On semi-supervised estimation using exponential tilt mixture models

Consider a semi-supervised setting with a labeled dataset of binary responses and predictors and an unlabeled dataset with only the predictors. Logistic regression is equivalent to an exponential tilt model in the labeled population. For semi-supervised estimation of regression coefficients in logis...

Full description

Saved in:
Bibliographic Details
Published inJournal of statistical planning and inference Vol. 241; p. 106314
Main Authors Tian, Ye, Zhang, Xinwei, Tan, Zhiqiang
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.03.2026
Subjects
Online AccessGet full text
ISSN0378-3758
DOI10.1016/j.jspi.2025.106314

Cover

Abstract Consider a semi-supervised setting with a labeled dataset of binary responses and predictors and an unlabeled dataset with only the predictors. Logistic regression is equivalent to an exponential tilt model in the labeled population. For semi-supervised estimation of regression coefficients in logistic regression, we develop further analysis and understanding of a statistical approach using exponential tilt mixture (ETM) models and maximum nonparametric likelihood estimation, while allowing that the class proportions may differ between the unlabeled and labeled data. We derive asymptotic properties of ETM-based estimation and demonstrate improved efficiency over supervised logistic regression in a random sampling setup and an outcome-stratified sampling setup previously used. Moreover, we reconcile such efficiency improvement with the existing semiparametric efficiency theory when the class proportions in the unlabeled and labeled data are restricted to be the same. We also provide a simulation study to numerically illustrate our theoretical findings. •Study semi-supervised estimation related to logistic regression.•Propose estimators based on exponential tilt mixture models and MLE.•Delineate conditions for improved efficiency over supervised estimation.•Connect the theoretical findings with the theory of semiparametric efficiency.
AbstractList Consider a semi-supervised setting with a labeled dataset of binary responses and predictors and an unlabeled dataset with only the predictors. Logistic regression is equivalent to an exponential tilt model in the labeled population. For semi-supervised estimation of regression coefficients in logistic regression, we develop further analysis and understanding of a statistical approach using exponential tilt mixture (ETM) models and maximum nonparametric likelihood estimation, while allowing that the class proportions may differ between the unlabeled and labeled data. We derive asymptotic properties of ETM-based estimation and demonstrate improved efficiency over supervised logistic regression in a random sampling setup and an outcome-stratified sampling setup previously used. Moreover, we reconcile such efficiency improvement with the existing semiparametric efficiency theory when the class proportions in the unlabeled and labeled data are restricted to be the same. We also provide a simulation study to numerically illustrate our theoretical findings.
Consider a semi-supervised setting with a labeled dataset of binary responses and predictors and an unlabeled dataset with only the predictors. Logistic regression is equivalent to an exponential tilt model in the labeled population. For semi-supervised estimation of regression coefficients in logistic regression, we develop further analysis and understanding of a statistical approach using exponential tilt mixture (ETM) models and maximum nonparametric likelihood estimation, while allowing that the class proportions may differ between the unlabeled and labeled data. We derive asymptotic properties of ETM-based estimation and demonstrate improved efficiency over supervised logistic regression in a random sampling setup and an outcome-stratified sampling setup previously used. Moreover, we reconcile such efficiency improvement with the existing semiparametric efficiency theory when the class proportions in the unlabeled and labeled data are restricted to be the same. We also provide a simulation study to numerically illustrate our theoretical findings. •Study semi-supervised estimation related to logistic regression.•Propose estimators based on exponential tilt mixture models and MLE.•Delineate conditions for improved efficiency over supervised estimation.•Connect the theoretical findings with the theory of semiparametric efficiency.
Consider a semi-supervised setting with a labeled dataset of binary responses and predictors and an unlabeled dataset with only the predictors. Logistic regression is equivalent to an exponential tilt model in the labeled population. For semi-supervised estimation of regression coefficients in logistic regression, we develop further analysis and understanding of a statistical approach using exponential tilt mixture (ETM) models and maximum nonparametric likelihood estimation, while allowing that the class proportions may differ between the unlabeled and labeled data. We derive asymptotic properties of ETM-based estimation and demonstrate improved efficiency over supervised logistic regression in a random sampling setup and an outcome-stratified sampling setup previously used. Moreover, we reconcile such efficiency improvement with the existing semiparametric efficiency theory when the class proportions in the unlabeled and labeled data are restricted to be the same. We also provide a simulation study to numerically illustrate our theoretical findings.Consider a semi-supervised setting with a labeled dataset of binary responses and predictors and an unlabeled dataset with only the predictors. Logistic regression is equivalent to an exponential tilt model in the labeled population. For semi-supervised estimation of regression coefficients in logistic regression, we develop further analysis and understanding of a statistical approach using exponential tilt mixture (ETM) models and maximum nonparametric likelihood estimation, while allowing that the class proportions may differ between the unlabeled and labeled data. We derive asymptotic properties of ETM-based estimation and demonstrate improved efficiency over supervised logistic regression in a random sampling setup and an outcome-stratified sampling setup previously used. Moreover, we reconcile such efficiency improvement with the existing semiparametric efficiency theory when the class proportions in the unlabeled and labeled data are restricted to be the same. We also provide a simulation study to numerically illustrate our theoretical findings.
ArticleNumber 106314
Author Tan, Zhiqiang
Zhang, Xinwei
Tian, Ye
Author_xml – sequence: 1
  givenname: Ye
  surname: Tian
  fullname: Tian, Ye
  email: yt334@stat.rutgers.edu
  organization: Department of Statistics, Rutgers University, Piscataway, NJ 08854, United States of America
– sequence: 2
  givenname: Xinwei
  surname: Zhang
  fullname: Zhang, Xinwei
  email: xinwei.z@nyu.edu
  organization: Department of Biostatistics, New York University, New York, NY 10003, United States of America
– sequence: 3
  givenname: Zhiqiang
  orcidid: 0000-0003-1780-6839
  surname: Tan
  fullname: Tan, Zhiqiang
  email: ztan@stat.rutgers.edu
  organization: Department of Statistics, Rutgers University, Piscataway, NJ 08854, United States of America
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40837851$$D View this record in MEDLINE/PubMed
BookMark eNp9kMtOwzAQRb0oog_4ARYoSzYpfiapxAZVvKRKXcDecpwxcpQ4wU6q8ve4SmGJNyN5zp2Ze5do5joHCN0QvCaYZPf1ug69XVNMRfzIGOEztMAsL1KWi2KOliHUOL4Mi0s057iILUEWaLt3SYDWpmHswR9sgCqBMNhWDbZzyRis-0zg2MdtbrCqSQbbDElrj8PoIWm7CppwhS6MagJcn-sKvT8_fWxf093-5W37uEs1w5shJRtihCmEoRp0SUsiTM4EpUqVnAoqig0XJTemBK0wp5wTUJDjilBmOGUrdDdN7X33NcYbZWuDhqZRDroxSEZ5Fn3xQkT09oyOZQuV7H3047_lr-0I0AnQvgvBg_lDCJanPGUtT3nKU55yyjOKHiZRtAwHC14GbcFpqKwHPciqs__JfwDO_IAD
Cites_doi 10.1007/s10994-013-5329-8
10.1214/18-AOS1756
10.1093/biomet/asr007
10.1093/biomet/66.3.403
10.1080/01621459.2023.2169699
10.1214/aos/1017938930
10.1080/01621459.1994.10476818
10.1111/rssb.12357
10.1093/biomet/asab042
10.1002/sta4.312
10.1109/CVPR46437.2021.00264
10.1093/biomet/85.3.619
10.1093/biomet/63.3.581
10.1093/biomet/asn059
10.1109/CVPR52688.2022.00422
10.1109/TPAMI.2018.2858821
10.1126/science.adi6000
ContentType Journal Article
Copyright 2025 The Authors
Copyright_xml – notice: 2025 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
DOI 10.1016/j.jspi.2025.106314
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
ExternalDocumentID 40837851
10_1016_j_jspi_2025_106314
S0378375825000527
Genre Journal Article
GrantInformation_xml – fundername: NLM NIH HHS
  grantid: R01 LM014257
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1OL
1RT
1~.
1~5
29L
4.4
457
4G.
5GY
5VS
6I.
6P2
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AAEDT
AAEDW
AAFTH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AATTM
AAXKI
AAXUO
AAYWO
ABAOU
ABEHJ
ABFNM
ABFRF
ABJNI
ABMAC
ABUCO
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADGUI
ADMUD
ADNMO
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRNS
AGUBO
AGYEJ
AHHHB
AI.
AIEXJ
AIGII
AIGVJ
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APLSM
APXCP
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HAMUX
HMJ
HVGLF
HZ~
H~9
IHE
J1W
KOM
LY1
M26
M41
MHUIS
MO0
N9A
NHB
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SEW
SME
SPC
SPCBC
SSB
SSD
SSW
SSZ
T5K
TN5
UNMZH
VH1
WUQ
~G-
AAYXX
CITATION
EFLBG
NPM
7X8
ID FETCH-LOGICAL-c309t-191f5f85f2cecb2b15f73522aab425258945b4ffbeca042441eae70d123f423
IEDL.DBID AIKHN
ISSN 0378-3758
IngestDate Thu Sep 04 12:41:56 EDT 2025
Thu Sep 04 05:06:49 EDT 2025
Wed Sep 10 05:18:36 EDT 2025
Sat Aug 09 17:31:34 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Maximum likelihood estimation
Logistic regression
Exponential tilt mixture model
Semi-supervised learning
Asymptotic efficiency
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c309t-191f5f85f2cecb2b15f73522aab425258945b4ffbeca042441eae70d123f423
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-1780-6839
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0378375825000527
PMID 40837851
PQID 3246408485
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3246408485
pubmed_primary_40837851
crossref_primary_10_1016_j_jspi_2025_106314
elsevier_sciencedirect_doi_10_1016_j_jspi_2025_106314
PublicationCentury 2000
PublicationDate March 2026
2026-03-00
2026-Mar
20260301
PublicationDateYYYYMMDD 2026-03-01
PublicationDate_xml – month: 03
  year: 2026
  text: March 2026
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Journal of statistical planning and inference
PublicationTitleAlternate J Stat Plan Inference
PublicationYear 2026
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Belkin, Niyogi, Sindhwani (b2) 2006; 7
Qin (b10) 1998; 85
Tian, Wu, Tan (b18) 2024
Wang, J., Lukasiewicz, T., Massiceti, D., Hu, X., Pavlovic, V., Neophytou, A., 2022. NP-Match: When neural processes meet semi-supervised learning. In: International Conference on Machine Learning. pp. 22919–22934.
Sohn, K., Berthelot, D., Carlini, N., Zhang, Z., Zhang, H., Raffel, C.A., Cubuk, E.D., Kurakin, A., Li, C.-L., 2020. FixMatch: Simplifying semi-supervised learning with consistency and confidence. In: Advances in Neural Information Processing Systems. pp. 596–608.
Zhang, Giessing, Chen (b22) 2023
Chen, X., Yuan, Y., Zeng, G., Wang, J., 2021. Semi-supervised semantic segmentation with cross pseudo supervision. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 2613–2622.
Grandvalet, Bengio (b5) 2006
Rubin (b13) 1976; 63
Prentice, Pyke (b9) 1979; 66
Kawakita, Kanamori (b6) 2013; 91
Zhang, Bradic (b20) 2021; 109
Zhang, Tan (b23) 2020; 9
Miyato, Maeda, Koyama, Ishii (b8) 2018; 41
Tan (b17) 2011; 98
Liu, Y., Tian, Y., Chen, Y., Liu, F., Belagiannis, V., Carneiro, G., 2022. Perturbed and strict mean teachers for semi-supervised semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 4258–4267.
Zhang, Brown, Cai (b21) 2019; 47
Angelopoulos, Bates, Fannjiang, Jordan, Zrnic (b1) 2023; 382
Robins, Rotnitzky, Zhao (b12) 1994; 89
Song, Lin, and (b15) 2024; 119
Qin (b11) 1999; 27
Tan (b16) 2009; 96
Cai, Guo (b3) 2020; 82
Kawakita (10.1016/j.jspi.2025.106314_b6) 2013; 91
Belkin (10.1016/j.jspi.2025.106314_b2) 2006; 7
Miyato (10.1016/j.jspi.2025.106314_b8) 2018; 41
Zhang (10.1016/j.jspi.2025.106314_b21) 2019; 47
Cai (10.1016/j.jspi.2025.106314_b3) 2020; 82
Tan (10.1016/j.jspi.2025.106314_b17) 2011; 98
Angelopoulos (10.1016/j.jspi.2025.106314_b1) 2023; 382
Qin (10.1016/j.jspi.2025.106314_b11) 1999; 27
Zhang (10.1016/j.jspi.2025.106314_b23) 2020; 9
Qin (10.1016/j.jspi.2025.106314_b10) 1998; 85
Robins (10.1016/j.jspi.2025.106314_b12) 1994; 89
Tian (10.1016/j.jspi.2025.106314_b18) 2024
Zhang (10.1016/j.jspi.2025.106314_b22) 2023
10.1016/j.jspi.2025.106314_b14
Song (10.1016/j.jspi.2025.106314_b15) 2024; 119
Tan (10.1016/j.jspi.2025.106314_b16) 2009; 96
Grandvalet (10.1016/j.jspi.2025.106314_b5) 2006
Rubin (10.1016/j.jspi.2025.106314_b13) 1976; 63
10.1016/j.jspi.2025.106314_b4
Prentice (10.1016/j.jspi.2025.106314_b9) 1979; 66
Zhang (10.1016/j.jspi.2025.106314_b20) 2021; 109
10.1016/j.jspi.2025.106314_b7
10.1016/j.jspi.2025.106314_b19
References_xml – volume: 82
  start-page: 391
  year: 2020
  end-page: 419
  ident: b3
  article-title: Semisupervised inference for explained variance in high dimensional linear regression and its applications
  publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol.
– volume: 85
  start-page: 619
  year: 1998
  end-page: 630
  ident: b10
  article-title: Inferences for case-control and semiparametric two-sample density ratio models
  publication-title: Biometrika
– reference: Sohn, K., Berthelot, D., Carlini, N., Zhang, Z., Zhang, H., Raffel, C.A., Cubuk, E.D., Kurakin, A., Li, C.-L., 2020. FixMatch: Simplifying semi-supervised learning with consistency and confidence. In: Advances in Neural Information Processing Systems. pp. 596–608.
– reference: Liu, Y., Tian, Y., Chen, Y., Liu, F., Belagiannis, V., Carneiro, G., 2022. Perturbed and strict mean teachers for semi-supervised semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 4258–4267.
– volume: 119
  start-page: 1065
  year: 2024
  end-page: 1075
  ident: b15
  article-title: A general M-estimation theory in semi-supervised framework
  publication-title: J. Amer. Statist. Assoc.
– volume: 96
  start-page: 229
  year: 2009
  end-page: 236
  ident: b16
  article-title: A note on profile likelihood for exponential tilt mixture models
  publication-title: Biometrika
– start-page: 151
  year: 2006
  end-page: 168
  ident: b5
  article-title: Entropy regularization
  publication-title: Semi-Supervised Learning
– volume: 91
  start-page: 189
  year: 2013
  end-page: 209
  ident: b6
  article-title: Semi-supervised learning with density-ratio estimation
  publication-title: Mach. Learn.
– volume: 63
  start-page: 581
  year: 1976
  end-page: 592
  ident: b13
  article-title: Inference and missing data
  publication-title: Biometrika
– volume: 89
  start-page: 846
  year: 1994
  end-page: 866
  ident: b12
  article-title: Estimation of regression coefficients when some regressors are not always observed
  publication-title: J. Amer. Statist. Assoc.
– volume: 9
  year: 2020
  ident: b23
  article-title: Semi-supervised logistic learning based on exponential tilt mixture models
  publication-title: Stat
– volume: 382
  start-page: 669
  year: 2023
  end-page: 674
  ident: b1
  article-title: Prediction-powered inference
  publication-title: Science
– reference: Wang, J., Lukasiewicz, T., Massiceti, D., Hu, X., Pavlovic, V., Neophytou, A., 2022. NP-Match: When neural processes meet semi-supervised learning. In: International Conference on Machine Learning. pp. 22919–22934.
– year: 2023
  ident: b22
  article-title: Efficient inference on high-dimensional linear models with missing outcomes
– volume: 7
  start-page: 2399
  year: 2006
  end-page: 2434
  ident: b2
  article-title: Manifold regularization: A geometric framework for learning from labeled and unlabeled example
  publication-title: J. Mach. Learn. Res.
– volume: 47
  start-page: 2538
  year: 2019
  end-page: 2566
  ident: b21
  article-title: Semi-supervised inference: General theory and estimation of means
  publication-title: Ann. Stat.
– reference: Chen, X., Yuan, Y., Zeng, G., Wang, J., 2021. Semi-supervised semantic segmentation with cross pseudo supervision. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 2613–2622.
– volume: 41
  start-page: 1979
  year: 2018
  end-page: 1993
  ident: b8
  article-title: Virtual adversarial training: A regularization method for supervised and semi-supervised learning
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 66
  start-page: 403
  year: 1979
  end-page: 411
  ident: b9
  article-title: Logistic disease incidence models and case-control studies
  publication-title: Biometrika
– volume: 109
  start-page: 387
  year: 2021
  end-page: 403
  ident: b20
  article-title: High-dimensional semi-supervised learning: in search of optimal inference of the mean
  publication-title: Biometrika
– volume: 27
  start-page: 1368
  year: 1999
  end-page: 1384
  ident: b11
  article-title: Empirical likelihood ratio based confidence intervals for mixture proportions
  publication-title: Ann. Stat.
– year: 2024
  ident: b18
  article-title: Semi-supervised regression analysis with model misspecification and high-dimensional data
– volume: 98
  start-page: 663
  year: 2011
  end-page: 684
  ident: b17
  article-title: Efficient restricted estimators for conditional mean models with missing data
  publication-title: Biometrika
– volume: 91
  start-page: 189
  year: 2013
  ident: 10.1016/j.jspi.2025.106314_b6
  article-title: Semi-supervised learning with density-ratio estimation
  publication-title: Mach. Learn.
  doi: 10.1007/s10994-013-5329-8
– volume: 47
  start-page: 2538
  year: 2019
  ident: 10.1016/j.jspi.2025.106314_b21
  article-title: Semi-supervised inference: General theory and estimation of means
  publication-title: Ann. Stat.
  doi: 10.1214/18-AOS1756
– volume: 98
  start-page: 663
  year: 2011
  ident: 10.1016/j.jspi.2025.106314_b17
  article-title: Efficient restricted estimators for conditional mean models with missing data
  publication-title: Biometrika
  doi: 10.1093/biomet/asr007
– volume: 66
  start-page: 403
  year: 1979
  ident: 10.1016/j.jspi.2025.106314_b9
  article-title: Logistic disease incidence models and case-control studies
  publication-title: Biometrika
  doi: 10.1093/biomet/66.3.403
– year: 2024
  ident: 10.1016/j.jspi.2025.106314_b18
– volume: 119
  start-page: 1065
  year: 2024
  ident: 10.1016/j.jspi.2025.106314_b15
  article-title: A general M-estimation theory in semi-supervised framework
  publication-title: J. Amer. Statist. Assoc.
  doi: 10.1080/01621459.2023.2169699
– year: 2023
  ident: 10.1016/j.jspi.2025.106314_b22
– volume: 27
  start-page: 1368
  year: 1999
  ident: 10.1016/j.jspi.2025.106314_b11
  article-title: Empirical likelihood ratio based confidence intervals for mixture proportions
  publication-title: Ann. Stat.
  doi: 10.1214/aos/1017938930
– volume: 89
  start-page: 846
  year: 1994
  ident: 10.1016/j.jspi.2025.106314_b12
  article-title: Estimation of regression coefficients when some regressors are not always observed
  publication-title: J. Amer. Statist. Assoc.
  doi: 10.1080/01621459.1994.10476818
– volume: 82
  start-page: 391
  year: 2020
  ident: 10.1016/j.jspi.2025.106314_b3
  article-title: Semisupervised inference for explained variance in high dimensional linear regression and its applications
  publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol.
  doi: 10.1111/rssb.12357
– ident: 10.1016/j.jspi.2025.106314_b14
– ident: 10.1016/j.jspi.2025.106314_b19
– volume: 109
  start-page: 387
  year: 2021
  ident: 10.1016/j.jspi.2025.106314_b20
  article-title: High-dimensional semi-supervised learning: in search of optimal inference of the mean
  publication-title: Biometrika
  doi: 10.1093/biomet/asab042
– volume: 9
  year: 2020
  ident: 10.1016/j.jspi.2025.106314_b23
  article-title: Semi-supervised logistic learning based on exponential tilt mixture models
  publication-title: Stat
  doi: 10.1002/sta4.312
– ident: 10.1016/j.jspi.2025.106314_b4
  doi: 10.1109/CVPR46437.2021.00264
– volume: 85
  start-page: 619
  year: 1998
  ident: 10.1016/j.jspi.2025.106314_b10
  article-title: Inferences for case-control and semiparametric two-sample density ratio models
  publication-title: Biometrika
  doi: 10.1093/biomet/85.3.619
– volume: 63
  start-page: 581
  year: 1976
  ident: 10.1016/j.jspi.2025.106314_b13
  article-title: Inference and missing data
  publication-title: Biometrika
  doi: 10.1093/biomet/63.3.581
– volume: 96
  start-page: 229
  year: 2009
  ident: 10.1016/j.jspi.2025.106314_b16
  article-title: A note on profile likelihood for exponential tilt mixture models
  publication-title: Biometrika
  doi: 10.1093/biomet/asn059
– ident: 10.1016/j.jspi.2025.106314_b7
  doi: 10.1109/CVPR52688.2022.00422
– volume: 41
  start-page: 1979
  year: 2018
  ident: 10.1016/j.jspi.2025.106314_b8
  article-title: Virtual adversarial training: A regularization method for supervised and semi-supervised learning
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2018.2858821
– volume: 382
  start-page: 669
  year: 2023
  ident: 10.1016/j.jspi.2025.106314_b1
  article-title: Prediction-powered inference
  publication-title: Science
  doi: 10.1126/science.adi6000
– volume: 7
  start-page: 2399
  year: 2006
  ident: 10.1016/j.jspi.2025.106314_b2
  article-title: Manifold regularization: A geometric framework for learning from labeled and unlabeled example
  publication-title: J. Mach. Learn. Res.
– start-page: 151
  year: 2006
  ident: 10.1016/j.jspi.2025.106314_b5
  article-title: Entropy regularization
SSID ssj0000605
Score 2.42769
Snippet Consider a semi-supervised setting with a labeled dataset of binary responses and predictors and an unlabeled dataset with only the predictors. Logistic...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 106314
SubjectTerms Asymptotic efficiency
Exponential tilt mixture model
Logistic regression
Maximum likelihood estimation
Semi-supervised learning
Title On semi-supervised estimation using exponential tilt mixture models
URI https://dx.doi.org/10.1016/j.jspi.2025.106314
https://www.ncbi.nlm.nih.gov/pubmed/40837851
https://www.proquest.com/docview/3246408485
Volume 241
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED7RdoEBQXmVRxUkNhSaOHbSjKgCFVBhAKRulp3YKBVNI5JKTPx2znWCYICBMSc5tu7s83e6784AZ9IPI6JF6gZEDF3E_8SNEx2bgxdRT6QYIZgC58l9OH6mt1M2XYNRUwtjaJW177c-feWta8mg1uagyLLBoxdEGF0xDHFW-aqoBR0SxCFrQ-fy5m58_80hWyZjYJgAOKCunbE0r1lZZBgmEoaCMPDpb_fTb_hzdQ9db8FmDSCdS7vGbVhTeRc2Jl_dV8surBsEaRsw78DoIXdKNc_cclkYv1Cq1DGdNWzJomN47y-Oei8WueEN4Z-r7LVy5tm7SS04q4dyyl14vL56Go3d-uUENwm8uHIxCNNMD5kmiUokkT7TkUFaQkg8o4QNY8ok1RoNKEzuk_pKqMhL8RrTiK_2oJ3jrAfgMKK1HwrBAqqopInUigSJn8rQo4op0YPzRlu8sO0xeMMbm3GjW250y61ue8AahfIfRubov_8cd9pon-PuNykNkavFsuQIB0NqngRgPdi3ZvlaB8rR4sw__OesR7COX6ElnB1Du3pbqhNEIJXsQ-viw-_X--wTzsjaFQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED6VMgAD4k15BokNhSaOnbQjqkAF2jK0SGyWndgoCEJEUomJ3845ThAMMLBeHrbu7PN3uu_OAKfSDyOiReIGRPRcxP_E7ce6bzZeRD2RYIRgCpzHk3B4T28e2EMLBk0tjKFV1r7f-vTKW9eSbq3Nbp6m3akXRBhdMQxxqnxVtACLlKEAF_X5h__NHVseY2B4APh6XTljSV5PRZ5ikEgYCsLAp7-dTr-hz-oUulqD1Ro-Ohd2huvQUtkGrIy_eq8WG7Bs8KNtv7wJg7vMKdRL6hbz3HiFQiWO6athCxYdw3p_dNR7_poZ1hD-uUyfS-clfTeJBae6JqfYgunV5WwwdOt7E9w48PqliyGYZrrHNIlVLIn0mY4MzhJC4g4lrNenTFKt0XzCZD6pr4SKvAQPMY3oahvaGY66Cw4jWvuhECygikoaS61IEPuJDD2qmBIdOGu0xXPbHIM3rLEnbnTLjW651W0HWKNQ_sPEHL33n9-dNNrnuPZNQkNk6nVecASDITUXArAO7FizfM0D5Whx5u_9c9RjWBrOxiM-up7c7sMyPgkt9ewA2uXbXB0iFinlUbXWPgGjF9rg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+semi-supervised+estimation+using+exponential+tilt+mixture+models&rft.jtitle=Journal+of+statistical+planning+and+inference&rft.au=Tian%2C+Ye&rft.au=Zhang%2C+Xinwei&rft.au=Tan%2C+Zhiqiang&rft.date=2026-03-01&rft.issn=0378-3758&rft.volume=241&rft.spage=106314&rft_id=info:doi/10.1016%2Fj.jspi.2025.106314&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jspi_2025_106314
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-3758&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-3758&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-3758&client=summon