrt_2024_01_090 crossref_primary_10_1016_j_optlaseng_2024_108531 |
Cites_doi | 10.1023/A:1004331205389 10.1016/j.surfcoat.2020.125698 10.1016/j.measurement.2019.04.082 10.1016/j.msea.2019.138603 10.1016/j.surfcoat.2020.125403 10.1016/j.surfcoat.2019.125284 10.1016/j.msea.2012.05.080 10.1007/s12598-021-01796-z 10.1007/s10853-007-1502-4 10.1016/j.jmatprotec.2018.11.024 10.1016/j.surfcoat.2017.08.009 10.1016/j.matdes.2011.08.022 10.1016/j.matdes.2020.108873 10.1016/j.actamat.2010.01.056 10.1016/S1359-6454(03)00117-4 10.1016/j.optlastec.2019.105784 10.1016/j.ijmecsci.2016.03.022 10.1007/BF00326477 10.1080/14786437008238426 10.1016/j.apsusc.2014.02.128 10.1007/BF02327502 10.1016/j.jmapro.2021.02.049 10.1016/j.optlastec.2019.03.026 10.1016/j.actamat.2017.01.050 10.1016/j.actamat.2012.06.017 10.1016/j.matchar.2018.05.010 10.1016/j.actamat.2014.09.032 10.1016/j.wear.2005.04.014 10.1016/j.msea.2015.08.084 10.1016/j.actamat.2010.06.010 10.1016/S1359-6454(97)00432-1 10.1016/j.jmatprotec.2007.11.147 10.1016/j.msea.2019.05.079 10.1016/S0143-8166(00)00083-X 10.1179/026708301101510087 10.1016/j.msea.2012.04.002 10.1016/j.surfcoat.2018.06.043 10.1016/j.actamat.2005.03.037 10.1016/j.surfcoat.2010.03.015 10.1016/j.jmatprotec.2009.03.004 10.1016/j.optlastec.2020.106446 10.1016/j.ijfatigue.2010.12.016 10.1016/j.matchar.2020.110382 10.1016/j.msea.2020.140168 10.1016/j.msea.2007.02.004 10.1016/j.surfcoat.2008.04.080 10.1007/s11661-015-3035-9 10.1016/0921-5093(95)10084-9 10.1016/j.jmatprotec.2006.03.170 10.1007/BF02641927 10.1016/j.actamat.2010.03.026 10.1016/j.optlaseng.2020.106052 10.1016/j.msea.2013.04.070 10.1016/j.jallcom.2016.04.179 10.1016/j.optlastec.2019.105917 10.1088/1757-899X/89/1/012038 10.1063/1.346783 10.1002/adem.202001216 10.1016/j.actamat.2016.10.044 10.1016/j.matlet.2020.127674 10.1016/j.actamat.2011.03.013 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Inc. |
Copyright_xml | – notice: 2021 Elsevier Inc. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.matchar.2021.111571 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
ExternalDocumentID | 10_1016_j_matchar_2021_111571 S1044580321006938 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABXZ AACTN AAEDT AAEDW AAEPC AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXKI AAXUO ABFNM ABJNI ABMAC ABNEU ABTAH ABWVN ABXDB ABXRA ACDAQ ACGFS ACNNM ACRLP ACRPL ADBBV ADEZE ADMUD ADNMO AEBSH AEKER AENEX AEZYN AFJKZ AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HX~ HZ~ IHE J1W KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SCC SDF SDG SDP SES SEW SMS SPC SPCBC SPD SSM SSQ SSZ T5K WH7 WUQ XPP ZMT ZY4 ~G- AATTM AAYWO AAYXX AEIPS AEUPX AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c309t-2ff37f07d336237e1c0f987fd0b38185aa25b58cfaa1c2ce11de24349991d9d33 |
IEDL.DBID | .~1 |
ISSN | 1044-5803 |
IngestDate | Tue Jul 01 01:36:06 EDT 2025 Thu Apr 24 22:57:45 EDT 2025 Sat Dec 28 15:52:41 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Stacking fault energy Laser shock peening Plastic deformation Residual stress Grain refinement |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c309t-2ff37f07d336237e1c0f987fd0b38185aa25b58cfaa1c2ce11de24349991d9d33 |
ParticipantIDs | crossref_citationtrail_10_1016_j_matchar_2021_111571 crossref_primary_10_1016_j_matchar_2021_111571 elsevier_sciencedirect_doi_10_1016_j_matchar_2021_111571 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2021 2021-12-00 |
PublicationDateYYYYMMDD | 2021-12-01 |
PublicationDate_xml | – month: 12 year: 2021 text: December 2021 |
PublicationDecade | 2020 |
PublicationTitle | Materials characterization |
PublicationYear | 2021 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Meng, Wang, Tan, Cai, Zhou, Liu (bb0120) 2020 Sánchez-Santana, Rubio-González, Gomez-Rosas, Ocaña, Molpeceres, Porro, Morales (bb0135) 2006; 260 Leap, Rankin, Harrison, Hackel, Nemeth, Candela (bb0010) 2011; 33 Srivastava, Hloch, Gubeljak, Milkovic, Chattopadhyaya, Klich (bb0055) 2019; 143 Byun (bb0195) 11, 2003; 51 Wang, Sun, Lu, Chen, Bi, Ni (bb0040) 2020; 385 Thomas, Lindley, Rugg, Jackson (bb0185) 2012; 60 Gill, Telang, Ye, Mannava, Qian, Vasudevan (bb0020) 2018; 142 Ren, Chen, Jiao, Yang, Zhou, Tong (bb0125) 2020; 121 Petronić, Čolić, Đorđević, Milovanović, Burzić, Vučetić (bb0180) 2020; 129 Dorman, Toparli, Smyth, Cini, Fitzpatrick, Irving (bb0085) 2012; 548 Peyre, Fabbro, Merrien, Lieurade (bb0110) 1996; 210 Peyre, Berthe, Scherpereel, Fabbro (bb0115) 1998; 33 Schramm, Reed (bb0235) 1975; 6 Ding, Ye (bb0305) 2006; 178 N. Kalentics, K. Huang, M. Ortega Varela de Seijas, A. Burn, V. Romano, R.E. Logé, Laser shock peening: A promising tool for tailoring metallic microstructures in selective laser melting, J. Mater. Process. Technol. 266 (2019) 612-618, doi Peyre, Fabbro (bb0005) 1995; 27 Lee, Shin, Oh, Ha, Kim (bb0200) 2010; 58 Kun, Haifeng, Fei, Jiaxiang, Haoxue (bb0325) 2019; 116 Shen, Shukla, Subramaniyan, Zammit, Swanson, Lawrence, Fitzpatrick (bb0145) 2020; 131 Zhang, Xiao, Fang, Zhang, Logé, Huang (bb0280) 2020; 193 Gao, Wu (bb0080) 2011; 59 Marinelli, Martina, Ganguly, Williams (bb0275) 2020; 32 Fang, Li, Li, Huang, Zhang, Lu (bb0270) 2020; 269 Wang, Liu, Ma, Lu, Wang, Lu, Gu, Zhang (bb0320) 2021; 64 Sencer, Maloy, Gray (bb0250) 11, 2005; 53 . Everaerts, Song, Nagarajan, Korsunsky (bb0100) 2018; 349 Lu, Wu, Sun, Luo, Zhang, Cai, Cui, Luo (bb0175) 2017; 127 Wei, Ling (bb0310) 2014; 301 C.H. Yang, P.D. Hodgson, Q.C. Liu, L. Ye, Geometrical effects on residual stresses in 7050-T7451 aluminum alloy rods subject to laser shock peening, J. Mater. Process. Technol. 201(1-3, 2008) 303-309, doi Agnoli, Bernacki, Logé, Franchet, Laigo, Bozzolo (bb0265) 2015; 46 Nobre, Kornmeier, Dias, Scholtes (bb0070) 2000; 40 Hammersley, Hackel, Harris (bb0300) 2000; 34 Sun, Che, Cao, Zou, Wu, Guo, Zhu (bb0130) 2020; 383 B.N. Mordyuk, Y.V. Milman, M.O. Iefimov, G.I. Prokopenko, V.V. Silberschmidt, M.I. Danylenko, A.V. Kotko, Characterization of ultrasonically peened and laser-shock peened surface layers of AISI 321 stainless steel, Surf. Coat. Technol. 202(19, 2008) 4875-4883, doi Lu, Luo, Zhang, Cui, Sun, Zhou, Zhang, You, Chen, Zhong (bb0220) 2010; 58 Moussa, Bernacki, Besnard, Bozzolo (bb0260) 2015; 89 Zabeen, Preuss, Withers (bb0090) 2015; 83 Fang, Zhang, Chen, Huang, Xue, Wang, Zhao, Lu (bb0050) 2021; 800 Shen, Li, Sun, Wang, Zuo (bb0205) 2012; 552 C.Y. Zhang, Y.L. Dong, C. Ye, Recent developments and novel applications of laser shock peening: a review, Adv. Eng. Mater. 2001216, doi Nikitin, Altenberger (bb0060) 2007; 465 Geng, Dong, Wang, Mei, Tang, Duan (bb0105) 2020; 123 Halilovič, Issa, Wallin, Hallberg, Ristinmaa (bb0095) 2016; 111-112 Shen, Shukla, Nath, Lawrence (bb0140) 2017; 327 Ashby (bb0255) 2006; 21 Peyre, Carboni, Forget, Beranger, Lemaitre, Stuart (bb0160) 16, 2007; 42 Zhou, Ren, Yang, Tong, Chen (bb0190) 2020; 771 Li, Huang, Lin, Wang (bb0150) 11, 2021; 40 Wang, Zhang, Chen, Zhou, Ge, Lu, Li (bb0155) 2015; 647 Mannava, McDaniel, Cowie (bb0015) 1996 Zhou, Li, He, He, Nie, Chen, Lai, An (bb0330) 2013; 578 Rossini, Dassisti, Benyounis, Olabi (bb0245) 2012; 35 Withers, Bhadeshia (bb0290) 2013; 17 Zhang, You, Lu, Cui, Jiang, Ren (bb0165) 2010; 204 Lu, Luo, Zhang, Sun, Gu, Zhou, Ren, Zhang, Zhang, Chen, Cui, Jiang, Feng, Zhang (bb0170) 2010; 58 Lainé, Knowles, Doorbar, Cutts, Rugg (bb0035) 2017; 123 Fabbro, Fournier, Ballard, Devaux, Virmont (bb0240) 1990; 68 Ge, Xiang (bb0025) 2016; 680 Schulthess, Turchi, Gonis, Nieh (bb0210) 1998; 46 Kalentics, Boillat, Peyre, Ćirić-Kostić, Bogojević, Logé (bb0295) 2017; 16 Molnár, Sun, Lu, Li, Engberg, Vitos (bb0215) 2019; 759 Lopez-Sanchez, Tommasi, Barou, Quey (bb0285) 2020; 165 Humphreys, Rohrer, Rollett (bb0230) 2017 Rämö, Kuokkala, Vuoristo (bb0315) 2009; 209 Zhang, Lu, Luo (bb0065) 2013 Nikitin (10.1016/j.matchar.2021.111571_bb0060) 2007; 465 Sun (10.1016/j.matchar.2021.111571_bb0130) 2020; 383 Peyre (10.1016/j.matchar.2021.111571_bb0160) 2007; 42 Zhou (10.1016/j.matchar.2021.111571_bb0190) 2020; 771 Ashby (10.1016/j.matchar.2021.111571_bb0255) 2006; 21 Meng (10.1016/j.matchar.2021.111571_bb0120) 2020 Srivastava (10.1016/j.matchar.2021.111571_bb0055) 2019; 143 Zhou (10.1016/j.matchar.2021.111571_bb0330) 2013; 578 Everaerts (10.1016/j.matchar.2021.111571_bb0100) 2018; 349 Geng (10.1016/j.matchar.2021.111571_bb0105) 2020; 123 Wang (10.1016/j.matchar.2021.111571_bb0155) 2015; 647 Sánchez-Santana (10.1016/j.matchar.2021.111571_bb0135) 2006; 260 Gao (10.1016/j.matchar.2021.111571_bb0080) 2011; 59 Petronić (10.1016/j.matchar.2021.111571_bb0180) 2020; 129 Peyre (10.1016/j.matchar.2021.111571_bb0005) 1995; 27 10.1016/j.matchar.2021.111571_bb0225 Sencer (10.1016/j.matchar.2021.111571_bb0250) 2005; 53 Ge (10.1016/j.matchar.2021.111571_bb0025) 2016; 680 Byun (10.1016/j.matchar.2021.111571_bb0195) 2003; 51 Fang (10.1016/j.matchar.2021.111571_bb0050) 2021; 800 Lu (10.1016/j.matchar.2021.111571_bb0175) 2017; 127 Gill (10.1016/j.matchar.2021.111571_bb0020) 2018; 142 Rämö (10.1016/j.matchar.2021.111571_bb0315) 2009; 209 Fabbro (10.1016/j.matchar.2021.111571_bb0240) 1990; 68 Peyre (10.1016/j.matchar.2021.111571_bb0110) 1996; 210 Rossini (10.1016/j.matchar.2021.111571_bb0245) 2012; 35 Lu (10.1016/j.matchar.2021.111571_bb0220) 2010; 58 Hammersley (10.1016/j.matchar.2021.111571_bb0300) 2000; 34 Ren (10.1016/j.matchar.2021.111571_bb0125) 2020; 121 Zhang (10.1016/j.matchar.2021.111571_bb0165) 2010; 204 Kun (10.1016/j.matchar.2021.111571_bb0325) 2019; 116 Leap (10.1016/j.matchar.2021.111571_bb0010) 2011; 33 Zhang (10.1016/j.matchar.2021.111571_bb0280) 2020; 193 Shen (10.1016/j.matchar.2021.111571_bb0205) 2012; 552 Wei (10.1016/j.matchar.2021.111571_bb0310) 2014; 301 Shen (10.1016/j.matchar.2021.111571_bb0140) 2017; 327 Thomas (10.1016/j.matchar.2021.111571_bb0185) 2012; 60 Agnoli (10.1016/j.matchar.2021.111571_bb0265) 2015; 46 Mannava (10.1016/j.matchar.2021.111571_bb0015) 1996 Kalentics (10.1016/j.matchar.2021.111571_bb0295) 2017; 16 Shen (10.1016/j.matchar.2021.111571_bb0145) 2020; 131 Schramm (10.1016/j.matchar.2021.111571_bb0235) 1975; 6 Moussa (10.1016/j.matchar.2021.111571_bb0260) 2015; 89 10.1016/j.matchar.2021.111571_bb0045 Humphreys (10.1016/j.matchar.2021.111571_bb0230) 2017 Marinelli (10.1016/j.matchar.2021.111571_bb0275) 2020; 32 Wang (10.1016/j.matchar.2021.111571_bb0320) 2021; 64 Nobre (10.1016/j.matchar.2021.111571_bb0070) 2000; 40 Lu (10.1016/j.matchar.2021.111571_bb0170) 2010; 58 Fang (10.1016/j.matchar.2021.111571_bb0270) 2020; 269 Zhang (10.1016/j.matchar.2021.111571_bb0065) 2013 Zabeen (10.1016/j.matchar.2021.111571_bb0090) 2015; 83 Peyre (10.1016/j.matchar.2021.111571_bb0115) 1998; 33 Ding (10.1016/j.matchar.2021.111571_bb0305) 2006; 178 Li (10.1016/j.matchar.2021.111571_bb0150) 2021; 40 Withers (10.1016/j.matchar.2021.111571_bb0290) 2013; 17 Lee (10.1016/j.matchar.2021.111571_bb0200) 2010; 58 Lainé (10.1016/j.matchar.2021.111571_bb0035) 2017; 123 Molnár (10.1016/j.matchar.2021.111571_bb0215) 2019; 759 10.1016/j.matchar.2021.111571_bb0030 Wang (10.1016/j.matchar.2021.111571_bb0040) 2020; 385 10.1016/j.matchar.2021.111571_bb0075 Lopez-Sanchez (10.1016/j.matchar.2021.111571_bb0285) 2020; 165 Halilovič (10.1016/j.matchar.2021.111571_bb0095) 2016; 111-112 Schulthess (10.1016/j.matchar.2021.111571_bb0210) 1998; 46 Dorman (10.1016/j.matchar.2021.111571_bb0085) 2012; 548 |
References_xml | – volume: 46 start-page: 2215 year: 1998 end-page: 2221 ident: bb0210 article-title: Systematic study of stacking fault energies of random Al-based alloys publication-title: Acta Mater. – volume: 127 start-page: 252 year: 2017 end-page: 266 ident: bb0175 article-title: Microstructural response and grain refinement mechanism of commercially pure titanium subjected to multiple laser shock peening impacts publication-title: Acta Mater. – volume: 123 start-page: 105917 year: 2020 end-page: 105924 ident: bb0105 article-title: Evolutions of microstructure, phase, microhardness, and residual stress of multiple laser shock peened Ni-based single crystal superalloy after short-term thermal exposure publication-title: Opt. Laser Technol. – volume: 53 start-page: 3293 year: 11, 2005 end-page: 3303 ident: bb0250 article-title: The influence of shock-pulse shape on the structure/property behavior of copper and 316 L austenitic stainless steel publication-title: Acta Mater. – volume: 123 start-page: 350 year: 2017 end-page: 361 ident: bb0035 article-title: Microstructural characterisation of metallic shot peened and laser shock peened Ti–6Al–4V publication-title: Acta Mater. – volume: 58 start-page: 3173 year: 2010 end-page: 3186 ident: bb0200 article-title: Correlation between stacking fault energy and deformation microstructure in high-interstitial-alloyed austenitic steels publication-title: Acta Mater. – volume: 64 start-page: 1273 year: 2021 end-page: 1286 ident: bb0320 article-title: Laser shock micro-bulk forming: Numerical simulation and experimental research publication-title: J. Manuf. Processes – volume: 647 start-page: 7 year: 2015 end-page: 14 ident: bb0155 article-title: Effects of laser shock peening on stress corrosion behavior of 7075 aluminum alloy laser welded joints publication-title: Mater. Sci. Eng. A – volume: 68 start-page: 775 year: 1990 end-page: 784 ident: bb0240 article-title: Physical study of laser-produced plasma in confined geometry publication-title: J. Appl. Phys. – volume: 210 start-page: 102 year: 1996 end-page: 113 ident: bb0110 article-title: Laser shock processing of aluminium alloys. Application to high cycle fatigue behaviour publication-title: Mater. Sci. Eng. A – volume: 143 start-page: 81 year: 2019 end-page: 92 ident: bb0055 article-title: Surface integrity and residual stress analysis of pulsed water jet peened stainless steel surfaces publication-title: Measurement – volume: 35 start-page: 572 year: 2012 end-page: 588 ident: bb0245 article-title: Methods of measuring residual stresses in components publication-title: Mater. Des. – volume: 771 start-page: 138603 year: 2020 end-page: 138614 ident: bb0190 article-title: Tensile behavior of nickel with gradient microstructure produced by laser shock peening publication-title: Mater. Sci. Eng. A – year: 1996 ident: bb0015 article-title: Laser shock peened rotor components for turbomachinery – volume: 34 start-page: 327 year: 2000 end-page: 337 ident: bb0300 article-title: Surface prestressing to improve fatigue strength of components by laser shot peening publication-title: Opt. Lasers Eng. – volume: 59 start-page: 3737 year: 2011 end-page: 3747 ident: bb0080 article-title: Experimental investigation and fatigue life prediction for 7475-T7351 aluminum alloy with and without shot peening-induced residual stresses publication-title: Acta Mater. – volume: 327 start-page: 101 year: 2017 end-page: 109 ident: bb0140 article-title: Improvement in mechanical properties of titanium alloy (Ti-6Al-7Nb) subject to multiple laser shock peening publication-title: Surf. Coat. Technol. – volume: 301 start-page: 557 year: 2014 end-page: 563 ident: bb0310 article-title: Numerical modeling of residual stress induced by laser shock processing publication-title: Appl. Surf. Sci. – volume: 46 start-page: 4405 year: 2015 end-page: 4421 ident: bb0265 article-title: Selective Growth of Low Stored Energy Grains During δ Sub-solvus Annealing in the Inconel 718 Nickel-Based superalloy publication-title: Metall Mater. Trans. A – volume: 260 start-page: 847 year: 2006 end-page: 854 ident: bb0135 article-title: Wear and friction of 6061-T6 aluminum alloy treated by laser shock processing publication-title: Wear – volume: 58 start-page: 5354 year: 2010 end-page: 5362 ident: bb0170 article-title: Grain refinement mechanism of multiple laser shock processing impacts on ANSI 304 stainless steel publication-title: Acta Mater. – volume: 193 start-page: 108873 year: 2020 end-page: 108886 ident: bb0280 article-title: A critical assessment of experimental investigation of dynamic recrystallization of metallic materials publication-title: Mater. Des. – volume: 58 start-page: 3984 year: 2010 end-page: 3994 ident: bb0220 article-title: Grain refinement of LY2 aluminum alloy induced by ultra-high plastic strain during multiple laser shock processing impacts publication-title: Acta Mater. – volume: 121 start-page: 105784 year: 2020 end-page: 105793 ident: bb0125 article-title: Fatigue behavior of double-sided laser shock peened Ti-6Al-4V thin blade subjected to foreign object damage publication-title: Opt. Laser Technol. – reference: N. Kalentics, K. Huang, M. Ortega Varela de Seijas, A. Burn, V. Romano, R.E. Logé, Laser shock peening: A promising tool for tailoring metallic microstructures in selective laser melting, J. Mater. Process. Technol. 266 (2019) 612-618, doi: – volume: 116 start-page: 189 year: 2019 end-page: 195 ident: bb0325 article-title: Research on the dynamic yield strength and forming depth of microscale laser shock imprinting publication-title: Opt. Laser Technol. – volume: 111-112 start-page: 24 year: 2016 end-page: 34 ident: bb0095 article-title: Prediction of the residual state in 304 austenitic steel after laser shock peening – Effects of plastic deformation and martensitic phase transformation publication-title: Int. J. Mech. Sci. – volume: 269 start-page: 127674 year: 2020 end-page: 127677 ident: bb0270 article-title: Effect of post heat treatment on the microstructure and mechanical properties of wire-arc additively manufactured A357 alloy components publication-title: Mater. Lett. – volume: 33 start-page: 1421 year: 1998 end-page: 1429 ident: bb0115 article-title: Laser-shock processing of aluminium-coated 55C1 steel in water-confinement regime, characterization and application to high-cycle fatigue behaviour publication-title: J. Mater. Sci. – volume: 129 start-page: 106052 year: 2020 end-page: 106059 ident: bb0180 article-title: Effect of laser shock peening with and without protective coating on the microstructure and mechanical properties of Ti-alloy publication-title: Opt. Lasers Eng. – volume: 209 start-page: 5186 year: 2009 end-page: 5194 ident: bb0315 article-title: Influence of strain rate and adiabatic heating on the deformation behavior of cold heading steels publication-title: J. Mater. Process. Technol. – volume: 800 start-page: 140168 year: 2021 end-page: 140178 ident: bb0050 article-title: Microstructure evolution of wire-arc additively manufactured 2319 aluminum alloy with interlayer hammering publication-title: Mater. Sci. Eng.,A – volume: 16 start-page: 90 year: 2017 end-page: 97 ident: bb0295 article-title: Tailoring residual stress profile of Selective Laser Melted parts by Laser Shock Peening publication-title: Addit. Manuf. – volume: 349 start-page: 719 year: 2018 end-page: 724 ident: bb0100 article-title: Evaluation of macro- and microscopic residual stresses in laser shock-peened titanium alloy by FIB-DIC ring-core milling with different core diameters publication-title: Surf. Coat. Technol. – volume: 33 start-page: 788 year: 2011 end-page: 799 ident: bb0010 article-title: Effects of laser peening on fatigue life in an arrestment hook shank application for Naval aircraft publication-title: Int. J. Fatigue – volume: 131 year: 2020 ident: bb0145 article-title: Residual stresses induced by laser shock peening in orthopaedic Ti-6Al-7Nb alloy publication-title: Opt. Laser Technol. – volume: 6 start-page: 1345 year: 1975 ident: bb0235 article-title: Stacking fault energies of seven commercial austenitic stainless steels publication-title: Metall. Trans. A – volume: 21 start-page: 399 year: 2006 end-page: 424 ident: bb0255 article-title: The deformation of plastically non-homogeneous materials publication-title: Philos. Mag – volume: 27 start-page: 1213 year: 1995 end-page: 1229 ident: bb0005 article-title: Laser shock processing: a review of the physics and applications publication-title: Opt. Quantum Electron. – volume: 578 start-page: 181 year: 2013 end-page: 186 ident: bb0330 article-title: Deforming TC6 titanium alloys at ultrahigh strain rates during multiple laser shock peening publication-title: Mater. Sci. Eng. A – volume: 51 start-page: 3063 year: 11, 2003 end-page: 3071 ident: bb0195 article-title: On the stress dependence of partial dislocation separation and deformation microstructure in austenitic stainless steels publication-title: Acta Mater. – start-page: 125698 year: 2020 end-page: 125710 ident: bb0120 article-title: Gradient microstructure and vibration fatigue properties of 2024-T351 aluminium alloy treated by laser shock peening publication-title: Surf. Coat. Technol. – volume: 680 start-page: 544 year: 2016 end-page: 552 ident: bb0025 article-title: Effect of laser shock peening on microstructure and fatigue crack growth rate of AZ31B magnesium alloy publication-title: J. Alloys Compd. – volume: 40 start-page: 289 year: 2000 end-page: 297 ident: bb0070 article-title: Use of the hole-drilling method for measuring residual stresses in highly stressed shot-peened surfaces publication-title: Exp. Mech. – volume: 385 start-page: 125403 year: 2020 end-page: 125421 ident: bb0040 article-title: Microstructural characterization and mechanical behavior of ultrasonic impact peened and laser shock peened AISI 316L stainless steel publication-title: Surf. Coat. Technol. – volume: 552 start-page: 514 year: 2012 end-page: 522 ident: bb0205 article-title: Twinning and martensite in a 304 austenitic stainless steel publication-title: Mater. Sci. Eng. A – volume: 759 start-page: 490 year: 2019 end-page: 497 ident: bb0215 article-title: Effect of temperature on the stacking fault energy and deformation behaviour in 316L austenitic stainless steel publication-title: Mater. Sci. Eng. A – volume: 165 start-page: 110382 year: 2020 end-page: 110397 ident: bb0285 article-title: Dislocation-driven recrystallization in AZ31B magnesium alloy imaged by quasi-in situ EBSD in annealing experiments publication-title: Mater. Charact. – volume: 548 start-page: 142 year: 2012 end-page: 151 ident: bb0085 article-title: Effect of laser shock peening on residual stress and fatigue life of clad 2024 aluminium sheet containing scribe defects publication-title: Mater. Sci. Eng. A – reference: B.N. Mordyuk, Y.V. Milman, M.O. Iefimov, G.I. Prokopenko, V.V. Silberschmidt, M.I. Danylenko, A.V. Kotko, Characterization of ultrasonically peened and laser-shock peened surface layers of AISI 321 stainless steel, Surf. Coat. Technol. 202(19, 2008) 4875-4883, doi: – volume: 178 start-page: 162 year: 2006 end-page: 169 ident: bb0305 article-title: Simulation of multiple laser shock peening of a 35CD4 steel alloy publication-title: J. Mater. Process. Technol. – reference: C.H. Yang, P.D. Hodgson, Q.C. Liu, L. Ye, Geometrical effects on residual stresses in 7050-T7451 aluminum alloy rods subject to laser shock peening, J. Mater. Process. Technol. 201(1-3, 2008) 303-309, doi: – start-page: 13 year: 2017 end-page: 79 ident: bb0230 article-title: Chapter 2 - The Deformed State publication-title: Recrystallization and Related Annealing Phenomena (Third Edition) – volume: 465 start-page: 176 year: 2007 end-page: 182 ident: bb0060 article-title: Comparison of the fatigue behavior and residual stress stability of laser-shock peened and deep rolled austenitic stainless steel AISI 304 in the temperature range 25–600°C publication-title: Mater. Sci. Eng.,A – volume: 383 start-page: 125284 year: 2020 end-page: 125293 ident: bb0130 article-title: Fatigue behavior of Ti-17 titanium alloy subjected to different laser shock peened regions and its microstructural response publication-title: Surf. Coat. Technol. – volume: 17 start-page: 366 year: 2013 end-page: 375 ident: bb0290 article-title: Residual stress. Part 2 – Nature and origins publication-title: Mater. Sci. Technol. – volume: 89 start-page: 012038 year: 2015 end-page: 012045 ident: bb0260 article-title: About quantitative EBSD analysis of deformation and recovery substructures in pure Tantalum publication-title: IOP Conf. Ser. Mater. Sci. Eng. – volume: 32 start-page: 101009 year: 2020 end-page: 101016 ident: bb0275 article-title: Grain refinement in an unalloyed tantalum structure by combining Wire+Arc additive manufacturing and vertical cold rolling publication-title: Addit. Manuf. – reference: . – reference: C.Y. Zhang, Y.L. Dong, C. Ye, Recent developments and novel applications of laser shock peening: a review, Adv. Eng. Mater. 2001216, doi: – volume: 42 start-page: 6866 year: 16, 2007 end-page: 6877 ident: bb0160 article-title: Influence of thermal and mechanical surface modifications induced by laser shock processing on the initiation of corrosion pits in 316L stainless steel publication-title: J. Mater. Sci. – year: 2013 ident: bb0065 publication-title: Laser Shock Processing of FCC Metals – volume: 83 start-page: 216 year: 2015 end-page: 226 ident: bb0090 article-title: Evolution of a laser shock peened residual stress field locally with foreign object damage and subsequent fatigue crack growth publication-title: Acta Mater. – volume: 142 start-page: 15 year: 2018 end-page: 26 ident: bb0020 article-title: Localized plastic deformation and hardening in laser shock peened Inconel alloy 718SPF publication-title: Mater. Charact. – volume: 60 start-page: 5040 year: 2012 end-page: 5048 ident: bb0185 article-title: The effect of shot peening on the microstructure and properties of a near-alpha titanium alloy following high temperature exposure publication-title: Acta Mater. – volume: 40 start-page: 3091 year: 11, 2021 end-page: 3106 ident: bb0150 article-title: Recent advances in tribological and wear properties of biomedical metallic materials publication-title: Rare Met. – volume: 204 start-page: 3947 year: 2010 end-page: 3953 ident: bb0165 article-title: Effects of laser shock processing on stress corrosion cracking susceptibility of AZ31B magnesium alloy publication-title: Surf. Coat. Technol. – volume: 33 start-page: 1421 issue: 6 year: 1998 ident: 10.1016/j.matchar.2021.111571_bb0115 article-title: Laser-shock processing of aluminium-coated 55C1 steel in water-confinement regime, characterization and application to high-cycle fatigue behaviour publication-title: J. Mater. Sci. doi: 10.1023/A:1004331205389 – start-page: 125698 year: 2020 ident: 10.1016/j.matchar.2021.111571_bb0120 article-title: Gradient microstructure and vibration fatigue properties of 2024-T351 aluminium alloy treated by laser shock peening publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2020.125698 – start-page: 13 year: 2017 ident: 10.1016/j.matchar.2021.111571_bb0230 article-title: Chapter 2 - The Deformed State – volume: 143 start-page: 81 year: 2019 ident: 10.1016/j.matchar.2021.111571_bb0055 article-title: Surface integrity and residual stress analysis of pulsed water jet peened stainless steel surfaces publication-title: Measurement doi: 10.1016/j.measurement.2019.04.082 – volume: 771 start-page: 138603 year: 2020 ident: 10.1016/j.matchar.2021.111571_bb0190 article-title: Tensile behavior of nickel with gradient microstructure produced by laser shock peening publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2019.138603 – volume: 385 start-page: 125403 year: 2020 ident: 10.1016/j.matchar.2021.111571_bb0040 article-title: Microstructural characterization and mechanical behavior of ultrasonic impact peened and laser shock peened AISI 316L stainless steel publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2020.125403 – volume: 383 start-page: 125284 year: 2020 ident: 10.1016/j.matchar.2021.111571_bb0130 article-title: Fatigue behavior of Ti-17 titanium alloy subjected to different laser shock peened regions and its microstructural response publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2019.125284 – volume: 552 start-page: 514 year: 2012 ident: 10.1016/j.matchar.2021.111571_bb0205 article-title: Twinning and martensite in a 304 austenitic stainless steel publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2012.05.080 – year: 2013 ident: 10.1016/j.matchar.2021.111571_bb0065 – volume: 40 start-page: 3091 year: 2021 ident: 10.1016/j.matchar.2021.111571_bb0150 article-title: Recent advances in tribological and wear properties of biomedical metallic materials publication-title: Rare Met. doi: 10.1007/s12598-021-01796-z – volume: 32 start-page: 101009 year: 2020 ident: 10.1016/j.matchar.2021.111571_bb0275 article-title: Grain refinement in an unalloyed tantalum structure by combining Wire+Arc additive manufacturing and vertical cold rolling publication-title: Addit. Manuf. – volume: 42 start-page: 6866 year: 2007 ident: 10.1016/j.matchar.2021.111571_bb0160 article-title: Influence of thermal and mechanical surface modifications induced by laser shock processing on the initiation of corrosion pits in 316L stainless steel publication-title: J. Mater. Sci. doi: 10.1007/s10853-007-1502-4 – ident: 10.1016/j.matchar.2021.111571_bb0225 doi: 10.1016/j.jmatprotec.2018.11.024 – volume: 327 start-page: 101 year: 2017 ident: 10.1016/j.matchar.2021.111571_bb0140 article-title: Improvement in mechanical properties of titanium alloy (Ti-6Al-7Nb) subject to multiple laser shock peening publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2017.08.009 – volume: 35 start-page: 572 year: 2012 ident: 10.1016/j.matchar.2021.111571_bb0245 article-title: Methods of measuring residual stresses in components publication-title: Mater. Des. doi: 10.1016/j.matdes.2011.08.022 – volume: 193 start-page: 108873 year: 2020 ident: 10.1016/j.matchar.2021.111571_bb0280 article-title: A critical assessment of experimental investigation of dynamic recrystallization of metallic materials publication-title: Mater. Des. doi: 10.1016/j.matdes.2020.108873 – volume: 58 start-page: 3173 issue: 8 year: 2010 ident: 10.1016/j.matchar.2021.111571_bb0200 article-title: Correlation between stacking fault energy and deformation microstructure in high-interstitial-alloyed austenitic steels publication-title: Acta Mater. doi: 10.1016/j.actamat.2010.01.056 – volume: 51 start-page: 3063 year: 2003 ident: 10.1016/j.matchar.2021.111571_bb0195 article-title: On the stress dependence of partial dislocation separation and deformation microstructure in austenitic stainless steels publication-title: Acta Mater. doi: 10.1016/S1359-6454(03)00117-4 – volume: 121 start-page: 105784 year: 2020 ident: 10.1016/j.matchar.2021.111571_bb0125 article-title: Fatigue behavior of double-sided laser shock peened Ti-6Al-4V thin blade subjected to foreign object damage publication-title: Opt. Laser Technol. doi: 10.1016/j.optlastec.2019.105784 – year: 1996 ident: 10.1016/j.matchar.2021.111571_bb0015 – volume: 111-112 start-page: 24 year: 2016 ident: 10.1016/j.matchar.2021.111571_bb0095 article-title: Prediction of the residual state in 304 austenitic steel after laser shock peening – Effects of plastic deformation and martensitic phase transformation publication-title: Int. J. Mech. Sci. doi: 10.1016/j.ijmecsci.2016.03.022 – volume: 27 start-page: 1213 issue: 12 year: 1995 ident: 10.1016/j.matchar.2021.111571_bb0005 article-title: Laser shock processing: a review of the physics and applications publication-title: Opt. Quantum Electron. doi: 10.1007/BF00326477 – volume: 21 start-page: 399 issue: 170 year: 2006 ident: 10.1016/j.matchar.2021.111571_bb0255 article-title: The deformation of plastically non-homogeneous materials publication-title: Philos. Mag doi: 10.1080/14786437008238426 – volume: 301 start-page: 557 year: 2014 ident: 10.1016/j.matchar.2021.111571_bb0310 article-title: Numerical modeling of residual stress induced by laser shock processing publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2014.02.128 – volume: 40 start-page: 289 issue: 3 year: 2000 ident: 10.1016/j.matchar.2021.111571_bb0070 article-title: Use of the hole-drilling method for measuring residual stresses in highly stressed shot-peened surfaces publication-title: Exp. Mech. doi: 10.1007/BF02327502 – volume: 64 start-page: 1273 year: 2021 ident: 10.1016/j.matchar.2021.111571_bb0320 article-title: Laser shock micro-bulk forming: Numerical simulation and experimental research publication-title: J. Manuf. Processes doi: 10.1016/j.jmapro.2021.02.049 – volume: 116 start-page: 189 year: 2019 ident: 10.1016/j.matchar.2021.111571_bb0325 article-title: Research on the dynamic yield strength and forming depth of microscale laser shock imprinting publication-title: Opt. Laser Technol. doi: 10.1016/j.optlastec.2019.03.026 – volume: 127 start-page: 252 year: 2017 ident: 10.1016/j.matchar.2021.111571_bb0175 article-title: Microstructural response and grain refinement mechanism of commercially pure titanium subjected to multiple laser shock peening impacts publication-title: Acta Mater. doi: 10.1016/j.actamat.2017.01.050 – volume: 60 start-page: 5040 issue: 13-14 year: 2012 ident: 10.1016/j.matchar.2021.111571_bb0185 article-title: The effect of shot peening on the microstructure and properties of a near-alpha titanium alloy following high temperature exposure publication-title: Acta Mater. doi: 10.1016/j.actamat.2012.06.017 – volume: 142 start-page: 15 year: 2018 ident: 10.1016/j.matchar.2021.111571_bb0020 article-title: Localized plastic deformation and hardening in laser shock peened Inconel alloy 718SPF publication-title: Mater. Charact. doi: 10.1016/j.matchar.2018.05.010 – volume: 83 start-page: 216 year: 2015 ident: 10.1016/j.matchar.2021.111571_bb0090 article-title: Evolution of a laser shock peened residual stress field locally with foreign object damage and subsequent fatigue crack growth publication-title: Acta Mater. doi: 10.1016/j.actamat.2014.09.032 – volume: 260 start-page: 847 issue: 7-8 year: 2006 ident: 10.1016/j.matchar.2021.111571_bb0135 article-title: Wear and friction of 6061-T6 aluminum alloy treated by laser shock processing publication-title: Wear doi: 10.1016/j.wear.2005.04.014 – volume: 647 start-page: 7 year: 2015 ident: 10.1016/j.matchar.2021.111571_bb0155 article-title: Effects of laser shock peening on stress corrosion behavior of 7075 aluminum alloy laser welded joints publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2015.08.084 – volume: 58 start-page: 5354 issue: 16 year: 2010 ident: 10.1016/j.matchar.2021.111571_bb0170 article-title: Grain refinement mechanism of multiple laser shock processing impacts on ANSI 304 stainless steel publication-title: Acta Mater. doi: 10.1016/j.actamat.2010.06.010 – volume: 46 start-page: 2215 issue: 6 year: 1998 ident: 10.1016/j.matchar.2021.111571_bb0210 article-title: Systematic study of stacking fault energies of random Al-based alloys publication-title: Acta Mater. doi: 10.1016/S1359-6454(97)00432-1 – ident: 10.1016/j.matchar.2021.111571_bb0075 doi: 10.1016/j.jmatprotec.2007.11.147 – volume: 759 start-page: 490 year: 2019 ident: 10.1016/j.matchar.2021.111571_bb0215 article-title: Effect of temperature on the stacking fault energy and deformation behaviour in 316L austenitic stainless steel publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2019.05.079 – volume: 34 start-page: 327 issue: 4 year: 2000 ident: 10.1016/j.matchar.2021.111571_bb0300 article-title: Surface prestressing to improve fatigue strength of components by laser shot peening publication-title: Opt. Lasers Eng. doi: 10.1016/S0143-8166(00)00083-X – volume: 17 start-page: 366 issue: 4 year: 2013 ident: 10.1016/j.matchar.2021.111571_bb0290 article-title: Residual stress. Part 2 – Nature and origins publication-title: Mater. Sci. Technol. doi: 10.1179/026708301101510087 – volume: 548 start-page: 142 year: 2012 ident: 10.1016/j.matchar.2021.111571_bb0085 article-title: Effect of laser shock peening on residual stress and fatigue life of clad 2024 aluminium sheet containing scribe defects publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2012.04.002 – volume: 349 start-page: 719 year: 2018 ident: 10.1016/j.matchar.2021.111571_bb0100 article-title: Evaluation of macro- and microscopic residual stresses in laser shock-peened titanium alloy by FIB-DIC ring-core milling with different core diameters publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2018.06.043 – volume: 53 start-page: 3293 year: 2005 ident: 10.1016/j.matchar.2021.111571_bb0250 article-title: The influence of shock-pulse shape on the structure/property behavior of copper and 316 L austenitic stainless steel publication-title: Acta Mater. doi: 10.1016/j.actamat.2005.03.037 – volume: 204 start-page: 3947 issue: 24 year: 2010 ident: 10.1016/j.matchar.2021.111571_bb0165 article-title: Effects of laser shock processing on stress corrosion cracking susceptibility of AZ31B magnesium alloy publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2010.03.015 – volume: 209 start-page: 5186 issue: 11 year: 2009 ident: 10.1016/j.matchar.2021.111571_bb0315 article-title: Influence of strain rate and adiabatic heating on the deformation behavior of cold heading steels publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2009.03.004 – volume: 131 year: 2020 ident: 10.1016/j.matchar.2021.111571_bb0145 article-title: Residual stresses induced by laser shock peening in orthopaedic Ti-6Al-7Nb alloy publication-title: Opt. Laser Technol. doi: 10.1016/j.optlastec.2020.106446 – volume: 33 start-page: 788 issue: 6 year: 2011 ident: 10.1016/j.matchar.2021.111571_bb0010 article-title: Effects of laser peening on fatigue life in an arrestment hook shank application for Naval aircraft publication-title: Int. J. Fatigue doi: 10.1016/j.ijfatigue.2010.12.016 – volume: 165 start-page: 110382 year: 2020 ident: 10.1016/j.matchar.2021.111571_bb0285 article-title: Dislocation-driven recrystallization in AZ31B magnesium alloy imaged by quasi-in situ EBSD in annealing experiments publication-title: Mater. Charact. doi: 10.1016/j.matchar.2020.110382 – volume: 800 start-page: 140168 year: 2021 ident: 10.1016/j.matchar.2021.111571_bb0050 article-title: Microstructure evolution of wire-arc additively manufactured 2319 aluminum alloy with interlayer hammering publication-title: Mater. Sci. Eng.,A doi: 10.1016/j.msea.2020.140168 – volume: 465 start-page: 176 issue: 1-2 year: 2007 ident: 10.1016/j.matchar.2021.111571_bb0060 article-title: Comparison of the fatigue behavior and residual stress stability of laser-shock peened and deep rolled austenitic stainless steel AISI 304 in the temperature range 25–600°C publication-title: Mater. Sci. Eng.,A doi: 10.1016/j.msea.2007.02.004 – ident: 10.1016/j.matchar.2021.111571_bb0045 doi: 10.1016/j.surfcoat.2008.04.080 – volume: 46 start-page: 4405 issue: 9 year: 2015 ident: 10.1016/j.matchar.2021.111571_bb0265 article-title: Selective Growth of Low Stored Energy Grains During δ Sub-solvus Annealing in the Inconel 718 Nickel-Based superalloy publication-title: Metall Mater. Trans. A doi: 10.1007/s11661-015-3035-9 – volume: 16 start-page: 90 year: 2017 ident: 10.1016/j.matchar.2021.111571_bb0295 article-title: Tailoring residual stress profile of Selective Laser Melted parts by Laser Shock Peening publication-title: Addit. Manuf. – volume: 210 start-page: 102 issue: 1 year: 1996 ident: 10.1016/j.matchar.2021.111571_bb0110 article-title: Laser shock processing of aluminium alloys. Application to high cycle fatigue behaviour publication-title: Mater. Sci. Eng. A doi: 10.1016/0921-5093(95)10084-9 – volume: 178 start-page: 162 issue: 1-3 year: 2006 ident: 10.1016/j.matchar.2021.111571_bb0305 article-title: Simulation of multiple laser shock peening of a 35CD4 steel alloy publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2006.03.170 – volume: 6 start-page: 1345 issue: 7 year: 1975 ident: 10.1016/j.matchar.2021.111571_bb0235 article-title: Stacking fault energies of seven commercial austenitic stainless steels publication-title: Metall. Trans. A doi: 10.1007/BF02641927 – volume: 58 start-page: 3984 issue: 11 year: 2010 ident: 10.1016/j.matchar.2021.111571_bb0220 article-title: Grain refinement of LY2 aluminum alloy induced by ultra-high plastic strain during multiple laser shock processing impacts publication-title: Acta Mater. doi: 10.1016/j.actamat.2010.03.026 – volume: 129 start-page: 106052 year: 2020 ident: 10.1016/j.matchar.2021.111571_bb0180 article-title: Effect of laser shock peening with and without protective coating on the microstructure and mechanical properties of Ti-alloy publication-title: Opt. Lasers Eng. doi: 10.1016/j.optlaseng.2020.106052 – volume: 578 start-page: 181 year: 2013 ident: 10.1016/j.matchar.2021.111571_bb0330 article-title: Deforming TC6 titanium alloys at ultrahigh strain rates during multiple laser shock peening publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2013.04.070 – volume: 680 start-page: 544 year: 2016 ident: 10.1016/j.matchar.2021.111571_bb0025 article-title: Effect of laser shock peening on microstructure and fatigue crack growth rate of AZ31B magnesium alloy publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2016.04.179 – volume: 123 start-page: 105917 year: 2020 ident: 10.1016/j.matchar.2021.111571_bb0105 article-title: Evolutions of microstructure, phase, microhardness, and residual stress of multiple laser shock peened Ni-based single crystal superalloy after short-term thermal exposure publication-title: Opt. Laser Technol. doi: 10.1016/j.optlastec.2019.105917 – volume: 89 start-page: 012038 year: 2015 ident: 10.1016/j.matchar.2021.111571_bb0260 article-title: About quantitative EBSD analysis of deformation and recovery substructures in pure Tantalum publication-title: IOP Conf. Ser. Mater. Sci. Eng. doi: 10.1088/1757-899X/89/1/012038 – volume: 68 start-page: 775 issue: 2 year: 1990 ident: 10.1016/j.matchar.2021.111571_bb0240 article-title: Physical study of laser-produced plasma in confined geometry publication-title: J. Appl. Phys. doi: 10.1063/1.346783 – ident: 10.1016/j.matchar.2021.111571_bb0030 doi: 10.1002/adem.202001216 – volume: 123 start-page: 350 year: 2017 ident: 10.1016/j.matchar.2021.111571_bb0035 article-title: Microstructural characterisation of metallic shot peened and laser shock peened Ti–6Al–4V publication-title: Acta Mater. doi: 10.1016/j.actamat.2016.10.044 – volume: 269 start-page: 127674 year: 2020 ident: 10.1016/j.matchar.2021.111571_bb0270 article-title: Effect of post heat treatment on the microstructure and mechanical properties of wire-arc additively manufactured A357 alloy components publication-title: Mater. Lett. doi: 10.1016/j.matlet.2020.127674 – volume: 59 start-page: 3737 issue: 9 year: 2011 ident: 10.1016/j.matchar.2021.111571_bb0080 article-title: Experimental investigation and fatigue life prediction for 7475-T7351 aluminum alloy with and without shot peening-induced residual stresses publication-title: Acta Mater. doi: 10.1016/j.actamat.2011.03.013 |
SSID | ssj0006817 |
Score | 2.4863317 |
Snippet | Laser shock peening (LSP) has been widely applied to enhance the mechanical properties of metallic materials by modifying their sub-surface microstructures.... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 111571 |
SubjectTerms | Grain refinement Laser shock peening Plastic deformation Residual stress Stacking fault energy |
Title | Investigation of microstructure and mechanical properties evolution in 7050 aluminum alloy and 316L stainless steel treated by laser shock peening |
URI | https://dx.doi.org/10.1016/j.matchar.2021.111571 |
Volume | 182 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6kHtSD-MQ3c_CaNo_dJHssxVIf9KKCt5DsA1vaNNQHePFH-IudycNWEAVv2bADy87wfTPJPBg7Nwo5iyvuGBkrh1qeO5m01vG1NOgtc-IdyrYYhoN7fvUgHlZYr6mFobTKGvsrTC_Run7TqW-zU4xGnVsMJLiIXSpCcUMZUMEv5xFZeft9keYRxuXUXdrs0O5FFU9n3EankIqbMEz0PQIPEXk_89MS5_S32GbtLEK3Os82WzH5DlvrNTPadtjGUjvBXfax1DRjlsPMwpTS7aoWsS9zA2muYWqo1pdUAwV9iJ9TR1Uwr7UJwiiHyBUupIhao_xlCvRn_q0UDbzwBsp6qwniIz4ZM4EyU91oyN4AHXEzh6dHhFgoMD7GQ-2x-_7FXW_g1DMXHBW48tnxrQ0i60Y6QGYLIuMp18o4strNSm5PU19kIlY2TT3lK-N52vg8oLjJ0xKl9lkrn-XmgEGYKeHbUKOHiDEgRUZaC8lTqzEqkiI7ZLy56UTVDclpLsYkaTLPxkmtoIQUlFQKOmTtL7Gi6sjxl0DcqDH5ZloJssbvokf_Fz1m67SqMl9OWAtVbU7Rf3nOzkoDPWOr3cvrwfATQjvxQA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9tAEB3R5EB7QCUFQVtgDr2a-Gtt7xFFoFBCLoDEzbL3QwQlThRIpfyN_uLO2GsaJESl3izbT1rtrN7M2DNvAH4YRT4rVrFnZKY8ljz3SmmtF2ppKFqO2e9wtcU4Gd7FP-_F_RYM2l4YLqt03N9wes3W7k7f7WZ_MZn0byiRiEXmcxOKn8go-wBdVqcSHeieXV4Nxy-EnGT14F1-32PA30ae_uMpxYXc30SZYhgwf4g0eNtFbbidi8-w4-JFPGuWtAtbpurB9qAd09aDTxuKgl_g94ZuxrzCucUZV9w1KrGrpcGi0jgz3O7L1sEFf4tfsqgqml_uFOKkwtQXPhZEXJNqNUP-Ob-uoVGQjLBuuZoSRdKVMVOsi9WNxnKNFIubJT49EMviglJkWtQe3F2c3w6Gnhu74KnIl89eaG2UWj_VETm3KDWB8q3MUqv9snbvRRGKUmTKFkWgQmWCQJswjjh1CrQk1D50qnllDgCTUonQJpqCREoDOTnSWsi4sJoSIynKQ4jbnc6V0yTn0RjTvC0-e8ydgXI2UN4Y6BBOX2CLRpTjX4CsNWP-6nTl5Djeh379f-gJbA9vr0f56HJ89Q0-8pOmEOY7dMjs5ojCmefy2B3XP4Nx8_E |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Investigation+of+microstructure+and+mechanical+properties+evolution+in+7050+aluminum+alloy+and+316L+stainless+steel+treated+by+laser+shock+peening&rft.jtitle=Materials+characterization&rft.au=Jing%2C+Yandong&rft.au=Fang%2C+Xuewei&rft.au=Xi%2C+Naiyuan&rft.au=Feng%2C+Xianlu&rft.date=2021-12-01&rft.pub=Elsevier+Inc&rft.issn=1044-5803&rft.volume=182&rft_id=info:doi/10.1016%2Fj.matchar.2021.111571&rft.externalDocID=S1044580321006938 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1044-5803&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1044-5803&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1044-5803&client=summon |