A novel topological centrality measure capturing biologically important proteins
Topological centrality in protein interaction networks and its biological implications have widely been investigated in the past. In the present study, a novel metric of centrality-weighted sum of loads eigenvector centrality (WSL-EC)-based on graph spectra is defined and its performance in identify...
Saved in:
Published in | Molecular bioSystems Vol. 12; no. 2; pp. 666 - 673 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
England
01.01.2016
|
Subjects | |
Online Access | Get full text |
ISSN | 1742-206X 1742-2051 1742-2051 |
DOI | 10.1039/c5mb00732a |
Cover
Abstract | Topological centrality in protein interaction networks and its biological implications have widely been investigated in the past. In the present study, a novel metric of centrality-weighted sum of loads eigenvector centrality (WSL-EC)-based on graph spectra is defined and its performance in identifying topologically and biologically important nodes is comparatively investigated with common metrics of centrality in a human protein-protein interaction network. The metric can capture nodes from peripherals of the network differently from conventional eigenvector centrality. Different metrics were found to selectively identify hub sets that are significantly associated with different biological processes. The widely accepted metrics degree centrality, betweenness centrality, subgraph centrality and eigenvector centrality are subject to a bias towards super-hubs, whereas WSL-EC is not affected by the presence of super-hubs. WSL-EC outperforms other metrics of centrality in detecting biologically central nodes such as pathogen-interacting, cancer, ageing, HIV-1 or disease-related proteins and proteins involved in immune system processes and autoimmune diseases in the human interactome.
In the present study, a novel metric of centrality-weighted sum of loads eigenvector centrality (WSL-EC)-based on graph spectra is defined and its performance in identifying topologically and biologically important nodes is comparatively investigated with common metrics of centrality in a human protein-protein interaction network. |
---|---|
AbstractList | Topological centrality in protein interaction networks and its biological implications have widely been investigated in the past. In the present study, a novel metric of centrality-weighted sum of loads eigenvector centrality (WSL-EC)-based on graph spectra is defined and its performance in identifying topologically and biologically important nodes is comparatively investigated with common metrics of centrality in a human protein-protein interaction network. The metric can capture nodes from peripherals of the network differently from conventional eigenvector centrality. Different metrics were found to selectively identify hub sets that are significantly associated with different biological processes. The widely accepted metrics degree centrality, betweenness centrality, subgraph centrality and eigenvector centrality are subject to a bias towards super-hubs, whereas WSL-EC is not affected by the presence of super-hubs. WSL-EC outperforms other metrics of centrality in detecting biologically central nodes such as pathogen-interacting, cancer, ageing, HIV-1 or disease-related proteins and proteins involved in immune system processes and autoimmune diseases in the human interactome.Topological centrality in protein interaction networks and its biological implications have widely been investigated in the past. In the present study, a novel metric of centrality-weighted sum of loads eigenvector centrality (WSL-EC)-based on graph spectra is defined and its performance in identifying topologically and biologically important nodes is comparatively investigated with common metrics of centrality in a human protein-protein interaction network. The metric can capture nodes from peripherals of the network differently from conventional eigenvector centrality. Different metrics were found to selectively identify hub sets that are significantly associated with different biological processes. The widely accepted metrics degree centrality, betweenness centrality, subgraph centrality and eigenvector centrality are subject to a bias towards super-hubs, whereas WSL-EC is not affected by the presence of super-hubs. WSL-EC outperforms other metrics of centrality in detecting biologically central nodes such as pathogen-interacting, cancer, ageing, HIV-1 or disease-related proteins and proteins involved in immune system processes and autoimmune diseases in the human interactome. Topological centrality in protein interaction networks and its biological implications have widely been investigated in the past. In the present study, a novel metric of centrality—weighted sum of loads eigenvector centrality (WSL-EC)—based on graph spectra is defined and its performance in identifying topologically and biologically important nodes is comparatively investigated with common metrics of centrality in a human protein–protein interaction network. The metric can capture nodes from peripherals of the network differently from conventional eigenvector centrality. Different metrics were found to selectively identify hub sets that are significantly associated with different biological processes. The widely accepted metrics degree centrality, betweenness centrality, subgraph centrality and eigenvector centrality are subject to a bias towards super-hubs, whereas WSL-EC is not affected by the presence of super-hubs. WSL-EC outperforms other metrics of centrality in detecting biologically central nodes such as pathogen-interacting, cancer, ageing, HIV-1 or disease-related proteins and proteins involved in immune system processes and autoimmune diseases in the human interactome. Topological centrality in protein interaction networks and its biological implications have widely been investigated in the past. In the present study, a novel metric of centrality-weighted sum of loads eigenvector centrality (WSL-EC)-based on graph spectra is defined and its performance in identifying topologically and biologically important nodes is comparatively investigated with common metrics of centrality in a human protein-protein interaction network. The metric can capture nodes from peripherals of the network differently from conventional eigenvector centrality. Different metrics were found to selectively identify hub sets that are significantly associated with different biological processes. The widely accepted metrics degree centrality, betweenness centrality, subgraph centrality and eigenvector centrality are subject to a bias towards super-hubs, whereas WSL-EC is not affected by the presence of super-hubs. WSL-EC outperforms other metrics of centrality in detecting biologically central nodes such as pathogen-interacting, cancer, ageing, HIV-1 or disease-related proteins and proteins involved in immune system processes and autoimmune diseases in the human interactome. In the present study, a novel metric of centrality-weighted sum of loads eigenvector centrality (WSL-EC)-based on graph spectra is defined and its performance in identifying topologically and biologically important nodes is comparatively investigated with common metrics of centrality in a human protein-protein interaction network. |
Author | Karabekmez, Muhammed Erkan Kirdar, Betul |
AuthorAffiliation | Department of Chemical Engineering Bogazici University |
AuthorAffiliation_xml | – sequence: 0 name: Bogazici University – sequence: 0 name: Department of Chemical Engineering |
Author_xml | – sequence: 1 givenname: Muhammed Erkan surname: Karabekmez fullname: Karabekmez, Muhammed Erkan – sequence: 2 givenname: Betul surname: Kirdar fullname: Kirdar, Betul |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26699451$$D View this record in MEDLINE/PubMed |
BookMark | eNpt0UtLxDAQB_AgK-5DL96VHkWoJulrc1wXX7CiBwVvJZ1Ol0ja1CQV9tvbdR-CeJo5_GYG_jMmg8Y0SMgpo1eMRuIakrqgNIu4PCAjlsU85DRhg32fvg_J2LkPSqNpzOgRGfI0FSJO2Ii8zILGfKEOvGmNNksFUgeAjbdSK78KapSusxiAbH1nVbMMCrVzehWoujXWy8YHrTUeVeOOyWEltcOTbZ2Qt7vb1_lDuHi-f5zPFiFEVPiQcSEFVgC0FDGfSh6VrJRZkhUAggKmJRbZNJ5CAb1iKUCKkFRQcpQYUx5NyMVmb3_4s0Pn81o5QK1lg6ZzOctSKmgci7Sn51vaFTWWeWtVLe0q36XQg8sNAGucs1jtCaP5OuJ8njzd_EQ86zH9g0F56ZVZZ6b0_yNnmxHrYL_692vRN8V1ihY |
CitedBy_id | crossref_primary_10_1109_ACCESS_2021_3094196 crossref_primary_10_1007_s12020_019_02181_8 crossref_primary_10_4236_ojbiphy_2024_142009 crossref_primary_10_1186_s40537_017_0076_5 crossref_primary_10_1016_j_heliyon_2018_e00867 crossref_primary_10_1016_j_csbj_2016_06_002 crossref_primary_10_1186_s12920_023_01596_7 |
Cites_doi | 10.1038/nphys2556 10.1093/nar/28.1.289 10.1103/PhysRevLett.89.208701 10.1093/nar/gkn760 10.1093/bioinformatics/bti004 10.1093/nar/28.1.27 10.1007/s11693-012-9094-y 10.1214/aoms/1177706647 10.1103/PhysRevLett.87.258701 10.1371/journal.pone.0023016 10.1038/nbt1338 10.1002/pmic.200400962 10.1021/pr060106e 10.1186/1752-0509-5-S3-S10 10.1093/bioinformatics/btl390 10.1002/bit.21317 10.1093/nar/gks1155 10.1093/bioinformatics/bth456 10.1101/gad.1528707 10.1073/pnas.0701361104 10.1038/35019019 10.1101/gr.071852.107 10.1137/130950550 10.1103/PhysRevE.80.040902 10.1371/journal.ppat.0040032 10.1103/PhysRevE.71.056103 10.1089/cmb.2008.0240 10.1038/nrg1272 10.1093/nar/gkj109 10.1209/0295-5075/86/28003 10.1186/1752-0509-6-34 10.1126/scisignal.2001014 10.1186/1752-0509-6-28 10.1093/nar/gkr798 10.1038/150563a0 10.1101/gr.1680803 10.1371/journal.pcbi.0030059 10.1186/1471-2180-9-243 10.1093/nar/gkn708 10.1038/75556 |
ContentType | Journal Article |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1039/c5mb00732a |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1742-2051 |
EndPage | 673 |
ExternalDocumentID | 26699451 10_1039_C5MB00732A c5mb00732a |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -JG 0-7 0R~ 123 29M 4.4 705 70~ 7~J AAEMU AAIWI AAJAE AANOJ AAWGC AAXHV AAXPP ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFO ACGFS ACIWK ACLDK ACPRK ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRAH AFVBQ AGEGJ AGRSR AGSTE AHGCF ALMA_UNASSIGNED_HOLDINGS ANBJS ANUXI APEMP ASKNT AUDPV BLAPV C6K CS3 EBS ECGLT EE0 EF- EJD F5P GGIMP GNO H13 HZ~ H~N J3I M4U N9A O9- OK1 P2P R7B RAOCF RCNCU RNS RPMJG RRC RSCEA SKA SLH UCJ VH6 XSW 0UZ 1TJ 53G 71~ AAYXX ACHDF ACRPL ADNMO ADXHL AFFNX AFRZK AGQPQ AHGXI AKMSF ALSGL ANLMG ASPBG AVWKF AZFZN BBWZM C1A CITATION EEHRC FEDTE HVGLF J3G J3H L-8 NDZJH R56 RCLXC X7L XJT CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c309t-129a9efcc0d9428a23d1da757bcc90ce6deb7848cbcefc16cc6ec5fcd2eae4023 |
ISSN | 1742-206X 1742-2051 |
IngestDate | Fri Jul 11 08:25:19 EDT 2025 Wed Feb 19 02:00:12 EST 2025 Tue Jul 01 02:40:34 EDT 2025 Thu Apr 24 23:03:31 EDT 2025 Tue Dec 17 20:59:56 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c309t-129a9efcc0d9428a23d1da757bcc90ce6deb7848cbcefc16cc6ec5fcd2eae4023 |
Notes | 10.1039/c5mb00732a Electronic supplementary information (ESI) available. See DOI ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 26699451 |
PQID | 1760904496 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | crossref_primary_10_1039_C5MB00732A rsc_primary_c5mb00732a pubmed_primary_26699451 proquest_miscellaneous_1760904496 crossref_citationtrail_10_1039_C5MB00732A |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-01-01 |
PublicationDateYYYYMMDD | 2016-01-01 |
PublicationDate_xml | – month: 01 year: 2016 text: 2016-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Molecular bioSystems |
PublicationTitleAlternate | Mol Biosyst |
PublicationYear | 2016 |
References | Dyer (C5MB00732A-(cit14)/*[position()=1]) 2008; 4 Benzi (C5MB00732A-(cit19)/*[position()=1]) 2015; 36 Bhardwaj (C5MB00732A-(cit22)/*[position()=1]) 2010; 3 Barabasi (C5MB00732A-(cit1)/*[position()=1]) 2004; 5 Milenkovic (C5MB00732A-(cit9)/*[position()=1]) 2011; 6 Estrada (C5MB00732A-(cit21)/*[position()=1]) 2006; 5 Fu (C5MB00732A-(cit35)/*[position()=1]) 2009; 37 Holman (C5MB00732A-(cit31)/*[position()=1]) 2009; 9 Tacutu (C5MB00732A-(cit36)/*[position()=1]) 2013; 41 Roy (C5MB00732A-(cit6)/*[position()=1]) 2012; 6 Roy (C5MB00732A-(cit24)/*[position()=1]) 2009; 80 Newman (C5MB00732A-(cit27)/*[position()=1]) 2002; 89 Jonsson (C5MB00732A-(cit11)/*[position()=1]) 2006; 22 Stark (C5MB00732A-(cit4)/*[position()=1]) 2006; 34 Hao (C5MB00732A-(cit25)/*[position()=1]) 2012; 6 Tukey (C5MB00732A-(cit32)/*[position()=1]) 1958; 29 Aguirre (C5MB00732A-(cit17)/*[position()=1]) 2013; 9 Ashburner (C5MB00732A-(cit39)/*[position()=1]) 2000; 25 Kanehisa (C5MB00732A-(cit42)/*[position()=1]) 2000; 28 Filkov (C5MB00732A-(cit23)/*[position()=1]) 2009; 86 Goh (C5MB00732A-(cit38)/*[position()=1]) 2007; 104 Yıldırım (C5MB00732A-(cit12)/*[position()=1]) 2007; 25 Estrada (C5MB00732A-(cit18)/*[position()=1]) 2005; 71 Xenarios (C5MB00732A-(cit2)/*[position()=1]) 2000; 28 Ferrarini (C5MB00732A-(cit13)/*[position()=1]) 2004; 21 Arga (C5MB00732A-(cit34)/*[position()=1]) 2007; 97 Albert (C5MB00732A-(cit29)/*[position()=1]) 2000; 406 Jensen (C5MB00732A-(cit5)/*[position()=1]) 2008; 37 Cariaso (C5MB00732A-(cit40)/*[position()=1]) 2012; 40 Yu (C5MB00732A-(cit15)/*[position()=1]) 2007; 3 Peri (C5MB00732A-(cit3)/*[position()=1]) 2003; 13 Zhu (C5MB00732A-(cit30)/*[position()=1]) 2007; 21 Forbes (C5MB00732A-(cit37)/*[position()=1]) 2008; 10 Boyle (C5MB00732A-(cit41)/*[position()=1]) 2004; 20 Ideker (C5MB00732A-(cit10)/*[position()=1]) 2008; 18 Pastor-Satorras (C5MB00732A-(cit26)/*[position()=1]) 2001; 87 Yuzuak (C5MB00732A-(cit33)/*[position()=1]) Waddington (C5MB00732A-(cit28)/*[position()=1]) 1942; 3811 de Lomana (C5MB00732A-(cit7)/*[position()=1]) 2010; 17 Wang (C5MB00732A-(cit8)/*[position()=1]) 2011; 5 Wuchty (C5MB00732A-(cit20)/*[position()=1]) 2005; 5 Mcdermott (C5MB00732A-(cit16)/*[position()=1]) 2012; 6 |
References_xml | – doi: Yuzuak – volume: 9 start-page: 230 year: 2013 ident: C5MB00732A-(cit17)/*[position()=1] publication-title: Nat. Phys. doi: 10.1038/nphys2556 – volume: 28 start-page: 289 year: 2000 ident: C5MB00732A-(cit2)/*[position()=1] publication-title: Nucleic Acids Res. doi: 10.1093/nar/28.1.289 – volume: 89 start-page: 208701 year: 2002 ident: C5MB00732A-(cit27)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.89.208701 – volume: 37 start-page: D412 year: 2008 ident: C5MB00732A-(cit5)/*[position()=1] publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkn760 – volume: 21 start-page: 338 issue: 3 year: 2004 ident: C5MB00732A-(cit13)/*[position()=1] publication-title: Bioinformatics doi: 10.1093/bioinformatics/bti004 – volume: 28 start-page: 27 issue: 1 year: 2000 ident: C5MB00732A-(cit42)/*[position()=1] publication-title: Nucleic Acids Res. doi: 10.1093/nar/28.1.27 – volume: 6 start-page: 31 issue: 1–2 year: 2012 ident: C5MB00732A-(cit6)/*[position()=1] publication-title: Syst. Synth. Biol. doi: 10.1007/s11693-012-9094-y – volume: 29 start-page: 614 year: 1958 ident: C5MB00732A-(cit32)/*[position()=1] publication-title: Ann. Math. Stat. doi: 10.1214/aoms/1177706647 – volume: 87 start-page: 258701 year: 2001 ident: C5MB00732A-(cit26)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.87.258701 – volume: 6 start-page: e23016 issue: 8 year: 2011 ident: C5MB00732A-(cit9)/*[position()=1] publication-title: PLoS One doi: 10.1371/journal.pone.0023016 – volume: 25 start-page: 1119 issue: 10 year: 2007 ident: C5MB00732A-(cit12)/*[position()=1] publication-title: Nat. Biotechnol. doi: 10.1038/nbt1338 – volume: 5 start-page: 444 year: 2005 ident: C5MB00732A-(cit20)/*[position()=1] publication-title: Proteomics doi: 10.1002/pmic.200400962 – volume: 5 start-page: 2177 year: 2006 ident: C5MB00732A-(cit21)/*[position()=1] publication-title: J. Proteome Res. doi: 10.1021/pr060106e – volume: 5 start-page: S10 issue: suppl 3 year: 2011 ident: C5MB00732A-(cit8)/*[position()=1] publication-title: BMC Syst. Biol. doi: 10.1186/1752-0509-5-S3-S10 – volume: 22 start-page: 2291 issue: 18 year: 2006 ident: C5MB00732A-(cit11)/*[position()=1] publication-title: Bioinformatics doi: 10.1093/bioinformatics/btl390 – volume: 97 start-page: 1246 issue: 5 year: 2007 ident: C5MB00732A-(cit34)/*[position()=1] publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.21317 – volume: 41 start-page: D1027 issue: D1 year: 2013 ident: C5MB00732A-(cit36)/*[position()=1] publication-title: Nucleic Acids Res. doi: 10.1093/nar/gks1155 – volume: 20 start-page: 3710 issue: 18 year: 2004 ident: C5MB00732A-(cit41)/*[position()=1] publication-title: Bioinformatics doi: 10.1093/bioinformatics/bth456 – volume: 21 start-page: 1010 year: 2007 ident: C5MB00732A-(cit30)/*[position()=1] publication-title: Genes Dev. doi: 10.1101/gad.1528707 – volume: 104 start-page: 8685 issue: 21 year: 2007 ident: C5MB00732A-(cit38)/*[position()=1] publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0701361104 – volume: 406 start-page: 378 year: 2000 ident: C5MB00732A-(cit29)/*[position()=1] publication-title: Nature doi: 10.1038/35019019 – volume: 18 start-page: 644 year: 2008 ident: C5MB00732A-(cit10)/*[position()=1] publication-title: Genome Res. doi: 10.1101/gr.071852.107 – volume: 36 start-page: 686 issue: 2 year: 2015 ident: C5MB00732A-(cit19)/*[position()=1] publication-title: SIAM J. Matrix Anal. Appl. doi: 10.1137/130950550 – volume: 80 start-page: 040902 issue: 4 year: 2009 ident: C5MB00732A-(cit24)/*[position()=1] publication-title: Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. doi: 10.1103/PhysRevE.80.040902 – volume: 4 start-page: e32 issue: 2 year: 2008 ident: C5MB00732A-(cit14)/*[position()=1] publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.0040032 – volume: 71 start-page: 056103 year: 2005 ident: C5MB00732A-(cit18)/*[position()=1] publication-title: Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. doi: 10.1103/PhysRevE.71.056103 – volume: 17 start-page: 869 issue: 7 year: 2010 ident: C5MB00732A-(cit7)/*[position()=1] publication-title: J. Comput. Biol. doi: 10.1089/cmb.2008.0240 – ident: C5MB00732A-(cit33)/*[position()=1] – volume: 10 start-page: 11 year: 2008 ident: C5MB00732A-(cit37)/*[position()=1] publication-title: Curr. Protoc. Hum. Genet. – volume: 5 start-page: 101 year: 2004 ident: C5MB00732A-(cit1)/*[position()=1] publication-title: Nat. Rev. Genet. doi: 10.1038/nrg1272 – volume: 34 start-page: D535 year: 2006 ident: C5MB00732A-(cit4)/*[position()=1] publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkj109 – volume: 86 start-page: 28003 year: 2009 ident: C5MB00732A-(cit23)/*[position()=1] publication-title: EPL doi: 10.1209/0295-5075/86/28003 – volume: 6 start-page: 34 year: 2012 ident: C5MB00732A-(cit25)/*[position()=1] publication-title: BMC Syst. Biol. doi: 10.1186/1752-0509-6-34 – volume: 3 start-page: ra79 issue: 146 year: 2010 ident: C5MB00732A-(cit22)/*[position()=1] publication-title: Sci. Signaling doi: 10.1126/scisignal.2001014 – volume: 6 start-page: 28 year: 2012 ident: C5MB00732A-(cit16)/*[position()=1] publication-title: BMC Syst. Biol. doi: 10.1186/1752-0509-6-28 – volume: 40 start-page: D1308 year: 2012 ident: C5MB00732A-(cit40)/*[position()=1] publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkr798 – volume: 3811 start-page: 563 year: 1942 ident: C5MB00732A-(cit28)/*[position()=1] publication-title: Nature doi: 10.1038/150563a0 – volume: 13 start-page: 2363 year: 2003 ident: C5MB00732A-(cit3)/*[position()=1] publication-title: Genome Res. doi: 10.1101/gr.1680803 – volume: 3 start-page: e59 issue: 4 year: 2007 ident: C5MB00732A-(cit15)/*[position()=1] publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.0030059 – volume: 9 start-page: 43 year: 2009 ident: C5MB00732A-(cit31)/*[position()=1] publication-title: BMC Microbiol. doi: 10.1186/1471-2180-9-243 – volume: 37 start-page: D417 issue: Database issue year: 2009 ident: C5MB00732A-(cit35)/*[position()=1] publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkn708 – volume: 25 start-page: 25 issue: 1 year: 2000 ident: C5MB00732A-(cit39)/*[position()=1] publication-title: Nat. Genet. doi: 10.1038/75556 |
SSID | ssj0038410 |
Score | 2.1388254 |
Snippet | Topological centrality in protein interaction networks and its biological implications have widely been investigated in the past. In the present study, a novel... |
SourceID | proquest pubmed crossref rsc |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 666 |
SubjectTerms | Area Under Curve Cluster Analysis Gene Ontology Genetic Predisposition to Disease Humans Models, Genetic Protein Interaction Maps ROC Curve |
Title | A novel topological centrality measure capturing biologically important proteins |
URI | https://www.ncbi.nlm.nih.gov/pubmed/26699451 https://www.proquest.com/docview/1760904496 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nj9MwELVgV0hcEF8L5UtBcEFVIImTuDlmV10tqF04pFJvkT12BNo2rUqKtPx6xrGdBG0PC5eoslwr8rMmb2Y88wh5XwnKRRIzH8kyoIPCKn8CHHwFLEmrUMig1ViaX6YXi_jLMln2knVtdUkjPsLvg3Ul_4MqjiGuukr2H5DtFsUB_I344hMRxuetMM7H9eaXWiF_3HY2zN621OR6beJ_Y-DbxlQjmpZLet7qWhdIau5dN-O2WcMPG7dz8k5ON1f_adjXXFtnvuNCXa1N9Hm-_67D3xJt6hUfJPV30lzePlWNvX1oowvhMLpgDCLT5TuBbQqrDow5KxoNTks0MImpUVW5YaoDqjudQrIWOlsYDT5ILgl_-bU8X8xmZTFdFnfJccSYTsQf59Pi88x9bekkDm3Rq3kn14KWZp_6tf8mHTc8CeQVO6f30vKK4iF5YB0CLzfoPiJ3VP2Y3DMSoddPyLfcazH2Bhh7PcaexdjrMPaGGHsdxp7D-ClZnE-LswvfqmD4QIOs8ZGQ8UxVAIHM0FfkEZWh5CxhAiALQKVSCTaJJyAAZ4UpQKogqUBGiqsYKdkJOao3tXpOvDTNMtDlxlUiYqko5wGLqObE6MVLSUfkg9umEmyLeK1Usirbqwo0K8-S-Wm7pfmIvOvmbk1jlIOz3rrdLtFu6WQUr9Vm_7MMWRpkQRxn6Yg8MzB060T6ReMkHJETxKUb7vF8cYtlX5L7_YF-RY6a3V69RgLZiDf2DP0BFzR2OA |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+topological+centrality+measure+capturing+biologically+important+proteins&rft.jtitle=Molecular+bioSystems&rft.au=Karabekmez%2C+Muhammed+Erkan&rft.au=Kirdar%2C+Betul&rft.date=2016-01-01&rft.issn=1742-2051&rft.eissn=1742-2051&rft.volume=12&rft.issue=2&rft.spage=666&rft_id=info:doi/10.1039%2Fc5mb00732a&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-206X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-206X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-206X&client=summon |