On semi-supervised estimation using exponential tilt mixture models
Consider a semi-supervised setting with a labeled dataset of binary responses and predictors and an unlabeled dataset with only the predictors. Logistic regression is equivalent to an exponential tilt model in the labeled population. For semi-supervised estimation of regression coefficients in logis...
Saved in:
Published in | Journal of statistical planning and inference Vol. 241; p. 106314 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.03.2026
|
Subjects | |
Online Access | Get full text |
ISSN | 0378-3758 |
DOI | 10.1016/j.jspi.2025.106314 |
Cover
Abstract | Consider a semi-supervised setting with a labeled dataset of binary responses and predictors and an unlabeled dataset with only the predictors. Logistic regression is equivalent to an exponential tilt model in the labeled population. For semi-supervised estimation of regression coefficients in logistic regression, we develop further analysis and understanding of a statistical approach using exponential tilt mixture (ETM) models and maximum nonparametric likelihood estimation, while allowing that the class proportions may differ between the unlabeled and labeled data. We derive asymptotic properties of ETM-based estimation and demonstrate improved efficiency over supervised logistic regression in a random sampling setup and an outcome-stratified sampling setup previously used. Moreover, we reconcile such efficiency improvement with the existing semiparametric efficiency theory when the class proportions in the unlabeled and labeled data are restricted to be the same. We also provide a simulation study to numerically illustrate our theoretical findings.
•Study semi-supervised estimation related to logistic regression.•Propose estimators based on exponential tilt mixture models and MLE.•Delineate conditions for improved efficiency over supervised estimation.•Connect the theoretical findings with the theory of semiparametric efficiency. |
---|---|
AbstractList | Consider a semi-supervised setting with a labeled dataset of binary responses and predictors and an unlabeled dataset with only the predictors. Logistic regression is equivalent to an exponential tilt model in the labeled population. For semi-supervised estimation of regression coefficients in logistic regression, we develop further analysis and understanding of a statistical approach using exponential tilt mixture (ETM) models and maximum nonparametric likelihood estimation, while allowing that the class proportions may differ between the unlabeled and labeled data. We derive asymptotic properties of ETM-based estimation and demonstrate improved efficiency over supervised logistic regression in a random sampling setup and an outcome-stratified sampling setup previously used. Moreover, we reconcile such efficiency improvement with the existing semiparametric efficiency theory when the class proportions in the unlabeled and labeled data are restricted to be the same. We also provide a simulation study to numerically illustrate our theoretical findings. Consider a semi-supervised setting with a labeled dataset of binary responses and predictors and an unlabeled dataset with only the predictors. Logistic regression is equivalent to an exponential tilt model in the labeled population. For semi-supervised estimation of regression coefficients in logistic regression, we develop further analysis and understanding of a statistical approach using exponential tilt mixture (ETM) models and maximum nonparametric likelihood estimation, while allowing that the class proportions may differ between the unlabeled and labeled data. We derive asymptotic properties of ETM-based estimation and demonstrate improved efficiency over supervised logistic regression in a random sampling setup and an outcome-stratified sampling setup previously used. Moreover, we reconcile such efficiency improvement with the existing semiparametric efficiency theory when the class proportions in the unlabeled and labeled data are restricted to be the same. We also provide a simulation study to numerically illustrate our theoretical findings. •Study semi-supervised estimation related to logistic regression.•Propose estimators based on exponential tilt mixture models and MLE.•Delineate conditions for improved efficiency over supervised estimation.•Connect the theoretical findings with the theory of semiparametric efficiency. Consider a semi-supervised setting with a labeled dataset of binary responses and predictors and an unlabeled dataset with only the predictors. Logistic regression is equivalent to an exponential tilt model in the labeled population. For semi-supervised estimation of regression coefficients in logistic regression, we develop further analysis and understanding of a statistical approach using exponential tilt mixture (ETM) models and maximum nonparametric likelihood estimation, while allowing that the class proportions may differ between the unlabeled and labeled data. We derive asymptotic properties of ETM-based estimation and demonstrate improved efficiency over supervised logistic regression in a random sampling setup and an outcome-stratified sampling setup previously used. Moreover, we reconcile such efficiency improvement with the existing semiparametric efficiency theory when the class proportions in the unlabeled and labeled data are restricted to be the same. We also provide a simulation study to numerically illustrate our theoretical findings.Consider a semi-supervised setting with a labeled dataset of binary responses and predictors and an unlabeled dataset with only the predictors. Logistic regression is equivalent to an exponential tilt model in the labeled population. For semi-supervised estimation of regression coefficients in logistic regression, we develop further analysis and understanding of a statistical approach using exponential tilt mixture (ETM) models and maximum nonparametric likelihood estimation, while allowing that the class proportions may differ between the unlabeled and labeled data. We derive asymptotic properties of ETM-based estimation and demonstrate improved efficiency over supervised logistic regression in a random sampling setup and an outcome-stratified sampling setup previously used. Moreover, we reconcile such efficiency improvement with the existing semiparametric efficiency theory when the class proportions in the unlabeled and labeled data are restricted to be the same. We also provide a simulation study to numerically illustrate our theoretical findings. |
ArticleNumber | 106314 |
Author | Tan, Zhiqiang Zhang, Xinwei Tian, Ye |
Author_xml | – sequence: 1 givenname: Ye surname: Tian fullname: Tian, Ye email: yt334@stat.rutgers.edu organization: Department of Statistics, Rutgers University, Piscataway, NJ 08854, United States of America – sequence: 2 givenname: Xinwei surname: Zhang fullname: Zhang, Xinwei email: xinwei.z@nyu.edu organization: Department of Biostatistics, New York University, New York, NY 10003, United States of America – sequence: 3 givenname: Zhiqiang orcidid: 0000-0003-1780-6839 surname: Tan fullname: Tan, Zhiqiang email: ztan@stat.rutgers.edu organization: Department of Statistics, Rutgers University, Piscataway, NJ 08854, United States of America |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40837851$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kMtOwzAQRb0oog_4ARYoSzYpfiapxAZVvKRKXcDecpwxcpQ4wU6q8ve4SmGJNyN5zp2Ze5do5joHCN0QvCaYZPf1ug69XVNMRfzIGOEztMAsL1KWi2KOliHUOL4Mi0s057iILUEWaLt3SYDWpmHswR9sgCqBMNhWDbZzyRis-0zg2MdtbrCqSQbbDElrj8PoIWm7CppwhS6MagJcn-sKvT8_fWxf093-5W37uEs1w5shJRtihCmEoRp0SUsiTM4EpUqVnAoqig0XJTemBK0wp5wTUJDjilBmOGUrdDdN7X33NcYbZWuDhqZRDroxSEZ5Fn3xQkT09oyOZQuV7H3047_lr-0I0AnQvgvBg_lDCJanPGUtT3nKU55yyjOKHiZRtAwHC14GbcFpqKwHPciqs__JfwDO_IAD |
Cites_doi | 10.1007/s10994-013-5329-8 10.1214/18-AOS1756 10.1093/biomet/asr007 10.1093/biomet/66.3.403 10.1080/01621459.2023.2169699 10.1214/aos/1017938930 10.1080/01621459.1994.10476818 10.1111/rssb.12357 10.1093/biomet/asab042 10.1002/sta4.312 10.1109/CVPR46437.2021.00264 10.1093/biomet/85.3.619 10.1093/biomet/63.3.581 10.1093/biomet/asn059 10.1109/CVPR52688.2022.00422 10.1109/TPAMI.2018.2858821 10.1126/science.adi6000 |
ContentType | Journal Article |
Copyright | 2025 The Authors |
Copyright_xml | – notice: 2025 The Authors |
DBID | 6I. AAFTH AAYXX CITATION NPM 7X8 |
DOI | 10.1016/j.jspi.2025.106314 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics Mathematics |
ExternalDocumentID | 40837851 10_1016_j_jspi_2025_106314 S0378375825000527 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NLM NIH HHS grantid: R01 LM014257 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1OL 1RT 1~. 1~5 29L 4.4 457 4G. 5GY 5VS 6I. 6P2 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AAEDT AAEDW AAFTH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AATTM AAXKI AAXUO AAYWO ABAOU ABEHJ ABFNM ABFRF ABJNI ABMAC ABUCO ABWVN ABXDB ACDAQ ACGFO ACGFS ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADGUI ADMUD ADNMO AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFTJW AFXIZ AGCQF AGHFR AGQPQ AGRNS AGUBO AGYEJ AHHHB AI. AIEXJ AIGII AIGVJ AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APLSM APXCP ARUGR ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HAMUX HMJ HVGLF HZ~ H~9 IHE J1W KOM LY1 M26 M41 MHUIS MO0 N9A NHB O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SDS SES SEW SME SPC SPCBC SSB SSD SSW SSZ T5K TN5 UNMZH VH1 WUQ ~G- AAYXX CITATION EFLBG NPM 7X8 |
ID | FETCH-LOGICAL-c309t-191f5f85f2cecb2b15f73522aab425258945b4ffbeca042441eae70d123f423 |
IEDL.DBID | AIKHN |
ISSN | 0378-3758 |
IngestDate | Thu Sep 04 12:41:56 EDT 2025 Thu Sep 04 05:06:49 EDT 2025 Wed Sep 10 05:18:36 EDT 2025 Sat Aug 09 17:31:34 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Maximum likelihood estimation Logistic regression Exponential tilt mixture model Semi-supervised learning Asymptotic efficiency |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c309t-191f5f85f2cecb2b15f73522aab425258945b4ffbeca042441eae70d123f423 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-1780-6839 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0378375825000527 |
PMID | 40837851 |
PQID | 3246408485 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_3246408485 pubmed_primary_40837851 crossref_primary_10_1016_j_jspi_2025_106314 elsevier_sciencedirect_doi_10_1016_j_jspi_2025_106314 |
PublicationCentury | 2000 |
PublicationDate | March 2026 2026-03-00 2026-Mar 20260301 |
PublicationDateYYYYMMDD | 2026-03-01 |
PublicationDate_xml | – month: 03 year: 2026 text: March 2026 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Journal of statistical planning and inference |
PublicationTitleAlternate | J Stat Plan Inference |
PublicationYear | 2026 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Belkin, Niyogi, Sindhwani (b2) 2006; 7 Qin (b10) 1998; 85 Tian, Wu, Tan (b18) 2024 Wang, J., Lukasiewicz, T., Massiceti, D., Hu, X., Pavlovic, V., Neophytou, A., 2022. NP-Match: When neural processes meet semi-supervised learning. In: International Conference on Machine Learning. pp. 22919–22934. Sohn, K., Berthelot, D., Carlini, N., Zhang, Z., Zhang, H., Raffel, C.A., Cubuk, E.D., Kurakin, A., Li, C.-L., 2020. FixMatch: Simplifying semi-supervised learning with consistency and confidence. In: Advances in Neural Information Processing Systems. pp. 596–608. Zhang, Giessing, Chen (b22) 2023 Chen, X., Yuan, Y., Zeng, G., Wang, J., 2021. Semi-supervised semantic segmentation with cross pseudo supervision. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 2613–2622. Grandvalet, Bengio (b5) 2006 Rubin (b13) 1976; 63 Prentice, Pyke (b9) 1979; 66 Kawakita, Kanamori (b6) 2013; 91 Zhang, Bradic (b20) 2021; 109 Zhang, Tan (b23) 2020; 9 Miyato, Maeda, Koyama, Ishii (b8) 2018; 41 Tan (b17) 2011; 98 Liu, Y., Tian, Y., Chen, Y., Liu, F., Belagiannis, V., Carneiro, G., 2022. Perturbed and strict mean teachers for semi-supervised semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 4258–4267. Zhang, Brown, Cai (b21) 2019; 47 Angelopoulos, Bates, Fannjiang, Jordan, Zrnic (b1) 2023; 382 Robins, Rotnitzky, Zhao (b12) 1994; 89 Song, Lin, and (b15) 2024; 119 Qin (b11) 1999; 27 Tan (b16) 2009; 96 Cai, Guo (b3) 2020; 82 Kawakita (10.1016/j.jspi.2025.106314_b6) 2013; 91 Belkin (10.1016/j.jspi.2025.106314_b2) 2006; 7 Miyato (10.1016/j.jspi.2025.106314_b8) 2018; 41 Zhang (10.1016/j.jspi.2025.106314_b21) 2019; 47 Cai (10.1016/j.jspi.2025.106314_b3) 2020; 82 Tan (10.1016/j.jspi.2025.106314_b17) 2011; 98 Angelopoulos (10.1016/j.jspi.2025.106314_b1) 2023; 382 Qin (10.1016/j.jspi.2025.106314_b11) 1999; 27 Zhang (10.1016/j.jspi.2025.106314_b23) 2020; 9 Qin (10.1016/j.jspi.2025.106314_b10) 1998; 85 Robins (10.1016/j.jspi.2025.106314_b12) 1994; 89 Tian (10.1016/j.jspi.2025.106314_b18) 2024 Zhang (10.1016/j.jspi.2025.106314_b22) 2023 10.1016/j.jspi.2025.106314_b14 Song (10.1016/j.jspi.2025.106314_b15) 2024; 119 Tan (10.1016/j.jspi.2025.106314_b16) 2009; 96 Grandvalet (10.1016/j.jspi.2025.106314_b5) 2006 Rubin (10.1016/j.jspi.2025.106314_b13) 1976; 63 10.1016/j.jspi.2025.106314_b4 Prentice (10.1016/j.jspi.2025.106314_b9) 1979; 66 Zhang (10.1016/j.jspi.2025.106314_b20) 2021; 109 10.1016/j.jspi.2025.106314_b7 10.1016/j.jspi.2025.106314_b19 |
References_xml | – volume: 82 start-page: 391 year: 2020 end-page: 419 ident: b3 article-title: Semisupervised inference for explained variance in high dimensional linear regression and its applications publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol. – volume: 85 start-page: 619 year: 1998 end-page: 630 ident: b10 article-title: Inferences for case-control and semiparametric two-sample density ratio models publication-title: Biometrika – reference: Sohn, K., Berthelot, D., Carlini, N., Zhang, Z., Zhang, H., Raffel, C.A., Cubuk, E.D., Kurakin, A., Li, C.-L., 2020. FixMatch: Simplifying semi-supervised learning with consistency and confidence. In: Advances in Neural Information Processing Systems. pp. 596–608. – reference: Liu, Y., Tian, Y., Chen, Y., Liu, F., Belagiannis, V., Carneiro, G., 2022. Perturbed and strict mean teachers for semi-supervised semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 4258–4267. – volume: 119 start-page: 1065 year: 2024 end-page: 1075 ident: b15 article-title: A general M-estimation theory in semi-supervised framework publication-title: J. Amer. Statist. Assoc. – volume: 96 start-page: 229 year: 2009 end-page: 236 ident: b16 article-title: A note on profile likelihood for exponential tilt mixture models publication-title: Biometrika – start-page: 151 year: 2006 end-page: 168 ident: b5 article-title: Entropy regularization publication-title: Semi-Supervised Learning – volume: 91 start-page: 189 year: 2013 end-page: 209 ident: b6 article-title: Semi-supervised learning with density-ratio estimation publication-title: Mach. Learn. – volume: 63 start-page: 581 year: 1976 end-page: 592 ident: b13 article-title: Inference and missing data publication-title: Biometrika – volume: 89 start-page: 846 year: 1994 end-page: 866 ident: b12 article-title: Estimation of regression coefficients when some regressors are not always observed publication-title: J. Amer. Statist. Assoc. – volume: 9 year: 2020 ident: b23 article-title: Semi-supervised logistic learning based on exponential tilt mixture models publication-title: Stat – volume: 382 start-page: 669 year: 2023 end-page: 674 ident: b1 article-title: Prediction-powered inference publication-title: Science – reference: Wang, J., Lukasiewicz, T., Massiceti, D., Hu, X., Pavlovic, V., Neophytou, A., 2022. NP-Match: When neural processes meet semi-supervised learning. In: International Conference on Machine Learning. pp. 22919–22934. – year: 2023 ident: b22 article-title: Efficient inference on high-dimensional linear models with missing outcomes – volume: 7 start-page: 2399 year: 2006 end-page: 2434 ident: b2 article-title: Manifold regularization: A geometric framework for learning from labeled and unlabeled example publication-title: J. Mach. Learn. Res. – volume: 47 start-page: 2538 year: 2019 end-page: 2566 ident: b21 article-title: Semi-supervised inference: General theory and estimation of means publication-title: Ann. Stat. – reference: Chen, X., Yuan, Y., Zeng, G., Wang, J., 2021. Semi-supervised semantic segmentation with cross pseudo supervision. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 2613–2622. – volume: 41 start-page: 1979 year: 2018 end-page: 1993 ident: b8 article-title: Virtual adversarial training: A regularization method for supervised and semi-supervised learning publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 66 start-page: 403 year: 1979 end-page: 411 ident: b9 article-title: Logistic disease incidence models and case-control studies publication-title: Biometrika – volume: 109 start-page: 387 year: 2021 end-page: 403 ident: b20 article-title: High-dimensional semi-supervised learning: in search of optimal inference of the mean publication-title: Biometrika – volume: 27 start-page: 1368 year: 1999 end-page: 1384 ident: b11 article-title: Empirical likelihood ratio based confidence intervals for mixture proportions publication-title: Ann. Stat. – year: 2024 ident: b18 article-title: Semi-supervised regression analysis with model misspecification and high-dimensional data – volume: 98 start-page: 663 year: 2011 end-page: 684 ident: b17 article-title: Efficient restricted estimators for conditional mean models with missing data publication-title: Biometrika – volume: 91 start-page: 189 year: 2013 ident: 10.1016/j.jspi.2025.106314_b6 article-title: Semi-supervised learning with density-ratio estimation publication-title: Mach. Learn. doi: 10.1007/s10994-013-5329-8 – volume: 47 start-page: 2538 year: 2019 ident: 10.1016/j.jspi.2025.106314_b21 article-title: Semi-supervised inference: General theory and estimation of means publication-title: Ann. Stat. doi: 10.1214/18-AOS1756 – volume: 98 start-page: 663 year: 2011 ident: 10.1016/j.jspi.2025.106314_b17 article-title: Efficient restricted estimators for conditional mean models with missing data publication-title: Biometrika doi: 10.1093/biomet/asr007 – volume: 66 start-page: 403 year: 1979 ident: 10.1016/j.jspi.2025.106314_b9 article-title: Logistic disease incidence models and case-control studies publication-title: Biometrika doi: 10.1093/biomet/66.3.403 – year: 2024 ident: 10.1016/j.jspi.2025.106314_b18 – volume: 119 start-page: 1065 year: 2024 ident: 10.1016/j.jspi.2025.106314_b15 article-title: A general M-estimation theory in semi-supervised framework publication-title: J. Amer. Statist. Assoc. doi: 10.1080/01621459.2023.2169699 – year: 2023 ident: 10.1016/j.jspi.2025.106314_b22 – volume: 27 start-page: 1368 year: 1999 ident: 10.1016/j.jspi.2025.106314_b11 article-title: Empirical likelihood ratio based confidence intervals for mixture proportions publication-title: Ann. Stat. doi: 10.1214/aos/1017938930 – volume: 89 start-page: 846 year: 1994 ident: 10.1016/j.jspi.2025.106314_b12 article-title: Estimation of regression coefficients when some regressors are not always observed publication-title: J. Amer. Statist. Assoc. doi: 10.1080/01621459.1994.10476818 – volume: 82 start-page: 391 year: 2020 ident: 10.1016/j.jspi.2025.106314_b3 article-title: Semisupervised inference for explained variance in high dimensional linear regression and its applications publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol. doi: 10.1111/rssb.12357 – ident: 10.1016/j.jspi.2025.106314_b14 – ident: 10.1016/j.jspi.2025.106314_b19 – volume: 109 start-page: 387 year: 2021 ident: 10.1016/j.jspi.2025.106314_b20 article-title: High-dimensional semi-supervised learning: in search of optimal inference of the mean publication-title: Biometrika doi: 10.1093/biomet/asab042 – volume: 9 year: 2020 ident: 10.1016/j.jspi.2025.106314_b23 article-title: Semi-supervised logistic learning based on exponential tilt mixture models publication-title: Stat doi: 10.1002/sta4.312 – ident: 10.1016/j.jspi.2025.106314_b4 doi: 10.1109/CVPR46437.2021.00264 – volume: 85 start-page: 619 year: 1998 ident: 10.1016/j.jspi.2025.106314_b10 article-title: Inferences for case-control and semiparametric two-sample density ratio models publication-title: Biometrika doi: 10.1093/biomet/85.3.619 – volume: 63 start-page: 581 year: 1976 ident: 10.1016/j.jspi.2025.106314_b13 article-title: Inference and missing data publication-title: Biometrika doi: 10.1093/biomet/63.3.581 – volume: 96 start-page: 229 year: 2009 ident: 10.1016/j.jspi.2025.106314_b16 article-title: A note on profile likelihood for exponential tilt mixture models publication-title: Biometrika doi: 10.1093/biomet/asn059 – ident: 10.1016/j.jspi.2025.106314_b7 doi: 10.1109/CVPR52688.2022.00422 – volume: 41 start-page: 1979 year: 2018 ident: 10.1016/j.jspi.2025.106314_b8 article-title: Virtual adversarial training: A regularization method for supervised and semi-supervised learning publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2018.2858821 – volume: 382 start-page: 669 year: 2023 ident: 10.1016/j.jspi.2025.106314_b1 article-title: Prediction-powered inference publication-title: Science doi: 10.1126/science.adi6000 – volume: 7 start-page: 2399 year: 2006 ident: 10.1016/j.jspi.2025.106314_b2 article-title: Manifold regularization: A geometric framework for learning from labeled and unlabeled example publication-title: J. Mach. Learn. Res. – start-page: 151 year: 2006 ident: 10.1016/j.jspi.2025.106314_b5 article-title: Entropy regularization |
SSID | ssj0000605 |
Score | 2.42769 |
Snippet | Consider a semi-supervised setting with a labeled dataset of binary responses and predictors and an unlabeled dataset with only the predictors. Logistic... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 106314 |
SubjectTerms | Asymptotic efficiency Exponential tilt mixture model Logistic regression Maximum likelihood estimation Semi-supervised learning |
Title | On semi-supervised estimation using exponential tilt mixture models |
URI | https://dx.doi.org/10.1016/j.jspi.2025.106314 https://www.ncbi.nlm.nih.gov/pubmed/40837851 https://www.proquest.com/docview/3246408485 |
Volume | 241 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED7RdoEBQXmVRxUkNhSaOHbSjKgCFVBhAKRulp3YKBVNI5JKTPx2znWCYICBMSc5tu7s83e6784AZ9IPI6JF6gZEDF3E_8SNEx2bgxdRT6QYIZgC58l9OH6mt1M2XYNRUwtjaJW177c-feWta8mg1uagyLLBoxdEGF0xDHFW-aqoBR0SxCFrQ-fy5m58_80hWyZjYJgAOKCunbE0r1lZZBgmEoaCMPDpb_fTb_hzdQ9db8FmDSCdS7vGbVhTeRc2Jl_dV8surBsEaRsw78DoIXdKNc_cclkYv1Cq1DGdNWzJomN47y-Oei8WueEN4Z-r7LVy5tm7SS04q4dyyl14vL56Go3d-uUENwm8uHIxCNNMD5kmiUokkT7TkUFaQkg8o4QNY8ok1RoNKEzuk_pKqMhL8RrTiK_2oJ3jrAfgMKK1HwrBAqqopInUigSJn8rQo4op0YPzRlu8sO0xeMMbm3GjW250y61ue8AahfIfRubov_8cd9pon-PuNykNkavFsuQIB0NqngRgPdi3ZvlaB8rR4sw__OesR7COX6ElnB1Du3pbqhNEIJXsQ-viw-_X--wTzsjaFQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED6VMgAD4k15BokNhSaOnbQjqkAF2jK0SGyWndgoCEJEUomJ3845ThAMMLBeHrbu7PN3uu_OAKfSDyOiReIGRPRcxP_E7ce6bzZeRD2RYIRgCpzHk3B4T28e2EMLBk0tjKFV1r7f-vTKW9eSbq3Nbp6m3akXRBhdMQxxqnxVtACLlKEAF_X5h__NHVseY2B4APh6XTljSV5PRZ5ikEgYCsLAp7-dTr-hz-oUulqD1Ro-Ohd2huvQUtkGrIy_eq8WG7Bs8KNtv7wJg7vMKdRL6hbz3HiFQiWO6athCxYdw3p_dNR7_poZ1hD-uUyfS-clfTeJBae6JqfYgunV5WwwdOt7E9w48PqliyGYZrrHNIlVLIn0mY4MzhJC4g4lrNenTFKt0XzCZD6pr4SKvAQPMY3oahvaGY66Cw4jWvuhECygikoaS61IEPuJDD2qmBIdOGu0xXPbHIM3rLEnbnTLjW651W0HWKNQ_sPEHL33n9-dNNrnuPZNQkNk6nVecASDITUXArAO7FizfM0D5Whx5u_9c9RjWBrOxiM-up7c7sMyPgkt9ewA2uXbXB0iFinlUbXWPgGjF9rg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+semi-supervised+estimation+using+exponential+tilt+mixture+models&rft.jtitle=Journal+of+statistical+planning+and+inference&rft.au=Tian%2C+Ye&rft.au=Zhang%2C+Xinwei&rft.au=Tan%2C+Zhiqiang&rft.date=2026-03-01&rft.issn=0378-3758&rft.volume=241&rft.spage=106314&rft_id=info:doi/10.1016%2Fj.jspi.2025.106314&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jspi_2025_106314 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-3758&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-3758&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-3758&client=summon |