Machine learning and reasoning for predictive maintenance in Industry 4.0: Current status and challenges
•Predictive maintenance is a hot topic in the context of Industry 4.0.•The papers that bring novelty to the field are concentrated in the years 2018 and 2019.•We envision the necessity of implementing the theoretical frameworks found in the literature in real industrial environments.•Challenges rela...
Saved in:
Published in | Computers in industry Vol. 123; p. 103298 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.12.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Predictive maintenance is a hot topic in the context of Industry 4.0.•The papers that bring novelty to the field are concentrated in the years 2018 and 2019.•We envision the necessity of implementing the theoretical frameworks found in the literature in real industrial environments.•Challenges related to big data are also of interest.•Issues like scalability, latency, and data security deserve further investigation.
In recent years, the fourth industrial revolution has attracted attention worldwide. Several concepts were born in conjunction with this new revolution, such as predictive maintenance. This study aims to investigate academic advances in failure prediction. The prediction of failures takes into account concepts as a predictive maintenance decision support system and a design support system. We focus on frameworks that use machine learning and reasoning for predictive maintenance in Industry 4.0. More specifically, we consider the challenges in the application of machine learning techniques and ontologies in the context of predictive maintenance. We conduct a systematic review of the literature (SLR) to analyze academic articles that were published online from 2015 until the beginning of June 2020. The screening process resulted in a final population of 38 studies of a total of 562 analyzed. We removed papers not directly related to predictive maintenance, machine learning, as well as researches classified as surveys or reviews. We discuss the proposals and results of these papers, considering three research questions. This article contributes to the field of predictive maintenance to highlight the challenges faced in the area, both for implementation and use-case. We conclude by pointing out that predictive maintenance is a hot topic in the context of Industry 4.0 but with several challenges to be better investigated in the area of machine learning and the application of reasoning. |
---|---|
AbstractList | •Predictive maintenance is a hot topic in the context of Industry 4.0.•The papers that bring novelty to the field are concentrated in the years 2018 and 2019.•We envision the necessity of implementing the theoretical frameworks found in the literature in real industrial environments.•Challenges related to big data are also of interest.•Issues like scalability, latency, and data security deserve further investigation.
In recent years, the fourth industrial revolution has attracted attention worldwide. Several concepts were born in conjunction with this new revolution, such as predictive maintenance. This study aims to investigate academic advances in failure prediction. The prediction of failures takes into account concepts as a predictive maintenance decision support system and a design support system. We focus on frameworks that use machine learning and reasoning for predictive maintenance in Industry 4.0. More specifically, we consider the challenges in the application of machine learning techniques and ontologies in the context of predictive maintenance. We conduct a systematic review of the literature (SLR) to analyze academic articles that were published online from 2015 until the beginning of June 2020. The screening process resulted in a final population of 38 studies of a total of 562 analyzed. We removed papers not directly related to predictive maintenance, machine learning, as well as researches classified as surveys or reviews. We discuss the proposals and results of these papers, considering three research questions. This article contributes to the field of predictive maintenance to highlight the challenges faced in the area, both for implementation and use-case. We conclude by pointing out that predictive maintenance is a hot topic in the context of Industry 4.0 but with several challenges to be better investigated in the area of machine learning and the application of reasoning. |
ArticleNumber | 103298 |
Author | Binotto, Alecio Pignaton, Edison Sanyal, Srijnan Dalzochio, Jovani Favilla, Jose Kunst, Rafael Barbosa, Jorge |
Author_xml | – sequence: 1 givenname: Jovani surname: Dalzochio fullname: Dalzochio, Jovani email: jovanidalzochio@edu.unisinos.br organization: University of Vale do Rio dos Sinos (UNISINOS), Av. Unisinos, 950 São Leopoldo, RS, Brazil – sequence: 2 givenname: Rafael surname: Kunst fullname: Kunst, Rafael email: rafaelkunst@unisinos.br organization: University of Vale do Rio dos Sinos (UNISINOS), Av. Unisinos, 950 São Leopoldo, RS, Brazil – sequence: 3 givenname: Edison surname: Pignaton fullname: Pignaton, Edison email: edison.pignaton@ufrgs.br organization: Federal University of Rio Grande do Sul (UFRGS), Av. Bento Goncalves, 9500 Porto Alegre, RS, Brazil – sequence: 4 givenname: Alecio orcidid: 0000-0002-2486-049X surname: Binotto fullname: Binotto, Alecio email: alecio.binotto@ibm.com organization: IBM Watson IoT Center, Mies-Van-Der-Rohe-Strasse 6 Muenchen, 80807, DE – sequence: 5 givenname: Srijnan surname: Sanyal fullname: Sanyal, Srijnan email: srijnan.sanyal1@ibm.com organization: IBM Watson IoT Center, Mies-Van-Der-Rohe-Strasse 6 Muenchen, 80807, DE – sequence: 6 givenname: Jose surname: Favilla fullname: Favilla, Jose email: jfavilla@us.ibm.com organization: IBM, 1177 S Belt Line Rd Coppell, TX 75019-4642, USA – sequence: 7 givenname: Jorge surname: Barbosa fullname: Barbosa, Jorge email: barbosa@unisinos.br organization: University of Vale do Rio dos Sinos (UNISINOS), Av. Unisinos, 950 São Leopoldo, RS, Brazil |
BookMark | eNqFkMtuwjAQRb2gUoH2Eyr5B5L6kTi4XVQV6gOJqpt2bTnOGIyCg2yDxN83AVbdMJvRPO7VzJmgke88IPRASU4JFY-b3HTbnfNNzggbepzJ2QiN-5nIuKDlLZrEuCF9VJUYo_WXNmvnAbegg3d-hbVvcAAdu1Nlu4B3ARpnkjsA3mrnE3jtDWDn8cI3-5jCERc5ecLzfQjgE45Jp308GZm1blvwK4h36MbqNsL9JU_R7_vbz_wzW35_LOavy8xwIlPGKkEtKTUhQpdUFpbzooSisqI2RgJwMLSWrDZC6kZaU9sZrwsmqWSM9nt8ip7PviZ0MQawyrj-Htf5FLRrFSVqAKU26gJKDaDUGVSvLv-pd8FtdThe1b2cddC_dnAQVDQOekqNC2CSajp3xeEP6GuLYQ |
CitedBy_id | crossref_primary_10_3390_s21072376 crossref_primary_10_3390_s25010137 crossref_primary_10_1016_j_ifacol_2022_10_092 crossref_primary_10_3390_s22228641 crossref_primary_10_1016_j_engappai_2022_105317 crossref_primary_10_1016_j_egyr_2021_12_066 crossref_primary_10_3390_s22020586 crossref_primary_10_1016_j_jmsy_2021_09_017 crossref_primary_10_3390_buildings12081229 crossref_primary_10_1016_j_compind_2023_103938 crossref_primary_10_1145_3596602 crossref_primary_10_1017_dce_2022_4 crossref_primary_10_1109_TEM_2024_3352819 crossref_primary_10_1109_TAI_2023_3299252 crossref_primary_10_3390_eng5030092 crossref_primary_10_1007_s10878_023_00988_w crossref_primary_10_1016_j_cie_2022_108400 crossref_primary_10_3390_make5030051 crossref_primary_10_1016_j_ijhydene_2025_02_232 crossref_primary_10_1007_s00170_024_14097_3 crossref_primary_10_1109_JSEN_2024_3437292 crossref_primary_10_1115_1_4062941 crossref_primary_10_1016_j_matpr_2022_04_727 crossref_primary_10_1007_s10489_023_04793_0 crossref_primary_10_1016_j_techfore_2022_122204 crossref_primary_10_3390_en16104025 crossref_primary_10_1016_j_procir_2024_10_279 crossref_primary_10_1108_JMTM_04_2024_0211 crossref_primary_10_3390_app12136704 crossref_primary_10_3390_info12100386 crossref_primary_10_1016_j_ifacol_2024_08_062 crossref_primary_10_1016_j_istruc_2024_107834 crossref_primary_10_3390_math9192405 crossref_primary_10_1007_s10462_022_10243_z crossref_primary_10_1007_s00146_022_01391_5 crossref_primary_10_1016_j_cogr_2023_04_001 crossref_primary_10_3390_math11133008 crossref_primary_10_1016_j_eswa_2023_121136 crossref_primary_10_1016_j_rineng_2024_102890 crossref_primary_10_1016_j_cie_2021_107475 crossref_primary_10_1007_s00170_023_12515_6 crossref_primary_10_51551_verimlilik_988104 crossref_primary_10_1016_j_procir_2021_11_262 crossref_primary_10_1016_j_jmsy_2022_06_002 crossref_primary_10_1016_j_procs_2025_02_014 crossref_primary_10_1016_j_procs_2023_10_033 crossref_primary_10_1080_0951192X_2022_2134930 crossref_primary_10_1088_1361_6501_ac3c1d crossref_primary_10_1016_j_jclepro_2023_138726 crossref_primary_10_1016_j_ifacol_2023_10_606 crossref_primary_10_1016_j_neucom_2022_09_083 crossref_primary_10_1007_s10845_022_01960_x crossref_primary_10_3390_machines11010040 crossref_primary_10_1016_j_procs_2022_09_306 crossref_primary_10_54856_jiswa_202012117 crossref_primary_10_1016_j_eswa_2022_119150 crossref_primary_10_3390_electronics13020438 crossref_primary_10_3390_app11062546 crossref_primary_10_3390_machines12060357 crossref_primary_10_1109_ACCESS_2023_3239784 crossref_primary_10_3390_s23031409 crossref_primary_10_1016_j_ress_2023_109209 crossref_primary_10_3390_math12060813 crossref_primary_10_1016_j_procs_2022_01_343 crossref_primary_10_1016_j_procs_2022_01_220 crossref_primary_10_1016_j_heliyon_2024_e39268 crossref_primary_10_1016_j_engappai_2022_105749 crossref_primary_10_1016_j_procs_2021_03_074 crossref_primary_10_1080_09537287_2022_2083996 crossref_primary_10_1007_s12008_024_01938_4 crossref_primary_10_1016_j_jmsy_2023_04_009 crossref_primary_10_1016_j_heliyon_2024_e32637 crossref_primary_10_3390_s21248373 crossref_primary_10_1016_j_engappai_2024_108340 crossref_primary_10_1016_j_compeleceng_2024_109541 crossref_primary_10_1016_j_engappai_2025_110152 crossref_primary_10_1007_s12008_024_01931_x crossref_primary_10_1016_j_compind_2023_103903 crossref_primary_10_1016_j_eswa_2023_121524 crossref_primary_10_1016_j_ssci_2021_105529 crossref_primary_10_1145_3623378 crossref_primary_10_1142_S2424862221300027 crossref_primary_10_1109_TEM_2020_3048554 crossref_primary_10_1016_j_aei_2025_103235 crossref_primary_10_1016_j_procir_2021_11_195 crossref_primary_10_1016_j_cherd_2022_09_005 crossref_primary_10_1016_j_ifacol_2024_10_032 crossref_primary_10_3390_su16041364 crossref_primary_10_1080_00207543_2022_2154403 crossref_primary_10_1016_j_egyr_2022_07_130 crossref_primary_10_1080_0951192X_2023_2204471 crossref_primary_10_1007_s00170_025_15328_x crossref_primary_10_1080_17480930_2022_2044138 crossref_primary_10_21595_marc_2024_24232 crossref_primary_10_3390_app122010617 crossref_primary_10_1016_j_aei_2023_101952 crossref_primary_10_1145_3586100 crossref_primary_10_1016_j_compind_2022_103827 crossref_primary_10_1080_09544828_2024_2333195 crossref_primary_10_1016_j_procs_2022_01_318 crossref_primary_10_32628_IJSRSET1922478 crossref_primary_10_1145_3583581_3583584 crossref_primary_10_1007_s40430_022_03975_0 crossref_primary_10_17798_bitlisfen_1521704 crossref_primary_10_1016_j_cirpj_2024_02_003 crossref_primary_10_1016_j_envres_2023_117786 crossref_primary_10_3390_logistics6010004 crossref_primary_10_3390_pr10112173 crossref_primary_10_1016_j_advengsoft_2023_103487 crossref_primary_10_1007_s41471_024_00204_3 crossref_primary_10_37394_232022_2024_4_15 crossref_primary_10_1007_s00501_023_01339_2 crossref_primary_10_1088_1742_6596_1877_1_012005 crossref_primary_10_1016_j_compind_2021_103546 crossref_primary_10_1109_JIOT_2021_3139827 crossref_primary_10_3390_app11167648 crossref_primary_10_1142_S0219686725500179 crossref_primary_10_1016_j_compind_2022_103814 crossref_primary_10_1088_1361_6501_acabda crossref_primary_10_1016_j_ymssp_2024_111778 crossref_primary_10_1108_SR_03_2024_0183 crossref_primary_10_1109_ACCESS_2023_3333242 crossref_primary_10_3390_su152015156 crossref_primary_10_3390_s24082618 crossref_primary_10_1007_s10845_024_02352_z crossref_primary_10_1016_j_future_2022_10_030 crossref_primary_10_1109_TICPS_2024_3433492 crossref_primary_10_1002_cben_202000027 crossref_primary_10_1016_j_ymssp_2024_111527 crossref_primary_10_1016_j_compchemeng_2023_108566 crossref_primary_10_1109_TCE_2024_3371440 crossref_primary_10_3390_app14020898 crossref_primary_10_1016_j_eswa_2023_119808 crossref_primary_10_3390_electronics10192381 crossref_primary_10_1038_s41598_022_12572_z crossref_primary_10_1051_e3sconf_202346900061 crossref_primary_10_1080_0951192X_2022_2081360 crossref_primary_10_1016_j_compind_2024_104132 crossref_primary_10_1016_j_cie_2024_109907 crossref_primary_10_1016_j_isatra_2024_12_002 crossref_primary_10_1109_TSM_2025_3530964 crossref_primary_10_1016_j_aei_2021_101324 crossref_primary_10_1007_s10845_024_02347_w crossref_primary_10_1016_j_ress_2022_108775 crossref_primary_10_1155_2023_6271241 crossref_primary_10_33262_concienciadigital_v7i3_1_3120 crossref_primary_10_3390_jmmp6050108 crossref_primary_10_1016_j_compind_2023_104065 crossref_primary_10_1007_s10115_023_02042_x crossref_primary_10_1016_j_dche_2024_100161 crossref_primary_10_1016_j_procs_2022_08_095 crossref_primary_10_1109_OJIES_2024_3431240 crossref_primary_10_1007_s10845_022_01963_8 crossref_primary_10_3390_math11183816 crossref_primary_10_1108_BIJ_12_2023_0852 crossref_primary_10_1108_JSTPM_09_2023_0148 crossref_primary_10_1515_auto_2023_0230 crossref_primary_10_1080_00405000_2021_1966182 crossref_primary_10_1016_j_ssci_2024_106590 crossref_primary_10_1016_j_compind_2023_103982 crossref_primary_10_1109_MPE_2022_3230968 crossref_primary_10_1016_j_heliyon_2023_e17584 crossref_primary_10_3390_en15103724 crossref_primary_10_1016_j_jclepro_2024_142308 crossref_primary_10_1016_j_orp_2021_100196 crossref_primary_10_4018_JOEUC_369157 crossref_primary_10_5433_1679_0375_2024_v45_49197 crossref_primary_10_1007_s12525_024_00737_9 crossref_primary_10_5937_jaes0_40309 crossref_primary_10_52589_BJCNIT_FNYF6PHG crossref_primary_10_1016_j_compind_2023_103983 crossref_primary_10_1016_j_compind_2021_103468 crossref_primary_10_21595_marc_2022_22472 crossref_primary_10_1016_j_ijpe_2021_108224 crossref_primary_10_1109_ACCESS_2022_3181730 crossref_primary_10_1108_IJWIS_03_2023_0046 crossref_primary_10_1080_21693277_2022_2155263 crossref_primary_10_3390_math13060981 crossref_primary_10_3390_s22030985 crossref_primary_10_1002_smll_202307680 crossref_primary_10_1016_j_compind_2023_103993 crossref_primary_10_1016_j_infrared_2024_105701 crossref_primary_10_1016_j_compind_2023_104044 crossref_primary_10_1109_ACCESS_2024_3518516 crossref_primary_10_1108_JBIM_04_2022_0183 crossref_primary_10_1016_j_compind_2021_103471 crossref_primary_10_3390_electronics13010102 crossref_primary_10_1080_10408398_2022_2034735 crossref_primary_10_1007_s12053_024_10228_7 crossref_primary_10_1080_03019233_2023_2210903 crossref_primary_10_1016_j_measurement_2021_110686 crossref_primary_10_1088_1361_6501_ac85d4 crossref_primary_10_1016_j_comcom_2022_02_010 crossref_primary_10_1080_21622965_2024_2336019 crossref_primary_10_1016_j_iotcps_2023_04_006 crossref_primary_10_1080_0951192X_2022_2028011 crossref_primary_10_1016_j_inffus_2025_102972 crossref_primary_10_17531_ein_2022_4_12 crossref_primary_10_3390_app12104931 crossref_primary_10_1108_TQM_05_2022_0164 crossref_primary_10_1186_s40537_022_00644_w crossref_primary_10_1002_qre_3757 crossref_primary_10_2139_ssrn_4453200 crossref_primary_10_1016_j_eswa_2022_118324 crossref_primary_10_1007_s40747_021_00606_4 crossref_primary_10_3390_en16207094 crossref_primary_10_1016_j_procir_2021_11_119 crossref_primary_10_1016_j_psep_2024_08_059 crossref_primary_10_3390_s24227163 crossref_primary_10_3390_a17030098 crossref_primary_10_1016_j_cie_2023_109033 crossref_primary_10_1016_j_eswa_2022_117918 crossref_primary_10_1016_j_softx_2024_102005 crossref_primary_10_1016_j_iot_2023_100754 crossref_primary_10_1007_s42773_024_00421_3 crossref_primary_10_1016_j_eswa_2024_123144 crossref_primary_10_1016_j_chb_2021_107095 crossref_primary_10_3390_app132312778 crossref_primary_10_35940_ijies_B1098_12020225 crossref_primary_10_1109_COMST_2024_3395414 crossref_primary_10_1155_2021_6805151 crossref_primary_10_2139_ssrn_4074528 crossref_primary_10_1016_j_eswa_2022_118435 crossref_primary_10_1016_j_measen_2023_100846 crossref_primary_10_1109_TII_2023_3326507 crossref_primary_10_1002_dac_5432 crossref_primary_10_1177_17568293221150171 crossref_primary_10_1016_j_chemolab_2024_105082 crossref_primary_10_3390_app12189212 |
Cites_doi | 10.1016/j.neucom.2017.02.024 10.1016/j.compind.2019.04.016 10.1007/s00170-018-2093-8 10.1016/j.infsof.2010.03.006 10.3390/s18092946 10.1016/j.eswa.2019.112869 10.3390/info11040202 10.1016/j.autcon.2020.103087 10.1016/j.compind.2018.07.004 10.1007/s40436-017-0203-8 10.1016/j.compind.2018.04.015 10.1007/s00170-018-3106-3 10.1016/j.cirp.2015.05.011 10.1109/ACCESS.2018.2890566 10.1016/j.procir.2019.01.047 10.1016/j.engappai.2019.04.014 10.1007/s10257-017-0343-1 10.1109/DCOSS.2019.00079 10.1177/0954405415601640 10.1080/0951192X.2019.1699254 10.1016/j.compind.2014.07.005 10.1016/j.ifacol.2018.08.391 10.1016/j.eswa.2017.08.025 10.1109/ACCESS.2018.2871724 10.3390/en12183454 10.1109/ICIT.2018.8352377 10.1017/S0269888919000237 10.1109/ETFA.2018.8502489 10.1016/j.procir.2014.02.001 10.3390/s20072099 10.1016/j.aei.2018.10.006 10.1007/s00170-016-8983-8 |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. |
Copyright_xml | – notice: 2020 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.compind.2020.103298 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
ExternalDocumentID | 10_1016_j_compind_2020_103298 S0166361520305327 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AABNK AACTN AAEDT AAEDW AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AARIN AATTM AAXKI AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABUCO ABWVN ABXDB ACDAQ ACGFO ACGFS ACGOD ACNNM ACRLP ACRPL ACZNC ADBBV ADEZE ADJOM ADMUD ADNMO ADTZH AEBSH AECPX AEFWE AEIPS AEKER AENEX AFFNX AFJKZ AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AI. AIALX AIEXJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD APLSM ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BKOMP BLXMC BNPGV CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HAMUX HLZ HVGLF HZ~ H~9 IHE J1W JJJVA KOM LG9 LY7 M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG RNS ROL RPZ RXW SBC SDF SDG SDP SES SET SEW SPC SPCBC SSB SSD SSH SST SSV SSZ T5K TAE TAF TN5 U5U UNMZH VH1 WH7 WUQ XPP ZMT ~G- AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP APXCP CITATION |
ID | FETCH-LOGICAL-c309t-2761f05a006a5194f3345e47f6bcc9ee3ec1b92bc69ad9fcbf83b42919221e473 |
IEDL.DBID | .~1 |
ISSN | 0166-3615 |
IngestDate | Thu Apr 24 23:03:01 EDT 2025 Tue Jul 01 00:52:00 EDT 2025 Sun Apr 06 06:54:06 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Industry 4.0 Ontology Internet of Things Artificial intelligence Systematic literature review Predictive maintenance |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c309t-2761f05a006a5194f3345e47f6bcc9ee3ec1b92bc69ad9fcbf83b42919221e473 |
ORCID | 0000-0002-2486-049X |
ParticipantIDs | crossref_citationtrail_10_1016_j_compind_2020_103298 crossref_primary_10_1016_j_compind_2020_103298 elsevier_sciencedirect_doi_10_1016_j_compind_2020_103298 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2020 2020-12-00 |
PublicationDateYYYYMMDD | 2020-12-01 |
PublicationDate_xml | – month: 12 year: 2020 text: December 2020 |
PublicationDecade | 2020 |
PublicationTitle | Computers in industry |
PublicationYear | 2020 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Kaur, Selway, Grossmann, Stumptner, Johnston (bib0105) 2018 Balogh, Gatial, Barbosa, Leitão, Matejka (bib0055) 2018 Syafrudin, Alfian, Fitriyani, Rhee (bib0170) 2018; 18 Strauß, Schmitz, Wöstmann, Deuse (bib0280) 2018 Cerquitelli, Bowden, Marguglio, Morabito, Napione, Panicucci, Nikolakis, Makris, Coppo, Andolina (bib0265) 2019 Talamo, Paganin, Rota (bib0310) 2019 Lee, Kao, Yang (bib0010) 2014; 16 Ali, Patel, Breslin (bib0020) 2019 Liu, Jin, Jin, Lee, Zhang, Peng, Xu (bib0110) 2018 Malek (bib0180) 2017 Wang, Wang (bib0050) 2017 Nuñez, Borsato (bib0205) 2018; 38 Kiangala, Wang (bib0100) 2018; 97 Huang, Liu, Tao (bib0255) 2019 Daniyan, Mpofu, Oyesola, Ramatsetse, Adeodu (bib0235) 2020; 45 Li, Wang, Wang (bib0295) 2017; 5 Ferreira, Albano, Silva, Martinho, Marreiros, Di Orio, Maló, Ferreira (bib0095) 2017 Crespo Márquez, de la Fuente Carmona, Antomarioni (bib0115) 2019; 12 Hoffmann, Wildermuth, Gitzel, Boyaci, Gebhardt, Kaul, Amihai, Forg, Suriyah, Leibfried (bib0240) 2020; 20 Schmidt, Wang (bib0060) 2018; 17 Kitchenham, Pretorius, Budgen, Brereton, Turner, Niazi, Linkman (bib0135) 2010; 52 Xu, Sun, Liu, Zheng (bib0120) 2019; 7 Sala, Jalalvand, Van Yperen-De Deyne, Mannens (bib0200) 2018 Ansari, Glawar, Nemeth (bib0220) 2019 Diez-Olivan, Pagan, Sanz, Sierra (bib0290) 2017; 241 D. O. Chukwuekwe, T. Glesnes, P. Schjølberg, Condition monitoring for predictive maintenance-towards systems prognosis within the industrial internet of things. Zenisek, Wolfartsberger, Sievi, Affenzeller (bib0150) 2018; 51 Schmidt, Wang, Galar (bib0210) 2016 Gao, Wang, Teti, Dornfeld, Kumara, Mori, Helu (bib0320) 2015; 64 O’Donovan, Gallagher, Leahy, O’Sullivan (bib0030) 2019; 110 Sarazin, Truptil, Montarnal, Lamothe (bib0085) 2019 Zhang, Ming, Liu, Yin, Chen, Chang (bib0175) 2019; 101 Chen, Wang, Feng, Li, Liu (bib0250) 2020; 33 Wan, Yang, Wang, Hua (bib0190) 2018; 6 Cheng, Chen, Chen, Wang (bib0225) 2020; 112 Cachada, Barbosa, Leitño, Gcraldcs, Deusdado, Costa, Teixeira, Teixeira, Moreira, Moreira (bib0015) 2018 Boyes, Hallaq, Cunningham, Watson (bib0035) 2018; 101 Kitchenham (bib0140) 2004; 33 Bumblauskas, Gemmill, Igou, Anzengruber (bib0155) 2017; 90 Costa, Figueiras, Jardim-Gonçalves, Ramos-Filho, Lima (bib0195) 2017 da Cunha Mattos, Santoro, Revoredo, Nunes (bib0125) 2014; 65 Ansari, Glawar, Sihn (bib0080) 2020 Olivares-Alarcos, Beßler, Khamis, Goncalves, Habib, Bermejo-Alonso, Barreto, Diab, Rosell, Quintas, Pignaton, Olszewska (bib0330) 2019; 34 ADHIKARI, RAO, BUDERATH (bib0065) 2018 Selcuk (bib0325) 2017; 231 Q. Cao, A. Samet, C. Zanni-Merk, F. d. B. de Beuvron, C. Reich, Combining chronicle mining and semantics for predictive maintenance in manufacturing processes. Peres, Rocha, Leitao, Barata (bib0285) 2018; 101 Romeo, Loncarski, Paolanti, Bocchini, Mancini, Frontoni (bib0025) 2020; 140 Carbery, Woods, Marshall (bib0040) 2018 Schmidt, Wang (bib0130) 2018; 99 Rivas, Fraile, Chamoso, González-Briones, Sittón, Corchado (bib0260) 2019 Zhou, Tham (bib0070) 2018 Bousdekis, Mentzas, Hribernik, Lewandowski, von Stietencron, Thoben (bib0075) 2019 Carbery, Woods, Marshall (bib0185) 2018 Issam, El Majd, El GHAZI (bib0315) 2018 Yuan, Ma, Cheng, Zhou, Zhao, Zhang, Ding (bib0275) 2018 Gatica, Koester, Gaukstern, Berlin, Meyer (bib0300) 2016 De Vita, Bruneo, Das (bib0245) 2020 Kunst, Avila, Binotto, Pignaton, Bampi, Rochol (bib0005) 2019; 83 Hegedüs, Varga, Moldován (bib0090) 2018 Glawar, Ansari, Kardos, Matyas, Sihn (bib0305) 2019; 80 Golightly, Kefalidou, Sharples (bib0165) 2018; 16 Calabrese, Cimmino, Fiume, Manfrin, Romeo, Ceccacci, Paolanti, Toscano, Ciandrini, Carrotta (bib0230) 2020; 11 Ding, Shi, Hui, Liu, Zhu, Zhang, Cao (bib0270) 2018 May, Kyriakoulis, Apostolou, Cho, Grevenitis, Kokkorikos, Milenkovic, Kiritsis (bib0160) 2018 Stojanovic, Stojanovic (bib0145) 2017 Hegedüs (10.1016/j.compind.2020.103298_bib0090) 2018 Ali (10.1016/j.compind.2020.103298_bib0020) 2019 Gao (10.1016/j.compind.2020.103298_bib0320) 2015; 64 Malek (10.1016/j.compind.2020.103298_bib0180) 2017 Talamo (10.1016/j.compind.2020.103298_bib0310) 2019 Olivares-Alarcos (10.1016/j.compind.2020.103298_bib0330) 2019; 34 Kiangala (10.1016/j.compind.2020.103298_bib0100) 2018; 97 Carbery (10.1016/j.compind.2020.103298_bib0040) 2018 Peres (10.1016/j.compind.2020.103298_bib0285) 2018; 101 Stojanovic (10.1016/j.compind.2020.103298_bib0145) 2017 Calabrese (10.1016/j.compind.2020.103298_bib0230) 2020; 11 Zhang (10.1016/j.compind.2020.103298_bib0175) 2019; 101 Strauß (10.1016/j.compind.2020.103298_bib0280) 2018 Schmidt (10.1016/j.compind.2020.103298_bib0210) 2016 May (10.1016/j.compind.2020.103298_bib0160) 2018 Ding (10.1016/j.compind.2020.103298_bib0270) 2018 Ferreira (10.1016/j.compind.2020.103298_bib0095) 2017 O’Donovan (10.1016/j.compind.2020.103298_bib0030) 2019; 110 Chen (10.1016/j.compind.2020.103298_bib0250) 2020; 33 Huang (10.1016/j.compind.2020.103298_bib0255) 2019 Xu (10.1016/j.compind.2020.103298_bib0120) 2019; 7 Daniyan (10.1016/j.compind.2020.103298_bib0235) 2020; 45 Balogh (10.1016/j.compind.2020.103298_bib0055) 2018 Yuan (10.1016/j.compind.2020.103298_bib0275) 2018 Li (10.1016/j.compind.2020.103298_bib0295) 2017; 5 Cachada (10.1016/j.compind.2020.103298_bib0015) 2018 Romeo (10.1016/j.compind.2020.103298_bib0025) 2020; 140 Cheng (10.1016/j.compind.2020.103298_bib0225) 2020; 112 Sarazin (10.1016/j.compind.2020.103298_bib0085) 2019 Cerquitelli (10.1016/j.compind.2020.103298_bib0265) 2019 Gatica (10.1016/j.compind.2020.103298_bib0300) 2016 Ansari (10.1016/j.compind.2020.103298_bib0220) 2019 Selcuk (10.1016/j.compind.2020.103298_bib0325) 2017; 231 Lee (10.1016/j.compind.2020.103298_bib0010) 2014; 16 Sala (10.1016/j.compind.2020.103298_bib0200) 2018 10.1016/j.compind.2020.103298_bib0215 Schmidt (10.1016/j.compind.2020.103298_bib0130) 2018; 99 Carbery (10.1016/j.compind.2020.103298_bib0185) 2018 Ansari (10.1016/j.compind.2020.103298_bib0080) 2020 De Vita (10.1016/j.compind.2020.103298_bib0245) 2020 10.1016/j.compind.2020.103298_bib0045 Bousdekis (10.1016/j.compind.2020.103298_bib0075) 2019 Crespo Márquez (10.1016/j.compind.2020.103298_bib0115) 2019; 12 ADHIKARI (10.1016/j.compind.2020.103298_bib0065) 2018 Zhou (10.1016/j.compind.2020.103298_bib0070) 2018 da Cunha Mattos (10.1016/j.compind.2020.103298_bib0125) 2014; 65 Glawar (10.1016/j.compind.2020.103298_bib0305) 2019; 80 Kunst (10.1016/j.compind.2020.103298_bib0005) 2019; 83 Wan (10.1016/j.compind.2020.103298_bib0190) 2018; 6 Syafrudin (10.1016/j.compind.2020.103298_bib0170) 2018; 18 Boyes (10.1016/j.compind.2020.103298_bib0035) 2018; 101 Rivas (10.1016/j.compind.2020.103298_bib0260) 2019 Wang (10.1016/j.compind.2020.103298_bib0050) 2017 Nuñez (10.1016/j.compind.2020.103298_bib0205) 2018; 38 Hoffmann (10.1016/j.compind.2020.103298_bib0240) 2020; 20 Zenisek (10.1016/j.compind.2020.103298_bib0150) 2018; 51 Golightly (10.1016/j.compind.2020.103298_bib0165) 2018; 16 Liu (10.1016/j.compind.2020.103298_bib0110) 2018 Costa (10.1016/j.compind.2020.103298_bib0195) 2017 Bumblauskas (10.1016/j.compind.2020.103298_bib0155) 2017; 90 Kaur (10.1016/j.compind.2020.103298_bib0105) 2018 Schmidt (10.1016/j.compind.2020.103298_bib0060) 2018; 17 Diez-Olivan (10.1016/j.compind.2020.103298_bib0290) 2017; 241 Issam (10.1016/j.compind.2020.103298_bib0315) 2018 Kitchenham (10.1016/j.compind.2020.103298_bib0135) 2010; 52 Kitchenham (10.1016/j.compind.2020.103298_bib0140) 2004; 33 |
References_xml | – volume: 110 start-page: 12 year: 2019 end-page: 35 ident: bib0030 article-title: A comparison of fog and cloud computing cyber-physical interfaces for industry 4.0 real-time embedded machine learning engineering applications publication-title: Comput. Ind. – volume: 20 start-page: 2099 year: 2020 ident: bib0240 article-title: Integration of novel sensors and machine learning for predictive maintenance in medium voltage switchgear to enable the energy and mobility revolutions publication-title: Sensors – start-page: 139 year: 2019 end-page: 147 ident: bib0265 article-title: A fog computing approach for predictive maintenance publication-title: International Conference on Advanced Information Systems Engineering – start-page: 309 year: 2018 end-page: 313 ident: bib0315 article-title: A new architecture of collaborative vehicles for monitoring fleet health in real-time publication-title: 2018 IEEE International Conference on Technology Management, Operations and Decisions (ICTMOD) – start-page: 012055 year: 2019 ident: bib0310 article-title: Industry 4.0 for failure information management within proactive maintenance publication-title: IOP Conference Series: Earth and Environmental Science, vol. 296 – start-page: 1501 year: 2017 end-page: 1508 ident: bib0145 article-title: Premium: big data platform for enabling self-healing manufacturing publication-title: 2017 International Conference on Engineering, Technology and Innovation (ICE/ITMC) – volume: 231 start-page: 1670 year: 2017 end-page: 1679 ident: bib0325 article-title: Predictive maintenance, its implementation and latest trends publication-title: Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf. – year: 2018 ident: bib0065 article-title: Machine Learning Based Data Driven Diagnostics & Prognostics Framework for Aircraft Predictive Maintenance – start-page: 1 year: 2019 end-page: 22 ident: bib0220 article-title: Prima: a prescriptive maintenance model for cyber-physical production systems publication-title: Int. J. Comput. Integr. Manuf. – start-page: 1 year: 2018 end-page: 5 ident: bib0270 article-title: Smart steel bridge construction enabled by bim and internet of things in industry 4.0: a framework publication-title: 2018 IEEE 15th International Conference on Networking, Sensing and Control (ICNSC) – reference: D. O. Chukwuekwe, T. Glesnes, P. Schjølberg, Condition monitoring for predictive maintenance-towards systems prognosis within the industrial internet of things. – start-page: 000299 year: 2018 end-page: 000304 ident: bib0055 article-title: Reference architecture for a collaborative predictive platform for smart maintenance in manufacturing publication-title: 2018 IEEE 22nd International Conference on Intelligent Engineering Systems (INES) – volume: 51 start-page: 643 year: 2018 end-page: 648 ident: bib0150 article-title: Streaming synthetic time series for simulated condition monitoring publication-title: IFAC-PapersOnLine – year: 2018 ident: bib0275 article-title: Artificial Intelligent Diagnosis and Monitoring in Manufacturing – volume: 11 start-page: 202 year: 2020 ident: bib0230 article-title: Sophia: an event-based iot and machine learning architecture for predictive maintenance in industry 4.0 publication-title: Information – volume: 101 start-page: 138 year: 2018 end-page: 146 ident: bib0285 article-title: Idarts-towards intelligent data analysis and real-time supervision for industry 4.0 publication-title: Comput. Ind. – volume: 101 start-page: 2367 year: 2019 end-page: 2389 ident: bib0175 article-title: A reference framework and overall planning of industrial artificial intelligence (i-ai) for new application scenarios publication-title: Int. J. Adv. Manuf. Technol. – start-page: 719 year: 2018 end-page: 724 ident: bib0090 article-title: The mantis architecture for proactive maintenance publication-title: 2018 5th International Conference on Control, Decision and Information Technologies (CoDIT) – volume: 80 start-page: 482 year: 2019 end-page: 487 ident: bib0305 article-title: Conceptual design of an integrated autonomous production control model in association with a prescriptive maintenance model (prima) publication-title: Proc. CIRP – volume: 99 start-page: 5 year: 2018 end-page: 13 ident: bib0130 article-title: Cloud-enhanced predictive maintenance publication-title: Int. J. Adv. Manuf. Technol. – volume: 112 start-page: 103087 year: 2020 ident: bib0225 article-title: Data-driven predictive maintenance planning framework for mep components based on bim and iot using machine learning algorithms publication-title: Autom. Constr. – volume: 12 start-page: 3454 year: 2019 ident: bib0115 article-title: A process to implement an artificial neural network and association rules techniques to improve asset performance and energy efficiency publication-title: Energies – volume: 6 start-page: 55419 year: 2018 end-page: 55430 ident: bib0190 article-title: Artificial intelligence for cloud-assisted smart factory publication-title: IEEE Access – volume: 101 start-page: 1 year: 2018 end-page: 12 ident: bib0035 article-title: The industrial internet of things (iiot): an analysis framework publication-title: Comput. Ind. – start-page: 245 year: 2020 end-page: 251 ident: bib0245 article-title: A novel data collection framework for telemetry and anomaly detection in industrial iot systems publication-title: 2020 IEEE/ACM Fifth International Conference on Internet-of-Things Design and Implementation (IoTDI) – start-page: 307 year: 2019 end-page: 317 ident: bib0075 article-title: A unified architecture for proactive maintenance in manufacturing enterprises publication-title: Enterprise Interoperability VIII – volume: 18 start-page: 2946 year: 2018 ident: bib0170 article-title: Performance analysis of iot-based sensor, big data processing, and machine learning model for real-time monitoring system in automotive manufacturing publication-title: Sensors – volume: 5 start-page: 377 year: 2017 end-page: 387 ident: bib0295 article-title: Intelligent predictive maintenance for fault diagnosis and prognosis in machine centers: Industry 4.0 scenario publication-title: Adv. Manuf. – start-page: 297 year: 2019 end-page: 306 ident: bib0085 article-title: Toward information system architecture to support predictive maintenance approach publication-title: Enterprise Interoperability VIII – volume: 16 start-page: 3 year: 2014 end-page: 8 ident: bib0010 article-title: Service innovation and smart analytics for industry 4.0 and big data environment publication-title: Proc. CIRP – volume: 38 start-page: 746 year: 2018 end-page: 759 ident: bib0205 article-title: Ontoprog: an ontology-based model for implementing prognostics health management in mechanical machines publication-title: Adv. Eng. Inform. – reference: Q. Cao, A. Samet, C. Zanni-Merk, F. d. B. de Beuvron, C. Reich, Combining chronicle mining and semantics for predictive maintenance in manufacturing processes. – start-page: 1 year: 2020 end-page: 8 ident: bib0080 article-title: Prescriptive maintenance of cpps by integrating multimodal data with dynamic bayesian networks publication-title: Machine Learning for Cyber Physical Systems – volume: 7 start-page: 19990 year: 2019 end-page: 19999 ident: bib0120 article-title: A digital-twin-assisted fault diagnosis using deep transfer learning publication-title: IEEE Access – start-page: 169 year: 2018 end-page: 179 ident: bib0185 article-title: A new data analytics framework emphasising pre-processing in learning ai models for complex manufacturing systems publication-title: Intelligent Computing and Internet of Things – start-page: 261 year: 2019 end-page: 270 ident: bib0260 article-title: A predictive maintenance model using recurrent neural networks publication-title: International Workshop on Soft Computing Models in Industrial and Environmental Applications – volume: 33 start-page: 1 year: 2004 end-page: 26 ident: bib0140 publication-title: Procedures for Performing Systematic Reviews – volume: 17 start-page: 118 year: 2018 end-page: 125 ident: bib0060 article-title: Predictive maintenance of machine tool linear axes: a case from manufacturing industry publication-title: Proc. Manuf. – volume: 52 start-page: 792 year: 2010 end-page: 805 ident: bib0135 article-title: Systematic literature reviews in software engineering – a tertiary study publication-title: Inf. Softw. Technol. – volume: 16 start-page: 627 year: 2018 end-page: 648 ident: bib0165 article-title: A cross-sector analysis of human and organisational factors in the deployment of data-driven predictive maintenance publication-title: Inf. Syst. e-Bus. Manag. – start-page: 139 year: 2018 end-page: 146 ident: bib0015 article-title: Maintenance 4.0: intelligent and predictive maintenance system architecture publication-title: 2018 IEEE 23rd International Conference on Emerging Technologies and Factory Automation (ETFA), vol. 1 – volume: 34 start-page: e29 year: 2019 ident: bib0330 article-title: A review and comparison of ontology-based approaches to robot autonomy publication-title: Knowl. Eng. Rev. – start-page: 1474 year: 2018 end-page: 1483 ident: bib0280 article-title: Enabling of predictive maintenance in the brownfield through low-cost sensors, an iiot-architecture and machine learning publication-title: 2018 IEEE International Conference on Big Data (Big Data) – start-page: 16 year: 2018 ident: bib0105 article-title: Towards an open-standards based framework for achieving condition-based predictive maintenance publication-title: Proceedings of the 8th International Conference on the Internet of Things – start-page: 903 year: 2018 end-page: 909 ident: bib0070 article-title: Graphel: a graph-based ensemble learning method for distributed diagnostics and prognostics in the industrial internet of things publication-title: 2018 IEEE 24th International Conference on Parallel and Distributed Systems (ICPADS) – volume: 97 start-page: 3251 year: 2018 end-page: 3271 ident: bib0100 article-title: Initiating predictive maintenance for a conveyor motor in a bottling plant using industry 4.0 concepts publication-title: Int. J. Adv. Manuf. Technol. – start-page: 1419 year: 2018 end-page: 1426 ident: bib0200 article-title: Multivariate time series for data-driven endpoint prediction in the basic oxygen furnace publication-title: 2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA) – start-page: 583 year: 2016 end-page: 588 ident: bib0210 article-title: Semantic framework for predictive maintenance in a cloud environment publication-title: 10th CIRP Conference on Intelligent Computation in Manufacturing Engineering, CIRP ICME’16 – volume: 140 start-page: 112869 year: 2020 ident: bib0025 article-title: Machine learning-based design support system for the prediction of heterogeneous machine parameters in industry 4.0 publication-title: Expert Syst. Appl. – start-page: 3 year: 2017 end-page: 17 ident: bib0180 article-title: Predictive analytics: a shortcut to dependable computing publication-title: International Workshop on Software Engineering for Resilient Systems – volume: 241 start-page: 97 year: 2017 end-page: 107 ident: bib0290 article-title: Data-driven prognostics using a combination of constrained k-means clustering, fuzzy modeling and lof-based score publication-title: Neurocomputing – start-page: 1 year: 2017 end-page: 9 ident: bib0050 article-title: How ai affects the future predictive maintenance: a primer of deep learning publication-title: International Workshop of Advanced Manufacturing and Automation – start-page: 1 year: 2017 end-page: 9 ident: bib0095 article-title: A pilot for proactive maintenance in industry 4.0 publication-title: 2017 IEEE 13th International Workshop on Factory Communication Systems (WFCS) – volume: 64 start-page: 749 year: 2015 end-page: 772 ident: bib0320 article-title: Cloud-enabled prognosis for manufacturing publication-title: CIRP Ann. – start-page: 279 year: 2018 end-page: 287 ident: bib0160 article-title: Predictive maintenance platform based on integrated strategies for increased operating life of factories publication-title: IFIP International Conference on Advances in Production Management Systems – start-page: 370 year: 2019 end-page: 376 ident: bib0020 article-title: Middleware for real-time event detection and predictive analytics in smart manufacturing publication-title: 2019 15th International Conference on Distributed Computing in Sensor Systems (DCOSS) – volume: 83 start-page: 1 year: 2019 end-page: 12 ident: bib0005 article-title: Improving devices communication in industry 4.0 wireless networks publication-title: Eng. Appl. Artif. Intell. – volume: 65 start-page: 1193 year: 2014 end-page: 1214 ident: bib0125 article-title: A formal representation for context-aware business processes publication-title: Comput. Ind. – volume: 90 start-page: 303 year: 2017 end-page: 317 ident: bib0155 article-title: Smart maintenance decision support systems (smdss) based on corporate big data analytics publication-title: Expert Syst. Appl. – start-page: 1472 year: 2017 end-page: 1479 ident: bib0195 article-title: Semantic enrichment of product data supported by machine learning techniques publication-title: 2017 International Conference on Engineering, Technology and Innovation (ICE/ITMC) – volume: 33 start-page: 79 year: 2020 end-page: 101 ident: bib0250 article-title: The framework design of smart factory in discrete manufacturing industry based on cyber-physical system publication-title: Int. J. Comput. Integr. Manuf. – start-page: 1357 year: 2018 end-page: 1362 ident: bib0040 article-title: A bayesian network based learning system for modelling faults in large-scale manufacturing publication-title: 2018 IEEE International Conference on Industrial Technology (ICIT) – start-page: 101981 year: 2019 ident: bib0255 article-title: Mechanical fault diagnosis and prediction in iot based on multi-source sensing data fusion publication-title: Simul. Model. Pract. Theory – start-page: 1 year: 2018 end-page: 8 ident: bib0110 article-title: Industrial ai enabled prognostics for high-speed railway systems publication-title: 2018 IEEE International Conference on Prognostics and Health Management (ICPHM) – start-page: 1 year: 2016 end-page: 4 ident: bib0300 article-title: An industrial analytics approach to predictive maintenance for machinery applications publication-title: 2016 IEEE 21st International Conference on Emerging Technologies and Factory Automation (ETFA) – volume: 45 start-page: 13 year: 2020 end-page: 18 ident: bib0235 article-title: Artificial intelligence for predictive maintenance in the railcar learning factories publication-title: Proc. Manuf. – volume: 241 start-page: 97 year: 2017 ident: 10.1016/j.compind.2020.103298_bib0290 article-title: Data-driven prognostics using a combination of constrained k-means clustering, fuzzy modeling and lof-based score publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.02.024 – start-page: 169 year: 2018 ident: 10.1016/j.compind.2020.103298_bib0185 article-title: A new data analytics framework emphasising pre-processing in learning ai models for complex manufacturing systems – volume: 110 start-page: 12 year: 2019 ident: 10.1016/j.compind.2020.103298_bib0030 article-title: A comparison of fog and cloud computing cyber-physical interfaces for industry 4.0 real-time embedded machine learning engineering applications publication-title: Comput. Ind. doi: 10.1016/j.compind.2019.04.016 – start-page: 1474 year: 2018 ident: 10.1016/j.compind.2020.103298_bib0280 article-title: Enabling of predictive maintenance in the brownfield through low-cost sensors, an iiot-architecture and machine learning – volume: 97 start-page: 3251 issue: 9–12 year: 2018 ident: 10.1016/j.compind.2020.103298_bib0100 article-title: Initiating predictive maintenance for a conveyor motor in a bottling plant using industry 4.0 concepts publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-018-2093-8 – year: 2018 ident: 10.1016/j.compind.2020.103298_bib0275 – volume: 52 start-page: 792 issue: 8 year: 2010 ident: 10.1016/j.compind.2020.103298_bib0135 article-title: Systematic literature reviews in software engineering – a tertiary study publication-title: Inf. Softw. Technol. doi: 10.1016/j.infsof.2010.03.006 – volume: 18 start-page: 2946 issue: 9 year: 2018 ident: 10.1016/j.compind.2020.103298_bib0170 article-title: Performance analysis of iot-based sensor, big data processing, and machine learning model for real-time monitoring system in automotive manufacturing publication-title: Sensors doi: 10.3390/s18092946 – start-page: 309 year: 2018 ident: 10.1016/j.compind.2020.103298_bib0315 article-title: A new architecture of collaborative vehicles for monitoring fleet health in real-time – volume: 140 start-page: 112869 year: 2020 ident: 10.1016/j.compind.2020.103298_bib0025 article-title: Machine learning-based design support system for the prediction of heterogeneous machine parameters in industry 4.0 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2019.112869 – volume: 11 start-page: 202 issue: 4 year: 2020 ident: 10.1016/j.compind.2020.103298_bib0230 article-title: Sophia: an event-based iot and machine learning architecture for predictive maintenance in industry 4.0 publication-title: Information doi: 10.3390/info11040202 – start-page: 1472 year: 2017 ident: 10.1016/j.compind.2020.103298_bib0195 article-title: Semantic enrichment of product data supported by machine learning techniques – volume: 112 start-page: 103087 year: 2020 ident: 10.1016/j.compind.2020.103298_bib0225 article-title: Data-driven predictive maintenance planning framework for mep components based on bim and iot using machine learning algorithms publication-title: Autom. Constr. doi: 10.1016/j.autcon.2020.103087 – volume: 101 start-page: 138 year: 2018 ident: 10.1016/j.compind.2020.103298_bib0285 article-title: Idarts-towards intelligent data analysis and real-time supervision for industry 4.0 publication-title: Comput. Ind. doi: 10.1016/j.compind.2018.07.004 – start-page: 1 year: 2020 ident: 10.1016/j.compind.2020.103298_bib0080 article-title: Prescriptive maintenance of cpps by integrating multimodal data with dynamic bayesian networks – start-page: 279 year: 2018 ident: 10.1016/j.compind.2020.103298_bib0160 article-title: Predictive maintenance platform based on integrated strategies for increased operating life of factories – volume: 5 start-page: 377 issue: 4 year: 2017 ident: 10.1016/j.compind.2020.103298_bib0295 article-title: Intelligent predictive maintenance for fault diagnosis and prognosis in machine centers: Industry 4.0 scenario publication-title: Adv. Manuf. doi: 10.1007/s40436-017-0203-8 – volume: 101 start-page: 1 year: 2018 ident: 10.1016/j.compind.2020.103298_bib0035 article-title: The industrial internet of things (iiot): an analysis framework publication-title: Comput. Ind. doi: 10.1016/j.compind.2018.04.015 – volume: 101 start-page: 2367 issue: 9–12 year: 2019 ident: 10.1016/j.compind.2020.103298_bib0175 article-title: A reference framework and overall planning of industrial artificial intelligence (i-ai) for new application scenarios publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-018-3106-3 – start-page: 1 year: 2016 ident: 10.1016/j.compind.2020.103298_bib0300 article-title: An industrial analytics approach to predictive maintenance for machinery applications – volume: 64 start-page: 749 issue: 2 year: 2015 ident: 10.1016/j.compind.2020.103298_bib0320 article-title: Cloud-enabled prognosis for manufacturing publication-title: CIRP Ann. doi: 10.1016/j.cirp.2015.05.011 – volume: 7 start-page: 19990 year: 2019 ident: 10.1016/j.compind.2020.103298_bib0120 article-title: A digital-twin-assisted fault diagnosis using deep transfer learning publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2890566 – volume: 80 start-page: 482 year: 2019 ident: 10.1016/j.compind.2020.103298_bib0305 article-title: Conceptual design of an integrated autonomous production control model in association with a prescriptive maintenance model (prima) publication-title: Proc. CIRP doi: 10.1016/j.procir.2019.01.047 – volume: 83 start-page: 1 year: 2019 ident: 10.1016/j.compind.2020.103298_bib0005 article-title: Improving devices communication in industry 4.0 wireless networks publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2019.04.014 – start-page: 903 year: 2018 ident: 10.1016/j.compind.2020.103298_bib0070 article-title: Graphel: a graph-based ensemble learning method for distributed diagnostics and prognostics in the industrial internet of things – volume: 16 start-page: 627 issue: 3 year: 2018 ident: 10.1016/j.compind.2020.103298_bib0165 article-title: A cross-sector analysis of human and organisational factors in the deployment of data-driven predictive maintenance publication-title: Inf. Syst. e-Bus. Manag. doi: 10.1007/s10257-017-0343-1 – start-page: 139 year: 2019 ident: 10.1016/j.compind.2020.103298_bib0265 article-title: A fog computing approach for predictive maintenance – start-page: 370 year: 2019 ident: 10.1016/j.compind.2020.103298_bib0020 article-title: Middleware for real-time event detection and predictive analytics in smart manufacturing publication-title: 2019 15th International Conference on Distributed Computing in Sensor Systems (DCOSS) doi: 10.1109/DCOSS.2019.00079 – start-page: 1 year: 2017 ident: 10.1016/j.compind.2020.103298_bib0095 article-title: A pilot for proactive maintenance in industry 4.0 – ident: 10.1016/j.compind.2020.103298_bib0215 – ident: 10.1016/j.compind.2020.103298_bib0045 – volume: 231 start-page: 1670 issue: 9 year: 2017 ident: 10.1016/j.compind.2020.103298_bib0325 article-title: Predictive maintenance, its implementation and latest trends publication-title: Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf. doi: 10.1177/0954405415601640 – start-page: 1 year: 2017 ident: 10.1016/j.compind.2020.103298_bib0050 article-title: How ai affects the future predictive maintenance: a primer of deep learning – volume: 33 start-page: 79 issue: 1 year: 2020 ident: 10.1016/j.compind.2020.103298_bib0250 article-title: The framework design of smart factory in discrete manufacturing industry based on cyber-physical system publication-title: Int. J. Comput. Integr. Manuf. doi: 10.1080/0951192X.2019.1699254 – volume: 65 start-page: 1193 issue: 8 year: 2014 ident: 10.1016/j.compind.2020.103298_bib0125 article-title: A formal representation for context-aware business processes publication-title: Comput. Ind. doi: 10.1016/j.compind.2014.07.005 – volume: 51 start-page: 643 issue: 11 year: 2018 ident: 10.1016/j.compind.2020.103298_bib0150 article-title: Streaming synthetic time series for simulated condition monitoring publication-title: IFAC-PapersOnLine doi: 10.1016/j.ifacol.2018.08.391 – start-page: 3 year: 2017 ident: 10.1016/j.compind.2020.103298_bib0180 article-title: Predictive analytics: a shortcut to dependable computing – volume: 90 start-page: 303 year: 2017 ident: 10.1016/j.compind.2020.103298_bib0155 article-title: Smart maintenance decision support systems (smdss) based on corporate big data analytics publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2017.08.025 – volume: 33 start-page: 1 year: 2004 ident: 10.1016/j.compind.2020.103298_bib0140 – volume: 6 start-page: 55419 year: 2018 ident: 10.1016/j.compind.2020.103298_bib0190 article-title: Artificial intelligence for cloud-assisted smart factory publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2871724 – start-page: 1419 year: 2018 ident: 10.1016/j.compind.2020.103298_bib0200 article-title: Multivariate time series for data-driven endpoint prediction in the basic oxygen furnace – start-page: 583 year: 2016 ident: 10.1016/j.compind.2020.103298_bib0210 article-title: Semantic framework for predictive maintenance in a cloud environment – start-page: 1 year: 2019 ident: 10.1016/j.compind.2020.103298_bib0220 article-title: Prima: a prescriptive maintenance model for cyber-physical production systems publication-title: Int. J. Comput. Integr. Manuf. – start-page: 297 year: 2019 ident: 10.1016/j.compind.2020.103298_bib0085 article-title: Toward information system architecture to support predictive maintenance approach – start-page: 1 year: 2018 ident: 10.1016/j.compind.2020.103298_bib0270 article-title: Smart steel bridge construction enabled by bim and internet of things in industry 4.0: a framework – volume: 12 start-page: 3454 issue: 18 year: 2019 ident: 10.1016/j.compind.2020.103298_bib0115 article-title: A process to implement an artificial neural network and association rules techniques to improve asset performance and energy efficiency publication-title: Energies doi: 10.3390/en12183454 – start-page: 012055 year: 2019 ident: 10.1016/j.compind.2020.103298_bib0310 article-title: Industry 4.0 for failure information management within proactive maintenance – start-page: 307 year: 2019 ident: 10.1016/j.compind.2020.103298_bib0075 article-title: A unified architecture for proactive maintenance in manufacturing enterprises – start-page: 1357 year: 2018 ident: 10.1016/j.compind.2020.103298_bib0040 article-title: A bayesian network based learning system for modelling faults in large-scale manufacturing publication-title: 2018 IEEE International Conference on Industrial Technology (ICIT) doi: 10.1109/ICIT.2018.8352377 – year: 2018 ident: 10.1016/j.compind.2020.103298_bib0065 – volume: 17 start-page: 118 year: 2018 ident: 10.1016/j.compind.2020.103298_bib0060 article-title: Predictive maintenance of machine tool linear axes: a case from manufacturing industry publication-title: Proc. Manuf. – start-page: 1 year: 2018 ident: 10.1016/j.compind.2020.103298_bib0110 article-title: Industrial ai enabled prognostics for high-speed railway systems – volume: 34 start-page: e29 year: 2019 ident: 10.1016/j.compind.2020.103298_bib0330 article-title: A review and comparison of ontology-based approaches to robot autonomy publication-title: Knowl. Eng. Rev. doi: 10.1017/S0269888919000237 – start-page: 000299 year: 2018 ident: 10.1016/j.compind.2020.103298_bib0055 article-title: Reference architecture for a collaborative predictive platform for smart maintenance in manufacturing – start-page: 719 year: 2018 ident: 10.1016/j.compind.2020.103298_bib0090 article-title: The mantis architecture for proactive maintenance – start-page: 101981 year: 2019 ident: 10.1016/j.compind.2020.103298_bib0255 article-title: Mechanical fault diagnosis and prediction in iot based on multi-source sensing data fusion publication-title: Simul. Model. Pract. Theory – start-page: 139 year: 2018 ident: 10.1016/j.compind.2020.103298_bib0015 article-title: Maintenance 4.0: intelligent and predictive maintenance system architecture publication-title: 2018 IEEE 23rd International Conference on Emerging Technologies and Factory Automation (ETFA), vol. 1 doi: 10.1109/ETFA.2018.8502489 – start-page: 1501 year: 2017 ident: 10.1016/j.compind.2020.103298_bib0145 article-title: Premium: big data platform for enabling self-healing manufacturing – start-page: 261 year: 2019 ident: 10.1016/j.compind.2020.103298_bib0260 article-title: A predictive maintenance model using recurrent neural networks – volume: 16 start-page: 3 year: 2014 ident: 10.1016/j.compind.2020.103298_bib0010 article-title: Service innovation and smart analytics for industry 4.0 and big data environment publication-title: Proc. CIRP doi: 10.1016/j.procir.2014.02.001 – start-page: 245 year: 2020 ident: 10.1016/j.compind.2020.103298_bib0245 article-title: A novel data collection framework for telemetry and anomaly detection in industrial iot systems – volume: 45 start-page: 13 year: 2020 ident: 10.1016/j.compind.2020.103298_bib0235 article-title: Artificial intelligence for predictive maintenance in the railcar learning factories publication-title: Proc. Manuf. – volume: 20 start-page: 2099 issue: 7 year: 2020 ident: 10.1016/j.compind.2020.103298_bib0240 article-title: Integration of novel sensors and machine learning for predictive maintenance in medium voltage switchgear to enable the energy and mobility revolutions publication-title: Sensors doi: 10.3390/s20072099 – volume: 38 start-page: 746 year: 2018 ident: 10.1016/j.compind.2020.103298_bib0205 article-title: Ontoprog: an ontology-based model for implementing prognostics health management in mechanical machines publication-title: Adv. Eng. Inform. doi: 10.1016/j.aei.2018.10.006 – volume: 99 start-page: 5 issue: 1–4 year: 2018 ident: 10.1016/j.compind.2020.103298_bib0130 article-title: Cloud-enhanced predictive maintenance publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-016-8983-8 – start-page: 16 year: 2018 ident: 10.1016/j.compind.2020.103298_bib0105 article-title: Towards an open-standards based framework for achieving condition-based predictive maintenance |
SSID | ssj0000776 |
Score | 2.6571686 |
SecondaryResourceType | review_article |
Snippet | •Predictive maintenance is a hot topic in the context of Industry 4.0.•The papers that bring novelty to the field are concentrated in the years 2018 and... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 103298 |
SubjectTerms | Artificial intelligence Industry 4.0 Internet of Things Ontology Predictive maintenance Systematic literature review |
Title | Machine learning and reasoning for predictive maintenance in Industry 4.0: Current status and challenges |
URI | https://dx.doi.org/10.1016/j.compind.2020.103298 |
Volume | 123 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqssCAeIpn5YE1TWI7TsxWVVTlVSGgUrfIcRxoBSHqY2Dht-NLHFokBBJTlMhnRZfz3dn57juEzpKMmW2C9BzJPO0wpn1HpJI4nqd8zsFI0pLtc8D7Q3Y1CkYN1K1rYQBWaX1_5dNLb22fuFabbjEeuw8mWeHUBGQCNksJVJQzFoKVtz-WMA-gq6n4vbkDo5dVPO4E5i7M1tdsE0lZfk5E9HN8Wok5vS20aZNF3KneZxs1dL6DNlYoBHfR822JhtTYtn94wjJPMSDNy3NWbHJSXEzhbwz4NfwqgR8CSDY0HufYNu54x6ztnWPL1YShyGgxKydSda-V2R4a9i4eu33Hdk9wFPXE3CEh9zMvkGZZSZOmsYxSFmgWZjxRSmhNtfITQRLFhUxFppIsoomJTiblI74ZR_dRM3_L9QHCkkSp8FMZpEqyMEykWcZRICUTXBDJ6CFitc5iZanFocPFS1xjyCaxVXUMqo4rVR-i9pdYUXFr_CUQ1R8k_mYksfH_v4se_V_0GK3DXYVhOUHN-XShT00mMk9apam10Fqne39zB9fL6_7gE5Sf35U |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLbGdgAOiKcYzxy4dmuT9BFu08S0sceFTdqtStMUNkGp9jjw70nalA0JgcS1jaPKdezPrf0Z4C5KqEoTuG1xakuLUulYLObYsm3heJ42kjhn-xx53Ql9nLrTCrTLXhhdVml8f-HTc29trjSNNpvZbNZ8UmDFIyogY22zBPs7UNPsVG4Vaq1evzvaOGQ_nzGn11taYNPI05zr7TOV_apMEecd6JgFP4eorbDTOYQDgxdRq3ikI6jI9Bj2t1gET-BlmBdESmQmQDwjnsZIF5vnn1qRgqUoW-gfMtq1oTeuKSI0z4ZEsxSZ2R0fiDbse2TompDuM1ov841EOW5leQqTzsO43bXMAAVLEJutLOx7TmK7XJ0srpAaTQihrqR-4kVCMCmJFE7EcCQ8xmOWiCgJSKQClEJ92FHryBlU0_dUngPiOIiZE3M3Fpz6fsTVSQ5czinzGOaU1IGWOguFYRfXQy5ew7KMbB4aVYda1WGh6jo0vsSygl7jL4GgfCHhNzsJVQj4XfTi_6K3sNsdDwfhoDfqX8KevlOUtFxBdbVYy2sFTFbRjTG8T0J94LE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+and+reasoning+for+predictive+maintenance+in+Industry+4.0%3A+Current+status+and+challenges&rft.jtitle=Computers+in+industry&rft.au=Dalzochio%2C+Jovani&rft.au=Kunst%2C+Rafael&rft.au=Pignaton%2C+Edison&rft.au=Binotto%2C+Alecio&rft.date=2020-12-01&rft.issn=0166-3615&rft.volume=123&rft.spage=103298&rft_id=info:doi/10.1016%2Fj.compind.2020.103298&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_compind_2020_103298 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0166-3615&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0166-3615&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0166-3615&client=summon |