Event-Triggered Distributed Fixed-Time Adaptive Attitude Control With Prescribed Performance for Multiple QUAVs
This article concentrates on the distributed fixed-time adaptive event-triggered attitude control problem for multiple quad-rotor unmanned aerial vehicles (QUAVs) with prescribed performance. By utilizing the fuzzy logic system and constructing a piecewise continuous function, the unknown nonlinear...
Saved in:
Published in | IEEE transactions on automation science and engineering Vol. 21; no. 3; pp. 4471 - 4481 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
IEEE
01.07.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 1545-5955 1558-3783 |
DOI | 10.1109/TASE.2023.3297235 |
Cover
Loading…
Abstract | This article concentrates on the distributed fixed-time adaptive event-triggered attitude control problem for multiple quad-rotor unmanned aerial vehicles (QUAVs) with prescribed performance. By utilizing the fuzzy logic system and constructing a piecewise continuous function, the unknown nonlinear dynamics of multiple QUAVs and the problem of singularity are skillfully addressed, respectively. The command filter that has fixed-time convergence is devised to avert the "explosion of complexity" problem, while the impact of filtered error is eliminated by virtue of the fractional-power-based error compensation signals. Moreover, a fixed-time performance function is embedded into the distributed attitude control algorithm to ensure that the synchronization errors converge to the preassigned performance confines. It is strictly proved that all closed-loop signals are fixed-time bounded, and the disagreement errors are steered into a small region nearby the zero in a fixed time. Finally, numerical simulations are given to demonstrate the efficiency and superiority of the devised fixed-time control scheme. Note to Practitioners-This article aims at designing an event-triggered distributed attitude control algorithm to relax the communication burden for multiple QUAVs subject to external disturbances. In practical applications, the communication bandwidth and the onboard energy of QUAVs are limited, while the traditional time-triggered approaches neglect these realistic restrictions. Thereby, by incorporating a relative threshold event-triggered mechanism into the command filtered backstepping design process, not only can the "explosion of complexity" issue and the impact of filtered error be surmounted, but also the frequency of controller updating is reduced. Additionally, the construction of a prescribed performance function with fixed-time convergence results in the improvement of both transient and steady-state performances for multiple QUAVs, thus meeting practical requirements more effectively. |
---|---|
AbstractList | This article concentrates on the distributed fixed-time adaptive event-triggered attitude control problem for multiple quad-rotor unmanned aerial vehicles (QUAVs) with prescribed performance. By utilizing the fuzzy logic system and constructing a piecewise continuous function, the unknown nonlinear dynamics of multiple QUAVs and the problem of singularity are skillfully addressed, respectively. The command filter that has fixed-time convergence is devised to avert the "explosion of complexity" problem, while the impact of filtered error is eliminated by virtue of the fractional-power-based error compensation signals. Moreover, a fixed-time performance function is embedded into the distributed attitude control algorithm to ensure that the synchronization errors converge to the preassigned performance confines. It is strictly proved that all closed-loop signals are fixed-time bounded, and the disagreement errors are steered into a small region nearby the zero in a fixed time. Finally, numerical simulations are given to demonstrate the efficiency and superiority of the devised fixed-time control scheme. Note to Practitioners-This article aims at designing an event-triggered distributed attitude control algorithm to relax the communication burden for multiple QUAVs subject to external disturbances. In practical applications, the communication bandwidth and the onboard energy of QUAVs are limited, while the traditional time-triggered approaches neglect these realistic restrictions. Thereby, by incorporating a relative threshold event-triggered mechanism into the command filtered backstepping design process, not only can the "explosion of complexity" issue and the impact of filtered error be surmounted, but also the frequency of controller updating is reduced. Additionally, the construction of a prescribed performance function with fixed-time convergence results in the improvement of both transient and steady-state performances for multiple QUAVs, thus meeting practical requirements more effectively. |
Author | Cui, Guozeng Lam, Hak-Keung Xu, Hui Yu, Jinpeng |
Author_xml | – sequence: 1 givenname: Guozeng orcidid: 0000-0001-6880-4361 surname: Cui fullname: Cui, Guozeng email: guozengcui@gmail.com organization: School of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou, China – sequence: 2 givenname: Hui orcidid: 0000-0002-7946-3192 surname: Xu fullname: Xu, Hui email: huixuing@163.com organization: School of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou, China – sequence: 3 givenname: Jinpeng orcidid: 0000-0002-5432-1702 surname: Yu fullname: Yu, Jinpeng email: yjp1109@hotmail.com organization: School of Automation, Qingdao University, Qingdao, China – sequence: 4 givenname: Hak-Keung orcidid: 0000-0002-6572-7265 surname: Lam fullname: Lam, Hak-Keung email: hak-keung.lam@kcl.ac.uk organization: Department of Engineering, King's College London, London, U.K |
BookMark | eNp9kMtOAjEUQBuDiYB-gImL_sBgH1OmXRIENcGIcdDlpHRusWaYIW0h-vfOBBbGhaueRc_NvWeAenVTA0LXlIwoJeo2n7zORowwPuJMZYyLM9SnQsiEZ5L3Ok5FIpQQF2gQwichLJWK9FEzO0Adk9y7zQY8lPjOhejdeh9bnrsvKJPcbQFPSr2L7tBCjC7uS8DTpo6-qfC7ix946SGYVmulJXjb-K2uDeAW8NO-im5XAX5ZTd7CJTq3ugpwdXqHaDWf5dOHZPF8_zidLBLDiYoJM4pmzI65zcY6TbligqZKEy01K41Yi7HVRktJuIBScdlezKyUSlO9BkslH6LsONf4JgQPtjAu6ui6pbWrCkqKrlvRdSu6bsWpW2vSP-bOu6323_86N0fHAcCv_1RJJjP-A4a3fFs |
CODEN | ITASC7 |
CitedBy_id | crossref_primary_10_1109_TFUZZ_2024_3496562 crossref_primary_10_1109_TITS_2024_3520328 crossref_primary_10_3390_math12152387 crossref_primary_10_1007_s11071_024_10845_y crossref_primary_10_3390_drones8120715 crossref_primary_10_1007_s11431_024_2780_3 crossref_primary_10_1007_s11431_023_2607_8 crossref_primary_10_1080_23307706_2024_2388551 crossref_primary_10_1109_TASE_2024_3457537 crossref_primary_10_1109_ACCESS_2023_3316026 crossref_primary_10_1109_TSMC_2024_3515040 crossref_primary_10_1002_asjc_3286 crossref_primary_10_1007_s11071_024_10048_5 crossref_primary_10_1007_s11431_023_2684_6 crossref_primary_10_1016_j_amc_2024_129003 crossref_primary_10_1109_TASE_2024_3461323 crossref_primary_10_1109_TFUZZ_2024_3502360 crossref_primary_10_1002_asjc_3368 crossref_primary_10_1002_asjc_3486 crossref_primary_10_1109_TSMC_2024_3451694 crossref_primary_10_1109_TASE_2024_3391312 crossref_primary_10_1007_s11424_024_4051_x crossref_primary_10_1007_s11071_024_10208_7 crossref_primary_10_1016_j_cja_2024_10_014 crossref_primary_10_1002_rnc_7391 crossref_primary_10_1002_rnc_7852 crossref_primary_10_1016_j_jfranklin_2024_106781 crossref_primary_10_1177_09596518251322239 |
Cites_doi | 10.1016/j.conengprac.2022.105150 10.1109/TAC.2009.2015562 10.1016/j.cja.2020.03.004 10.1016/j.isatra.2023.03.029 10.1016/0024-3795(92)90016-4 10.1016/j.automatica.2017.02.005 10.1109/TASE.2018.2792327 10.1109/JAS.2022.105413 10.1109/TFUZZ.2022.3214006 10.1109/TCYB.2021.3091531 10.1109/TAES.2022.3205566 10.1109/TAC.2008.929402 10.1109/91.227383 10.1016/j.neucom.2019.06.063 10.1049/iet-cta.2019.0488 10.1109/TAES.2021.3050647 10.1016/j.ins.2018.04.016 10.1177/01423312211032541 10.1109/tase.2023.3241182 10.1109/TSMC.2021.3103013 10.1109/TAES.2021.3123161 10.1016/j.neucom.2020.12.078 10.1109/9.935058 10.1109/TAC.2011.2179869 10.1007/s11071-021-06757-w 10.1109/TFUZZ.2022.3181463 10.1109/tii.2022.3221220 10.1109/tnnls.2022.3166531 10.1002/asjc.2765 10.1016/j.jfranklin.2020.03.021 10.1109/TIE.2021.3055181 10.1109/TCSI.2021.3073024 10.1109/TII.2021.3133927 10.1109/TCYB.2020.2987811 10.1109/TASE.2022.3184022 10.1109/TAC.2016.2594204 10.1016/j.ast.2022.107784 10.1109/TAC.2022.3144107 10.1109/TNNLS.2019.2915376 10.1109/TCSII.2022.3200053 10.1016/j.ins.2023.02.058 10.1016/j.jfranklin.2019.11.056 10.1080/00207179.2020.1831700 10.1109/TAC.2022.3197562 10.1109/TCST.2018.2868038 10.1109/TNNLS.2021.3071094 10.1109/TCST.2021.3055370 10.1109/TAC.2011.2160030 10.1109/TASE.2021.3135834 10.1109/TAC.2017.2729502 |
ContentType | Journal Article |
DBID | 97E RIA RIE AAYXX CITATION |
DOI | 10.1109/TASE.2023.3297235 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-3783 |
EndPage | 4481 |
ExternalDocumentID | 10_1109_TASE_2023_3297235 10198287 |
Genre | orig-research |
GrantInformation_xml | – fundername: “333 Project” of Jiangsu Province – fundername: Program for Cheung Kong Scholars – fundername: National Natural Science Foundation of China grantid: 61973179; 61703059 funderid: 10.13039/501100001809 – fundername: Taishan Scholar Special Project Fund grantid: TSTP20221120 – fundername: Natural Science Fund for Excellent Young Scholars of Jiangsu Province grantid: BK20211605 – fundername: Qingdao Key Research and Development Special Project grantid: 21-1-2-6-nsh – fundername: Post-Graduate Research & Practice Innovation Program of Jiangsu Province grantid: SJCX22_1586 – fundername: Major Innovation Project of Shandong Province grantid: 2022CXGC020901 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION RIG |
ID | FETCH-LOGICAL-c309t-2c9172f63f76a443925149a0a8a2dc5b56faca88035ed9387232f889a1abef183 |
IEDL.DBID | RIE |
ISSN | 1545-5955 |
IngestDate | Tue Jul 01 02:56:34 EDT 2025 Thu Apr 24 22:55:09 EDT 2025 Wed Aug 27 02:15:02 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 3 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c309t-2c9172f63f76a443925149a0a8a2dc5b56faca88035ed9387232f889a1abef183 |
ORCID | 0000-0002-5432-1702 0000-0001-6880-4361 0000-0002-6572-7265 0000-0002-7946-3192 |
OpenAccessLink | https://kclpure.kcl.ac.uk/ws/files/226380764/Event_Triggered_Distributed_Fixed_Time_Adaptive_Attitude_Control_with_Prescribed_Performance_for_Multiple_QUAVs_Accepted_Auhtor_Manuscript_.pdf |
PageCount | 11 |
ParticipantIDs | ieee_primary_10198287 crossref_citationtrail_10_1109_TASE_2023_3297235 crossref_primary_10_1109_TASE_2023_3297235 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-07-01 |
PublicationDateYYYYMMDD | 2024-07-01 |
PublicationDate_xml | – month: 07 year: 2024 text: 2024-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | IEEE transactions on automation science and engineering |
PublicationTitleAbbrev | TASE |
PublicationYear | 2024 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
References | ref13 ref12 ref15 ref14 ref11 ref10 ref17 ref16 ref19 ref18 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 |
References_xml | – ident: ref17 doi: 10.1016/j.conengprac.2022.105150 – ident: ref9 doi: 10.1109/TAC.2009.2015562 – ident: ref12 doi: 10.1016/j.cja.2020.03.004 – ident: ref18 doi: 10.1016/j.isatra.2023.03.029 – ident: ref50 doi: 10.1016/0024-3795(92)90016-4 – ident: ref20 doi: 10.1016/j.automatica.2017.02.005 – ident: ref1 doi: 10.1109/TASE.2018.2792327 – ident: ref11 doi: 10.1109/JAS.2022.105413 – ident: ref41 doi: 10.1109/TFUZZ.2022.3214006 – ident: ref21 doi: 10.1109/TCYB.2021.3091531 – ident: ref4 doi: 10.1109/TAES.2022.3205566 – ident: ref19 doi: 10.1109/TAC.2008.929402 – ident: ref36 doi: 10.1109/91.227383 – ident: ref35 doi: 10.1016/j.neucom.2019.06.063 – ident: ref34 doi: 10.1049/iet-cta.2019.0488 – ident: ref47 doi: 10.1109/TAES.2021.3050647 – ident: ref38 doi: 10.1016/j.ins.2018.04.016 – ident: ref16 doi: 10.1177/01423312211032541 – ident: ref33 doi: 10.1109/tase.2023.3241182 – ident: ref14 doi: 10.1109/TSMC.2021.3103013 – ident: ref2 doi: 10.1109/TAES.2021.3123161 – ident: ref13 doi: 10.1016/j.neucom.2020.12.078 – ident: ref37 doi: 10.1109/9.935058 – ident: ref15 doi: 10.1109/TAC.2011.2179869 – ident: ref23 doi: 10.1007/s11071-021-06757-w – ident: ref28 doi: 10.1109/TFUZZ.2022.3181463 – ident: ref45 doi: 10.1109/tii.2022.3221220 – ident: ref32 doi: 10.1109/tnnls.2022.3166531 – ident: ref24 doi: 10.1002/asjc.2765 – ident: ref40 doi: 10.1016/j.jfranklin.2020.03.021 – ident: ref5 doi: 10.1109/TIE.2021.3055181 – ident: ref42 doi: 10.1109/TCSI.2021.3073024 – ident: ref44 doi: 10.1109/TII.2021.3133927 – ident: ref6 doi: 10.1109/TCYB.2020.2987811 – ident: ref30 doi: 10.1109/TASE.2022.3184022 – ident: ref43 doi: 10.1109/TAC.2016.2594204 – ident: ref48 doi: 10.1016/j.ast.2022.107784 – ident: ref10 doi: 10.1109/TAC.2022.3144107 – ident: ref22 doi: 10.1109/TNNLS.2019.2915376 – ident: ref26 doi: 10.1109/TCSII.2022.3200053 – ident: ref29 doi: 10.1016/j.ins.2023.02.058 – ident: ref46 doi: 10.1016/j.jfranklin.2019.11.056 – ident: ref25 doi: 10.1080/00207179.2020.1831700 – ident: ref27 doi: 10.1109/TAC.2022.3197562 – ident: ref8 doi: 10.1109/TCST.2018.2868038 – ident: ref7 doi: 10.1109/TNNLS.2021.3071094 – ident: ref31 doi: 10.1109/TCST.2021.3055370 – ident: ref49 doi: 10.1109/TAC.2011.2160030 – ident: ref3 doi: 10.1109/TASE.2021.3135834 – ident: ref39 doi: 10.1109/TAC.2017.2729502 |
SSID | ssj0024890 |
Score | 2.5850227 |
Snippet | This article concentrates on the distributed fixed-time adaptive event-triggered attitude control problem for multiple quad-rotor unmanned aerial vehicles... |
SourceID | crossref ieee |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 4471 |
SubjectTerms | Attitude control Backstepping command filtered backstepping Complexity theory Convergence Event-triggered control Explosions fixed-time control Information filters prescribed performance control |
Title | Event-Triggered Distributed Fixed-Time Adaptive Attitude Control With Prescribed Performance for Multiple QUAVs |
URI | https://ieeexplore.ieee.org/document/10198287 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA62Jz34rFhf5OBJyLqv7OO41BYRLIKt9rbkqUVpi25B_PXO7G5tFRRvYclA2Mnjm-Sb-Qg50xLO6IBbZj3DWagjyxIuBPOM58VKBqh0hWyLfnQ1DK9HfFQnq5e5MMaYknxmHGyWb_l6quZ4VQYrHEJkgPgN0oDIrUrWWhbWS8oLFYQEjKec10-YnpteDLK7roM64U7go8oW_3YIraiqlIdKb4v0F8OpuCTPzryQjvr4Uanx3-PdJps1vKRZNR92yJqZ7JKNlaKDe2TaRYojG0BY_ohCnfQSa-ei7BW0e-N3oxnmhdBMixnuhTQrkE6gDe1UtHb6MC6eKHI3YMeRYHS7TD6g0KA3NUmRAly-f2uRYa876FyxWnaBqcBNC-YrCOF8GwU2jkQIgAUgUJgKVyTC14pLHlmhBKz7gBudBgn8UN8mSSo8IY2FLWKfNCfTiTkgNHa1L5X1XJkALrM2AS_FwpiIqzBSSrWJu_BDruqa5CiN8ZKXsYmb5ui6HF2X165rk_Mvk1lVkOOvzi30ykrHyiGHv3w_IutgHlZ03GPSLF7n5gRARyFPy8n2CR_700k |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JSwMxFA4uB_XgWnE3B09Cxtkyy3HQlroVwVZ7G7KqKK3oFMRf73szU62C4i0MSQjzsnwv-d77CDnQEs7ogFtmPcNZqCPLEi4E84znxUoGqHSFbItO1O6FZ33er4PVy1gYY0xJPjMOFsu3fD1UI7wqgxUOLjJA_GkyyzEatwrX-kqtl5RXKggKGE85rx8xPTc96mbXTQeVwp3AR50t_u0YmtBVKY-V1hLpjAdUsUkenVEhHfX-I1fjv0e8TBZrgEmzakaskCkzWCULE2kH18iwiSRH1gXH_A6lOukJZs9F4Ssotx7ejGYYGUIzLZ5xN6RZgYQCbehxRWyntw_FPUX2Buw5EhpdfYUfUCjQy5qmSAEw37w2SK_V7B63WS28wFTgpgXzFThxvo0CG0ciBMgCIChMhSsS4WvFJY-sUAJWfsCNToMEfqhvkyQVnpDGwiaxTmYGw4HZIDR2tS-V9VyZADKzNgErxcKYiKswUkptEndsh1zVWclRHOMpL70TN83RdDmaLq9Nt0kOP5s8Vyk5_qrcQKtMVKwMsvXL930y1-5eXuQXp53zbTIPXYUVOXeHzBQvI7MLEKSQe-XE-wBNn9aR |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Event-Triggered+Distributed+Fixed-Time+Adaptive+Attitude+Control+With+Prescribed+Performance+for+Multiple+QUAVs&rft.jtitle=IEEE+transactions+on+automation+science+and+engineering&rft.au=Cui%2C+Guozeng&rft.au=Xu%2C+Hui&rft.au=Yu%2C+Jinpeng&rft.au=Lam%2C+Hak-Keung&rft.date=2024-07-01&rft.issn=1545-5955&rft.eissn=1558-3783&rft.volume=21&rft.issue=3&rft.spage=4471&rft.epage=4481&rft_id=info:doi/10.1109%2FTASE.2023.3297235&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TASE_2023_3297235 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-5955&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-5955&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-5955&client=summon |