A novel topological centrality measure capturing biologically important proteins

Topological centrality in protein interaction networks and its biological implications have widely been investigated in the past. In the present study, a novel metric of centrality-weighted sum of loads eigenvector centrality (WSL-EC)-based on graph spectra is defined and its performance in identify...

Full description

Saved in:
Bibliographic Details
Published inMolecular bioSystems Vol. 12; no. 2; pp. 666 - 673
Main Authors Karabekmez, Muhammed Erkan, Kirdar, Betul
Format Journal Article
LanguageEnglish
Published England 01.01.2016
Subjects
Online AccessGet full text
ISSN1742-206X
1742-2051
1742-2051
DOI10.1039/c5mb00732a

Cover

Abstract Topological centrality in protein interaction networks and its biological implications have widely been investigated in the past. In the present study, a novel metric of centrality-weighted sum of loads eigenvector centrality (WSL-EC)-based on graph spectra is defined and its performance in identifying topologically and biologically important nodes is comparatively investigated with common metrics of centrality in a human protein-protein interaction network. The metric can capture nodes from peripherals of the network differently from conventional eigenvector centrality. Different metrics were found to selectively identify hub sets that are significantly associated with different biological processes. The widely accepted metrics degree centrality, betweenness centrality, subgraph centrality and eigenvector centrality are subject to a bias towards super-hubs, whereas WSL-EC is not affected by the presence of super-hubs. WSL-EC outperforms other metrics of centrality in detecting biologically central nodes such as pathogen-interacting, cancer, ageing, HIV-1 or disease-related proteins and proteins involved in immune system processes and autoimmune diseases in the human interactome. In the present study, a novel metric of centrality-weighted sum of loads eigenvector centrality (WSL-EC)-based on graph spectra is defined and its performance in identifying topologically and biologically important nodes is comparatively investigated with common metrics of centrality in a human protein-protein interaction network.
AbstractList Topological centrality in protein interaction networks and its biological implications have widely been investigated in the past. In the present study, a novel metric of centrality-weighted sum of loads eigenvector centrality (WSL-EC)-based on graph spectra is defined and its performance in identifying topologically and biologically important nodes is comparatively investigated with common metrics of centrality in a human protein-protein interaction network. The metric can capture nodes from peripherals of the network differently from conventional eigenvector centrality. Different metrics were found to selectively identify hub sets that are significantly associated with different biological processes. The widely accepted metrics degree centrality, betweenness centrality, subgraph centrality and eigenvector centrality are subject to a bias towards super-hubs, whereas WSL-EC is not affected by the presence of super-hubs. WSL-EC outperforms other metrics of centrality in detecting biologically central nodes such as pathogen-interacting, cancer, ageing, HIV-1 or disease-related proteins and proteins involved in immune system processes and autoimmune diseases in the human interactome.Topological centrality in protein interaction networks and its biological implications have widely been investigated in the past. In the present study, a novel metric of centrality-weighted sum of loads eigenvector centrality (WSL-EC)-based on graph spectra is defined and its performance in identifying topologically and biologically important nodes is comparatively investigated with common metrics of centrality in a human protein-protein interaction network. The metric can capture nodes from peripherals of the network differently from conventional eigenvector centrality. Different metrics were found to selectively identify hub sets that are significantly associated with different biological processes. The widely accepted metrics degree centrality, betweenness centrality, subgraph centrality and eigenvector centrality are subject to a bias towards super-hubs, whereas WSL-EC is not affected by the presence of super-hubs. WSL-EC outperforms other metrics of centrality in detecting biologically central nodes such as pathogen-interacting, cancer, ageing, HIV-1 or disease-related proteins and proteins involved in immune system processes and autoimmune diseases in the human interactome.
Topological centrality in protein interaction networks and its biological implications have widely been investigated in the past. In the present study, a novel metric of centrality—weighted sum of loads eigenvector centrality (WSL-EC)—based on graph spectra is defined and its performance in identifying topologically and biologically important nodes is comparatively investigated with common metrics of centrality in a human protein–protein interaction network. The metric can capture nodes from peripherals of the network differently from conventional eigenvector centrality. Different metrics were found to selectively identify hub sets that are significantly associated with different biological processes. The widely accepted metrics degree centrality, betweenness centrality, subgraph centrality and eigenvector centrality are subject to a bias towards super-hubs, whereas WSL-EC is not affected by the presence of super-hubs. WSL-EC outperforms other metrics of centrality in detecting biologically central nodes such as pathogen-interacting, cancer, ageing, HIV-1 or disease-related proteins and proteins involved in immune system processes and autoimmune diseases in the human interactome.
Topological centrality in protein interaction networks and its biological implications have widely been investigated in the past. In the present study, a novel metric of centrality-weighted sum of loads eigenvector centrality (WSL-EC)-based on graph spectra is defined and its performance in identifying topologically and biologically important nodes is comparatively investigated with common metrics of centrality in a human protein-protein interaction network. The metric can capture nodes from peripherals of the network differently from conventional eigenvector centrality. Different metrics were found to selectively identify hub sets that are significantly associated with different biological processes. The widely accepted metrics degree centrality, betweenness centrality, subgraph centrality and eigenvector centrality are subject to a bias towards super-hubs, whereas WSL-EC is not affected by the presence of super-hubs. WSL-EC outperforms other metrics of centrality in detecting biologically central nodes such as pathogen-interacting, cancer, ageing, HIV-1 or disease-related proteins and proteins involved in immune system processes and autoimmune diseases in the human interactome. In the present study, a novel metric of centrality-weighted sum of loads eigenvector centrality (WSL-EC)-based on graph spectra is defined and its performance in identifying topologically and biologically important nodes is comparatively investigated with common metrics of centrality in a human protein-protein interaction network.
Author Karabekmez, Muhammed Erkan
Kirdar, Betul
AuthorAffiliation Department of Chemical Engineering
Bogazici University
AuthorAffiliation_xml – sequence: 0
  name: Bogazici University
– sequence: 0
  name: Department of Chemical Engineering
Author_xml – sequence: 1
  givenname: Muhammed Erkan
  surname: Karabekmez
  fullname: Karabekmez, Muhammed Erkan
– sequence: 2
  givenname: Betul
  surname: Kirdar
  fullname: Kirdar, Betul
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26699451$$D View this record in MEDLINE/PubMed
BookMark eNpt0UtLxDAQB_AgK-5DL96VHkWoJulrc1wXX7CiBwVvJZ1Ol0ja1CQV9tvbdR-CeJo5_GYG_jMmg8Y0SMgpo1eMRuIakrqgNIu4PCAjlsU85DRhg32fvg_J2LkPSqNpzOgRGfI0FSJO2Ii8zILGfKEOvGmNNksFUgeAjbdSK78KapSusxiAbH1nVbMMCrVzehWoujXWy8YHrTUeVeOOyWEltcOTbZ2Qt7vb1_lDuHi-f5zPFiFEVPiQcSEFVgC0FDGfSh6VrJRZkhUAggKmJRbZNJ5CAb1iKUCKkFRQcpQYUx5NyMVmb3_4s0Pn81o5QK1lg6ZzOctSKmgci7Sn51vaFTWWeWtVLe0q36XQg8sNAGucs1jtCaP5OuJ8njzd_EQ86zH9g0F56ZVZZ6b0_yNnmxHrYL_692vRN8V1ihY
CitedBy_id crossref_primary_10_1109_ACCESS_2021_3094196
crossref_primary_10_1007_s12020_019_02181_8
crossref_primary_10_4236_ojbiphy_2024_142009
crossref_primary_10_1186_s40537_017_0076_5
crossref_primary_10_1016_j_heliyon_2018_e00867
crossref_primary_10_1016_j_csbj_2016_06_002
crossref_primary_10_1186_s12920_023_01596_7
Cites_doi 10.1038/nphys2556
10.1093/nar/28.1.289
10.1103/PhysRevLett.89.208701
10.1093/nar/gkn760
10.1093/bioinformatics/bti004
10.1093/nar/28.1.27
10.1007/s11693-012-9094-y
10.1214/aoms/1177706647
10.1103/PhysRevLett.87.258701
10.1371/journal.pone.0023016
10.1038/nbt1338
10.1002/pmic.200400962
10.1021/pr060106e
10.1186/1752-0509-5-S3-S10
10.1093/bioinformatics/btl390
10.1002/bit.21317
10.1093/nar/gks1155
10.1093/bioinformatics/bth456
10.1101/gad.1528707
10.1073/pnas.0701361104
10.1038/35019019
10.1101/gr.071852.107
10.1137/130950550
10.1103/PhysRevE.80.040902
10.1371/journal.ppat.0040032
10.1103/PhysRevE.71.056103
10.1089/cmb.2008.0240
10.1038/nrg1272
10.1093/nar/gkj109
10.1209/0295-5075/86/28003
10.1186/1752-0509-6-34
10.1126/scisignal.2001014
10.1186/1752-0509-6-28
10.1093/nar/gkr798
10.1038/150563a0
10.1101/gr.1680803
10.1371/journal.pcbi.0030059
10.1186/1471-2180-9-243
10.1093/nar/gkn708
10.1038/75556
ContentType Journal Article
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1039/c5mb00732a
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1742-2051
EndPage 673
ExternalDocumentID 26699451
10_1039_C5MB00732A
c5mb00732a
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-JG
0-7
0R~
123
29M
4.4
705
70~
7~J
AAEMU
AAIWI
AAJAE
AANOJ
AAWGC
AAXHV
AAXPP
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFO
ACGFS
ACIWK
ACLDK
ACPRK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRAH
AFVBQ
AGEGJ
AGRSR
AGSTE
AHGCF
ALMA_UNASSIGNED_HOLDINGS
ANBJS
ANUXI
APEMP
ASKNT
AUDPV
BLAPV
C6K
CS3
EBS
ECGLT
EE0
EF-
EJD
F5P
GGIMP
GNO
H13
HZ~
H~N
J3I
M4U
N9A
O9-
OK1
P2P
R7B
RAOCF
RCNCU
RNS
RPMJG
RRC
RSCEA
SKA
SLH
UCJ
VH6
XSW
0UZ
1TJ
53G
71~
AAYXX
ACHDF
ACRPL
ADNMO
ADXHL
AFFNX
AFRZK
AGQPQ
AHGXI
AKMSF
ALSGL
ANLMG
ASPBG
AVWKF
AZFZN
BBWZM
C1A
CITATION
EEHRC
FEDTE
HVGLF
J3G
J3H
L-8
NDZJH
R56
RCLXC
X7L
XJT
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c309t-129a9efcc0d9428a23d1da757bcc90ce6deb7848cbcefc16cc6ec5fcd2eae4023
ISSN 1742-206X
1742-2051
IngestDate Fri Jul 11 08:25:19 EDT 2025
Wed Feb 19 02:00:12 EST 2025
Tue Jul 01 02:40:34 EDT 2025
Thu Apr 24 23:03:31 EDT 2025
Tue Dec 17 20:59:56 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c309t-129a9efcc0d9428a23d1da757bcc90ce6deb7848cbcefc16cc6ec5fcd2eae4023
Notes 10.1039/c5mb00732a
Electronic supplementary information (ESI) available. See DOI
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 26699451
PQID 1760904496
PQPubID 23479
PageCount 8
ParticipantIDs crossref_primary_10_1039_C5MB00732A
rsc_primary_c5mb00732a
pubmed_primary_26699451
proquest_miscellaneous_1760904496
crossref_citationtrail_10_1039_C5MB00732A
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-01-01
PublicationDateYYYYMMDD 2016-01-01
PublicationDate_xml – month: 01
  year: 2016
  text: 2016-01-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Molecular bioSystems
PublicationTitleAlternate Mol Biosyst
PublicationYear 2016
References Dyer (C5MB00732A-(cit14)/*[position()=1]) 2008; 4
Benzi (C5MB00732A-(cit19)/*[position()=1]) 2015; 36
Bhardwaj (C5MB00732A-(cit22)/*[position()=1]) 2010; 3
Barabasi (C5MB00732A-(cit1)/*[position()=1]) 2004; 5
Milenkovic (C5MB00732A-(cit9)/*[position()=1]) 2011; 6
Estrada (C5MB00732A-(cit21)/*[position()=1]) 2006; 5
Fu (C5MB00732A-(cit35)/*[position()=1]) 2009; 37
Holman (C5MB00732A-(cit31)/*[position()=1]) 2009; 9
Tacutu (C5MB00732A-(cit36)/*[position()=1]) 2013; 41
Roy (C5MB00732A-(cit6)/*[position()=1]) 2012; 6
Roy (C5MB00732A-(cit24)/*[position()=1]) 2009; 80
Newman (C5MB00732A-(cit27)/*[position()=1]) 2002; 89
Jonsson (C5MB00732A-(cit11)/*[position()=1]) 2006; 22
Stark (C5MB00732A-(cit4)/*[position()=1]) 2006; 34
Hao (C5MB00732A-(cit25)/*[position()=1]) 2012; 6
Tukey (C5MB00732A-(cit32)/*[position()=1]) 1958; 29
Aguirre (C5MB00732A-(cit17)/*[position()=1]) 2013; 9
Ashburner (C5MB00732A-(cit39)/*[position()=1]) 2000; 25
Kanehisa (C5MB00732A-(cit42)/*[position()=1]) 2000; 28
Filkov (C5MB00732A-(cit23)/*[position()=1]) 2009; 86
Goh (C5MB00732A-(cit38)/*[position()=1]) 2007; 104
Yıldırım (C5MB00732A-(cit12)/*[position()=1]) 2007; 25
Estrada (C5MB00732A-(cit18)/*[position()=1]) 2005; 71
Xenarios (C5MB00732A-(cit2)/*[position()=1]) 2000; 28
Ferrarini (C5MB00732A-(cit13)/*[position()=1]) 2004; 21
Arga (C5MB00732A-(cit34)/*[position()=1]) 2007; 97
Albert (C5MB00732A-(cit29)/*[position()=1]) 2000; 406
Jensen (C5MB00732A-(cit5)/*[position()=1]) 2008; 37
Cariaso (C5MB00732A-(cit40)/*[position()=1]) 2012; 40
Yu (C5MB00732A-(cit15)/*[position()=1]) 2007; 3
Peri (C5MB00732A-(cit3)/*[position()=1]) 2003; 13
Zhu (C5MB00732A-(cit30)/*[position()=1]) 2007; 21
Forbes (C5MB00732A-(cit37)/*[position()=1]) 2008; 10
Boyle (C5MB00732A-(cit41)/*[position()=1]) 2004; 20
Ideker (C5MB00732A-(cit10)/*[position()=1]) 2008; 18
Pastor-Satorras (C5MB00732A-(cit26)/*[position()=1]) 2001; 87
Yuzuak (C5MB00732A-(cit33)/*[position()=1])
Waddington (C5MB00732A-(cit28)/*[position()=1]) 1942; 3811
de Lomana (C5MB00732A-(cit7)/*[position()=1]) 2010; 17
Wang (C5MB00732A-(cit8)/*[position()=1]) 2011; 5
Wuchty (C5MB00732A-(cit20)/*[position()=1]) 2005; 5
Mcdermott (C5MB00732A-(cit16)/*[position()=1]) 2012; 6
References_xml – doi: Yuzuak
– volume: 9
  start-page: 230
  year: 2013
  ident: C5MB00732A-(cit17)/*[position()=1]
  publication-title: Nat. Phys.
  doi: 10.1038/nphys2556
– volume: 28
  start-page: 289
  year: 2000
  ident: C5MB00732A-(cit2)/*[position()=1]
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/28.1.289
– volume: 89
  start-page: 208701
  year: 2002
  ident: C5MB00732A-(cit27)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.89.208701
– volume: 37
  start-page: D412
  year: 2008
  ident: C5MB00732A-(cit5)/*[position()=1]
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkn760
– volume: 21
  start-page: 338
  issue: 3
  year: 2004
  ident: C5MB00732A-(cit13)/*[position()=1]
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti004
– volume: 28
  start-page: 27
  issue: 1
  year: 2000
  ident: C5MB00732A-(cit42)/*[position()=1]
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/28.1.27
– volume: 6
  start-page: 31
  issue: 1–2
  year: 2012
  ident: C5MB00732A-(cit6)/*[position()=1]
  publication-title: Syst. Synth. Biol.
  doi: 10.1007/s11693-012-9094-y
– volume: 29
  start-page: 614
  year: 1958
  ident: C5MB00732A-(cit32)/*[position()=1]
  publication-title: Ann. Math. Stat.
  doi: 10.1214/aoms/1177706647
– volume: 87
  start-page: 258701
  year: 2001
  ident: C5MB00732A-(cit26)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.87.258701
– volume: 6
  start-page: e23016
  issue: 8
  year: 2011
  ident: C5MB00732A-(cit9)/*[position()=1]
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0023016
– volume: 25
  start-page: 1119
  issue: 10
  year: 2007
  ident: C5MB00732A-(cit12)/*[position()=1]
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt1338
– volume: 5
  start-page: 444
  year: 2005
  ident: C5MB00732A-(cit20)/*[position()=1]
  publication-title: Proteomics
  doi: 10.1002/pmic.200400962
– volume: 5
  start-page: 2177
  year: 2006
  ident: C5MB00732A-(cit21)/*[position()=1]
  publication-title: J. Proteome Res.
  doi: 10.1021/pr060106e
– volume: 5
  start-page: S10
  issue: suppl 3
  year: 2011
  ident: C5MB00732A-(cit8)/*[position()=1]
  publication-title: BMC Syst. Biol.
  doi: 10.1186/1752-0509-5-S3-S10
– volume: 22
  start-page: 2291
  issue: 18
  year: 2006
  ident: C5MB00732A-(cit11)/*[position()=1]
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btl390
– volume: 97
  start-page: 1246
  issue: 5
  year: 2007
  ident: C5MB00732A-(cit34)/*[position()=1]
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.21317
– volume: 41
  start-page: D1027
  issue: D1
  year: 2013
  ident: C5MB00732A-(cit36)/*[position()=1]
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gks1155
– volume: 20
  start-page: 3710
  issue: 18
  year: 2004
  ident: C5MB00732A-(cit41)/*[position()=1]
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bth456
– volume: 21
  start-page: 1010
  year: 2007
  ident: C5MB00732A-(cit30)/*[position()=1]
  publication-title: Genes Dev.
  doi: 10.1101/gad.1528707
– volume: 104
  start-page: 8685
  issue: 21
  year: 2007
  ident: C5MB00732A-(cit38)/*[position()=1]
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0701361104
– volume: 406
  start-page: 378
  year: 2000
  ident: C5MB00732A-(cit29)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/35019019
– volume: 18
  start-page: 644
  year: 2008
  ident: C5MB00732A-(cit10)/*[position()=1]
  publication-title: Genome Res.
  doi: 10.1101/gr.071852.107
– volume: 36
  start-page: 686
  issue: 2
  year: 2015
  ident: C5MB00732A-(cit19)/*[position()=1]
  publication-title: SIAM J. Matrix Anal. Appl.
  doi: 10.1137/130950550
– volume: 80
  start-page: 040902
  issue: 4
  year: 2009
  ident: C5MB00732A-(cit24)/*[position()=1]
  publication-title: Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys.
  doi: 10.1103/PhysRevE.80.040902
– volume: 4
  start-page: e32
  issue: 2
  year: 2008
  ident: C5MB00732A-(cit14)/*[position()=1]
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.0040032
– volume: 71
  start-page: 056103
  year: 2005
  ident: C5MB00732A-(cit18)/*[position()=1]
  publication-title: Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys.
  doi: 10.1103/PhysRevE.71.056103
– volume: 17
  start-page: 869
  issue: 7
  year: 2010
  ident: C5MB00732A-(cit7)/*[position()=1]
  publication-title: J. Comput. Biol.
  doi: 10.1089/cmb.2008.0240
– ident: C5MB00732A-(cit33)/*[position()=1]
– volume: 10
  start-page: 11
  year: 2008
  ident: C5MB00732A-(cit37)/*[position()=1]
  publication-title: Curr. Protoc. Hum. Genet.
– volume: 5
  start-page: 101
  year: 2004
  ident: C5MB00732A-(cit1)/*[position()=1]
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg1272
– volume: 34
  start-page: D535
  year: 2006
  ident: C5MB00732A-(cit4)/*[position()=1]
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkj109
– volume: 86
  start-page: 28003
  year: 2009
  ident: C5MB00732A-(cit23)/*[position()=1]
  publication-title: EPL
  doi: 10.1209/0295-5075/86/28003
– volume: 6
  start-page: 34
  year: 2012
  ident: C5MB00732A-(cit25)/*[position()=1]
  publication-title: BMC Syst. Biol.
  doi: 10.1186/1752-0509-6-34
– volume: 3
  start-page: ra79
  issue: 146
  year: 2010
  ident: C5MB00732A-(cit22)/*[position()=1]
  publication-title: Sci. Signaling
  doi: 10.1126/scisignal.2001014
– volume: 6
  start-page: 28
  year: 2012
  ident: C5MB00732A-(cit16)/*[position()=1]
  publication-title: BMC Syst. Biol.
  doi: 10.1186/1752-0509-6-28
– volume: 40
  start-page: D1308
  year: 2012
  ident: C5MB00732A-(cit40)/*[position()=1]
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkr798
– volume: 3811
  start-page: 563
  year: 1942
  ident: C5MB00732A-(cit28)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/150563a0
– volume: 13
  start-page: 2363
  year: 2003
  ident: C5MB00732A-(cit3)/*[position()=1]
  publication-title: Genome Res.
  doi: 10.1101/gr.1680803
– volume: 3
  start-page: e59
  issue: 4
  year: 2007
  ident: C5MB00732A-(cit15)/*[position()=1]
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.0030059
– volume: 9
  start-page: 43
  year: 2009
  ident: C5MB00732A-(cit31)/*[position()=1]
  publication-title: BMC Microbiol.
  doi: 10.1186/1471-2180-9-243
– volume: 37
  start-page: D417
  issue: Database issue
  year: 2009
  ident: C5MB00732A-(cit35)/*[position()=1]
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkn708
– volume: 25
  start-page: 25
  issue: 1
  year: 2000
  ident: C5MB00732A-(cit39)/*[position()=1]
  publication-title: Nat. Genet.
  doi: 10.1038/75556
SSID ssj0038410
Score 2.1388254
Snippet Topological centrality in protein interaction networks and its biological implications have widely been investigated in the past. In the present study, a novel...
SourceID proquest
pubmed
crossref
rsc
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 666
SubjectTerms Area Under Curve
Cluster Analysis
Gene Ontology
Genetic Predisposition to Disease
Humans
Models, Genetic
Protein Interaction Maps
ROC Curve
Title A novel topological centrality measure capturing biologically important proteins
URI https://www.ncbi.nlm.nih.gov/pubmed/26699451
https://www.proquest.com/docview/1760904496
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nj9MwELVgV0hcEF8L5UtBcEFVIImTuDlmV10tqF04pFJvkT12BNo2rUqKtPx6xrGdBG0PC5eoslwr8rMmb2Y88wh5XwnKRRIzH8kyoIPCKn8CHHwFLEmrUMig1ViaX6YXi_jLMln2knVtdUkjPsLvg3Ul_4MqjiGuukr2H5DtFsUB_I344hMRxuetMM7H9eaXWiF_3HY2zN621OR6beJ_Y-DbxlQjmpZLet7qWhdIau5dN-O2WcMPG7dz8k5ON1f_adjXXFtnvuNCXa1N9Hm-_67D3xJt6hUfJPV30lzePlWNvX1oowvhMLpgDCLT5TuBbQqrDow5KxoNTks0MImpUVW5YaoDqjudQrIWOlsYDT5ILgl_-bU8X8xmZTFdFnfJccSYTsQf59Pi88x9bekkDm3Rq3kn14KWZp_6tf8mHTc8CeQVO6f30vKK4iF5YB0CLzfoPiJ3VP2Y3DMSoddPyLfcazH2Bhh7PcaexdjrMPaGGHsdxp7D-ClZnE-LswvfqmD4QIOs8ZGQ8UxVAIHM0FfkEZWh5CxhAiALQKVSCTaJJyAAZ4UpQKogqUBGiqsYKdkJOao3tXpOvDTNMtDlxlUiYqko5wGLqObE6MVLSUfkg9umEmyLeK1Usirbqwo0K8-S-Wm7pfmIvOvmbk1jlIOz3rrdLtFu6WQUr9Vm_7MMWRpkQRxn6Yg8MzB060T6ReMkHJETxKUb7vF8cYtlX5L7_YF-RY6a3V69RgLZiDf2DP0BFzR2OA
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+topological+centrality+measure+capturing+biologically+important+proteins&rft.jtitle=Molecular+bioSystems&rft.au=Karabekmez%2C+Muhammed+Erkan&rft.au=Kirdar%2C+Betul&rft.date=2016-01-01&rft.issn=1742-2051&rft.eissn=1742-2051&rft.volume=12&rft.issue=2&rft.spage=666&rft_id=info:doi/10.1039%2Fc5mb00732a&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-206X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-206X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-206X&client=summon