Knowledge representation analysis of graph mining
This paper analyses the graph mining problem, and the frequent pattern mining task associated with it. In general, frequent pattern mining looks for a graph which occurs frequently within a network or, in the transactional setting, within a dataset of graphs. We discuss this task in the transactiona...
Saved in:
Published in | Annals of mathematics and artificial intelligence Vol. 86; no. 1-3; pp. 21 - 60 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.07.2019
Springer Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper analyses the graph mining problem, and the frequent pattern mining task associated with it. In general, frequent pattern mining looks for a graph which occurs frequently within a network or, in the transactional setting, within a dataset of graphs. We discuss this task in the transactional setting, which is a problem of interest in many fields such as bioinformatics, chemoinformatics and social networks. We look at the graph mining problem from a Knowledge Representation point of view, hoping to learn something about support for higher-order logics in declarative languages and solvers. Graph mining is studied as a prototypical problem; it is easily expressible mathematically and exists in many variations. As such, it appears to be a prime candidate for a declarative approach; one would expect this allows for a clear, structured, statement of the problem combined with easy adaptation to changing requirements and variations. Current state-of-the-art KR languages such as IDP and ASP aspire to be practical solvers for such problems (Bruynooghe, Theory Practice Logic Program. (TPLP)
15
(6), 783–817
2015
). Nevertheless, expressing the graph mining problem in these languages requires unexpectedly complicated and unintuitive encoding techniques. These techniques are in contrast to the ease with which one can transform the mathematical definition of graph mining to a higher-order logic specification, and distract from the problem essentials, complicating possible future adaptation. In this paper, we argue that efforts should be made towards supporting higher-order logic specifications in modern specification languages, without unintuitive and complicated encoding techniques. We argue that this not only makes representation clearer and more susceptible to future adaptation, but might also allow for faster, more competitive solver techniques to be implemented. |
---|---|
AbstractList | This paper analyses the graph mining problem, and the frequent pattern mining task associated with it. In general, frequent pattern mining looks for a graph which occurs frequently within a network or, in the transactional setting, within a dataset of graphs. We discuss this task in the transactional setting, which is a problem of interest in many fields such as bioinformatics, chemoinformatics and social networks. We look at the graph mining problem from a Knowledge Representation point of view, hoping to learn something about support for higher-order logics in declarative languages and solvers. Graph mining is studied as a prototypical problem; it is easily expressible mathematically and exists in many variations. As such, it appears to be a prime candidate for a declarative approach; one would expect this allows for a clear, structured, statement of the problem combined with easy adaptation to changing requirements and variations. Current state-of-the-art KR languages such as IDP and ASP aspire to be practical solvers for such problems (Bruynooghe, Theory Practice Logic Program. (TPLP)
15
(6), 783–817
2015
). Nevertheless, expressing the graph mining problem in these languages requires unexpectedly complicated and unintuitive encoding techniques. These techniques are in contrast to the ease with which one can transform the mathematical definition of graph mining to a higher-order logic specification, and distract from the problem essentials, complicating possible future adaptation. In this paper, we argue that efforts should be made towards supporting higher-order logic specifications in modern specification languages, without unintuitive and complicated encoding techniques. We argue that this not only makes representation clearer and more susceptible to future adaptation, but might also allow for faster, more competitive solver techniques to be implemented. This paper analyses the graph mining problem, and the frequent pattern mining task associated with it. In general, frequent pattern mining looks for a graph which occurs frequently within a network or, in the transactional setting, within a dataset of graphs. We discuss this task in the transactional setting, which is a problem of interest in many fields such as bioinformatics, chemoinformatics and social networks. We look at the graph mining problem from a Knowledge Representation point of view, hoping to learn something about support for higher-order logics in declarative languages and solvers. Graph mining is studied as a prototypical problem; it is easily expressible mathematically and exists in many variations. As such, it appears to be a prime candidate for a declarative approach; one would expect this allows for a clear, structured, statement of the problem combined with easy adaptation to changing requirements and variations. Current state-of-the-art KR languages such as IDP and ASP aspire to be practical solvers for such problems (Bruynooghe, Theory Practice Logic Program. (TPLP) 15(6), 783–817 2015). Nevertheless, expressing the graph mining problem in these languages requires unexpectedly complicated and unintuitive encoding techniques. These techniques are in contrast to the ease with which one can transform the mathematical definition of graph mining to a higher-order logic specification, and distract from the problem essentials, complicating possible future adaptation. In this paper, we argue that efforts should be made towards supporting higher-order logic specifications in modern specification languages, without unintuitive and complicated encoding techniques. We argue that this not only makes representation clearer and more susceptible to future adaptation, but might also allow for faster, more competitive solver techniques to be implemented. This paper analyses the graph mining problem, and the frequent pattern mining task associated with it. In general, frequent pattern mining looks for a graph which occurs frequently within a network or, in the transactional setting, within a dataset of graphs. We discuss this task in the transactional setting, which is a problem of interest in many fields such as bioinformatics, chemoinformatics and social networks. We look at the graph mining problem from a Knowledge Representation point of view, hoping to learn something about support for higher-order logics in declarative languages and solvers. Graph mining is studied as a prototypical problem; it is easily expressible mathematically and exists in many variations. As such, it appears to be a prime candidate for a declarative approach; one would expect this allows for a clear, structured, statement of the problem combined with easy adaptation to changing requirements and variations. Current state-of-the-art KR languages such as IDP and ASP aspire to be practical solvers for such problems (Bruynooghe, Theory Practice Logic Program. (TPLP) 15(6), 783-817 2015). Nevertheless, expressing the graph mining problem in these languages requires unexpectedly complicated and unintuitive encoding techniques. These techniques are in contrast to the ease with which one can transform the mathematical definition of graph mining to a higher-order logic specification, and distract from the problem essentials, complicating possible future adaptation. In this paper, we argue that efforts should be made towards supporting higher-order logic specifications in modern specification languages, without unintuitive and complicated encoding techniques. We argue that this not only makes representation clearer and more susceptible to future adaptation, but might also allow for faster, more competitive solver techniques to be implemented. Keywords Knowledge representation * Higher order * Graph mining * Answer set programming * Imperative declarative programming Mathematics Subject Classification (2010) 68T30 |
Audience | Academic |
Author | Janssens, Gerda van der Hallen, Matthias Paramonov, Sergey Denecker, Marc |
Author_xml | – sequence: 1 givenname: Matthias orcidid: 0000-0003-1893-9369 surname: van der Hallen fullname: van der Hallen, Matthias email: matthias.vanderhallen@kuleuven.be, matthias.vanderhallen@gmail.com organization: Department of Computer Science, KU Leuven – sequence: 2 givenname: Sergey surname: Paramonov fullname: Paramonov, Sergey organization: Department of Computer Science, KU Leuven – sequence: 3 givenname: Gerda surname: Janssens fullname: Janssens, Gerda organization: Department of Computer Science, KU Leuven – sequence: 4 givenname: Marc surname: Denecker fullname: Denecker, Marc organization: Department of Computer Science, KU Leuven |
BookMark | eNp9kE1LxDAQhoOs4O7qH_BU8Jx1kqZNc1wWv3DBi55D2iY1SzepSRfpvzdawZvMYcLwPpnhWaGF804jdE1gQwD4bSTAOMVABAZRUoanM7QkBc8xZxwW6Q2EYspYfoFWMR4AUqwql4g8O__Z67bTWdBD0FG7UY3Wu0w51U_RxsybrAtqeM-O1lnXXaJzo_qor377Gr3d373uHvH-5eFpt93jJgcxYqJb3qoGTFUoKBSBtBwaw5pCt7rgNS9rLYTKa66o4YzWrG1qowqmclUJUeRrdDP_OwT_cdJxlAd_CumoKKkgFQUqmEipzZzqVK-ldcaPQTWpWn20TZJkbJpvOSkZF6kSQGegCT7GoI0cgj2qMEkC8tulnF3K5FL-uJRTgvIZiinsOh3-bvmH-gK7AHkz |
Cites_doi | 10.1017/S1471068417000254 10.1007/978-3-642-01929-6_7 10.1007/978-3-319-46227-1_20 10.1609/aaai.v29i1.9398 10.1007/978-3-540-74958-5_72 10.1017/S1471068415000113 10.1007/s10009-007-0063-9 10.1007/s10601-016-9252-z 10.2200/S00457ED1V01Y201211AIM019 10.1021/ci050135u 10.1016/0743-1066(93)90039-J 10.1613/jair.4591 10.29007/k3nd 10.1007/978-3-642-39071-5_9 10.1007/978-3-642-20895-9_35 10.1016/j.drudis.2012.07.016 10.1017/S1471068415000319 10.1017/S147106841400009X 10.1016/0743-1066(94)90035-3 10.1007/978-3-642-03754-2_2 10.1609/aimag.v37i3.2672 10.1007/978-3-319-61660-5_17 10.1109/ICSMC.2004.1401252 10.1145/1401890.1401919 10.1007/978-3-319-66263-_19 10.1017/CBO9781139195881 10.1017/CBO9780511624162 10.1007/978-3-540-49382-2_1 |
ContentType | Journal Article |
Copyright | Springer Nature Switzerland AG 2019 COPYRIGHT 2019 Springer Springer Nature Switzerland AG 2019. |
Copyright_xml | – notice: Springer Nature Switzerland AG 2019 – notice: COPYRIGHT 2019 Springer – notice: Springer Nature Switzerland AG 2019. |
DBID | AAYXX CITATION 8FE 8FG ABJCF AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L6V M7S P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
DOI | 10.1007/s10472-019-09624-y |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Materials Science & Engineering ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Engineering Collection Engineering Database ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering collection |
DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Computer Science Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics Computer Science |
EISSN | 1573-7470 |
EndPage | 60 |
ExternalDocumentID | A716479797 10_1007_s10472_019_09624_y |
GrantInformation_xml | – fundername: Fonds Wetenschappelijk Onderzoek (BE) grantid: 1S54518N |
GroupedDBID | -4Z -59 -5G -BR -EM -~C .86 .DC .VR 06D 0R~ 0VY 1N0 203 23M 2J2 2JN 2JY 2KG 2LR 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADRFC ADTPH ADURQ ADYFF ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BDATZ BENPR BGLVJ BGNMA BSONS CCPQU CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF I09 IAO IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K7- KDC KOV LAK LLZTM M4Y M7S MA- NB0 NPVJJ NQJWS NU0 O93 O9G O9I O9J OAM P19 P2P P9O PF0 PT4 PT5 PTHSS QOK QOS R89 R9I RHV RNS ROL RPX RSV S16 S27 S3B SAP SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TN5 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX VC2 W23 W48 WK8 YLTOR Z45 Z7R Z7X Z81 Z83 Z88 Z92 ZMTXR ~A9 ~EX -Y2 1SB 2.D 28- 2P1 2VQ 5QI AAOBN AAPKM AARHV AAYTO AAYXX ABBRH ABDBE ABFSG ABQSL ABULA ACBXY ACSTC ADHKG ADKFA ADKPE AEBTG AEFIE AEKMD AEZWR AFDZB AFEXP AFGCZ AFHIU AFOHR AGGDS AGJBK AGQPQ AHPBZ AHWEU AIXLP AJBLW ATHPR AYFIA BBWZM CAG CITATION COF HZ~ IHE KOW N2Q NDZJH O9- OVD PHGZM PHGZT R4E RNI RZC RZE RZK S1Z S26 S28 SCJ SCLPG T16 TEORI UZXMN VFIZW AEIIB PMFND 8FE 8FG ABRTQ AZQEC DWQXO GNUQQ JQ2 L6V P62 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c309t-1ed7dac0f85a05a102440cf4c5ede57b76be99a3b7a2f742b4dcbfa54a3a89953 |
IEDL.DBID | BENPR |
ISSN | 1012-2443 |
IngestDate | Fri Jul 25 10:47:28 EDT 2025 Tue Jun 10 20:09:38 EDT 2025 Tue Jul 01 03:19:43 EDT 2025 Fri Feb 21 02:26:56 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1-3 |
Keywords | Imperative declarative programming Higher order 68T30 Answer set programming Knowledge representation Graph mining |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c309t-1ed7dac0f85a05a102440cf4c5ede57b76be99a3b7a2f742b4dcbfa54a3a89953 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-1893-9369 |
PQID | 2918202949 |
PQPubID | 2043872 |
PageCount | 40 |
ParticipantIDs | proquest_journals_2918202949 gale_infotracacademiconefile_A716479797 crossref_primary_10_1007_s10472_019_09624_y springer_journals_10_1007_s10472_019_09624_y |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20190701 2019-7-00 |
PublicationDateYYYYMMDD | 2019-07-01 |
PublicationDate_xml | – month: 7 year: 2019 text: 20190701 day: 1 |
PublicationDecade | 2010 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: Dordrecht |
PublicationTitle | Annals of mathematics and artificial intelligence |
PublicationTitleAbbrev | Ann Math Artif Intell |
PublicationYear | 2019 |
Publisher | Springer International Publishing Springer Springer Nature B.V |
Publisher_xml | – name: Springer International Publishing – name: Springer – name: Springer Nature B.V |
References | Babai, L.: Graph isomorphism in quasipolynomial time. CoRR 1512.03547 (2015) Nijssen, S., Kok, J.N.: Frequent graph mining and its application to molecular databases. In: Proceedings of the IEEE International Conference on Systems, Man & Cybernetics: The Hague, Netherlands, 10-13 October 2004, pp. 4571–4577. IEEE. https://doi.org/10.1109/ICSMC.2004.1401252 (2004) DassevilleIvan der HallenMJanssensGDeneckerMSemantics of templates in a compositional framework for building logicsTheory Pract. Logic Program. (TPLP)2015154-5681695340684510.1017/S14710684150003191379.68092 ChenWKiferMWarrenDSHilog: A foundation for higher-order logic programmingJ. Logic Program.1993153187230119840510.1016/0743-1066(93)90039-J0787.68017 KemmarALebbahYLoudniSBoizumaultPCharnoisTPrefix-projection global constraint and top-k approach for sequential pattern miningConstraints2017222265306360442510.1007/s10601-016-9252-z06853926 Lamport, L.: Specifying Systems, The TLA+ Language and Tools for Hardware and Software Engineers. Addison-Wesley (2002) Silva, J.P.M., Sakallah, K.A.: GRASP - a new search algorithm for satisfiability. In: International Conference on Computer-Aided Design (ICCAD), San Jose, California, USA, November 10-14 1996, pp. 220–227 (1996) Lonsing, F., Egly, U., Gelder, A.V.: Efficient clause learning for quantified boolean formulas via QBF pseudo unit propagation. In: Järvisalo, M., Gelder, A.V. (eds.) Theory and Applications of Satisfiability Testing - SAT 2013 - 16th International Conference, Helsinki, Finland, July 8-12, 2013. Proceedings, Lecture Notes in Computer Science, vol. 7962, pp 100–115. Springer (2013), https://doi.org/10.1007/978-3-642-39071-5_9 Brewka, G., Delgrande, J.P., Romero, J., Schaub, T.: asprin: Customizing answer set preferences without a headache. In: AAAI, pp. 1467–1474. AAAI Press (2015) van der Hallen, M., Paramonov, S., Leuschel, M., Janssens, G.: Knowledge representation analysis of graph mining. CoRR 1608.08956 (2016) Abrial, J.R.: The B-Book. Cambridge University Press. https://doi.org/10.1017/CBO9780511624162 (1996) Abrial, J.R.: Modeling in Event-B: System and Software Engineering. Cambridge University Press (2010) Rückert, U., Kramer, S.: Optimizing feature sets for structured data. In: Kok, J.N., Koronacki, J., de Mántaras, R.L., Matwin, S., Mladenic, D., Skowron, A. (eds.) Machine Learning: ECML 2007, 18th European Conference on Machine Learning, Warsaw, Poland, September 17-21, 2007, Proceedings, Lecture Notes in Computer Science, vol. 4701, pp 716–723. Springer (2007), https://doi.org/10.1007/978-3-540-74958-5_72 Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Clingo = ASP + control: Preliminary report. CoRR 1405.3694 (2014) GuyetTMoinardYQuiniouRSchaubTEfficiency Analysis of ASP Encodings for Sequential Pattern Mining Tasks2018ChamSpringer International Publishing4181 Weinzierl, A.: Blending lazy-grounding and CDNL search for answer-set solving. In: Logic Programming and Nonmonotonic Reasoning (LPNMR), Lecture Notes in Computer Science, vol. 10377, pp. 191–204. Springer (2017) MuggletonSRaedtLDInductive logic programming: Theory and methodsJ. Log. Program.199419/20629679127993610.1016/0743-1066(94)90035-30816.68043 Paramonov, S., Chen, T., Guns, T.: Generic mining of condensed pattern representations under constraints. In: CEUR: Young Scientist‘s Second International Workshop on Trends in Information Processing Proceedings (YSIP), vol. 1837, pp. 138–177 (2017) van der Hallen, M., Janssens, G.: A grounder from second-order logic to qbf. In: Quantified Boolean Formulas, Papers from the 2018 FLoC Quantified Boolean Formulas and Beyond Workshop, Oxford, England, July 8, 2018 (accepted), Federated Logic Conference (FLoC): workshop proceedings (2018) EiterTFinkMIanniGKrennwallnerTRedlCSchu̇llerPA model building framework for answer set programming with external computationsTheory Pract. Logic Program. (TPLP)2016164418464350691910.1017/S14710684150001131379.68058 CuteriBDodaroCRiccaFSchu̇llerPConstraints, lazy constraints, or propagators in ASP solving: An empirical analysisTheory Pract. Logic Program. (TPLP)2017175-6780799370901310.1017/S147106841700025406803822 LonsingFBiereADepqbf: A dependency-aware QBF solverJSAT201072–37176http://jsat.ewi.tudelft.nl/content/volume7/JSAT7_6_Lonsing.pdf LiHYapCWUngCYXueYCaoZWChenYZEffect of selection of molecular descriptors on the prediction of bloodbrain barrier penetrating and nonpenetrating agents by statistical learning methodsJ. Chem. Inf. Model.20054551376138410.1021/ci050135uPMID: 16180914 De Raedt, L., Guns, T., Nijssen, S.: Constraint programming for itemset mining. In: ACM SIGKDD, pp. 204–212 (2008) Immerman, N.: Descriptive complexity and model checking. In: Arvind, V., Ramanujam, R. (eds.) Foundations of Software Technology and Theoretical Computer Science, 18th Conference, Chennai, India, December 17-19, 1998, Proceedings, Lecture Notes in Computer Science, vol. 1530, pp 1–5. Springer (1998), https://doi.org/10.1007/978-3-540-49382-2_1 Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Answer Set Solving in Practice. Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan and Claypool Publishers (2012) Yan, X., Han, J.: gspan: Graph-based substructure pattern mining. In: Proceedings of the 2002 IEEE International Conference on Data Mining, ICDM ’02, pp 721–. IEEE Computer Society, Washington (2002) De Cat, B., Bogaerts, B., Bruynooghe, M., Janssens, G., Denecker, M.: Predicate logic as a modelling language: The IDP system. CoRR 1401.6312v2 (2016) LeuschelMButlerMJProB: An automated analysis toolset for the B methodSTTT200810218520310.1007/s10009-007-0063-9 de CatBDeneckerMBruynoogheMStuckeyPJLazy model expansion: Interleaving grounding with searchJ. Artif. Intell. Res.201552235286332147010.1613/jair.45911323.68464 Järvisalo, M.: Itemset mining as a challenge application for answer set enumeration. Logic Programming and Nonmonotonic Reasoning (LPNMR), 304–310 (2011) Abramson, H., Rogers, H.: Meta-Programming in Logic Programming. MIT Press (1989) KaufmannBLeoneNPerriSSchaubTGrounding and solving in answer set programmingAI Mag.2016373253210.1609/aimag.v37i3.2672http://www.aaai.org/ojs/index.php/aimagazine/article/view/2672 TakigawaIMamitsukaHGraph mining: Procedure, application to drug discovery and recent advancesDrug Discov. Today2013181505710.1016/j.drudis.2012.07.016http://www.sciencedirect.com/science/article/pii/S1359644612002759 Bowen, J.P.: Formal Specification and Documentation using Z. International Thomson Computer Press (1996) Eiter, T., Ianni, G., Krennwallner, T.: Answer set programming: A primer. In: Reasoning Web, Lecture Notes in Computer Science, vol. 5689, pp. 40–110. Springer (2009) Aoga, J.O.R., Guns, T., Schaus, P.: An efficient algorithm for mining frequent sequence with constraint programming. In: Frasconi, P., Landwehr, N., Manco, G., Vreeken, J. (eds.) Machine Learning and Knowledge Discovery in Databases - European Conference, ECML PKDD 2016, Riva del Garda, Italy, September 19-23, 2016, Proceedings, Part II, Lecture Notes in Computer Science, vol. 9852, pp 315–330. Springer (2016), https://doi.org/10.1007/978-3-319-46227-1_20 BruynoogheMBlockeelHBogaertsBde CatBPooterSDJansenJLabarreARamonJDeneckerMVerwerSPredicate logic as a modeling language: modeling and solving some machine learning and data mining problems with IDP3Theory Practice Logic Program. (TPLP)2015156783817340646410.1017/S147106841400009X1379.68279 Peitl, T., Slivovsky, F., Szeider, S.: Dependency learning for QBF. In: Gaspers, S., Walsh, T. (eds.) Theory and Applications of Satisfiability Testing - SAT 2017 - 20th International Conference, Melbourne, VIC, Australia, August 28 - September 1, 2017, Proceedings, Lecture Notes in Computer Science, vol. 10491, pp 298–313. Springer (2017), https://doi.org/10.1007/978-3-319-66263-_19 McCarthy, J.: Elaboration tolerance. In: Working Papers of the Fourth International Symposium on Logical formalizations of Commonsense Reasoning, Commonsense-1998 (1998) Bogaerts, B., Janhunen, T., Tasharrofi, S.: Solving QBF instances with nested SAT solvers. In: Darwiche, A. (ed.) Beyond NP, Papers from the 2016 AAAI Workshop, Phoenix, Arizona, USA, February 12, 2016., AAAI Workshops. http://www.aaai.org/ocs/index.php/WS/AAAIW16/paper/view/12603, vol. WS-16-05. AAAI Press (2016) Gebser, M., Kaufmann, B., Schaub, T.: Solution enumeration for projected boolean search problems. In: Constraint Programming, Artificial Intelligence and Operations Research (CPAIOR), Lecture Notes in Computer Science, vol. 5547, pp. 71–86. Springer (2009) B Cat de (9624_CR10) 2015; 52 B Cuteri (9624_CR12) 2017; 17 I Dasseville (9624_CR13) 2015; 15 9624_CR22 9624_CR7 9624_CR41 9624_CR8 9624_CR20 9624_CR42 9624_CR5 T Guyet (9624_CR21) 2018 9624_CR6 9624_CR3 9624_CR4 9624_CR1 9624_CR2 H Li (9624_CR30) 2005; 45 M Leuschel (9624_CR29) 2008; 10 F Lonsing (9624_CR31) 2010; 7 9624_CR25 I Takigawa (9624_CR40) 2013; 18 9624_CR23 9624_CR24 9624_CR28 A Kemmar (9624_CR27) 2017; 22 9624_CR32 9624_CR33 T Eiter (9624_CR16) 2016; 16 B Kaufmann (9624_CR26) 2016; 37 W Chen (9624_CR11) 1993; 15 9624_CR14 9624_CR36 9624_CR15 9624_CR37 S Muggleton (9624_CR34) 1994; 19 9624_CR35 M Bruynooghe (9624_CR9) 2015; 15 9624_CR18 9624_CR19 9624_CR38 9624_CR17 9624_CR39 |
References_xml | – reference: van der Hallen, M., Paramonov, S., Leuschel, M., Janssens, G.: Knowledge representation analysis of graph mining. CoRR 1608.08956 (2016) – reference: GuyetTMoinardYQuiniouRSchaubTEfficiency Analysis of ASP Encodings for Sequential Pattern Mining Tasks2018ChamSpringer International Publishing4181 – reference: Bowen, J.P.: Formal Specification and Documentation using Z. International Thomson Computer Press (1996) – reference: TakigawaIMamitsukaHGraph mining: Procedure, application to drug discovery and recent advancesDrug Discov. Today2013181505710.1016/j.drudis.2012.07.016http://www.sciencedirect.com/science/article/pii/S1359644612002759 – reference: Peitl, T., Slivovsky, F., Szeider, S.: Dependency learning for QBF. In: Gaspers, S., Walsh, T. (eds.) Theory and Applications of Satisfiability Testing - SAT 2017 - 20th International Conference, Melbourne, VIC, Australia, August 28 - September 1, 2017, Proceedings, Lecture Notes in Computer Science, vol. 10491, pp 298–313. Springer (2017), https://doi.org/10.1007/978-3-319-66263-_19 – reference: KemmarALebbahYLoudniSBoizumaultPCharnoisTPrefix-projection global constraint and top-k approach for sequential pattern miningConstraints2017222265306360442510.1007/s10601-016-9252-z06853926 – reference: van der Hallen, M., Janssens, G.: A grounder from second-order logic to qbf. In: Quantified Boolean Formulas, Papers from the 2018 FLoC Quantified Boolean Formulas and Beyond Workshop, Oxford, England, July 8, 2018 (accepted), Federated Logic Conference (FLoC): workshop proceedings (2018) – reference: Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Answer Set Solving in Practice. Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan and Claypool Publishers (2012) – reference: Abrial, J.R.: Modeling in Event-B: System and Software Engineering. Cambridge University Press (2010) – reference: ChenWKiferMWarrenDSHilog: A foundation for higher-order logic programmingJ. Logic Program.1993153187230119840510.1016/0743-1066(93)90039-J0787.68017 – reference: De Raedt, L., Guns, T., Nijssen, S.: Constraint programming for itemset mining. In: ACM SIGKDD, pp. 204–212 (2008) – reference: Abrial, J.R.: The B-Book. Cambridge University Press. https://doi.org/10.1017/CBO9780511624162 (1996) – reference: Yan, X., Han, J.: gspan: Graph-based substructure pattern mining. In: Proceedings of the 2002 IEEE International Conference on Data Mining, ICDM ’02, pp 721–. IEEE Computer Society, Washington (2002) – reference: MuggletonSRaedtLDInductive logic programming: Theory and methodsJ. Log. Program.199419/20629679127993610.1016/0743-1066(94)90035-30816.68043 – reference: Rückert, U., Kramer, S.: Optimizing feature sets for structured data. In: Kok, J.N., Koronacki, J., de Mántaras, R.L., Matwin, S., Mladenic, D., Skowron, A. (eds.) Machine Learning: ECML 2007, 18th European Conference on Machine Learning, Warsaw, Poland, September 17-21, 2007, Proceedings, Lecture Notes in Computer Science, vol. 4701, pp 716–723. Springer (2007), https://doi.org/10.1007/978-3-540-74958-5_72 – reference: McCarthy, J.: Elaboration tolerance. In: Working Papers of the Fourth International Symposium on Logical formalizations of Commonsense Reasoning, Commonsense-1998 (1998) – reference: Bogaerts, B., Janhunen, T., Tasharrofi, S.: Solving QBF instances with nested SAT solvers. In: Darwiche, A. (ed.) Beyond NP, Papers from the 2016 AAAI Workshop, Phoenix, Arizona, USA, February 12, 2016., AAAI Workshops. http://www.aaai.org/ocs/index.php/WS/AAAIW16/paper/view/12603, vol. WS-16-05. AAAI Press (2016) – reference: Brewka, G., Delgrande, J.P., Romero, J., Schaub, T.: asprin: Customizing answer set preferences without a headache. In: AAAI, pp. 1467–1474. AAAI Press (2015) – reference: Nijssen, S., Kok, J.N.: Frequent graph mining and its application to molecular databases. In: Proceedings of the IEEE International Conference on Systems, Man & Cybernetics: The Hague, Netherlands, 10-13 October 2004, pp. 4571–4577. IEEE. https://doi.org/10.1109/ICSMC.2004.1401252 (2004) – reference: Gebser, M., Kaufmann, B., Schaub, T.: Solution enumeration for projected boolean search problems. In: Constraint Programming, Artificial Intelligence and Operations Research (CPAIOR), Lecture Notes in Computer Science, vol. 5547, pp. 71–86. Springer (2009) – reference: DassevilleIvan der HallenMJanssensGDeneckerMSemantics of templates in a compositional framework for building logicsTheory Pract. Logic Program. (TPLP)2015154-5681695340684510.1017/S14710684150003191379.68092 – reference: Aoga, J.O.R., Guns, T., Schaus, P.: An efficient algorithm for mining frequent sequence with constraint programming. In: Frasconi, P., Landwehr, N., Manco, G., Vreeken, J. (eds.) Machine Learning and Knowledge Discovery in Databases - European Conference, ECML PKDD 2016, Riva del Garda, Italy, September 19-23, 2016, Proceedings, Part II, Lecture Notes in Computer Science, vol. 9852, pp 315–330. Springer (2016), https://doi.org/10.1007/978-3-319-46227-1_20 – reference: LonsingFBiereADepqbf: A dependency-aware QBF solverJSAT201072–37176http://jsat.ewi.tudelft.nl/content/volume7/JSAT7_6_Lonsing.pdf – reference: Weinzierl, A.: Blending lazy-grounding and CDNL search for answer-set solving. In: Logic Programming and Nonmonotonic Reasoning (LPNMR), Lecture Notes in Computer Science, vol. 10377, pp. 191–204. Springer (2017) – reference: Järvisalo, M.: Itemset mining as a challenge application for answer set enumeration. Logic Programming and Nonmonotonic Reasoning (LPNMR), 304–310 (2011) – reference: Silva, J.P.M., Sakallah, K.A.: GRASP - a new search algorithm for satisfiability. In: International Conference on Computer-Aided Design (ICCAD), San Jose, California, USA, November 10-14 1996, pp. 220–227 (1996) – reference: Abramson, H., Rogers, H.: Meta-Programming in Logic Programming. MIT Press (1989) – reference: KaufmannBLeoneNPerriSSchaubTGrounding and solving in answer set programmingAI Mag.2016373253210.1609/aimag.v37i3.2672http://www.aaai.org/ojs/index.php/aimagazine/article/view/2672 – reference: Babai, L.: Graph isomorphism in quasipolynomial time. CoRR 1512.03547 (2015) – reference: BruynoogheMBlockeelHBogaertsBde CatBPooterSDJansenJLabarreARamonJDeneckerMVerwerSPredicate logic as a modeling language: modeling and solving some machine learning and data mining problems with IDP3Theory Practice Logic Program. (TPLP)2015156783817340646410.1017/S147106841400009X1379.68279 – reference: LeuschelMButlerMJProB: An automated analysis toolset for the B methodSTTT200810218520310.1007/s10009-007-0063-9 – reference: Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Clingo = ASP + control: Preliminary report. CoRR 1405.3694 (2014) – reference: Lamport, L.: Specifying Systems, The TLA+ Language and Tools for Hardware and Software Engineers. Addison-Wesley (2002) – reference: Paramonov, S., Chen, T., Guns, T.: Generic mining of condensed pattern representations under constraints. In: CEUR: Young Scientist‘s Second International Workshop on Trends in Information Processing Proceedings (YSIP), vol. 1837, pp. 138–177 (2017) – reference: CuteriBDodaroCRiccaFSchu̇llerPConstraints, lazy constraints, or propagators in ASP solving: An empirical analysisTheory Pract. Logic Program. (TPLP)2017175-6780799370901310.1017/S147106841700025406803822 – reference: EiterTFinkMIanniGKrennwallnerTRedlCSchu̇llerPA model building framework for answer set programming with external computationsTheory Pract. Logic Program. (TPLP)2016164418464350691910.1017/S14710684150001131379.68058 – reference: LiHYapCWUngCYXueYCaoZWChenYZEffect of selection of molecular descriptors on the prediction of bloodbrain barrier penetrating and nonpenetrating agents by statistical learning methodsJ. Chem. Inf. Model.20054551376138410.1021/ci050135uPMID: 16180914 – reference: Eiter, T., Ianni, G., Krennwallner, T.: Answer set programming: A primer. In: Reasoning Web, Lecture Notes in Computer Science, vol. 5689, pp. 40–110. Springer (2009) – reference: De Cat, B., Bogaerts, B., Bruynooghe, M., Janssens, G., Denecker, M.: Predicate logic as a modelling language: The IDP system. CoRR 1401.6312v2 (2016) – reference: Immerman, N.: Descriptive complexity and model checking. In: Arvind, V., Ramanujam, R. (eds.) Foundations of Software Technology and Theoretical Computer Science, 18th Conference, Chennai, India, December 17-19, 1998, Proceedings, Lecture Notes in Computer Science, vol. 1530, pp 1–5. Springer (1998), https://doi.org/10.1007/978-3-540-49382-2_1 – reference: de CatBDeneckerMBruynoogheMStuckeyPJLazy model expansion: Interleaving grounding with searchJ. Artif. Intell. Res.201552235286332147010.1613/jair.45911323.68464 – reference: Lonsing, F., Egly, U., Gelder, A.V.: Efficient clause learning for quantified boolean formulas via QBF pseudo unit propagation. In: Järvisalo, M., Gelder, A.V. (eds.) Theory and Applications of Satisfiability Testing - SAT 2013 - 16th International Conference, Helsinki, Finland, July 8-12, 2013. Proceedings, Lecture Notes in Computer Science, vol. 7962, pp 100–115. Springer (2013), https://doi.org/10.1007/978-3-642-39071-5_9 – ident: 9624_CR23 – volume: 17 start-page: 780 issue: 5-6 year: 2017 ident: 9624_CR12 publication-title: Theory Pract. Logic Program. (TPLP) doi: 10.1017/S1471068417000254 – ident: 9624_CR19 – ident: 9624_CR1 – ident: 9624_CR5 – ident: 9624_CR20 doi: 10.1007/978-3-642-01929-6_7 – ident: 9624_CR42 – ident: 9624_CR4 doi: 10.1007/978-3-319-46227-1_20 – ident: 9624_CR8 doi: 10.1609/aaai.v29i1.9398 – ident: 9624_CR38 doi: 10.1007/978-3-540-74958-5_72 – ident: 9624_CR33 – volume: 16 start-page: 418 issue: 4 year: 2016 ident: 9624_CR16 publication-title: Theory Pract. Logic Program. (TPLP) doi: 10.1017/S1471068415000113 – volume: 10 start-page: 185 issue: 2 year: 2008 ident: 9624_CR29 publication-title: STTT doi: 10.1007/s10009-007-0063-9 – ident: 9624_CR7 – ident: 9624_CR39 – start-page: 41 volume-title: Efficiency Analysis of ASP Encodings for Sequential Pattern Mining Tasks year: 2018 ident: 9624_CR21 – volume: 22 start-page: 265 issue: 2 year: 2017 ident: 9624_CR27 publication-title: Constraints doi: 10.1007/s10601-016-9252-z – ident: 9624_CR14 – ident: 9624_CR18 doi: 10.2200/S00457ED1V01Y201211AIM019 – volume: 45 start-page: 1376 issue: 5 year: 2005 ident: 9624_CR30 publication-title: J. Chem. Inf. Model. doi: 10.1021/ci050135u – volume: 15 start-page: 187 issue: 3 year: 1993 ident: 9624_CR11 publication-title: J. Logic Program. doi: 10.1016/0743-1066(93)90039-J – ident: 9624_CR28 – volume: 52 start-page: 235 year: 2015 ident: 9624_CR10 publication-title: J. Artif. Intell. Res. doi: 10.1613/jair.4591 – ident: 9624_CR22 doi: 10.29007/k3nd – ident: 9624_CR32 doi: 10.1007/978-3-642-39071-5_9 – ident: 9624_CR25 doi: 10.1007/978-3-642-20895-9_35 – volume: 18 start-page: 50 issue: 1 year: 2013 ident: 9624_CR40 publication-title: Drug Discov. Today doi: 10.1016/j.drudis.2012.07.016 – volume: 15 start-page: 681 issue: 4-5 year: 2015 ident: 9624_CR13 publication-title: Theory Pract. Logic Program. (TPLP) doi: 10.1017/S1471068415000319 – volume: 15 start-page: 783 issue: 6 year: 2015 ident: 9624_CR9 publication-title: Theory Practice Logic Program. (TPLP) doi: 10.1017/S147106841400009X – volume: 19 start-page: 629 issue: /20 year: 1994 ident: 9624_CR34 publication-title: J. Log. Program. doi: 10.1016/0743-1066(94)90035-3 – ident: 9624_CR17 doi: 10.1007/978-3-642-03754-2_2 – volume: 37 start-page: 25 issue: 3 year: 2016 ident: 9624_CR26 publication-title: AI Mag. doi: 10.1609/aimag.v37i3.2672 – ident: 9624_CR6 – ident: 9624_CR36 – ident: 9624_CR41 doi: 10.1007/978-3-319-61660-5_17 – ident: 9624_CR35 doi: 10.1109/ICSMC.2004.1401252 – ident: 9624_CR15 doi: 10.1145/1401890.1401919 – ident: 9624_CR37 doi: 10.1007/978-3-319-66263-_19 – ident: 9624_CR3 doi: 10.1017/CBO9781139195881 – ident: 9624_CR2 doi: 10.1017/CBO9780511624162 – ident: 9624_CR24 doi: 10.1007/978-3-540-49382-2_1 – volume: 7 start-page: 71 issue: 2–3 year: 2010 ident: 9624_CR31 publication-title: JSAT |
SSID | ssj0009686 |
Score | 2.1980982 |
Snippet | This paper analyses the graph mining problem, and the frequent pattern mining task associated with it. In general, frequent pattern mining looks for a graph... |
SourceID | proquest gale crossref springer |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 21 |
SubjectTerms | Adaptation Analysis Artificial Intelligence Bioinformatics Coding Complex Systems Computational linguistics Computer Science Data mining Graphical representations Knowledge representation Language processing Logic programs Mathematics Natural language interfaces Pattern analysis Social networks Solvers Specification and description languages Specifications |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BWWDgUUCElzIgMUCkJLbjeKwQVQUqE5W6WbZjb6SoDUP_PbZrU54DypjoLH25893Zd98BXNFcM1mUVVYUEmfYphAZM8QdwzU1qgymSrlG4fFTNZrghymZhqawRax2j1eSfqf-1OyGqSsjcCU-VYmz5SZsEZe7Wy2elIM11W7l5zs64qrMOi8UWmV-l_HFHX3flH_cjnqnM9yH3RAtpoPV7z2ADd32YS9OYkiDYfZhZ_zBvro4hOIxHpSlnrMy9he1qQgUJOnMpJ6qOn3xAyKOYDK8f74bZWE0QqZQzrqs0A1thMpNTUROhI0SMM6VwYroRhMqaSU1YwJJKkpjs1-JGyWNIFggYTMsgo6h185afQJp7VjOZI2xxlYGldLKsJ5TC2MIUgYlcBMR4q8rBgy-5jp2eHKLJ_d48mUC1w5E7syjmwslQpW_XcsRTfGBy88os08C5xFnHuxmwUvmCOVLhlkCtxH79eu_1z393-dnsF16LXB1t-fQ6-Zv-sJGF5289Mr0DtYKxlU priority: 102 providerName: Springer Nature |
Title | Knowledge representation analysis of graph mining |
URI | https://link.springer.com/article/10.1007/s10472-019-09624-y https://www.proquest.com/docview/2918202949 |
Volume | 86 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEB60vejBt1gfZQ-CBw3uI9lsTtJKqygWEQt6Ckk2udlWWw_-ezPbrEVF2cMeAhP4ksxkJjPfABzz2AqdpDlJEk0J9S4EEY5hGK4sstxRbgwWCt8N8ushvXliTyHgNg1plbVOrBR1OTYYIz9PBVKNp4KKi8krwa5R-LoaWmgsQ9Or4MI7X81ub3D_sKDdzatej0hiRbwhy0LZTCieoxzTEjBlKE8p-fhmmn4q6F8vpZUB6m_AWrg5Rp35Um_Ckh1twXrdlSEKh3QLVu--mFin25Dc1kGzqOKvrGuNRpEKdCTR2EUVbXX0UjWL2IFhv_d4eU1CmwRisljMSGJLXioTu4KpmCl_Y6A0No4aZkvLuOa5tkKoTHOVOu8Ja1oa7RSjKlPe22LZLjRG45Hdg6hAxjNdUGqpl8G19jK8FbXKOZYZl7XgtEZITuZsGHLBe4x4So-nrPCUHy04QRAlHpXZmzIqZPz7uZB0SnbQV-PCfy04rHGW4QxN5WLFW3BWY78Y_nve_f-lHcBKWq065tweQmP29m6P_M1iptuwXPSv2tDs9LvdAf6vnm977bCp_Ogw7XwCuvHPJQ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NbxMxEB1V5UA58FFADU3BhyIOrcXu2rteH6qqog1p83Fqpd6M7bVvJCEJQvlT_Y31OGsiiuBW7XGlsfR2POPxzrwHcCgyJ01eVDTPDac8lBBU-hKv4ZqaVZ4La3FQeDSu-jf86ra83YK7NAuDbZUpJsZA3Uwt3pF_LiRSjReSy9PZD4qqUfh3NUlorN1i4Fa_Qsm2OLk8D9_3Y1H0Lq6_9GmrKkAty-SS5q4RjbaZr0udlTokWM4z67ktXeNKYURlnJSaGaELHwpHwxtrvC65ZjoUJ6gSEUL-E86YxB1V975uSH6rqCyJlFk0WGXtkE47qscFNkFgg1JVcLr6IxE-TAd__ZeN6a73Ep6351RytnasV7DlJrvwImlAkDYk7MKz0W_e18VryAfpio5Etsw02TQhuiU_IVNPIkk2-R6lKd7AzaPA9xa2J9OJ2wNSI7-aqTl3PNgQxgQbIWc77X3JrGcdOEoIqdmae0NtWJYRTxXwVBFPterAJwRR4cZczrXV7XxBWAsprtQZVoZChqcD3YSzanfsQm38qwPHCfvN63-v--7_1j7A0_71aKiGl-PBPuwU0QOw27cL28v5T3cQzjRL8z46EoFvj-2598YzB2c |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BkRAMPAqIQIEMSAwQkYcdx2MFVIXSioFK3SzbsTfSqg1D_z22m9DyGlDGRGfpy53vzr77DuCShIqKKE6DKBIoQCaFCKjG9hguz5JUIyKlbRTuD9LuED2N8Gili99Vu9dXkoueBsvSVJS3k1zfrjS-IWJLCmy5TxqjYL4OG2Y7jqxeD-P2knY3dbMeLYlVYBxZUrXN_C7ji2v6vkH_uCl1DqizBztV5Oi3F796H9ZU0YTdeiqDXxlpE7b7n0ysswOIevWhme_4K-teo8LnFR2JP9a-o63239ywiEMYdh5e77pBNSYhkElIyyBSOcm5DHWGeYi5iRgQCqVGEqtcYSJIKhSlPBGEx9pkwgLlUmiOEU-4ybZwcgSNYlyoY_Azy3gmMoQUMjKIEEaG8aKKa40TqRMPrmuE2GTBhsGWvMcWT2bwZA5PNvfgyoLIrKmUUy55VfFv1rKkU6xtczVCzeNBq8aZVTY0YzG15PIxRdSDmxr75eu_1z353-cXsPly32HPj4PeKWzFTiFsOW4LGuX0XZ2ZoKMU506vPgAvcc2E |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Knowledge+representation+analysis+of+graph+mining&rft.jtitle=Annals+of+mathematics+and+artificial+intelligence&rft.au=van+der+Hallen%2C+Matthias&rft.au=Paramonov%2C+Sergey&rft.au=Janssens%2C+Gerda&rft.au=Denecker%2C+Marc&rft.date=2019-07-01&rft.pub=Springer+Nature+B.V&rft.issn=1012-2443&rft.eissn=1573-7470&rft.volume=86&rft.issue=1-3&rft.spage=21&rft.epage=60&rft_id=info:doi/10.1007%2Fs10472-019-09624-y |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1012-2443&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1012-2443&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1012-2443&client=summon |