Machine learning and reasoning for predictive maintenance in Industry 4.0: Current status and challenges

•Predictive maintenance is a hot topic in the context of Industry 4.0.•The papers that bring novelty to the field are concentrated in the years 2018 and 2019.•We envision the necessity of implementing the theoretical frameworks found in the literature in real industrial environments.•Challenges rela...

Full description

Saved in:
Bibliographic Details
Published inComputers in industry Vol. 123; p. 103298
Main Authors Dalzochio, Jovani, Kunst, Rafael, Pignaton, Edison, Binotto, Alecio, Sanyal, Srijnan, Favilla, Jose, Barbosa, Jorge
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.12.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Predictive maintenance is a hot topic in the context of Industry 4.0.•The papers that bring novelty to the field are concentrated in the years 2018 and 2019.•We envision the necessity of implementing the theoretical frameworks found in the literature in real industrial environments.•Challenges related to big data are also of interest.•Issues like scalability, latency, and data security deserve further investigation. In recent years, the fourth industrial revolution has attracted attention worldwide. Several concepts were born in conjunction with this new revolution, such as predictive maintenance. This study aims to investigate academic advances in failure prediction. The prediction of failures takes into account concepts as a predictive maintenance decision support system and a design support system. We focus on frameworks that use machine learning and reasoning for predictive maintenance in Industry 4.0. More specifically, we consider the challenges in the application of machine learning techniques and ontologies in the context of predictive maintenance. We conduct a systematic review of the literature (SLR) to analyze academic articles that were published online from 2015 until the beginning of June 2020. The screening process resulted in a final population of 38 studies of a total of 562 analyzed. We removed papers not directly related to predictive maintenance, machine learning, as well as researches classified as surveys or reviews. We discuss the proposals and results of these papers, considering three research questions. This article contributes to the field of predictive maintenance to highlight the challenges faced in the area, both for implementation and use-case. We conclude by pointing out that predictive maintenance is a hot topic in the context of Industry 4.0 but with several challenges to be better investigated in the area of machine learning and the application of reasoning.
AbstractList •Predictive maintenance is a hot topic in the context of Industry 4.0.•The papers that bring novelty to the field are concentrated in the years 2018 and 2019.•We envision the necessity of implementing the theoretical frameworks found in the literature in real industrial environments.•Challenges related to big data are also of interest.•Issues like scalability, latency, and data security deserve further investigation. In recent years, the fourth industrial revolution has attracted attention worldwide. Several concepts were born in conjunction with this new revolution, such as predictive maintenance. This study aims to investigate academic advances in failure prediction. The prediction of failures takes into account concepts as a predictive maintenance decision support system and a design support system. We focus on frameworks that use machine learning and reasoning for predictive maintenance in Industry 4.0. More specifically, we consider the challenges in the application of machine learning techniques and ontologies in the context of predictive maintenance. We conduct a systematic review of the literature (SLR) to analyze academic articles that were published online from 2015 until the beginning of June 2020. The screening process resulted in a final population of 38 studies of a total of 562 analyzed. We removed papers not directly related to predictive maintenance, machine learning, as well as researches classified as surveys or reviews. We discuss the proposals and results of these papers, considering three research questions. This article contributes to the field of predictive maintenance to highlight the challenges faced in the area, both for implementation and use-case. We conclude by pointing out that predictive maintenance is a hot topic in the context of Industry 4.0 but with several challenges to be better investigated in the area of machine learning and the application of reasoning.
ArticleNumber 103298
Author Binotto, Alecio
Pignaton, Edison
Sanyal, Srijnan
Dalzochio, Jovani
Favilla, Jose
Kunst, Rafael
Barbosa, Jorge
Author_xml – sequence: 1
  givenname: Jovani
  surname: Dalzochio
  fullname: Dalzochio, Jovani
  email: jovanidalzochio@edu.unisinos.br
  organization: University of Vale do Rio dos Sinos (UNISINOS), Av. Unisinos, 950 São Leopoldo, RS, Brazil
– sequence: 2
  givenname: Rafael
  surname: Kunst
  fullname: Kunst, Rafael
  email: rafaelkunst@unisinos.br
  organization: University of Vale do Rio dos Sinos (UNISINOS), Av. Unisinos, 950 São Leopoldo, RS, Brazil
– sequence: 3
  givenname: Edison
  surname: Pignaton
  fullname: Pignaton, Edison
  email: edison.pignaton@ufrgs.br
  organization: Federal University of Rio Grande do Sul (UFRGS), Av. Bento Goncalves, 9500 Porto Alegre, RS, Brazil
– sequence: 4
  givenname: Alecio
  orcidid: 0000-0002-2486-049X
  surname: Binotto
  fullname: Binotto, Alecio
  email: alecio.binotto@ibm.com
  organization: IBM Watson IoT Center, Mies-Van-Der-Rohe-Strasse 6 Muenchen, 80807, DE
– sequence: 5
  givenname: Srijnan
  surname: Sanyal
  fullname: Sanyal, Srijnan
  email: srijnan.sanyal1@ibm.com
  organization: IBM Watson IoT Center, Mies-Van-Der-Rohe-Strasse 6 Muenchen, 80807, DE
– sequence: 6
  givenname: Jose
  surname: Favilla
  fullname: Favilla, Jose
  email: jfavilla@us.ibm.com
  organization: IBM, 1177 S Belt Line Rd Coppell, TX 75019-4642, USA
– sequence: 7
  givenname: Jorge
  surname: Barbosa
  fullname: Barbosa, Jorge
  email: barbosa@unisinos.br
  organization: University of Vale do Rio dos Sinos (UNISINOS), Av. Unisinos, 950 São Leopoldo, RS, Brazil
BookMark eNqFkMtuwjAQRb2gUoH2Eyr5B5L6kTi4XVQV6gOJqpt2bTnOGIyCg2yDxN83AVbdMJvRPO7VzJmgke88IPRASU4JFY-b3HTbnfNNzggbepzJ2QiN-5nIuKDlLZrEuCF9VJUYo_WXNmvnAbegg3d-hbVvcAAdu1Nlu4B3ARpnkjsA3mrnE3jtDWDn8cI3-5jCERc5ecLzfQjgE45Jp308GZm1blvwK4h36MbqNsL9JU_R7_vbz_wzW35_LOavy8xwIlPGKkEtKTUhQpdUFpbzooSisqI2RgJwMLSWrDZC6kZaU9sZrwsmqWSM9nt8ip7PviZ0MQawyrj-Htf5FLRrFSVqAKU26gJKDaDUGVSvLv-pd8FtdThe1b2cddC_dnAQVDQOekqNC2CSajp3xeEP6GuLYQ
CitedBy_id crossref_primary_10_3390_s21072376
crossref_primary_10_3390_s25010137
crossref_primary_10_1016_j_ifacol_2022_10_092
crossref_primary_10_3390_s22228641
crossref_primary_10_1016_j_engappai_2022_105317
crossref_primary_10_1016_j_egyr_2021_12_066
crossref_primary_10_3390_s22020586
crossref_primary_10_1016_j_jmsy_2021_09_017
crossref_primary_10_3390_buildings12081229
crossref_primary_10_1016_j_compind_2023_103938
crossref_primary_10_1145_3596602
crossref_primary_10_1017_dce_2022_4
crossref_primary_10_1109_TEM_2024_3352819
crossref_primary_10_1109_TAI_2023_3299252
crossref_primary_10_3390_eng5030092
crossref_primary_10_1007_s10878_023_00988_w
crossref_primary_10_1016_j_cie_2022_108400
crossref_primary_10_3390_make5030051
crossref_primary_10_1016_j_ijhydene_2025_02_232
crossref_primary_10_1007_s00170_024_14097_3
crossref_primary_10_1109_JSEN_2024_3437292
crossref_primary_10_1115_1_4062941
crossref_primary_10_1016_j_matpr_2022_04_727
crossref_primary_10_1007_s10489_023_04793_0
crossref_primary_10_1016_j_techfore_2022_122204
crossref_primary_10_3390_en16104025
crossref_primary_10_1016_j_procir_2024_10_279
crossref_primary_10_1108_JMTM_04_2024_0211
crossref_primary_10_3390_app12136704
crossref_primary_10_3390_info12100386
crossref_primary_10_1016_j_ifacol_2024_08_062
crossref_primary_10_1016_j_istruc_2024_107834
crossref_primary_10_3390_math9192405
crossref_primary_10_1007_s10462_022_10243_z
crossref_primary_10_1007_s00146_022_01391_5
crossref_primary_10_1016_j_cogr_2023_04_001
crossref_primary_10_3390_math11133008
crossref_primary_10_1016_j_eswa_2023_121136
crossref_primary_10_1016_j_rineng_2024_102890
crossref_primary_10_1016_j_cie_2021_107475
crossref_primary_10_1007_s00170_023_12515_6
crossref_primary_10_51551_verimlilik_988104
crossref_primary_10_1016_j_procir_2021_11_262
crossref_primary_10_1016_j_jmsy_2022_06_002
crossref_primary_10_1016_j_procs_2025_02_014
crossref_primary_10_1016_j_procs_2023_10_033
crossref_primary_10_1080_0951192X_2022_2134930
crossref_primary_10_1088_1361_6501_ac3c1d
crossref_primary_10_1016_j_jclepro_2023_138726
crossref_primary_10_1016_j_ifacol_2023_10_606
crossref_primary_10_1016_j_neucom_2022_09_083
crossref_primary_10_1007_s10845_022_01960_x
crossref_primary_10_3390_machines11010040
crossref_primary_10_1016_j_procs_2022_09_306
crossref_primary_10_54856_jiswa_202012117
crossref_primary_10_1016_j_eswa_2022_119150
crossref_primary_10_3390_electronics13020438
crossref_primary_10_3390_app11062546
crossref_primary_10_3390_machines12060357
crossref_primary_10_1109_ACCESS_2023_3239784
crossref_primary_10_3390_s23031409
crossref_primary_10_1016_j_ress_2023_109209
crossref_primary_10_3390_math12060813
crossref_primary_10_1016_j_procs_2022_01_343
crossref_primary_10_1016_j_procs_2022_01_220
crossref_primary_10_1016_j_heliyon_2024_e39268
crossref_primary_10_1016_j_engappai_2022_105749
crossref_primary_10_1016_j_procs_2021_03_074
crossref_primary_10_1080_09537287_2022_2083996
crossref_primary_10_1007_s12008_024_01938_4
crossref_primary_10_1016_j_jmsy_2023_04_009
crossref_primary_10_1016_j_heliyon_2024_e32637
crossref_primary_10_3390_s21248373
crossref_primary_10_1016_j_engappai_2024_108340
crossref_primary_10_1016_j_compeleceng_2024_109541
crossref_primary_10_1016_j_engappai_2025_110152
crossref_primary_10_1007_s12008_024_01931_x
crossref_primary_10_1016_j_compind_2023_103903
crossref_primary_10_1016_j_eswa_2023_121524
crossref_primary_10_1016_j_ssci_2021_105529
crossref_primary_10_1145_3623378
crossref_primary_10_1142_S2424862221300027
crossref_primary_10_1109_TEM_2020_3048554
crossref_primary_10_1016_j_aei_2025_103235
crossref_primary_10_1016_j_procir_2021_11_195
crossref_primary_10_1016_j_cherd_2022_09_005
crossref_primary_10_1016_j_ifacol_2024_10_032
crossref_primary_10_3390_su16041364
crossref_primary_10_1080_00207543_2022_2154403
crossref_primary_10_1016_j_egyr_2022_07_130
crossref_primary_10_1080_0951192X_2023_2204471
crossref_primary_10_1007_s00170_025_15328_x
crossref_primary_10_1080_17480930_2022_2044138
crossref_primary_10_21595_marc_2024_24232
crossref_primary_10_3390_app122010617
crossref_primary_10_1016_j_aei_2023_101952
crossref_primary_10_1145_3586100
crossref_primary_10_1016_j_compind_2022_103827
crossref_primary_10_1080_09544828_2024_2333195
crossref_primary_10_1016_j_procs_2022_01_318
crossref_primary_10_32628_IJSRSET1922478
crossref_primary_10_1145_3583581_3583584
crossref_primary_10_1007_s40430_022_03975_0
crossref_primary_10_17798_bitlisfen_1521704
crossref_primary_10_1016_j_cirpj_2024_02_003
crossref_primary_10_1016_j_envres_2023_117786
crossref_primary_10_3390_logistics6010004
crossref_primary_10_3390_pr10112173
crossref_primary_10_1016_j_advengsoft_2023_103487
crossref_primary_10_1007_s41471_024_00204_3
crossref_primary_10_37394_232022_2024_4_15
crossref_primary_10_1007_s00501_023_01339_2
crossref_primary_10_1088_1742_6596_1877_1_012005
crossref_primary_10_1016_j_compind_2021_103546
crossref_primary_10_1109_JIOT_2021_3139827
crossref_primary_10_3390_app11167648
crossref_primary_10_1142_S0219686725500179
crossref_primary_10_1016_j_compind_2022_103814
crossref_primary_10_1088_1361_6501_acabda
crossref_primary_10_1016_j_ymssp_2024_111778
crossref_primary_10_1108_SR_03_2024_0183
crossref_primary_10_1109_ACCESS_2023_3333242
crossref_primary_10_3390_su152015156
crossref_primary_10_3390_s24082618
crossref_primary_10_1007_s10845_024_02352_z
crossref_primary_10_1016_j_future_2022_10_030
crossref_primary_10_1109_TICPS_2024_3433492
crossref_primary_10_1002_cben_202000027
crossref_primary_10_1016_j_ymssp_2024_111527
crossref_primary_10_1016_j_compchemeng_2023_108566
crossref_primary_10_1109_TCE_2024_3371440
crossref_primary_10_3390_app14020898
crossref_primary_10_1016_j_eswa_2023_119808
crossref_primary_10_3390_electronics10192381
crossref_primary_10_1038_s41598_022_12572_z
crossref_primary_10_1051_e3sconf_202346900061
crossref_primary_10_1080_0951192X_2022_2081360
crossref_primary_10_1016_j_compind_2024_104132
crossref_primary_10_1016_j_cie_2024_109907
crossref_primary_10_1016_j_isatra_2024_12_002
crossref_primary_10_1109_TSM_2025_3530964
crossref_primary_10_1016_j_aei_2021_101324
crossref_primary_10_1007_s10845_024_02347_w
crossref_primary_10_1016_j_ress_2022_108775
crossref_primary_10_1155_2023_6271241
crossref_primary_10_33262_concienciadigital_v7i3_1_3120
crossref_primary_10_3390_jmmp6050108
crossref_primary_10_1016_j_compind_2023_104065
crossref_primary_10_1007_s10115_023_02042_x
crossref_primary_10_1016_j_dche_2024_100161
crossref_primary_10_1016_j_procs_2022_08_095
crossref_primary_10_1109_OJIES_2024_3431240
crossref_primary_10_1007_s10845_022_01963_8
crossref_primary_10_3390_math11183816
crossref_primary_10_1108_BIJ_12_2023_0852
crossref_primary_10_1108_JSTPM_09_2023_0148
crossref_primary_10_1515_auto_2023_0230
crossref_primary_10_1080_00405000_2021_1966182
crossref_primary_10_1016_j_ssci_2024_106590
crossref_primary_10_1016_j_compind_2023_103982
crossref_primary_10_1109_MPE_2022_3230968
crossref_primary_10_1016_j_heliyon_2023_e17584
crossref_primary_10_3390_en15103724
crossref_primary_10_1016_j_jclepro_2024_142308
crossref_primary_10_1016_j_orp_2021_100196
crossref_primary_10_4018_JOEUC_369157
crossref_primary_10_5433_1679_0375_2024_v45_49197
crossref_primary_10_1007_s12525_024_00737_9
crossref_primary_10_5937_jaes0_40309
crossref_primary_10_52589_BJCNIT_FNYF6PHG
crossref_primary_10_1016_j_compind_2023_103983
crossref_primary_10_1016_j_compind_2021_103468
crossref_primary_10_21595_marc_2022_22472
crossref_primary_10_1016_j_ijpe_2021_108224
crossref_primary_10_1109_ACCESS_2022_3181730
crossref_primary_10_1108_IJWIS_03_2023_0046
crossref_primary_10_1080_21693277_2022_2155263
crossref_primary_10_3390_math13060981
crossref_primary_10_3390_s22030985
crossref_primary_10_1002_smll_202307680
crossref_primary_10_1016_j_compind_2023_103993
crossref_primary_10_1016_j_infrared_2024_105701
crossref_primary_10_1016_j_compind_2023_104044
crossref_primary_10_1109_ACCESS_2024_3518516
crossref_primary_10_1108_JBIM_04_2022_0183
crossref_primary_10_1016_j_compind_2021_103471
crossref_primary_10_3390_electronics13010102
crossref_primary_10_1080_10408398_2022_2034735
crossref_primary_10_1007_s12053_024_10228_7
crossref_primary_10_1080_03019233_2023_2210903
crossref_primary_10_1016_j_measurement_2021_110686
crossref_primary_10_1088_1361_6501_ac85d4
crossref_primary_10_1016_j_comcom_2022_02_010
crossref_primary_10_1080_21622965_2024_2336019
crossref_primary_10_1016_j_iotcps_2023_04_006
crossref_primary_10_1080_0951192X_2022_2028011
crossref_primary_10_1016_j_inffus_2025_102972
crossref_primary_10_17531_ein_2022_4_12
crossref_primary_10_3390_app12104931
crossref_primary_10_1108_TQM_05_2022_0164
crossref_primary_10_1186_s40537_022_00644_w
crossref_primary_10_1002_qre_3757
crossref_primary_10_2139_ssrn_4453200
crossref_primary_10_1016_j_eswa_2022_118324
crossref_primary_10_1007_s40747_021_00606_4
crossref_primary_10_3390_en16207094
crossref_primary_10_1016_j_procir_2021_11_119
crossref_primary_10_1016_j_psep_2024_08_059
crossref_primary_10_3390_s24227163
crossref_primary_10_3390_a17030098
crossref_primary_10_1016_j_cie_2023_109033
crossref_primary_10_1016_j_eswa_2022_117918
crossref_primary_10_1016_j_softx_2024_102005
crossref_primary_10_1016_j_iot_2023_100754
crossref_primary_10_1007_s42773_024_00421_3
crossref_primary_10_1016_j_eswa_2024_123144
crossref_primary_10_1016_j_chb_2021_107095
crossref_primary_10_3390_app132312778
crossref_primary_10_35940_ijies_B1098_12020225
crossref_primary_10_1109_COMST_2024_3395414
crossref_primary_10_1155_2021_6805151
crossref_primary_10_2139_ssrn_4074528
crossref_primary_10_1016_j_eswa_2022_118435
crossref_primary_10_1016_j_measen_2023_100846
crossref_primary_10_1109_TII_2023_3326507
crossref_primary_10_1002_dac_5432
crossref_primary_10_1177_17568293221150171
crossref_primary_10_1016_j_chemolab_2024_105082
crossref_primary_10_3390_app12189212
Cites_doi 10.1016/j.neucom.2017.02.024
10.1016/j.compind.2019.04.016
10.1007/s00170-018-2093-8
10.1016/j.infsof.2010.03.006
10.3390/s18092946
10.1016/j.eswa.2019.112869
10.3390/info11040202
10.1016/j.autcon.2020.103087
10.1016/j.compind.2018.07.004
10.1007/s40436-017-0203-8
10.1016/j.compind.2018.04.015
10.1007/s00170-018-3106-3
10.1016/j.cirp.2015.05.011
10.1109/ACCESS.2018.2890566
10.1016/j.procir.2019.01.047
10.1016/j.engappai.2019.04.014
10.1007/s10257-017-0343-1
10.1109/DCOSS.2019.00079
10.1177/0954405415601640
10.1080/0951192X.2019.1699254
10.1016/j.compind.2014.07.005
10.1016/j.ifacol.2018.08.391
10.1016/j.eswa.2017.08.025
10.1109/ACCESS.2018.2871724
10.3390/en12183454
10.1109/ICIT.2018.8352377
10.1017/S0269888919000237
10.1109/ETFA.2018.8502489
10.1016/j.procir.2014.02.001
10.3390/s20072099
10.1016/j.aei.2018.10.006
10.1007/s00170-016-8983-8
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright_xml – notice: 2020 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.compind.2020.103298
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_compind_2020_103298
S0166361520305327
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AARIN
AATTM
AAXKI
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABUCO
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACGOD
ACNNM
ACRLP
ACRPL
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEFWE
AEIPS
AEKER
AENEX
AFFNX
AFJKZ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AI.
AIALX
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APLSM
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BKOMP
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HAMUX
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
RNS
ROL
RPZ
RXW
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSB
SSD
SSH
SST
SSV
SSZ
T5K
TAE
TAF
TN5
U5U
UNMZH
VH1
WH7
WUQ
XPP
ZMT
~G-
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
ID FETCH-LOGICAL-c309t-2761f05a006a5194f3345e47f6bcc9ee3ec1b92bc69ad9fcbf83b42919221e473
IEDL.DBID .~1
ISSN 0166-3615
IngestDate Thu Apr 24 23:03:01 EDT 2025
Tue Jul 01 00:52:00 EDT 2025
Sun Apr 06 06:54:06 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Industry 4.0
Ontology
Internet of Things
Artificial intelligence
Systematic literature review
Predictive maintenance
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c309t-2761f05a006a5194f3345e47f6bcc9ee3ec1b92bc69ad9fcbf83b42919221e473
ORCID 0000-0002-2486-049X
ParticipantIDs crossref_citationtrail_10_1016_j_compind_2020_103298
crossref_primary_10_1016_j_compind_2020_103298
elsevier_sciencedirect_doi_10_1016_j_compind_2020_103298
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2020
2020-12-00
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: December 2020
PublicationDecade 2020
PublicationTitle Computers in industry
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Kaur, Selway, Grossmann, Stumptner, Johnston (bib0105) 2018
Balogh, Gatial, Barbosa, Leitão, Matejka (bib0055) 2018
Syafrudin, Alfian, Fitriyani, Rhee (bib0170) 2018; 18
Strauß, Schmitz, Wöstmann, Deuse (bib0280) 2018
Cerquitelli, Bowden, Marguglio, Morabito, Napione, Panicucci, Nikolakis, Makris, Coppo, Andolina (bib0265) 2019
Talamo, Paganin, Rota (bib0310) 2019
Lee, Kao, Yang (bib0010) 2014; 16
Ali, Patel, Breslin (bib0020) 2019
Liu, Jin, Jin, Lee, Zhang, Peng, Xu (bib0110) 2018
Malek (bib0180) 2017
Wang, Wang (bib0050) 2017
Nuñez, Borsato (bib0205) 2018; 38
Kiangala, Wang (bib0100) 2018; 97
Huang, Liu, Tao (bib0255) 2019
Daniyan, Mpofu, Oyesola, Ramatsetse, Adeodu (bib0235) 2020; 45
Li, Wang, Wang (bib0295) 2017; 5
Ferreira, Albano, Silva, Martinho, Marreiros, Di Orio, Maló, Ferreira (bib0095) 2017
Crespo Márquez, de la Fuente Carmona, Antomarioni (bib0115) 2019; 12
Hoffmann, Wildermuth, Gitzel, Boyaci, Gebhardt, Kaul, Amihai, Forg, Suriyah, Leibfried (bib0240) 2020; 20
Schmidt, Wang (bib0060) 2018; 17
Kitchenham, Pretorius, Budgen, Brereton, Turner, Niazi, Linkman (bib0135) 2010; 52
Xu, Sun, Liu, Zheng (bib0120) 2019; 7
Sala, Jalalvand, Van Yperen-De Deyne, Mannens (bib0200) 2018
Ansari, Glawar, Nemeth (bib0220) 2019
Diez-Olivan, Pagan, Sanz, Sierra (bib0290) 2017; 241
D. O. Chukwuekwe, T. Glesnes, P. Schjølberg, Condition monitoring for predictive maintenance-towards systems prognosis within the industrial internet of things.
Zenisek, Wolfartsberger, Sievi, Affenzeller (bib0150) 2018; 51
Schmidt, Wang, Galar (bib0210) 2016
Gao, Wang, Teti, Dornfeld, Kumara, Mori, Helu (bib0320) 2015; 64
O’Donovan, Gallagher, Leahy, O’Sullivan (bib0030) 2019; 110
Sarazin, Truptil, Montarnal, Lamothe (bib0085) 2019
Zhang, Ming, Liu, Yin, Chen, Chang (bib0175) 2019; 101
Chen, Wang, Feng, Li, Liu (bib0250) 2020; 33
Wan, Yang, Wang, Hua (bib0190) 2018; 6
Cheng, Chen, Chen, Wang (bib0225) 2020; 112
Cachada, Barbosa, Leitño, Gcraldcs, Deusdado, Costa, Teixeira, Teixeira, Moreira, Moreira (bib0015) 2018
Boyes, Hallaq, Cunningham, Watson (bib0035) 2018; 101
Kitchenham (bib0140) 2004; 33
Bumblauskas, Gemmill, Igou, Anzengruber (bib0155) 2017; 90
Costa, Figueiras, Jardim-Gonçalves, Ramos-Filho, Lima (bib0195) 2017
da Cunha Mattos, Santoro, Revoredo, Nunes (bib0125) 2014; 65
Ansari, Glawar, Sihn (bib0080) 2020
Olivares-Alarcos, Beßler, Khamis, Goncalves, Habib, Bermejo-Alonso, Barreto, Diab, Rosell, Quintas, Pignaton, Olszewska (bib0330) 2019; 34
ADHIKARI, RAO, BUDERATH (bib0065) 2018
Selcuk (bib0325) 2017; 231
Q. Cao, A. Samet, C. Zanni-Merk, F. d. B. de Beuvron, C. Reich, Combining chronicle mining and semantics for predictive maintenance in manufacturing processes.
Peres, Rocha, Leitao, Barata (bib0285) 2018; 101
Romeo, Loncarski, Paolanti, Bocchini, Mancini, Frontoni (bib0025) 2020; 140
Carbery, Woods, Marshall (bib0040) 2018
Schmidt, Wang (bib0130) 2018; 99
Rivas, Fraile, Chamoso, González-Briones, Sittón, Corchado (bib0260) 2019
Zhou, Tham (bib0070) 2018
Bousdekis, Mentzas, Hribernik, Lewandowski, von Stietencron, Thoben (bib0075) 2019
Carbery, Woods, Marshall (bib0185) 2018
Issam, El Majd, El GHAZI (bib0315) 2018
Yuan, Ma, Cheng, Zhou, Zhao, Zhang, Ding (bib0275) 2018
Gatica, Koester, Gaukstern, Berlin, Meyer (bib0300) 2016
De Vita, Bruneo, Das (bib0245) 2020
Kunst, Avila, Binotto, Pignaton, Bampi, Rochol (bib0005) 2019; 83
Hegedüs, Varga, Moldován (bib0090) 2018
Glawar, Ansari, Kardos, Matyas, Sihn (bib0305) 2019; 80
Golightly, Kefalidou, Sharples (bib0165) 2018; 16
Calabrese, Cimmino, Fiume, Manfrin, Romeo, Ceccacci, Paolanti, Toscano, Ciandrini, Carrotta (bib0230) 2020; 11
Ding, Shi, Hui, Liu, Zhu, Zhang, Cao (bib0270) 2018
May, Kyriakoulis, Apostolou, Cho, Grevenitis, Kokkorikos, Milenkovic, Kiritsis (bib0160) 2018
Stojanovic, Stojanovic (bib0145) 2017
Hegedüs (10.1016/j.compind.2020.103298_bib0090) 2018
Ali (10.1016/j.compind.2020.103298_bib0020) 2019
Gao (10.1016/j.compind.2020.103298_bib0320) 2015; 64
Malek (10.1016/j.compind.2020.103298_bib0180) 2017
Talamo (10.1016/j.compind.2020.103298_bib0310) 2019
Olivares-Alarcos (10.1016/j.compind.2020.103298_bib0330) 2019; 34
Kiangala (10.1016/j.compind.2020.103298_bib0100) 2018; 97
Carbery (10.1016/j.compind.2020.103298_bib0040) 2018
Peres (10.1016/j.compind.2020.103298_bib0285) 2018; 101
Stojanovic (10.1016/j.compind.2020.103298_bib0145) 2017
Calabrese (10.1016/j.compind.2020.103298_bib0230) 2020; 11
Zhang (10.1016/j.compind.2020.103298_bib0175) 2019; 101
Strauß (10.1016/j.compind.2020.103298_bib0280) 2018
Schmidt (10.1016/j.compind.2020.103298_bib0210) 2016
May (10.1016/j.compind.2020.103298_bib0160) 2018
Ding (10.1016/j.compind.2020.103298_bib0270) 2018
Ferreira (10.1016/j.compind.2020.103298_bib0095) 2017
O’Donovan (10.1016/j.compind.2020.103298_bib0030) 2019; 110
Chen (10.1016/j.compind.2020.103298_bib0250) 2020; 33
Huang (10.1016/j.compind.2020.103298_bib0255) 2019
Xu (10.1016/j.compind.2020.103298_bib0120) 2019; 7
Daniyan (10.1016/j.compind.2020.103298_bib0235) 2020; 45
Balogh (10.1016/j.compind.2020.103298_bib0055) 2018
Yuan (10.1016/j.compind.2020.103298_bib0275) 2018
Li (10.1016/j.compind.2020.103298_bib0295) 2017; 5
Cachada (10.1016/j.compind.2020.103298_bib0015) 2018
Romeo (10.1016/j.compind.2020.103298_bib0025) 2020; 140
Cheng (10.1016/j.compind.2020.103298_bib0225) 2020; 112
Sarazin (10.1016/j.compind.2020.103298_bib0085) 2019
Cerquitelli (10.1016/j.compind.2020.103298_bib0265) 2019
Gatica (10.1016/j.compind.2020.103298_bib0300) 2016
Ansari (10.1016/j.compind.2020.103298_bib0220) 2019
Selcuk (10.1016/j.compind.2020.103298_bib0325) 2017; 231
Lee (10.1016/j.compind.2020.103298_bib0010) 2014; 16
Sala (10.1016/j.compind.2020.103298_bib0200) 2018
10.1016/j.compind.2020.103298_bib0215
Schmidt (10.1016/j.compind.2020.103298_bib0130) 2018; 99
Carbery (10.1016/j.compind.2020.103298_bib0185) 2018
Ansari (10.1016/j.compind.2020.103298_bib0080) 2020
De Vita (10.1016/j.compind.2020.103298_bib0245) 2020
10.1016/j.compind.2020.103298_bib0045
Bousdekis (10.1016/j.compind.2020.103298_bib0075) 2019
Crespo Márquez (10.1016/j.compind.2020.103298_bib0115) 2019; 12
ADHIKARI (10.1016/j.compind.2020.103298_bib0065) 2018
Zhou (10.1016/j.compind.2020.103298_bib0070) 2018
da Cunha Mattos (10.1016/j.compind.2020.103298_bib0125) 2014; 65
Glawar (10.1016/j.compind.2020.103298_bib0305) 2019; 80
Kunst (10.1016/j.compind.2020.103298_bib0005) 2019; 83
Wan (10.1016/j.compind.2020.103298_bib0190) 2018; 6
Syafrudin (10.1016/j.compind.2020.103298_bib0170) 2018; 18
Boyes (10.1016/j.compind.2020.103298_bib0035) 2018; 101
Rivas (10.1016/j.compind.2020.103298_bib0260) 2019
Wang (10.1016/j.compind.2020.103298_bib0050) 2017
Nuñez (10.1016/j.compind.2020.103298_bib0205) 2018; 38
Hoffmann (10.1016/j.compind.2020.103298_bib0240) 2020; 20
Zenisek (10.1016/j.compind.2020.103298_bib0150) 2018; 51
Golightly (10.1016/j.compind.2020.103298_bib0165) 2018; 16
Liu (10.1016/j.compind.2020.103298_bib0110) 2018
Costa (10.1016/j.compind.2020.103298_bib0195) 2017
Bumblauskas (10.1016/j.compind.2020.103298_bib0155) 2017; 90
Kaur (10.1016/j.compind.2020.103298_bib0105) 2018
Schmidt (10.1016/j.compind.2020.103298_bib0060) 2018; 17
Diez-Olivan (10.1016/j.compind.2020.103298_bib0290) 2017; 241
Issam (10.1016/j.compind.2020.103298_bib0315) 2018
Kitchenham (10.1016/j.compind.2020.103298_bib0135) 2010; 52
Kitchenham (10.1016/j.compind.2020.103298_bib0140) 2004; 33
References_xml – volume: 110
  start-page: 12
  year: 2019
  end-page: 35
  ident: bib0030
  article-title: A comparison of fog and cloud computing cyber-physical interfaces for industry 4.0 real-time embedded machine learning engineering applications
  publication-title: Comput. Ind.
– volume: 20
  start-page: 2099
  year: 2020
  ident: bib0240
  article-title: Integration of novel sensors and machine learning for predictive maintenance in medium voltage switchgear to enable the energy and mobility revolutions
  publication-title: Sensors
– start-page: 139
  year: 2019
  end-page: 147
  ident: bib0265
  article-title: A fog computing approach for predictive maintenance
  publication-title: International Conference on Advanced Information Systems Engineering
– start-page: 309
  year: 2018
  end-page: 313
  ident: bib0315
  article-title: A new architecture of collaborative vehicles for monitoring fleet health in real-time
  publication-title: 2018 IEEE International Conference on Technology Management, Operations and Decisions (ICTMOD)
– start-page: 012055
  year: 2019
  ident: bib0310
  article-title: Industry 4.0 for failure information management within proactive maintenance
  publication-title: IOP Conference Series: Earth and Environmental Science, vol. 296
– start-page: 1501
  year: 2017
  end-page: 1508
  ident: bib0145
  article-title: Premium: big data platform for enabling self-healing manufacturing
  publication-title: 2017 International Conference on Engineering, Technology and Innovation (ICE/ITMC)
– volume: 231
  start-page: 1670
  year: 2017
  end-page: 1679
  ident: bib0325
  article-title: Predictive maintenance, its implementation and latest trends
  publication-title: Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf.
– year: 2018
  ident: bib0065
  article-title: Machine Learning Based Data Driven Diagnostics & Prognostics Framework for Aircraft Predictive Maintenance
– start-page: 1
  year: 2019
  end-page: 22
  ident: bib0220
  article-title: Prima: a prescriptive maintenance model for cyber-physical production systems
  publication-title: Int. J. Comput. Integr. Manuf.
– start-page: 1
  year: 2018
  end-page: 5
  ident: bib0270
  article-title: Smart steel bridge construction enabled by bim and internet of things in industry 4.0: a framework
  publication-title: 2018 IEEE 15th International Conference on Networking, Sensing and Control (ICNSC)
– reference: D. O. Chukwuekwe, T. Glesnes, P. Schjølberg, Condition monitoring for predictive maintenance-towards systems prognosis within the industrial internet of things.
– start-page: 000299
  year: 2018
  end-page: 000304
  ident: bib0055
  article-title: Reference architecture for a collaborative predictive platform for smart maintenance in manufacturing
  publication-title: 2018 IEEE 22nd International Conference on Intelligent Engineering Systems (INES)
– volume: 51
  start-page: 643
  year: 2018
  end-page: 648
  ident: bib0150
  article-title: Streaming synthetic time series for simulated condition monitoring
  publication-title: IFAC-PapersOnLine
– year: 2018
  ident: bib0275
  article-title: Artificial Intelligent Diagnosis and Monitoring in Manufacturing
– volume: 11
  start-page: 202
  year: 2020
  ident: bib0230
  article-title: Sophia: an event-based iot and machine learning architecture for predictive maintenance in industry 4.0
  publication-title: Information
– volume: 101
  start-page: 138
  year: 2018
  end-page: 146
  ident: bib0285
  article-title: Idarts-towards intelligent data analysis and real-time supervision for industry 4.0
  publication-title: Comput. Ind.
– volume: 101
  start-page: 2367
  year: 2019
  end-page: 2389
  ident: bib0175
  article-title: A reference framework and overall planning of industrial artificial intelligence (i-ai) for new application scenarios
  publication-title: Int. J. Adv. Manuf. Technol.
– start-page: 719
  year: 2018
  end-page: 724
  ident: bib0090
  article-title: The mantis architecture for proactive maintenance
  publication-title: 2018 5th International Conference on Control, Decision and Information Technologies (CoDIT)
– volume: 80
  start-page: 482
  year: 2019
  end-page: 487
  ident: bib0305
  article-title: Conceptual design of an integrated autonomous production control model in association with a prescriptive maintenance model (prima)
  publication-title: Proc. CIRP
– volume: 99
  start-page: 5
  year: 2018
  end-page: 13
  ident: bib0130
  article-title: Cloud-enhanced predictive maintenance
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 112
  start-page: 103087
  year: 2020
  ident: bib0225
  article-title: Data-driven predictive maintenance planning framework for mep components based on bim and iot using machine learning algorithms
  publication-title: Autom. Constr.
– volume: 12
  start-page: 3454
  year: 2019
  ident: bib0115
  article-title: A process to implement an artificial neural network and association rules techniques to improve asset performance and energy efficiency
  publication-title: Energies
– volume: 6
  start-page: 55419
  year: 2018
  end-page: 55430
  ident: bib0190
  article-title: Artificial intelligence for cloud-assisted smart factory
  publication-title: IEEE Access
– volume: 101
  start-page: 1
  year: 2018
  end-page: 12
  ident: bib0035
  article-title: The industrial internet of things (iiot): an analysis framework
  publication-title: Comput. Ind.
– start-page: 245
  year: 2020
  end-page: 251
  ident: bib0245
  article-title: A novel data collection framework for telemetry and anomaly detection in industrial iot systems
  publication-title: 2020 IEEE/ACM Fifth International Conference on Internet-of-Things Design and Implementation (IoTDI)
– start-page: 307
  year: 2019
  end-page: 317
  ident: bib0075
  article-title: A unified architecture for proactive maintenance in manufacturing enterprises
  publication-title: Enterprise Interoperability VIII
– volume: 18
  start-page: 2946
  year: 2018
  ident: bib0170
  article-title: Performance analysis of iot-based sensor, big data processing, and machine learning model for real-time monitoring system in automotive manufacturing
  publication-title: Sensors
– volume: 5
  start-page: 377
  year: 2017
  end-page: 387
  ident: bib0295
  article-title: Intelligent predictive maintenance for fault diagnosis and prognosis in machine centers: Industry 4.0 scenario
  publication-title: Adv. Manuf.
– start-page: 297
  year: 2019
  end-page: 306
  ident: bib0085
  article-title: Toward information system architecture to support predictive maintenance approach
  publication-title: Enterprise Interoperability VIII
– volume: 16
  start-page: 3
  year: 2014
  end-page: 8
  ident: bib0010
  article-title: Service innovation and smart analytics for industry 4.0 and big data environment
  publication-title: Proc. CIRP
– volume: 38
  start-page: 746
  year: 2018
  end-page: 759
  ident: bib0205
  article-title: Ontoprog: an ontology-based model for implementing prognostics health management in mechanical machines
  publication-title: Adv. Eng. Inform.
– reference: Q. Cao, A. Samet, C. Zanni-Merk, F. d. B. de Beuvron, C. Reich, Combining chronicle mining and semantics for predictive maintenance in manufacturing processes.
– start-page: 1
  year: 2020
  end-page: 8
  ident: bib0080
  article-title: Prescriptive maintenance of cpps by integrating multimodal data with dynamic bayesian networks
  publication-title: Machine Learning for Cyber Physical Systems
– volume: 7
  start-page: 19990
  year: 2019
  end-page: 19999
  ident: bib0120
  article-title: A digital-twin-assisted fault diagnosis using deep transfer learning
  publication-title: IEEE Access
– start-page: 169
  year: 2018
  end-page: 179
  ident: bib0185
  article-title: A new data analytics framework emphasising pre-processing in learning ai models for complex manufacturing systems
  publication-title: Intelligent Computing and Internet of Things
– start-page: 261
  year: 2019
  end-page: 270
  ident: bib0260
  article-title: A predictive maintenance model using recurrent neural networks
  publication-title: International Workshop on Soft Computing Models in Industrial and Environmental Applications
– volume: 33
  start-page: 1
  year: 2004
  end-page: 26
  ident: bib0140
  publication-title: Procedures for Performing Systematic Reviews
– volume: 17
  start-page: 118
  year: 2018
  end-page: 125
  ident: bib0060
  article-title: Predictive maintenance of machine tool linear axes: a case from manufacturing industry
  publication-title: Proc. Manuf.
– volume: 52
  start-page: 792
  year: 2010
  end-page: 805
  ident: bib0135
  article-title: Systematic literature reviews in software engineering – a tertiary study
  publication-title: Inf. Softw. Technol.
– volume: 16
  start-page: 627
  year: 2018
  end-page: 648
  ident: bib0165
  article-title: A cross-sector analysis of human and organisational factors in the deployment of data-driven predictive maintenance
  publication-title: Inf. Syst. e-Bus. Manag.
– start-page: 139
  year: 2018
  end-page: 146
  ident: bib0015
  article-title: Maintenance 4.0: intelligent and predictive maintenance system architecture
  publication-title: 2018 IEEE 23rd International Conference on Emerging Technologies and Factory Automation (ETFA), vol. 1
– volume: 34
  start-page: e29
  year: 2019
  ident: bib0330
  article-title: A review and comparison of ontology-based approaches to robot autonomy
  publication-title: Knowl. Eng. Rev.
– start-page: 1474
  year: 2018
  end-page: 1483
  ident: bib0280
  article-title: Enabling of predictive maintenance in the brownfield through low-cost sensors, an iiot-architecture and machine learning
  publication-title: 2018 IEEE International Conference on Big Data (Big Data)
– start-page: 16
  year: 2018
  ident: bib0105
  article-title: Towards an open-standards based framework for achieving condition-based predictive maintenance
  publication-title: Proceedings of the 8th International Conference on the Internet of Things
– start-page: 903
  year: 2018
  end-page: 909
  ident: bib0070
  article-title: Graphel: a graph-based ensemble learning method for distributed diagnostics and prognostics in the industrial internet of things
  publication-title: 2018 IEEE 24th International Conference on Parallel and Distributed Systems (ICPADS)
– volume: 97
  start-page: 3251
  year: 2018
  end-page: 3271
  ident: bib0100
  article-title: Initiating predictive maintenance for a conveyor motor in a bottling plant using industry 4.0 concepts
  publication-title: Int. J. Adv. Manuf. Technol.
– start-page: 1419
  year: 2018
  end-page: 1426
  ident: bib0200
  article-title: Multivariate time series for data-driven endpoint prediction in the basic oxygen furnace
  publication-title: 2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA)
– start-page: 583
  year: 2016
  end-page: 588
  ident: bib0210
  article-title: Semantic framework for predictive maintenance in a cloud environment
  publication-title: 10th CIRP Conference on Intelligent Computation in Manufacturing Engineering, CIRP ICME’16
– volume: 140
  start-page: 112869
  year: 2020
  ident: bib0025
  article-title: Machine learning-based design support system for the prediction of heterogeneous machine parameters in industry 4.0
  publication-title: Expert Syst. Appl.
– start-page: 3
  year: 2017
  end-page: 17
  ident: bib0180
  article-title: Predictive analytics: a shortcut to dependable computing
  publication-title: International Workshop on Software Engineering for Resilient Systems
– volume: 241
  start-page: 97
  year: 2017
  end-page: 107
  ident: bib0290
  article-title: Data-driven prognostics using a combination of constrained k-means clustering, fuzzy modeling and lof-based score
  publication-title: Neurocomputing
– start-page: 1
  year: 2017
  end-page: 9
  ident: bib0050
  article-title: How ai affects the future predictive maintenance: a primer of deep learning
  publication-title: International Workshop of Advanced Manufacturing and Automation
– start-page: 1
  year: 2017
  end-page: 9
  ident: bib0095
  article-title: A pilot for proactive maintenance in industry 4.0
  publication-title: 2017 IEEE 13th International Workshop on Factory Communication Systems (WFCS)
– volume: 64
  start-page: 749
  year: 2015
  end-page: 772
  ident: bib0320
  article-title: Cloud-enabled prognosis for manufacturing
  publication-title: CIRP Ann.
– start-page: 279
  year: 2018
  end-page: 287
  ident: bib0160
  article-title: Predictive maintenance platform based on integrated strategies for increased operating life of factories
  publication-title: IFIP International Conference on Advances in Production Management Systems
– start-page: 370
  year: 2019
  end-page: 376
  ident: bib0020
  article-title: Middleware for real-time event detection and predictive analytics in smart manufacturing
  publication-title: 2019 15th International Conference on Distributed Computing in Sensor Systems (DCOSS)
– volume: 83
  start-page: 1
  year: 2019
  end-page: 12
  ident: bib0005
  article-title: Improving devices communication in industry 4.0 wireless networks
  publication-title: Eng. Appl. Artif. Intell.
– volume: 65
  start-page: 1193
  year: 2014
  end-page: 1214
  ident: bib0125
  article-title: A formal representation for context-aware business processes
  publication-title: Comput. Ind.
– volume: 90
  start-page: 303
  year: 2017
  end-page: 317
  ident: bib0155
  article-title: Smart maintenance decision support systems (smdss) based on corporate big data analytics
  publication-title: Expert Syst. Appl.
– start-page: 1472
  year: 2017
  end-page: 1479
  ident: bib0195
  article-title: Semantic enrichment of product data supported by machine learning techniques
  publication-title: 2017 International Conference on Engineering, Technology and Innovation (ICE/ITMC)
– volume: 33
  start-page: 79
  year: 2020
  end-page: 101
  ident: bib0250
  article-title: The framework design of smart factory in discrete manufacturing industry based on cyber-physical system
  publication-title: Int. J. Comput. Integr. Manuf.
– start-page: 1357
  year: 2018
  end-page: 1362
  ident: bib0040
  article-title: A bayesian network based learning system for modelling faults in large-scale manufacturing
  publication-title: 2018 IEEE International Conference on Industrial Technology (ICIT)
– start-page: 101981
  year: 2019
  ident: bib0255
  article-title: Mechanical fault diagnosis and prediction in iot based on multi-source sensing data fusion
  publication-title: Simul. Model. Pract. Theory
– start-page: 1
  year: 2018
  end-page: 8
  ident: bib0110
  article-title: Industrial ai enabled prognostics for high-speed railway systems
  publication-title: 2018 IEEE International Conference on Prognostics and Health Management (ICPHM)
– start-page: 1
  year: 2016
  end-page: 4
  ident: bib0300
  article-title: An industrial analytics approach to predictive maintenance for machinery applications
  publication-title: 2016 IEEE 21st International Conference on Emerging Technologies and Factory Automation (ETFA)
– volume: 45
  start-page: 13
  year: 2020
  end-page: 18
  ident: bib0235
  article-title: Artificial intelligence for predictive maintenance in the railcar learning factories
  publication-title: Proc. Manuf.
– volume: 241
  start-page: 97
  year: 2017
  ident: 10.1016/j.compind.2020.103298_bib0290
  article-title: Data-driven prognostics using a combination of constrained k-means clustering, fuzzy modeling and lof-based score
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.02.024
– start-page: 169
  year: 2018
  ident: 10.1016/j.compind.2020.103298_bib0185
  article-title: A new data analytics framework emphasising pre-processing in learning ai models for complex manufacturing systems
– volume: 110
  start-page: 12
  year: 2019
  ident: 10.1016/j.compind.2020.103298_bib0030
  article-title: A comparison of fog and cloud computing cyber-physical interfaces for industry 4.0 real-time embedded machine learning engineering applications
  publication-title: Comput. Ind.
  doi: 10.1016/j.compind.2019.04.016
– start-page: 1474
  year: 2018
  ident: 10.1016/j.compind.2020.103298_bib0280
  article-title: Enabling of predictive maintenance in the brownfield through low-cost sensors, an iiot-architecture and machine learning
– volume: 97
  start-page: 3251
  issue: 9–12
  year: 2018
  ident: 10.1016/j.compind.2020.103298_bib0100
  article-title: Initiating predictive maintenance for a conveyor motor in a bottling plant using industry 4.0 concepts
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-018-2093-8
– year: 2018
  ident: 10.1016/j.compind.2020.103298_bib0275
– volume: 52
  start-page: 792
  issue: 8
  year: 2010
  ident: 10.1016/j.compind.2020.103298_bib0135
  article-title: Systematic literature reviews in software engineering – a tertiary study
  publication-title: Inf. Softw. Technol.
  doi: 10.1016/j.infsof.2010.03.006
– volume: 18
  start-page: 2946
  issue: 9
  year: 2018
  ident: 10.1016/j.compind.2020.103298_bib0170
  article-title: Performance analysis of iot-based sensor, big data processing, and machine learning model for real-time monitoring system in automotive manufacturing
  publication-title: Sensors
  doi: 10.3390/s18092946
– start-page: 309
  year: 2018
  ident: 10.1016/j.compind.2020.103298_bib0315
  article-title: A new architecture of collaborative vehicles for monitoring fleet health in real-time
– volume: 140
  start-page: 112869
  year: 2020
  ident: 10.1016/j.compind.2020.103298_bib0025
  article-title: Machine learning-based design support system for the prediction of heterogeneous machine parameters in industry 4.0
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2019.112869
– volume: 11
  start-page: 202
  issue: 4
  year: 2020
  ident: 10.1016/j.compind.2020.103298_bib0230
  article-title: Sophia: an event-based iot and machine learning architecture for predictive maintenance in industry 4.0
  publication-title: Information
  doi: 10.3390/info11040202
– start-page: 1472
  year: 2017
  ident: 10.1016/j.compind.2020.103298_bib0195
  article-title: Semantic enrichment of product data supported by machine learning techniques
– volume: 112
  start-page: 103087
  year: 2020
  ident: 10.1016/j.compind.2020.103298_bib0225
  article-title: Data-driven predictive maintenance planning framework for mep components based on bim and iot using machine learning algorithms
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2020.103087
– volume: 101
  start-page: 138
  year: 2018
  ident: 10.1016/j.compind.2020.103298_bib0285
  article-title: Idarts-towards intelligent data analysis and real-time supervision for industry 4.0
  publication-title: Comput. Ind.
  doi: 10.1016/j.compind.2018.07.004
– start-page: 1
  year: 2020
  ident: 10.1016/j.compind.2020.103298_bib0080
  article-title: Prescriptive maintenance of cpps by integrating multimodal data with dynamic bayesian networks
– start-page: 279
  year: 2018
  ident: 10.1016/j.compind.2020.103298_bib0160
  article-title: Predictive maintenance platform based on integrated strategies for increased operating life of factories
– volume: 5
  start-page: 377
  issue: 4
  year: 2017
  ident: 10.1016/j.compind.2020.103298_bib0295
  article-title: Intelligent predictive maintenance for fault diagnosis and prognosis in machine centers: Industry 4.0 scenario
  publication-title: Adv. Manuf.
  doi: 10.1007/s40436-017-0203-8
– volume: 101
  start-page: 1
  year: 2018
  ident: 10.1016/j.compind.2020.103298_bib0035
  article-title: The industrial internet of things (iiot): an analysis framework
  publication-title: Comput. Ind.
  doi: 10.1016/j.compind.2018.04.015
– volume: 101
  start-page: 2367
  issue: 9–12
  year: 2019
  ident: 10.1016/j.compind.2020.103298_bib0175
  article-title: A reference framework and overall planning of industrial artificial intelligence (i-ai) for new application scenarios
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-018-3106-3
– start-page: 1
  year: 2016
  ident: 10.1016/j.compind.2020.103298_bib0300
  article-title: An industrial analytics approach to predictive maintenance for machinery applications
– volume: 64
  start-page: 749
  issue: 2
  year: 2015
  ident: 10.1016/j.compind.2020.103298_bib0320
  article-title: Cloud-enabled prognosis for manufacturing
  publication-title: CIRP Ann.
  doi: 10.1016/j.cirp.2015.05.011
– volume: 7
  start-page: 19990
  year: 2019
  ident: 10.1016/j.compind.2020.103298_bib0120
  article-title: A digital-twin-assisted fault diagnosis using deep transfer learning
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2890566
– volume: 80
  start-page: 482
  year: 2019
  ident: 10.1016/j.compind.2020.103298_bib0305
  article-title: Conceptual design of an integrated autonomous production control model in association with a prescriptive maintenance model (prima)
  publication-title: Proc. CIRP
  doi: 10.1016/j.procir.2019.01.047
– volume: 83
  start-page: 1
  year: 2019
  ident: 10.1016/j.compind.2020.103298_bib0005
  article-title: Improving devices communication in industry 4.0 wireless networks
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2019.04.014
– start-page: 903
  year: 2018
  ident: 10.1016/j.compind.2020.103298_bib0070
  article-title: Graphel: a graph-based ensemble learning method for distributed diagnostics and prognostics in the industrial internet of things
– volume: 16
  start-page: 627
  issue: 3
  year: 2018
  ident: 10.1016/j.compind.2020.103298_bib0165
  article-title: A cross-sector analysis of human and organisational factors in the deployment of data-driven predictive maintenance
  publication-title: Inf. Syst. e-Bus. Manag.
  doi: 10.1007/s10257-017-0343-1
– start-page: 139
  year: 2019
  ident: 10.1016/j.compind.2020.103298_bib0265
  article-title: A fog computing approach for predictive maintenance
– start-page: 370
  year: 2019
  ident: 10.1016/j.compind.2020.103298_bib0020
  article-title: Middleware for real-time event detection and predictive analytics in smart manufacturing
  publication-title: 2019 15th International Conference on Distributed Computing in Sensor Systems (DCOSS)
  doi: 10.1109/DCOSS.2019.00079
– start-page: 1
  year: 2017
  ident: 10.1016/j.compind.2020.103298_bib0095
  article-title: A pilot for proactive maintenance in industry 4.0
– ident: 10.1016/j.compind.2020.103298_bib0215
– ident: 10.1016/j.compind.2020.103298_bib0045
– volume: 231
  start-page: 1670
  issue: 9
  year: 2017
  ident: 10.1016/j.compind.2020.103298_bib0325
  article-title: Predictive maintenance, its implementation and latest trends
  publication-title: Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf.
  doi: 10.1177/0954405415601640
– start-page: 1
  year: 2017
  ident: 10.1016/j.compind.2020.103298_bib0050
  article-title: How ai affects the future predictive maintenance: a primer of deep learning
– volume: 33
  start-page: 79
  issue: 1
  year: 2020
  ident: 10.1016/j.compind.2020.103298_bib0250
  article-title: The framework design of smart factory in discrete manufacturing industry based on cyber-physical system
  publication-title: Int. J. Comput. Integr. Manuf.
  doi: 10.1080/0951192X.2019.1699254
– volume: 65
  start-page: 1193
  issue: 8
  year: 2014
  ident: 10.1016/j.compind.2020.103298_bib0125
  article-title: A formal representation for context-aware business processes
  publication-title: Comput. Ind.
  doi: 10.1016/j.compind.2014.07.005
– volume: 51
  start-page: 643
  issue: 11
  year: 2018
  ident: 10.1016/j.compind.2020.103298_bib0150
  article-title: Streaming synthetic time series for simulated condition monitoring
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2018.08.391
– start-page: 3
  year: 2017
  ident: 10.1016/j.compind.2020.103298_bib0180
  article-title: Predictive analytics: a shortcut to dependable computing
– volume: 90
  start-page: 303
  year: 2017
  ident: 10.1016/j.compind.2020.103298_bib0155
  article-title: Smart maintenance decision support systems (smdss) based on corporate big data analytics
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2017.08.025
– volume: 33
  start-page: 1
  year: 2004
  ident: 10.1016/j.compind.2020.103298_bib0140
– volume: 6
  start-page: 55419
  year: 2018
  ident: 10.1016/j.compind.2020.103298_bib0190
  article-title: Artificial intelligence for cloud-assisted smart factory
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2871724
– start-page: 1419
  year: 2018
  ident: 10.1016/j.compind.2020.103298_bib0200
  article-title: Multivariate time series for data-driven endpoint prediction in the basic oxygen furnace
– start-page: 583
  year: 2016
  ident: 10.1016/j.compind.2020.103298_bib0210
  article-title: Semantic framework for predictive maintenance in a cloud environment
– start-page: 1
  year: 2019
  ident: 10.1016/j.compind.2020.103298_bib0220
  article-title: Prima: a prescriptive maintenance model for cyber-physical production systems
  publication-title: Int. J. Comput. Integr. Manuf.
– start-page: 297
  year: 2019
  ident: 10.1016/j.compind.2020.103298_bib0085
  article-title: Toward information system architecture to support predictive maintenance approach
– start-page: 1
  year: 2018
  ident: 10.1016/j.compind.2020.103298_bib0270
  article-title: Smart steel bridge construction enabled by bim and internet of things in industry 4.0: a framework
– volume: 12
  start-page: 3454
  issue: 18
  year: 2019
  ident: 10.1016/j.compind.2020.103298_bib0115
  article-title: A process to implement an artificial neural network and association rules techniques to improve asset performance and energy efficiency
  publication-title: Energies
  doi: 10.3390/en12183454
– start-page: 012055
  year: 2019
  ident: 10.1016/j.compind.2020.103298_bib0310
  article-title: Industry 4.0 for failure information management within proactive maintenance
– start-page: 307
  year: 2019
  ident: 10.1016/j.compind.2020.103298_bib0075
  article-title: A unified architecture for proactive maintenance in manufacturing enterprises
– start-page: 1357
  year: 2018
  ident: 10.1016/j.compind.2020.103298_bib0040
  article-title: A bayesian network based learning system for modelling faults in large-scale manufacturing
  publication-title: 2018 IEEE International Conference on Industrial Technology (ICIT)
  doi: 10.1109/ICIT.2018.8352377
– year: 2018
  ident: 10.1016/j.compind.2020.103298_bib0065
– volume: 17
  start-page: 118
  year: 2018
  ident: 10.1016/j.compind.2020.103298_bib0060
  article-title: Predictive maintenance of machine tool linear axes: a case from manufacturing industry
  publication-title: Proc. Manuf.
– start-page: 1
  year: 2018
  ident: 10.1016/j.compind.2020.103298_bib0110
  article-title: Industrial ai enabled prognostics for high-speed railway systems
– volume: 34
  start-page: e29
  year: 2019
  ident: 10.1016/j.compind.2020.103298_bib0330
  article-title: A review and comparison of ontology-based approaches to robot autonomy
  publication-title: Knowl. Eng. Rev.
  doi: 10.1017/S0269888919000237
– start-page: 000299
  year: 2018
  ident: 10.1016/j.compind.2020.103298_bib0055
  article-title: Reference architecture for a collaborative predictive platform for smart maintenance in manufacturing
– start-page: 719
  year: 2018
  ident: 10.1016/j.compind.2020.103298_bib0090
  article-title: The mantis architecture for proactive maintenance
– start-page: 101981
  year: 2019
  ident: 10.1016/j.compind.2020.103298_bib0255
  article-title: Mechanical fault diagnosis and prediction in iot based on multi-source sensing data fusion
  publication-title: Simul. Model. Pract. Theory
– start-page: 139
  year: 2018
  ident: 10.1016/j.compind.2020.103298_bib0015
  article-title: Maintenance 4.0: intelligent and predictive maintenance system architecture
  publication-title: 2018 IEEE 23rd International Conference on Emerging Technologies and Factory Automation (ETFA), vol. 1
  doi: 10.1109/ETFA.2018.8502489
– start-page: 1501
  year: 2017
  ident: 10.1016/j.compind.2020.103298_bib0145
  article-title: Premium: big data platform for enabling self-healing manufacturing
– start-page: 261
  year: 2019
  ident: 10.1016/j.compind.2020.103298_bib0260
  article-title: A predictive maintenance model using recurrent neural networks
– volume: 16
  start-page: 3
  year: 2014
  ident: 10.1016/j.compind.2020.103298_bib0010
  article-title: Service innovation and smart analytics for industry 4.0 and big data environment
  publication-title: Proc. CIRP
  doi: 10.1016/j.procir.2014.02.001
– start-page: 245
  year: 2020
  ident: 10.1016/j.compind.2020.103298_bib0245
  article-title: A novel data collection framework for telemetry and anomaly detection in industrial iot systems
– volume: 45
  start-page: 13
  year: 2020
  ident: 10.1016/j.compind.2020.103298_bib0235
  article-title: Artificial intelligence for predictive maintenance in the railcar learning factories
  publication-title: Proc. Manuf.
– volume: 20
  start-page: 2099
  issue: 7
  year: 2020
  ident: 10.1016/j.compind.2020.103298_bib0240
  article-title: Integration of novel sensors and machine learning for predictive maintenance in medium voltage switchgear to enable the energy and mobility revolutions
  publication-title: Sensors
  doi: 10.3390/s20072099
– volume: 38
  start-page: 746
  year: 2018
  ident: 10.1016/j.compind.2020.103298_bib0205
  article-title: Ontoprog: an ontology-based model for implementing prognostics health management in mechanical machines
  publication-title: Adv. Eng. Inform.
  doi: 10.1016/j.aei.2018.10.006
– volume: 99
  start-page: 5
  issue: 1–4
  year: 2018
  ident: 10.1016/j.compind.2020.103298_bib0130
  article-title: Cloud-enhanced predictive maintenance
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-016-8983-8
– start-page: 16
  year: 2018
  ident: 10.1016/j.compind.2020.103298_bib0105
  article-title: Towards an open-standards based framework for achieving condition-based predictive maintenance
SSID ssj0000776
Score 2.6571686
SecondaryResourceType review_article
Snippet •Predictive maintenance is a hot topic in the context of Industry 4.0.•The papers that bring novelty to the field are concentrated in the years 2018 and...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 103298
SubjectTerms Artificial intelligence
Industry 4.0
Internet of Things
Ontology
Predictive maintenance
Systematic literature review
Title Machine learning and reasoning for predictive maintenance in Industry 4.0: Current status and challenges
URI https://dx.doi.org/10.1016/j.compind.2020.103298
Volume 123
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqssCAeIpn5YE1TWI7TsxWVVTlVSGgUrfIcRxoBSHqY2Dht-NLHFokBBJTlMhnRZfz3dn57juEzpKMmW2C9BzJPO0wpn1HpJI4nqd8zsFI0pLtc8D7Q3Y1CkYN1K1rYQBWaX1_5dNLb22fuFabbjEeuw8mWeHUBGQCNksJVJQzFoKVtz-WMA-gq6n4vbkDo5dVPO4E5i7M1tdsE0lZfk5E9HN8Wok5vS20aZNF3KneZxs1dL6DNlYoBHfR822JhtTYtn94wjJPMSDNy3NWbHJSXEzhbwz4NfwqgR8CSDY0HufYNu54x6ztnWPL1YShyGgxKydSda-V2R4a9i4eu33Hdk9wFPXE3CEh9zMvkGZZSZOmsYxSFmgWZjxRSmhNtfITQRLFhUxFppIsoomJTiblI74ZR_dRM3_L9QHCkkSp8FMZpEqyMEykWcZRICUTXBDJ6CFitc5iZanFocPFS1xjyCaxVXUMqo4rVR-i9pdYUXFr_CUQ1R8k_mYksfH_v4se_V_0GK3DXYVhOUHN-XShT00mMk9apam10Fqne39zB9fL6_7gE5Sf35U
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLbGdgAOiKcYzxy4dmuT9BFu08S0sceFTdqtStMUNkGp9jjw70nalA0JgcS1jaPKdezPrf0Z4C5KqEoTuG1xakuLUulYLObYsm3heJ42kjhn-xx53Ql9nLrTCrTLXhhdVml8f-HTc29trjSNNpvZbNZ8UmDFIyogY22zBPs7UNPsVG4Vaq1evzvaOGQ_nzGn11taYNPI05zr7TOV_apMEecd6JgFP4eorbDTOYQDgxdRq3ikI6jI9Bj2t1gET-BlmBdESmQmQDwjnsZIF5vnn1qRgqUoW-gfMtq1oTeuKSI0z4ZEsxSZ2R0fiDbse2TompDuM1ov841EOW5leQqTzsO43bXMAAVLEJutLOx7TmK7XJ0srpAaTQihrqR-4kVCMCmJFE7EcCQ8xmOWiCgJSKQClEJ92FHryBlU0_dUngPiOIiZE3M3Fpz6fsTVSQ5czinzGOaU1IGWOguFYRfXQy5ew7KMbB4aVYda1WGh6jo0vsSygl7jL4GgfCHhNzsJVQj4XfTi_6K3sNsdDwfhoDfqX8KevlOUtFxBdbVYy2sFTFbRjTG8T0J94LE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+and+reasoning+for+predictive+maintenance+in+Industry+4.0%3A+Current+status+and+challenges&rft.jtitle=Computers+in+industry&rft.au=Dalzochio%2C+Jovani&rft.au=Kunst%2C+Rafael&rft.au=Pignaton%2C+Edison&rft.au=Binotto%2C+Alecio&rft.date=2020-12-01&rft.issn=0166-3615&rft.volume=123&rft.spage=103298&rft_id=info:doi/10.1016%2Fj.compind.2020.103298&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_compind_2020_103298
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0166-3615&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0166-3615&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0166-3615&client=summon