Knowledge representation analysis of graph mining

This paper analyses the graph mining problem, and the frequent pattern mining task associated with it. In general, frequent pattern mining looks for a graph which occurs frequently within a network or, in the transactional setting, within a dataset of graphs. We discuss this task in the transactiona...

Full description

Saved in:
Bibliographic Details
Published inAnnals of mathematics and artificial intelligence Vol. 86; no. 1-3; pp. 21 - 60
Main Authors van der Hallen, Matthias, Paramonov, Sergey, Janssens, Gerda, Denecker, Marc
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.07.2019
Springer
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper analyses the graph mining problem, and the frequent pattern mining task associated with it. In general, frequent pattern mining looks for a graph which occurs frequently within a network or, in the transactional setting, within a dataset of graphs. We discuss this task in the transactional setting, which is a problem of interest in many fields such as bioinformatics, chemoinformatics and social networks. We look at the graph mining problem from a Knowledge Representation point of view, hoping to learn something about support for higher-order logics in declarative languages and solvers. Graph mining is studied as a prototypical problem; it is easily expressible mathematically and exists in many variations. As such, it appears to be a prime candidate for a declarative approach; one would expect this allows for a clear, structured, statement of the problem combined with easy adaptation to changing requirements and variations. Current state-of-the-art KR languages such as IDP and ASP aspire to be practical solvers for such problems (Bruynooghe, Theory Practice Logic Program. (TPLP) 15 (6), 783–817 2015 ). Nevertheless, expressing the graph mining problem in these languages requires unexpectedly complicated and unintuitive encoding techniques. These techniques are in contrast to the ease with which one can transform the mathematical definition of graph mining to a higher-order logic specification, and distract from the problem essentials, complicating possible future adaptation. In this paper, we argue that efforts should be made towards supporting higher-order logic specifications in modern specification languages, without unintuitive and complicated encoding techniques. We argue that this not only makes representation clearer and more susceptible to future adaptation, but might also allow for faster, more competitive solver techniques to be implemented.
AbstractList This paper analyses the graph mining problem, and the frequent pattern mining task associated with it. In general, frequent pattern mining looks for a graph which occurs frequently within a network or, in the transactional setting, within a dataset of graphs. We discuss this task in the transactional setting, which is a problem of interest in many fields such as bioinformatics, chemoinformatics and social networks. We look at the graph mining problem from a Knowledge Representation point of view, hoping to learn something about support for higher-order logics in declarative languages and solvers. Graph mining is studied as a prototypical problem; it is easily expressible mathematically and exists in many variations. As such, it appears to be a prime candidate for a declarative approach; one would expect this allows for a clear, structured, statement of the problem combined with easy adaptation to changing requirements and variations. Current state-of-the-art KR languages such as IDP and ASP aspire to be practical solvers for such problems (Bruynooghe, Theory Practice Logic Program. (TPLP) 15 (6), 783–817 2015 ). Nevertheless, expressing the graph mining problem in these languages requires unexpectedly complicated and unintuitive encoding techniques. These techniques are in contrast to the ease with which one can transform the mathematical definition of graph mining to a higher-order logic specification, and distract from the problem essentials, complicating possible future adaptation. In this paper, we argue that efforts should be made towards supporting higher-order logic specifications in modern specification languages, without unintuitive and complicated encoding techniques. We argue that this not only makes representation clearer and more susceptible to future adaptation, but might also allow for faster, more competitive solver techniques to be implemented.
This paper analyses the graph mining problem, and the frequent pattern mining task associated with it. In general, frequent pattern mining looks for a graph which occurs frequently within a network or, in the transactional setting, within a dataset of graphs. We discuss this task in the transactional setting, which is a problem of interest in many fields such as bioinformatics, chemoinformatics and social networks. We look at the graph mining problem from a Knowledge Representation point of view, hoping to learn something about support for higher-order logics in declarative languages and solvers. Graph mining is studied as a prototypical problem; it is easily expressible mathematically and exists in many variations. As such, it appears to be a prime candidate for a declarative approach; one would expect this allows for a clear, structured, statement of the problem combined with easy adaptation to changing requirements and variations. Current state-of-the-art KR languages such as IDP and ASP aspire to be practical solvers for such problems (Bruynooghe, Theory Practice Logic Program. (TPLP) 15(6), 783–817 2015). Nevertheless, expressing the graph mining problem in these languages requires unexpectedly complicated and unintuitive encoding techniques. These techniques are in contrast to the ease with which one can transform the mathematical definition of graph mining to a higher-order logic specification, and distract from the problem essentials, complicating possible future adaptation. In this paper, we argue that efforts should be made towards supporting higher-order logic specifications in modern specification languages, without unintuitive and complicated encoding techniques. We argue that this not only makes representation clearer and more susceptible to future adaptation, but might also allow for faster, more competitive solver techniques to be implemented.
This paper analyses the graph mining problem, and the frequent pattern mining task associated with it. In general, frequent pattern mining looks for a graph which occurs frequently within a network or, in the transactional setting, within a dataset of graphs. We discuss this task in the transactional setting, which is a problem of interest in many fields such as bioinformatics, chemoinformatics and social networks. We look at the graph mining problem from a Knowledge Representation point of view, hoping to learn something about support for higher-order logics in declarative languages and solvers. Graph mining is studied as a prototypical problem; it is easily expressible mathematically and exists in many variations. As such, it appears to be a prime candidate for a declarative approach; one would expect this allows for a clear, structured, statement of the problem combined with easy adaptation to changing requirements and variations. Current state-of-the-art KR languages such as IDP and ASP aspire to be practical solvers for such problems (Bruynooghe, Theory Practice Logic Program. (TPLP) 15(6), 783-817 2015). Nevertheless, expressing the graph mining problem in these languages requires unexpectedly complicated and unintuitive encoding techniques. These techniques are in contrast to the ease with which one can transform the mathematical definition of graph mining to a higher-order logic specification, and distract from the problem essentials, complicating possible future adaptation. In this paper, we argue that efforts should be made towards supporting higher-order logic specifications in modern specification languages, without unintuitive and complicated encoding techniques. We argue that this not only makes representation clearer and more susceptible to future adaptation, but might also allow for faster, more competitive solver techniques to be implemented. Keywords Knowledge representation * Higher order * Graph mining * Answer set programming * Imperative declarative programming Mathematics Subject Classification (2010) 68T30
Audience Academic
Author Janssens, Gerda
van der Hallen, Matthias
Paramonov, Sergey
Denecker, Marc
Author_xml – sequence: 1
  givenname: Matthias
  orcidid: 0000-0003-1893-9369
  surname: van der Hallen
  fullname: van der Hallen, Matthias
  email: matthias.vanderhallen@kuleuven.be, matthias.vanderhallen@gmail.com
  organization: Department of Computer Science, KU Leuven
– sequence: 2
  givenname: Sergey
  surname: Paramonov
  fullname: Paramonov, Sergey
  organization: Department of Computer Science, KU Leuven
– sequence: 3
  givenname: Gerda
  surname: Janssens
  fullname: Janssens, Gerda
  organization: Department of Computer Science, KU Leuven
– sequence: 4
  givenname: Marc
  surname: Denecker
  fullname: Denecker, Marc
  organization: Department of Computer Science, KU Leuven
BookMark eNp9kE1LxDAQhoOs4O7qH_BU8Jx1kqZNc1wWv3DBi55D2iY1SzepSRfpvzdawZvMYcLwPpnhWaGF804jdE1gQwD4bSTAOMVABAZRUoanM7QkBc8xZxwW6Q2EYspYfoFWMR4AUqwql4g8O__Z67bTWdBD0FG7UY3Wu0w51U_RxsybrAtqeM-O1lnXXaJzo_qor377Gr3d373uHvH-5eFpt93jJgcxYqJb3qoGTFUoKBSBtBwaw5pCt7rgNS9rLYTKa66o4YzWrG1qowqmclUJUeRrdDP_OwT_cdJxlAd_CumoKKkgFQUqmEipzZzqVK-ldcaPQTWpWn20TZJkbJpvOSkZF6kSQGegCT7GoI0cgj2qMEkC8tulnF3K5FL-uJRTgvIZiinsOh3-bvmH-gK7AHkz
Cites_doi 10.1017/S1471068417000254
10.1007/978-3-642-01929-6_7
10.1007/978-3-319-46227-1_20
10.1609/aaai.v29i1.9398
10.1007/978-3-540-74958-5_72
10.1017/S1471068415000113
10.1007/s10009-007-0063-9
10.1007/s10601-016-9252-z
10.2200/S00457ED1V01Y201211AIM019
10.1021/ci050135u
10.1016/0743-1066(93)90039-J
10.1613/jair.4591
10.29007/k3nd
10.1007/978-3-642-39071-5_9
10.1007/978-3-642-20895-9_35
10.1016/j.drudis.2012.07.016
10.1017/S1471068415000319
10.1017/S147106841400009X
10.1016/0743-1066(94)90035-3
10.1007/978-3-642-03754-2_2
10.1609/aimag.v37i3.2672
10.1007/978-3-319-61660-5_17
10.1109/ICSMC.2004.1401252
10.1145/1401890.1401919
10.1007/978-3-319-66263-_19
10.1017/CBO9781139195881
10.1017/CBO9780511624162
10.1007/978-3-540-49382-2_1
ContentType Journal Article
Copyright Springer Nature Switzerland AG 2019
COPYRIGHT 2019 Springer
Springer Nature Switzerland AG 2019.
Copyright_xml – notice: Springer Nature Switzerland AG 2019
– notice: COPYRIGHT 2019 Springer
– notice: Springer Nature Switzerland AG 2019.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.1007/s10472-019-09624-y
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Materials Science & Engineering
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Engineering Database
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Computer Science Database

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
EISSN 1573-7470
EndPage 60
ExternalDocumentID A716479797
10_1007_s10472_019_09624_y
GrantInformation_xml – fundername: Fonds Wetenschappelijk Onderzoek (BE)
  grantid: 1S54518N
GroupedDBID -4Z
-59
-5G
-BR
-EM
-~C
.86
.DC
.VR
06D
0R~
0VY
1N0
203
23M
2J2
2JN
2JY
2KG
2LR
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CCPQU
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
I09
IAO
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
LAK
LLZTM
M4Y
M7S
MA-
NB0
NPVJJ
NQJWS
NU0
O93
O9G
O9I
O9J
OAM
P19
P2P
P9O
PF0
PT4
PT5
PTHSS
QOK
QOS
R89
R9I
RHV
RNS
ROL
RPX
RSV
S16
S27
S3B
SAP
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
VC2
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z81
Z83
Z88
Z92
ZMTXR
~A9
~EX
-Y2
1SB
2.D
28-
2P1
2VQ
5QI
AAOBN
AAPKM
AARHV
AAYTO
AAYXX
ABBRH
ABDBE
ABFSG
ABQSL
ABULA
ACBXY
ACSTC
ADHKG
ADKFA
ADKPE
AEBTG
AEFIE
AEKMD
AEZWR
AFDZB
AFEXP
AFGCZ
AFHIU
AFOHR
AGGDS
AGJBK
AGQPQ
AHPBZ
AHWEU
AIXLP
AJBLW
ATHPR
AYFIA
BBWZM
CAG
CITATION
COF
HZ~
IHE
KOW
N2Q
NDZJH
O9-
OVD
PHGZM
PHGZT
R4E
RNI
RZC
RZE
RZK
S1Z
S26
S28
SCJ
SCLPG
T16
TEORI
UZXMN
VFIZW
AEIIB
PMFND
8FE
8FG
ABRTQ
AZQEC
DWQXO
GNUQQ
JQ2
L6V
P62
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c309t-1ed7dac0f85a05a102440cf4c5ede57b76be99a3b7a2f742b4dcbfa54a3a89953
IEDL.DBID BENPR
ISSN 1012-2443
IngestDate Fri Jul 25 10:47:28 EDT 2025
Tue Jun 10 20:09:38 EDT 2025
Tue Jul 01 03:19:43 EDT 2025
Fri Feb 21 02:26:56 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1-3
Keywords Imperative declarative programming
Higher order
68T30
Answer set programming
Knowledge representation
Graph mining
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c309t-1ed7dac0f85a05a102440cf4c5ede57b76be99a3b7a2f742b4dcbfa54a3a89953
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1893-9369
PQID 2918202949
PQPubID 2043872
PageCount 40
ParticipantIDs proquest_journals_2918202949
gale_infotracacademiconefile_A716479797
crossref_primary_10_1007_s10472_019_09624_y
springer_journals_10_1007_s10472_019_09624_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20190701
2019-7-00
PublicationDateYYYYMMDD 2019-07-01
PublicationDate_xml – month: 7
  year: 2019
  text: 20190701
  day: 1
PublicationDecade 2010
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Dordrecht
PublicationTitle Annals of mathematics and artificial intelligence
PublicationTitleAbbrev Ann Math Artif Intell
PublicationYear 2019
Publisher Springer International Publishing
Springer
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer
– name: Springer Nature B.V
References Babai, L.: Graph isomorphism in quasipolynomial time. CoRR 1512.03547 (2015)
Nijssen, S., Kok, J.N.: Frequent graph mining and its application to molecular databases. In: Proceedings of the IEEE International Conference on Systems, Man & Cybernetics: The Hague, Netherlands, 10-13 October 2004, pp. 4571–4577. IEEE. https://doi.org/10.1109/ICSMC.2004.1401252 (2004)
DassevilleIvan der HallenMJanssensGDeneckerMSemantics of templates in a compositional framework for building logicsTheory Pract. Logic Program. (TPLP)2015154-5681695340684510.1017/S14710684150003191379.68092
ChenWKiferMWarrenDSHilog: A foundation for higher-order logic programmingJ. Logic Program.1993153187230119840510.1016/0743-1066(93)90039-J0787.68017
KemmarALebbahYLoudniSBoizumaultPCharnoisTPrefix-projection global constraint and top-k approach for sequential pattern miningConstraints2017222265306360442510.1007/s10601-016-9252-z06853926
Lamport, L.: Specifying Systems, The TLA+ Language and Tools for Hardware and Software Engineers. Addison-Wesley (2002)
Silva, J.P.M., Sakallah, K.A.: GRASP - a new search algorithm for satisfiability. In: International Conference on Computer-Aided Design (ICCAD), San Jose, California, USA, November 10-14 1996, pp. 220–227 (1996)
Lonsing, F., Egly, U., Gelder, A.V.: Efficient clause learning for quantified boolean formulas via QBF pseudo unit propagation. In: Järvisalo, M., Gelder, A.V. (eds.) Theory and Applications of Satisfiability Testing - SAT 2013 - 16th International Conference, Helsinki, Finland, July 8-12, 2013. Proceedings, Lecture Notes in Computer Science, vol. 7962, pp 100–115. Springer (2013), https://doi.org/10.1007/978-3-642-39071-5_9
Brewka, G., Delgrande, J.P., Romero, J., Schaub, T.: asprin: Customizing answer set preferences without a headache. In: AAAI, pp. 1467–1474. AAAI Press (2015)
van der Hallen, M., Paramonov, S., Leuschel, M., Janssens, G.: Knowledge representation analysis of graph mining. CoRR 1608.08956 (2016)
Abrial, J.R.: The B-Book. Cambridge University Press. https://doi.org/10.1017/CBO9780511624162 (1996)
Abrial, J.R.: Modeling in Event-B: System and Software Engineering. Cambridge University Press (2010)
Rückert, U., Kramer, S.: Optimizing feature sets for structured data. In: Kok, J.N., Koronacki, J., de Mántaras, R.L., Matwin, S., Mladenic, D., Skowron, A. (eds.) Machine Learning: ECML 2007, 18th European Conference on Machine Learning, Warsaw, Poland, September 17-21, 2007, Proceedings, Lecture Notes in Computer Science, vol. 4701, pp 716–723. Springer (2007), https://doi.org/10.1007/978-3-540-74958-5_72
Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Clingo = ASP + control: Preliminary report. CoRR 1405.3694 (2014)
GuyetTMoinardYQuiniouRSchaubTEfficiency Analysis of ASP Encodings for Sequential Pattern Mining Tasks2018ChamSpringer International Publishing4181
Weinzierl, A.: Blending lazy-grounding and CDNL search for answer-set solving. In: Logic Programming and Nonmonotonic Reasoning (LPNMR), Lecture Notes in Computer Science, vol. 10377, pp. 191–204. Springer (2017)
MuggletonSRaedtLDInductive logic programming: Theory and methodsJ. Log. Program.199419/20629679127993610.1016/0743-1066(94)90035-30816.68043
Paramonov, S., Chen, T., Guns, T.: Generic mining of condensed pattern representations under constraints. In: CEUR: Young Scientist‘s Second International Workshop on Trends in Information Processing Proceedings (YSIP), vol. 1837, pp. 138–177 (2017)
van der Hallen, M., Janssens, G.: A grounder from second-order logic to qbf. In: Quantified Boolean Formulas, Papers from the 2018 FLoC Quantified Boolean Formulas and Beyond Workshop, Oxford, England, July 8, 2018 (accepted), Federated Logic Conference (FLoC): workshop proceedings (2018)
EiterTFinkMIanniGKrennwallnerTRedlCSchu̇llerPA model building framework for answer set programming with external computationsTheory Pract. Logic Program. (TPLP)2016164418464350691910.1017/S14710684150001131379.68058
CuteriBDodaroCRiccaFSchu̇llerPConstraints, lazy constraints, or propagators in ASP solving: An empirical analysisTheory Pract. Logic Program. (TPLP)2017175-6780799370901310.1017/S147106841700025406803822
LonsingFBiereADepqbf: A dependency-aware QBF solverJSAT201072–37176http://jsat.ewi.tudelft.nl/content/volume7/JSAT7_6_Lonsing.pdf
LiHYapCWUngCYXueYCaoZWChenYZEffect of selection of molecular descriptors on the prediction of bloodbrain barrier penetrating and nonpenetrating agents by statistical learning methodsJ. Chem. Inf. Model.20054551376138410.1021/ci050135uPMID: 16180914
De Raedt, L., Guns, T., Nijssen, S.: Constraint programming for itemset mining. In: ACM SIGKDD, pp. 204–212 (2008)
Immerman, N.: Descriptive complexity and model checking. In: Arvind, V., Ramanujam, R. (eds.) Foundations of Software Technology and Theoretical Computer Science, 18th Conference, Chennai, India, December 17-19, 1998, Proceedings, Lecture Notes in Computer Science, vol. 1530, pp 1–5. Springer (1998), https://doi.org/10.1007/978-3-540-49382-2_1
Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Answer Set Solving in Practice. Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan and Claypool Publishers (2012)
Yan, X., Han, J.: gspan: Graph-based substructure pattern mining. In: Proceedings of the 2002 IEEE International Conference on Data Mining, ICDM ’02, pp 721–. IEEE Computer Society, Washington (2002)
De Cat, B., Bogaerts, B., Bruynooghe, M., Janssens, G., Denecker, M.: Predicate logic as a modelling language: The IDP system. CoRR 1401.6312v2 (2016)
LeuschelMButlerMJProB: An automated analysis toolset for the B methodSTTT200810218520310.1007/s10009-007-0063-9
de CatBDeneckerMBruynoogheMStuckeyPJLazy model expansion: Interleaving grounding with searchJ. Artif. Intell. Res.201552235286332147010.1613/jair.45911323.68464
Järvisalo, M.: Itemset mining as a challenge application for answer set enumeration. Logic Programming and Nonmonotonic Reasoning (LPNMR), 304–310 (2011)
Abramson, H., Rogers, H.: Meta-Programming in Logic Programming. MIT Press (1989)
KaufmannBLeoneNPerriSSchaubTGrounding and solving in answer set programmingAI Mag.2016373253210.1609/aimag.v37i3.2672http://www.aaai.org/ojs/index.php/aimagazine/article/view/2672
TakigawaIMamitsukaHGraph mining: Procedure, application to drug discovery and recent advancesDrug Discov. Today2013181505710.1016/j.drudis.2012.07.016http://www.sciencedirect.com/science/article/pii/S1359644612002759
Bowen, J.P.: Formal Specification and Documentation using Z. International Thomson Computer Press (1996)
Eiter, T., Ianni, G., Krennwallner, T.: Answer set programming: A primer. In: Reasoning Web, Lecture Notes in Computer Science, vol. 5689, pp. 40–110. Springer (2009)
Aoga, J.O.R., Guns, T., Schaus, P.: An efficient algorithm for mining frequent sequence with constraint programming. In: Frasconi, P., Landwehr, N., Manco, G., Vreeken, J. (eds.) Machine Learning and Knowledge Discovery in Databases - European Conference, ECML PKDD 2016, Riva del Garda, Italy, September 19-23, 2016, Proceedings, Part II, Lecture Notes in Computer Science, vol. 9852, pp 315–330. Springer (2016), https://doi.org/10.1007/978-3-319-46227-1_20
BruynoogheMBlockeelHBogaertsBde CatBPooterSDJansenJLabarreARamonJDeneckerMVerwerSPredicate logic as a modeling language: modeling and solving some machine learning and data mining problems with IDP3Theory Practice Logic Program. (TPLP)2015156783817340646410.1017/S147106841400009X1379.68279
Peitl, T., Slivovsky, F., Szeider, S.: Dependency learning for QBF. In: Gaspers, S., Walsh, T. (eds.) Theory and Applications of Satisfiability Testing - SAT 2017 - 20th International Conference, Melbourne, VIC, Australia, August 28 - September 1, 2017, Proceedings, Lecture Notes in Computer Science, vol. 10491, pp 298–313. Springer (2017), https://doi.org/10.1007/978-3-319-66263-_19
McCarthy, J.: Elaboration tolerance. In: Working Papers of the Fourth International Symposium on Logical formalizations of Commonsense Reasoning, Commonsense-1998 (1998)
Bogaerts, B., Janhunen, T., Tasharrofi, S.: Solving QBF instances with nested SAT solvers. In: Darwiche, A. (ed.) Beyond NP, Papers from the 2016 AAAI Workshop, Phoenix, Arizona, USA, February 12, 2016., AAAI Workshops. http://www.aaai.org/ocs/index.php/WS/AAAIW16/paper/view/12603, vol. WS-16-05. AAAI Press (2016)
Gebser, M., Kaufmann, B., Schaub, T.: Solution enumeration for projected boolean search problems. In: Constraint Programming, Artificial Intelligence and Operations Research (CPAIOR), Lecture Notes in Computer Science, vol. 5547, pp. 71–86. Springer (2009)
B Cat de (9624_CR10) 2015; 52
B Cuteri (9624_CR12) 2017; 17
I Dasseville (9624_CR13) 2015; 15
9624_CR22
9624_CR7
9624_CR41
9624_CR8
9624_CR20
9624_CR42
9624_CR5
T Guyet (9624_CR21) 2018
9624_CR6
9624_CR3
9624_CR4
9624_CR1
9624_CR2
H Li (9624_CR30) 2005; 45
M Leuschel (9624_CR29) 2008; 10
F Lonsing (9624_CR31) 2010; 7
9624_CR25
I Takigawa (9624_CR40) 2013; 18
9624_CR23
9624_CR24
9624_CR28
A Kemmar (9624_CR27) 2017; 22
9624_CR32
9624_CR33
T Eiter (9624_CR16) 2016; 16
B Kaufmann (9624_CR26) 2016; 37
W Chen (9624_CR11) 1993; 15
9624_CR14
9624_CR36
9624_CR15
9624_CR37
S Muggleton (9624_CR34) 1994; 19
9624_CR35
M Bruynooghe (9624_CR9) 2015; 15
9624_CR18
9624_CR19
9624_CR38
9624_CR17
9624_CR39
References_xml – reference: van der Hallen, M., Paramonov, S., Leuschel, M., Janssens, G.: Knowledge representation analysis of graph mining. CoRR 1608.08956 (2016)
– reference: GuyetTMoinardYQuiniouRSchaubTEfficiency Analysis of ASP Encodings for Sequential Pattern Mining Tasks2018ChamSpringer International Publishing4181
– reference: Bowen, J.P.: Formal Specification and Documentation using Z. International Thomson Computer Press (1996)
– reference: TakigawaIMamitsukaHGraph mining: Procedure, application to drug discovery and recent advancesDrug Discov. Today2013181505710.1016/j.drudis.2012.07.016http://www.sciencedirect.com/science/article/pii/S1359644612002759
– reference: Peitl, T., Slivovsky, F., Szeider, S.: Dependency learning for QBF. In: Gaspers, S., Walsh, T. (eds.) Theory and Applications of Satisfiability Testing - SAT 2017 - 20th International Conference, Melbourne, VIC, Australia, August 28 - September 1, 2017, Proceedings, Lecture Notes in Computer Science, vol. 10491, pp 298–313. Springer (2017), https://doi.org/10.1007/978-3-319-66263-_19
– reference: KemmarALebbahYLoudniSBoizumaultPCharnoisTPrefix-projection global constraint and top-k approach for sequential pattern miningConstraints2017222265306360442510.1007/s10601-016-9252-z06853926
– reference: van der Hallen, M., Janssens, G.: A grounder from second-order logic to qbf. In: Quantified Boolean Formulas, Papers from the 2018 FLoC Quantified Boolean Formulas and Beyond Workshop, Oxford, England, July 8, 2018 (accepted), Federated Logic Conference (FLoC): workshop proceedings (2018)
– reference: Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Answer Set Solving in Practice. Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan and Claypool Publishers (2012)
– reference: Abrial, J.R.: Modeling in Event-B: System and Software Engineering. Cambridge University Press (2010)
– reference: ChenWKiferMWarrenDSHilog: A foundation for higher-order logic programmingJ. Logic Program.1993153187230119840510.1016/0743-1066(93)90039-J0787.68017
– reference: De Raedt, L., Guns, T., Nijssen, S.: Constraint programming for itemset mining. In: ACM SIGKDD, pp. 204–212 (2008)
– reference: Abrial, J.R.: The B-Book. Cambridge University Press. https://doi.org/10.1017/CBO9780511624162 (1996)
– reference: Yan, X., Han, J.: gspan: Graph-based substructure pattern mining. In: Proceedings of the 2002 IEEE International Conference on Data Mining, ICDM ’02, pp 721–. IEEE Computer Society, Washington (2002)
– reference: MuggletonSRaedtLDInductive logic programming: Theory and methodsJ. Log. Program.199419/20629679127993610.1016/0743-1066(94)90035-30816.68043
– reference: Rückert, U., Kramer, S.: Optimizing feature sets for structured data. In: Kok, J.N., Koronacki, J., de Mántaras, R.L., Matwin, S., Mladenic, D., Skowron, A. (eds.) Machine Learning: ECML 2007, 18th European Conference on Machine Learning, Warsaw, Poland, September 17-21, 2007, Proceedings, Lecture Notes in Computer Science, vol. 4701, pp 716–723. Springer (2007), https://doi.org/10.1007/978-3-540-74958-5_72
– reference: McCarthy, J.: Elaboration tolerance. In: Working Papers of the Fourth International Symposium on Logical formalizations of Commonsense Reasoning, Commonsense-1998 (1998)
– reference: Bogaerts, B., Janhunen, T., Tasharrofi, S.: Solving QBF instances with nested SAT solvers. In: Darwiche, A. (ed.) Beyond NP, Papers from the 2016 AAAI Workshop, Phoenix, Arizona, USA, February 12, 2016., AAAI Workshops. http://www.aaai.org/ocs/index.php/WS/AAAIW16/paper/view/12603, vol. WS-16-05. AAAI Press (2016)
– reference: Brewka, G., Delgrande, J.P., Romero, J., Schaub, T.: asprin: Customizing answer set preferences without a headache. In: AAAI, pp. 1467–1474. AAAI Press (2015)
– reference: Nijssen, S., Kok, J.N.: Frequent graph mining and its application to molecular databases. In: Proceedings of the IEEE International Conference on Systems, Man & Cybernetics: The Hague, Netherlands, 10-13 October 2004, pp. 4571–4577. IEEE. https://doi.org/10.1109/ICSMC.2004.1401252 (2004)
– reference: Gebser, M., Kaufmann, B., Schaub, T.: Solution enumeration for projected boolean search problems. In: Constraint Programming, Artificial Intelligence and Operations Research (CPAIOR), Lecture Notes in Computer Science, vol. 5547, pp. 71–86. Springer (2009)
– reference: DassevilleIvan der HallenMJanssensGDeneckerMSemantics of templates in a compositional framework for building logicsTheory Pract. Logic Program. (TPLP)2015154-5681695340684510.1017/S14710684150003191379.68092
– reference: Aoga, J.O.R., Guns, T., Schaus, P.: An efficient algorithm for mining frequent sequence with constraint programming. In: Frasconi, P., Landwehr, N., Manco, G., Vreeken, J. (eds.) Machine Learning and Knowledge Discovery in Databases - European Conference, ECML PKDD 2016, Riva del Garda, Italy, September 19-23, 2016, Proceedings, Part II, Lecture Notes in Computer Science, vol. 9852, pp 315–330. Springer (2016), https://doi.org/10.1007/978-3-319-46227-1_20
– reference: LonsingFBiereADepqbf: A dependency-aware QBF solverJSAT201072–37176http://jsat.ewi.tudelft.nl/content/volume7/JSAT7_6_Lonsing.pdf
– reference: Weinzierl, A.: Blending lazy-grounding and CDNL search for answer-set solving. In: Logic Programming and Nonmonotonic Reasoning (LPNMR), Lecture Notes in Computer Science, vol. 10377, pp. 191–204. Springer (2017)
– reference: Järvisalo, M.: Itemset mining as a challenge application for answer set enumeration. Logic Programming and Nonmonotonic Reasoning (LPNMR), 304–310 (2011)
– reference: Silva, J.P.M., Sakallah, K.A.: GRASP - a new search algorithm for satisfiability. In: International Conference on Computer-Aided Design (ICCAD), San Jose, California, USA, November 10-14 1996, pp. 220–227 (1996)
– reference: Abramson, H., Rogers, H.: Meta-Programming in Logic Programming. MIT Press (1989)
– reference: KaufmannBLeoneNPerriSSchaubTGrounding and solving in answer set programmingAI Mag.2016373253210.1609/aimag.v37i3.2672http://www.aaai.org/ojs/index.php/aimagazine/article/view/2672
– reference: Babai, L.: Graph isomorphism in quasipolynomial time. CoRR 1512.03547 (2015)
– reference: BruynoogheMBlockeelHBogaertsBde CatBPooterSDJansenJLabarreARamonJDeneckerMVerwerSPredicate logic as a modeling language: modeling and solving some machine learning and data mining problems with IDP3Theory Practice Logic Program. (TPLP)2015156783817340646410.1017/S147106841400009X1379.68279
– reference: LeuschelMButlerMJProB: An automated analysis toolset for the B methodSTTT200810218520310.1007/s10009-007-0063-9
– reference: Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Clingo = ASP + control: Preliminary report. CoRR 1405.3694 (2014)
– reference: Lamport, L.: Specifying Systems, The TLA+ Language and Tools for Hardware and Software Engineers. Addison-Wesley (2002)
– reference: Paramonov, S., Chen, T., Guns, T.: Generic mining of condensed pattern representations under constraints. In: CEUR: Young Scientist‘s Second International Workshop on Trends in Information Processing Proceedings (YSIP), vol. 1837, pp. 138–177 (2017)
– reference: CuteriBDodaroCRiccaFSchu̇llerPConstraints, lazy constraints, or propagators in ASP solving: An empirical analysisTheory Pract. Logic Program. (TPLP)2017175-6780799370901310.1017/S147106841700025406803822
– reference: EiterTFinkMIanniGKrennwallnerTRedlCSchu̇llerPA model building framework for answer set programming with external computationsTheory Pract. Logic Program. (TPLP)2016164418464350691910.1017/S14710684150001131379.68058
– reference: LiHYapCWUngCYXueYCaoZWChenYZEffect of selection of molecular descriptors on the prediction of bloodbrain barrier penetrating and nonpenetrating agents by statistical learning methodsJ. Chem. Inf. Model.20054551376138410.1021/ci050135uPMID: 16180914
– reference: Eiter, T., Ianni, G., Krennwallner, T.: Answer set programming: A primer. In: Reasoning Web, Lecture Notes in Computer Science, vol. 5689, pp. 40–110. Springer (2009)
– reference: De Cat, B., Bogaerts, B., Bruynooghe, M., Janssens, G., Denecker, M.: Predicate logic as a modelling language: The IDP system. CoRR 1401.6312v2 (2016)
– reference: Immerman, N.: Descriptive complexity and model checking. In: Arvind, V., Ramanujam, R. (eds.) Foundations of Software Technology and Theoretical Computer Science, 18th Conference, Chennai, India, December 17-19, 1998, Proceedings, Lecture Notes in Computer Science, vol. 1530, pp 1–5. Springer (1998), https://doi.org/10.1007/978-3-540-49382-2_1
– reference: de CatBDeneckerMBruynoogheMStuckeyPJLazy model expansion: Interleaving grounding with searchJ. Artif. Intell. Res.201552235286332147010.1613/jair.45911323.68464
– reference: Lonsing, F., Egly, U., Gelder, A.V.: Efficient clause learning for quantified boolean formulas via QBF pseudo unit propagation. In: Järvisalo, M., Gelder, A.V. (eds.) Theory and Applications of Satisfiability Testing - SAT 2013 - 16th International Conference, Helsinki, Finland, July 8-12, 2013. Proceedings, Lecture Notes in Computer Science, vol. 7962, pp 100–115. Springer (2013), https://doi.org/10.1007/978-3-642-39071-5_9
– ident: 9624_CR23
– volume: 17
  start-page: 780
  issue: 5-6
  year: 2017
  ident: 9624_CR12
  publication-title: Theory Pract. Logic Program. (TPLP)
  doi: 10.1017/S1471068417000254
– ident: 9624_CR19
– ident: 9624_CR1
– ident: 9624_CR5
– ident: 9624_CR20
  doi: 10.1007/978-3-642-01929-6_7
– ident: 9624_CR42
– ident: 9624_CR4
  doi: 10.1007/978-3-319-46227-1_20
– ident: 9624_CR8
  doi: 10.1609/aaai.v29i1.9398
– ident: 9624_CR38
  doi: 10.1007/978-3-540-74958-5_72
– ident: 9624_CR33
– volume: 16
  start-page: 418
  issue: 4
  year: 2016
  ident: 9624_CR16
  publication-title: Theory Pract. Logic Program. (TPLP)
  doi: 10.1017/S1471068415000113
– volume: 10
  start-page: 185
  issue: 2
  year: 2008
  ident: 9624_CR29
  publication-title: STTT
  doi: 10.1007/s10009-007-0063-9
– ident: 9624_CR7
– ident: 9624_CR39
– start-page: 41
  volume-title: Efficiency Analysis of ASP Encodings for Sequential Pattern Mining Tasks
  year: 2018
  ident: 9624_CR21
– volume: 22
  start-page: 265
  issue: 2
  year: 2017
  ident: 9624_CR27
  publication-title: Constraints
  doi: 10.1007/s10601-016-9252-z
– ident: 9624_CR14
– ident: 9624_CR18
  doi: 10.2200/S00457ED1V01Y201211AIM019
– volume: 45
  start-page: 1376
  issue: 5
  year: 2005
  ident: 9624_CR30
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/ci050135u
– volume: 15
  start-page: 187
  issue: 3
  year: 1993
  ident: 9624_CR11
  publication-title: J. Logic Program.
  doi: 10.1016/0743-1066(93)90039-J
– ident: 9624_CR28
– volume: 52
  start-page: 235
  year: 2015
  ident: 9624_CR10
  publication-title: J. Artif. Intell. Res.
  doi: 10.1613/jair.4591
– ident: 9624_CR22
  doi: 10.29007/k3nd
– ident: 9624_CR32
  doi: 10.1007/978-3-642-39071-5_9
– ident: 9624_CR25
  doi: 10.1007/978-3-642-20895-9_35
– volume: 18
  start-page: 50
  issue: 1
  year: 2013
  ident: 9624_CR40
  publication-title: Drug Discov. Today
  doi: 10.1016/j.drudis.2012.07.016
– volume: 15
  start-page: 681
  issue: 4-5
  year: 2015
  ident: 9624_CR13
  publication-title: Theory Pract. Logic Program. (TPLP)
  doi: 10.1017/S1471068415000319
– volume: 15
  start-page: 783
  issue: 6
  year: 2015
  ident: 9624_CR9
  publication-title: Theory Practice Logic Program. (TPLP)
  doi: 10.1017/S147106841400009X
– volume: 19
  start-page: 629
  issue: /20
  year: 1994
  ident: 9624_CR34
  publication-title: J. Log. Program.
  doi: 10.1016/0743-1066(94)90035-3
– ident: 9624_CR17
  doi: 10.1007/978-3-642-03754-2_2
– volume: 37
  start-page: 25
  issue: 3
  year: 2016
  ident: 9624_CR26
  publication-title: AI Mag.
  doi: 10.1609/aimag.v37i3.2672
– ident: 9624_CR6
– ident: 9624_CR36
– ident: 9624_CR41
  doi: 10.1007/978-3-319-61660-5_17
– ident: 9624_CR35
  doi: 10.1109/ICSMC.2004.1401252
– ident: 9624_CR15
  doi: 10.1145/1401890.1401919
– ident: 9624_CR37
  doi: 10.1007/978-3-319-66263-_19
– ident: 9624_CR3
  doi: 10.1017/CBO9781139195881
– ident: 9624_CR2
  doi: 10.1017/CBO9780511624162
– ident: 9624_CR24
  doi: 10.1007/978-3-540-49382-2_1
– volume: 7
  start-page: 71
  issue: 2–3
  year: 2010
  ident: 9624_CR31
  publication-title: JSAT
SSID ssj0009686
Score 2.1980982
Snippet This paper analyses the graph mining problem, and the frequent pattern mining task associated with it. In general, frequent pattern mining looks for a graph...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 21
SubjectTerms Adaptation
Analysis
Artificial Intelligence
Bioinformatics
Coding
Complex Systems
Computational linguistics
Computer Science
Data mining
Graphical representations
Knowledge representation
Language processing
Logic programs
Mathematics
Natural language interfaces
Pattern analysis
Social networks
Solvers
Specification and description languages
Specifications
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BWWDgUUCElzIgMUCkJLbjeKwQVQUqE5W6WbZjb6SoDUP_PbZrU54DypjoLH25893Zd98BXNFcM1mUVVYUEmfYphAZM8QdwzU1qgymSrlG4fFTNZrghymZhqawRax2j1eSfqf-1OyGqSsjcCU-VYmz5SZsEZe7Wy2elIM11W7l5zs64qrMOi8UWmV-l_HFHX3flH_cjnqnM9yH3RAtpoPV7z2ADd32YS9OYkiDYfZhZ_zBvro4hOIxHpSlnrMy9he1qQgUJOnMpJ6qOn3xAyKOYDK8f74bZWE0QqZQzrqs0A1thMpNTUROhI0SMM6VwYroRhMqaSU1YwJJKkpjs1-JGyWNIFggYTMsgo6h185afQJp7VjOZI2xxlYGldLKsJ5TC2MIUgYlcBMR4q8rBgy-5jp2eHKLJ_d48mUC1w5E7syjmwslQpW_XcsRTfGBy88os08C5xFnHuxmwUvmCOVLhlkCtxH79eu_1z393-dnsF16LXB1t-fQ6-Zv-sJGF5289Mr0DtYKxlU
  priority: 102
  providerName: Springer Nature
Title Knowledge representation analysis of graph mining
URI https://link.springer.com/article/10.1007/s10472-019-09624-y
https://www.proquest.com/docview/2918202949
Volume 86
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEB60vejBt1gfZQ-CBw3uI9lsTtJKqygWEQt6Ckk2udlWWw_-ezPbrEVF2cMeAhP4ksxkJjPfABzz2AqdpDlJEk0J9S4EEY5hGK4sstxRbgwWCt8N8ushvXliTyHgNg1plbVOrBR1OTYYIz9PBVKNp4KKi8krwa5R-LoaWmgsQ9Or4MI7X81ub3D_sKDdzatej0hiRbwhy0LZTCieoxzTEjBlKE8p-fhmmn4q6F8vpZUB6m_AWrg5Rp35Um_Ckh1twXrdlSEKh3QLVu--mFin25Dc1kGzqOKvrGuNRpEKdCTR2EUVbXX0UjWL2IFhv_d4eU1CmwRisljMSGJLXioTu4KpmCl_Y6A0No4aZkvLuOa5tkKoTHOVOu8Ja1oa7RSjKlPe22LZLjRG45Hdg6hAxjNdUGqpl8G19jK8FbXKOZYZl7XgtEZITuZsGHLBe4x4So-nrPCUHy04QRAlHpXZmzIqZPz7uZB0SnbQV-PCfy04rHGW4QxN5WLFW3BWY78Y_nve_f-lHcBKWq065tweQmP29m6P_M1iptuwXPSv2tDs9LvdAf6vnm977bCp_Ogw7XwCuvHPJQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NbxMxEB1V5UA58FFADU3BhyIOrcXu2rteH6qqog1p83Fqpd6M7bVvJCEJQvlT_Y31OGsiiuBW7XGlsfR2POPxzrwHcCgyJ01eVDTPDac8lBBU-hKv4ZqaVZ4La3FQeDSu-jf86ra83YK7NAuDbZUpJsZA3Uwt3pF_LiRSjReSy9PZD4qqUfh3NUlorN1i4Fa_Qsm2OLk8D9_3Y1H0Lq6_9GmrKkAty-SS5q4RjbaZr0udlTokWM4z67ktXeNKYURlnJSaGaELHwpHwxtrvC65ZjoUJ6gSEUL-E86YxB1V975uSH6rqCyJlFk0WGXtkE47qscFNkFgg1JVcLr6IxE-TAd__ZeN6a73Ep6351RytnasV7DlJrvwImlAkDYk7MKz0W_e18VryAfpio5Etsw02TQhuiU_IVNPIkk2-R6lKd7AzaPA9xa2J9OJ2wNSI7-aqTl3PNgQxgQbIWc77X3JrGcdOEoIqdmae0NtWJYRTxXwVBFPterAJwRR4cZczrXV7XxBWAsprtQZVoZChqcD3YSzanfsQm38qwPHCfvN63-v--7_1j7A0_71aKiGl-PBPuwU0QOw27cL28v5T3cQzjRL8z46EoFvj-2598YzB2c
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BkRAMPAqIQIEMSAwQkYcdx2MFVIXSioFK3SzbsTfSqg1D_z22m9DyGlDGRGfpy53vzr77DuCShIqKKE6DKBIoQCaFCKjG9hguz5JUIyKlbRTuD9LuED2N8Gili99Vu9dXkoueBsvSVJS3k1zfrjS-IWJLCmy5TxqjYL4OG2Y7jqxeD-P2knY3dbMeLYlVYBxZUrXN_C7ji2v6vkH_uCl1DqizBztV5Oi3F796H9ZU0YTdeiqDXxlpE7b7n0ysswOIevWhme_4K-teo8LnFR2JP9a-o63239ywiEMYdh5e77pBNSYhkElIyyBSOcm5DHWGeYi5iRgQCqVGEqtcYSJIKhSlPBGEx9pkwgLlUmiOEU-4ybZwcgSNYlyoY_Azy3gmMoQUMjKIEEaG8aKKa40TqRMPrmuE2GTBhsGWvMcWT2bwZA5PNvfgyoLIrKmUUy55VfFv1rKkU6xtczVCzeNBq8aZVTY0YzG15PIxRdSDmxr75eu_1z353-cXsPly32HPj4PeKWzFTiFsOW4LGuX0XZ2ZoKMU506vPgAvcc2E
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Knowledge+representation+analysis+of+graph+mining&rft.jtitle=Annals+of+mathematics+and+artificial+intelligence&rft.au=van+der+Hallen%2C+Matthias&rft.au=Paramonov%2C+Sergey&rft.au=Janssens%2C+Gerda&rft.au=Denecker%2C+Marc&rft.date=2019-07-01&rft.pub=Springer+Nature+B.V&rft.issn=1012-2443&rft.eissn=1573-7470&rft.volume=86&rft.issue=1-3&rft.spage=21&rft.epage=60&rft_id=info:doi/10.1007%2Fs10472-019-09624-y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1012-2443&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1012-2443&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1012-2443&client=summon