Recent progress on biomass‐derived ecomaterials toward advanced rechargeable lithium batteries

Biomass materials are of great interest in high‐energy rechargeable batteries due to their appealing merits of sustainability, environmental benefits, and more importantly, structural/compositional versatilities, abundant functional groups and many other unique physicochemical properties. In this pe...

Full description

Saved in:
Bibliographic Details
Published inEcoMat (Beijing, China) Vol. 2; no. 1
Main Authors Liu, Jia, Yuan, Hong, Tao, Xinyong, Liang, Yeru, Yang, Seung Jae, Huang, Jia‐Qi, Yuan, Tong‐Qi, Titirici, Maria‐Magdalena, Zhang, Qiang
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.03.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Biomass materials are of great interest in high‐energy rechargeable batteries due to their appealing merits of sustainability, environmental benefits, and more importantly, structural/compositional versatilities, abundant functional groups and many other unique physicochemical properties. In this perspective, we provide both overview and prospect on the contributions of biomass‐derived ecomaterials to battery component engineering including binders, separators, polymer electrolytes, electrode hosts, and functional interlayers, and so forth toward high‐stable lithium–ion batteries, lithium–sulfur batteries, lithium–oxygen batteries, and solid state lithium metal batteries. Furthermore, based on the multifunctionalities of bio‐based materials, the design protocols for battery components with desired properties are highlighted. This perspective affords fresh inspiration on the rational designs of biomass‐based materials for advanced lithium‐based batteries, as well as the sustainable development of advanced energy storage devices. Biomass Derived EcoMaterials with special properties and functionalities render great promise in advanced rechargeable lithium batteries. We summarize the recent progresses of bio‐based ecomaterials in addressing critical problems in lithium battery systems, and offer some perspectives for promoting the greenness and sustainability of energy devices.
AbstractList Biomass materials are of great interest in high‐energy rechargeable batteries due to their appealing merits of sustainability, environmental benefits, and more importantly, structural/compositional versatilities, abundant functional groups and many other unique physicochemical properties. In this perspective, we provide both overview and prospect on the contributions of biomass‐derived ecomaterials to battery component engineering including binders, separators, polymer electrolytes, electrode hosts, and functional interlayers, and so forth toward high‐stable lithium–ion batteries, lithium–sulfur batteries, lithium–oxygen batteries, and solid state lithium metal batteries. Furthermore, based on the multifunctionalities of bio‐based materials, the design protocols for battery components with desired properties are highlighted. This perspective affords fresh inspiration on the rational designs of biomass‐based materials for advanced lithium‐based batteries, as well as the sustainable development of advanced energy storage devices. image
Biomass materials are of great interest in high‐energy rechargeable batteries due to their appealing merits of sustainability, environmental benefits, and more importantly, structural/compositional versatilities, abundant functional groups and many other unique physicochemical properties. In this perspective, we provide both overview and prospect on the contributions of biomass‐derived ecomaterials to battery component engineering including binders, separators, polymer electrolytes, electrode hosts, and functional interlayers, and so forth toward high‐stable lithium–ion batteries, lithium–sulfur batteries, lithium–oxygen batteries, and solid state lithium metal batteries. Furthermore, based on the multifunctionalities of bio‐based materials, the design protocols for battery components with desired properties are highlighted. This perspective affords fresh inspiration on the rational designs of biomass‐based materials for advanced lithium‐based batteries, as well as the sustainable development of advanced energy storage devices. Biomass Derived EcoMaterials with special properties and functionalities render great promise in advanced rechargeable lithium batteries. We summarize the recent progresses of bio‐based ecomaterials in addressing critical problems in lithium battery systems, and offer some perspectives for promoting the greenness and sustainability of energy devices.
Author Huang, Jia‐Qi
Yuan, Tong‐Qi
Yang, Seung Jae
Yuan, Hong
Liang, Yeru
Zhang, Qiang
Titirici, Maria‐Magdalena
Liu, Jia
Tao, Xinyong
Author_xml – sequence: 1
  givenname: Jia
  surname: Liu
  fullname: Liu, Jia
  organization: Tsinghua University
– sequence: 2
  givenname: Hong
  surname: Yuan
  fullname: Yuan, Hong
  organization: Beijing Institute of Technology
– sequence: 3
  givenname: Xinyong
  surname: Tao
  fullname: Tao, Xinyong
  organization: Zhejiang University of Technology
– sequence: 4
  givenname: Yeru
  surname: Liang
  fullname: Liang, Yeru
  organization: South China Agricultural University
– sequence: 5
  givenname: Seung Jae
  surname: Yang
  fullname: Yang, Seung Jae
  organization: Inha University
– sequence: 6
  givenname: Jia‐Qi
  surname: Huang
  fullname: Huang, Jia‐Qi
  organization: Beijing Institute of Technology
– sequence: 7
  givenname: Tong‐Qi
  surname: Yuan
  fullname: Yuan, Tong‐Qi
  email: ytq581234@bjfu.edu.cn
  organization: Beijing Forestry University
– sequence: 8
  givenname: Maria‐Magdalena
  surname: Titirici
  fullname: Titirici, Maria‐Magdalena
  organization: Imperial College London
– sequence: 9
  givenname: Qiang
  orcidid: 0000-0002-3929-1541
  surname: Zhang
  fullname: Zhang, Qiang
  email: zhang-qiang@mails.tsinghua.edu.cn
  organization: Tsinghua University
BookMark eNp9kMtKAzEUhoNUsNZufIKshalJJs10llLqBSoF0fV4JjnTRmYmJYkt3fkIPqNP4tS6EBFX5_Z9Z_Gfkl7rWiTknLMRZ0xcomvEiAvG8yPSF2OVJSnP0t6P_oQMQ3hhHTxmUkjeJ88PqLGNdO3d0mMI1LW0tK6BED7e3g16u0FDUXeb2A1QBxrdFryhYDbQ6u7oUa_ALxHKGmlt48q-NrSEuOcxnJHjqrNw-F0H5Ol69ji9TeaLm7vp1TzRKcvzRAtMq6rSIs3yscxyVZaTkjOFknFmFKaGc0ScZJgpBcBA6NwomFRKyVLKPB2Qi8Nf7V0IHqti7W0DfldwVuzjKfbxFF_xdDD7BWsbIVrXRg-2_lvhB2Vra9z987yYLe7FwfkEtkl8PQ
CitedBy_id crossref_primary_10_3390_molecules28196905
crossref_primary_10_1002_aenm_202003456
crossref_primary_10_1021_acs_accounts_1c00120
crossref_primary_10_1002_adfm_202409812
crossref_primary_10_1016_j_pmatsci_2024_101264
crossref_primary_10_3390_coatings12081161
crossref_primary_10_1016_j_cjche_2021_03_021
crossref_primary_10_1002_sus2_4
crossref_primary_10_1002_batt_202100359
crossref_primary_10_1039_D1GC01814K
crossref_primary_10_1007_s11426_023_1908_9
crossref_primary_10_1002_aenm_202100748
crossref_primary_10_23919_IEN_2022_0003
crossref_primary_10_1016_j_cej_2023_142786
crossref_primary_10_1016_j_jallcom_2023_168876
crossref_primary_10_1021_jacs_5c00294
crossref_primary_10_1016_j_fuel_2022_125056
crossref_primary_10_1002_advs_202205557
crossref_primary_10_1002_eom2_12027
crossref_primary_10_1016_j_etran_2022_100211
crossref_primary_10_1002_aenm_202401568
crossref_primary_10_1007_s12598_022_02174_z
crossref_primary_10_1002_sus2_74
crossref_primary_10_1002_smm2_1007
crossref_primary_10_1007_s40242_020_0103_5
crossref_primary_10_1016_j_carbon_2024_119143
crossref_primary_10_1016_S1872_5805_22_60620_6
crossref_primary_10_1039_D0TA12153C
crossref_primary_10_1016_j_ijhydene_2023_12_248
crossref_primary_10_1039_D1QM00255D
crossref_primary_10_1002_marc_202200327
crossref_primary_10_1002_adfm_202201584
crossref_primary_10_1016_j_mtchem_2023_101595
crossref_primary_10_1016_j_jechem_2021_12_020
crossref_primary_10_1039_D1GC02872C
crossref_primary_10_1039_D1TA04059F
crossref_primary_10_1002_smll_202403239
crossref_primary_10_1016_j_jechem_2021_12_024
crossref_primary_10_1016_j_jechem_2023_02_012
crossref_primary_10_1016_j_cclet_2023_108187
crossref_primary_10_1016_j_est_2024_111803
crossref_primary_10_1080_00219592_2024_2397996
crossref_primary_10_1039_D0QM01134G
crossref_primary_10_1063_5_0083830
crossref_primary_10_1007_s10853_022_06903_8
crossref_primary_10_1016_j_electacta_2022_141525
crossref_primary_10_1002_aenm_202200584
crossref_primary_10_3390_batteries8090123
crossref_primary_10_1002_metm_6
crossref_primary_10_1016_j_partic_2020_12_003
crossref_primary_10_1039_D3RA06873K
crossref_primary_10_1016_j_rser_2020_110308
crossref_primary_10_1039_D1NJ05027C
crossref_primary_10_1021_acs_chemmater_1c03727
crossref_primary_10_1002_sus2_8
crossref_primary_10_1002_eom2_12126
crossref_primary_10_1016_j_carbpol_2021_118787
crossref_primary_10_1146_annurev_matsci_010622_105440
crossref_primary_10_1016_j_fmre_2022_11_005
crossref_primary_10_1002_aenm_202201044
crossref_primary_10_1002_cey2_147
crossref_primary_10_34133_research_0267
crossref_primary_10_1002_adsu_202200396
crossref_primary_10_1021_acsami_2c13862
crossref_primary_10_1002_adma_202414880
crossref_primary_10_1016_j_jcis_2023_05_191
crossref_primary_10_3390_batteries8120286
crossref_primary_10_1002_eom2_12198
crossref_primary_10_1016_j_jechem_2021_04_045
crossref_primary_10_1016_j_scitotenv_2022_153892
crossref_primary_10_1016_j_cclet_2023_108164
crossref_primary_10_1002_advs_202004814
crossref_primary_10_1016_j_biombioe_2024_107348
crossref_primary_10_1002_advs_202203189
crossref_primary_10_1016_S1872_5805_23_60773_5
crossref_primary_10_1088_2515_7639_ac5753
crossref_primary_10_1002_eom2_12357
crossref_primary_10_1002_eom2_12478
crossref_primary_10_1002_adfm_202315201
crossref_primary_10_1002_sus2_27
crossref_primary_10_1007_s40242_022_2214_7
crossref_primary_10_1360_SSC_2024_0098
crossref_primary_10_1002_adfm_202100594
crossref_primary_10_1063_5_0029686
crossref_primary_10_1002_smll_202203874
crossref_primary_10_1016_j_ensm_2024_103244
crossref_primary_10_1016_j_cej_2022_137050
crossref_primary_10_1007_s12598_023_02444_4
crossref_primary_10_1016_j_cej_2021_128733
crossref_primary_10_1016_j_ensm_2021_02_005
crossref_primary_10_1002_aenm_202101650
crossref_primary_10_1016_j_electacta_2022_141495
crossref_primary_10_1002_adfm_202307261
crossref_primary_10_1002_inf2_12304
crossref_primary_10_1002_aesr_202000059
crossref_primary_10_1016_j_ccr_2024_216380
crossref_primary_10_1149_1945_7111_ac4843
crossref_primary_10_1016_j_coelec_2021_100860
crossref_primary_10_1021_acs_energyfuels_1c01226
crossref_primary_10_1002_sus2_37
crossref_primary_10_1016_j_icheatmasstransfer_2024_108213
crossref_primary_10_1002_eem2_12402
crossref_primary_10_1002_adsu_202200010
crossref_primary_10_1016_j_fmre_2021_06_007
crossref_primary_10_1021_acssuschemeng_4c04145
crossref_primary_10_3390_nano12040677
crossref_primary_10_1016_j_jcis_2022_11_103
crossref_primary_10_17159_sajs_2022_9747
crossref_primary_10_1016_j_cjche_2021_05_008
crossref_primary_10_1039_D1NJ01622A
crossref_primary_10_1002_eom2_12172
crossref_primary_10_1016_j_ensm_2021_03_016
crossref_primary_10_1002_pol_20230726
crossref_primary_10_3390_inorganics11020081
crossref_primary_10_1016_j_jechem_2022_01_019
crossref_primary_10_1002_eom2_12213
crossref_primary_10_1002_aenm_202203770
crossref_primary_10_1016_j_est_2024_113186
crossref_primary_10_1016_j_jallcom_2024_175961
crossref_primary_10_1002_adsu_202100308
crossref_primary_10_1021_acsanm_4c01231
crossref_primary_10_1002_smll_202205315
crossref_primary_10_1002_eom2_12283
crossref_primary_10_1002_aenm_202300092
crossref_primary_10_1002_advs_202307369
crossref_primary_10_1002_cey2_185
crossref_primary_10_1039_D3GC03970F
crossref_primary_10_1016_j_indcrop_2023_117507
crossref_primary_10_1007_s11426_023_1866_y
crossref_primary_10_1002_aenm_202300646
crossref_primary_10_1002_aenm_202303991
crossref_primary_10_1039_D3EE01173A
Cites_doi 10.1016/j.ijbiomac.2017.05.155
10.1002/aenm.201802964
10.1039/C4CS00232F
10.1002/adma.201900341
10.1039/C6GC00444J
10.1007/s12274-017-1660-x
10.1002/adma.201401243
10.1021/acsenergylett.6b00209
10.1016/j.jechem.2019.01.006
10.1016/j.nanoen.2017.05.015
10.1002/aenm.201803390
10.1021/acsnano.9b04519
10.1016/j.jechem.2017.08.008
10.1002/aenm.201300654
10.1039/C5TA07818K
10.1016/j.etran.2019.100033
10.1021/ja3091438
10.1002/aenm.201701110
10.1016/j.carbon.2014.01.002
10.1021/sc400370h
10.1016/j.jechem.2018.01.025
10.1039/C9TA00543A
10.1016/j.ensm.2018.02.011
10.1038/526S93a
10.1002/cssc.201801997
10.1002/adma.201805718
10.1039/c2ee21817h
10.1021/am302290n
10.1007/s40843-016-5047-8
10.1016/j.joule.2018.11.025
10.1002/admi.201802046
10.1021/acsami.5b10673
10.1002/cssc.201301287
10.1016/j.jechem.2018.01.015
10.1002/celc.201800444
10.1016/j.electacta.2008.10.011
10.1016/j.ensm.2018.04.001
10.1002/cssc.201901409
10.1007/s40843-018-9331-x
10.1016/j.indcrop.2012.07.024
10.1039/C7EE03365F
10.1039/C6GC00612D
10.1021/acs.energyfuels.8b01453
10.1039/C7CS00278E
10.1016/j.nanoen.2015.09.001
10.1002/adfm.201707411
10.1007/s10800-016-0957-x
10.1002/aenm.201802768
10.1002/aenm.201702184
10.1021/am501627f
10.1021/acs.chemrev.7b00115
10.1016/j.jpowsour.2018.10.030
10.1073/pnas.1618871114
10.1038/srep27328
10.1016/j.mtnano.2019.100049
10.1016/j.ensm.2017.12.002
10.1016/j.cclet.2017.11.038
10.1016/j.jechem.2016.11.003
10.1039/C8TA01138A
10.1016/j.cej.2019.03.245
10.1002/anie.201801513
10.1007/s40843-019-9475-4
10.1016/j.joule.2017.06.004
10.1002/cssc.201700050
10.1039/C8TA05853A
10.1002/inf2.12000
10.1039/C4EE01432D
10.1038/nmat1368
10.1039/C6TA06250D
10.1039/c3ra45879b
10.1039/C5TA00681C
10.1002/cssc.201801148
10.1021/acs.accounts.8b00391
10.1021/acsami.8b15247
10.1002/adma.201502467
10.1002/adma.201700598
10.1016/j.ensm.2018.08.004
10.1039/C9SC02743B
10.1016/j.ensm.2017.07.015
10.1002/anie.201607951
10.1016/j.chempr.2017.01.003
10.1016/j.carbon.2017.11.065
10.1002/aenm.201700260
10.1016/j.jechem.2018.01.013
10.1002/chem.201202127
10.1039/C5TA00651A
10.1021/acsnano.8b05529
10.1016/j.ensm.2018.04.032
10.1039/C7TA06457H
10.1016/j.jechem.2018.10.005
10.1039/C8GC00085A
10.1021/nn4023894
10.1002/adma.201706216
10.1016/j.ensm.2015.09.008
10.1002/adsu.201600034
10.1002/anie.201802050
10.1039/C8GC01748D
10.3390/membranes9070078
10.1016/j.ensm.2018.09.002
10.1002/aenm.201701185
10.1021/acsnano.7b02085
10.1021/nl401729r
10.1007/s40843-017-9169-4
10.1039/c2jm16935e
10.1002/smll.201902032
10.1002/smtd.201800354
10.1039/c3sc51476e
10.1039/C5GC02122G
10.1016/j.materresbull.2019.05.015
10.1002/admi.201400227
10.1002/aenm.201601630
10.1002/eom2.12005
10.1080/15583724.2016.1269124
10.1039/C8EE00640G
10.1039/C9EE00206E
10.1002/smtd.201700134
10.1016/j.electacta.2017.04.002
10.1038/nnano.2017.16
10.1002/adma.200902812
10.1002/eom2.12004
10.1002/smll.201801054
10.1016/j.ijbiomac.2018.02.160
10.1038/s41467-019-08422-8
10.1002/aenm.201802107
10.1039/C6EE03033E
10.1016/j.eng.2018.10.008
10.1021/jacs.9b05029
10.1088/0022-3727/19/1/005
10.1007/s10853-017-1818-7
10.1016/j.electacta.2019.01.045
10.1002/aenm.201901774
10.1016/j.jechem.2019.09.004
10.1039/C8TA01883A
10.1039/C5TA01515D
10.1016/j.chempr.2019.05.009
10.1002/smll.201600809
10.1039/C4GC00761A
10.1002/adma.201506124
10.3390/nano7110402
10.1016/j.cclet.2016.07.030
10.1016/j.polymer.2016.10.052
10.1039/C6TA05207J
10.1002/aenm.201701203
ContentType Journal Article
Copyright 2020 The Authors. published by John Wiley & Sons Australia, Ltd on behalf of The Hong Kong Polytechnic University
Copyright_xml – notice: 2020 The Authors. published by John Wiley & Sons Australia, Ltd on behalf of The Hong Kong Polytechnic University
DBID 24P
AAYXX
CITATION
DOI 10.1002/eom2.12019
DatabaseName Wiley Online Library Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2567-3173
EndPage n/a
ExternalDocumentID 10_1002_eom2_12019
EOM212019
Genre reviewArticle
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 21676160; 21825501; 21805161; 21808121; U1801257
– fundername: China Postdoctoral Science Foundation
  funderid: 2018M631480; BX201700125
– fundername: National Key Research and Development Program
  funderid: 2016YFA0202500; 2016YFA0200102
GroupedDBID 0R~
1OC
24P
AAHHS
ABJCF
ACCFJ
ACCMX
ACXQS
ADKYN
ADZMN
ADZOD
AEEZP
AEQDE
AEUYN
AFKRA
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ATCPS
AVUZU
BENPR
BGLVJ
BHPHI
CCPQU
EBS
EDH
GROUPED_DOAJ
HCIFZ
IAO
ITC
KB.
M~E
PATMY
PDBOC
PIMPY
PYCSY
WIN
AAYXX
CITATION
IEP
PHGZM
PHGZT
ID FETCH-LOGICAL-c3099-c2e3fffc237954796bb8b106e4010d6e3d11eee87e766aa0a2c9d6a8f664b4493
IEDL.DBID 24P
ISSN 2567-3173
IngestDate Thu Apr 24 22:58:43 EDT 2025
Tue Jul 01 02:50:12 EDT 2025
Wed Jan 22 16:36:51 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3099-c2e3fffc237954796bb8b106e4010d6e3d11eee87e766aa0a2c9d6a8f664b4493
Notes Funding information
China Postdoctoral Science Foundation, Grant/Award Numbers: 2018M631480, BX201700125; National Key Research and Development Program, Grant/Award Numbers: 2016YFA0202500, 2016YFA0200102; National Natural Science Foundation of China, Grant/Award Numbers: 21676160, 21825501, 21805161, 21808121, U1801257
ORCID 0000-0002-3929-1541
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Feom2.12019
PageCount 16
ParticipantIDs crossref_primary_10_1002_eom2_12019
crossref_citationtrail_10_1002_eom2_12019
wiley_primary_10_1002_eom2_12019_EOM212019
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2020
2020-03-00
PublicationDateYYYYMMDD 2020-03-01
PublicationDate_xml – month: 03
  year: 2020
  text: March 2020
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
PublicationTitle EcoMat (Beijing, China)
PublicationYear 2020
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2013; 4
2019; 10
2019; 13
2019; 12
2019; 15
2019; 17
2019; 16
2014; 26
2019; 18
2013; 7
2013; 5
2010; 22
2018; 6
2018; 8
2018; 5
2018; 4
2014; 16
2019; 29
2018; 30
2018; 32
2012; 22
2016; 46
2019; 8
2019; 7
2019; 9
2018; 28
2019; 3
2019; 6
2019; 5
2019; 31
2019; 30
2019; 2
2019; 1
2019; 34
2019; 39
1986; 19
2015; 526
2016; 18
2018; 20
2018; 27
2016; 12
2016; 4
2016; 6
2016; 1
2018; 113
2005; 4
2018; 12
2018; 11
2016; 28
2018; 10
2016; 25
2016; 8
2018; 15
2019; 299
2018; 14
2017; 7
2014; 70
2017; 1
2017; 2
2018; 128
2018; 405
2017; 46
2016; 106
2017; 114
2017; 117
2017; 239
2013; 19
2014; 1
2014; 4
2019; 62
2009; 54
2014; 2
2017; 37
2013; 13
2015; 44
2020; 44
2019; 118
2014; 7
2014; 6
2015; 1
2015; 17
2015; 3
2017; 26
2013; 43
2017; 28
2017; 29
2018; 61
2019; 141
2016; 59
2016; 55
2015; 27
2017; 11
2017; 10
2017; 12
2013; 135
2018; 51
2017; 103
2019; 370
2018; 53
2012; 5
2018; 58
2018; 57
e_1_2_6_114_1
e_1_2_6_137_1
e_1_2_6_53_1
e_1_2_6_76_1
e_1_2_6_95_1
e_1_2_6_118_1
e_1_2_6_30_1
e_1_2_6_72_1
e_1_2_6_91_1
e_1_2_6_110_1
e_1_2_6_133_1
e_1_2_6_19_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_99_1
e_1_2_6_125_1
e_1_2_6_64_1
e_1_2_6_87_1
e_1_2_6_106_1
e_1_2_6_129_1
e_1_2_6_41_1
e_1_2_6_60_1
e_1_2_6_83_1
e_1_2_6_140_1
e_1_2_6_121_1
e_1_2_6_102_1
e_1_2_6_144_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_49_1
e_1_2_6_22_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_68_1
e_1_2_6_73_1
e_1_2_6_136_1
e_1_2_6_54_1
e_1_2_6_96_1
e_1_2_6_117_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_92_1
e_1_2_6_132_1
e_1_2_6_113_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_39_1
e_1_2_6_77_1
e_1_2_6_16_1
e_1_2_6_58_1
e_1_2_6_84_1
e_1_2_6_42_1
e_1_2_6_105_1
e_1_2_6_128_1
e_1_2_6_65_1
e_1_2_6_80_1
e_1_2_6_109_1
e_1_2_6_61_1
e_1_2_6_120_1
e_1_2_6_101_1
e_1_2_6_124_1
e_1_2_6_143_1
e_1_2_6_6_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_88_1
e_1_2_6_27_1
e_1_2_6_46_1
e_1_2_6_69_1
e_1_2_6_51_1
e_1_2_6_74_1
e_1_2_6_97_1
e_1_2_6_116_1
e_1_2_6_139_1
e_1_2_6_32_1
e_1_2_6_70_1
e_1_2_6_93_1
e_1_2_6_131_1
e_1_2_6_112_1
e_1_2_6_135_1
Perumal P (e_1_2_6_57_1) 2019; 118
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_78_1
e_1_2_6_62_1
e_1_2_6_85_1
e_1_2_6_104_1
e_1_2_6_43_1
e_1_2_6_127_1
e_1_2_6_81_1
e_1_2_6_20_1
e_1_2_6_108_1
e_1_2_6_142_1
e_1_2_6_100_1
e_1_2_6_123_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_66_1
e_1_2_6_89_1
e_1_2_6_28_1
e_1_2_6_47_1
e_1_2_6_52_1
e_1_2_6_98_1
e_1_2_6_115_1
e_1_2_6_75_1
e_1_2_6_138_1
e_1_2_6_10_1
e_1_2_6_94_1
e_1_2_6_119_1
e_1_2_6_71_1
e_1_2_6_90_1
e_1_2_6_130_1
e_1_2_6_111_1
e_1_2_6_134_1
e_1_2_6_14_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_56_1
e_1_2_6_37_1
e_1_2_6_79_1
e_1_2_6_103_1
e_1_2_6_126_1
e_1_2_6_63_1
e_1_2_6_86_1
e_1_2_6_21_1
e_1_2_6_107_1
e_1_2_6_40_1
e_1_2_6_82_1
e_1_2_6_141_1
e_1_2_6_122_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_67_1
References_xml – volume: 12
  start-page: 277
  year: 2018
  end-page: 283
  article-title: Biomass‐derived FeNi alloy and nitrogen‐codoped porous carbons as highly efficient oxygen reduction and evolution bifunctional electrocatalysts for rechargeable Zn‐air battery
  publication-title: Energy Storage Mater
– volume: 19
  start-page: 1
  year: 1986
  end-page: 6
  article-title: The distribution fuction of surface‐charge density with respect to surface curvature
  publication-title: J Phys D Appl Phys
– volume: 29
  start-page: 17
  year: 2019
  end-page: 22
  article-title: Hard carbon derived from rice husk as low cost negative electrodes in Na‐ion batteries
  publication-title: J Energy Chem
– volume: 1
  year: 2019
  article-title: Recent advances toward efficient and stable tin‐based perovskite solar cells
  publication-title: EcoMat
– volume: 18
  start-page: 3796
  year: 2016
  end-page: 3803
  article-title: Unique starch polymer electrolyte for high capacity all‐solid‐state lithium sulfur battery
  publication-title: Green Chem
– volume: 5
  start-page: 2326
  year: 2019
  end-page: 2352
  article-title: Polymer electrolytes for lithium‐based batteries: advances and prospects
  publication-title: Chem
– volume: 18
  start-page: 269
  year: 2019
  end-page: 279
  article-title: Superior electrochemical performance of sodium‐ion full‐cell using poplar wood derived hard carbon anode
  publication-title: Energy Storage Mater
– volume: 53
  start-page: 4395
  year: 2018
  end-page: 4405
  article-title: Facile synthesis of 3D binder‐free N‐doped carbon nanonet derived from silkworm cocoon for Li‐O battery
  publication-title: J Mater Sci
– volume: 27
  start-page: 6021
  year: 2015
  end-page: 6028
  article-title: A nitrogen and sulfur dual‐doped carbon derived from polyrhodanine@cellulose for advanced lithium‐sulfur batteries
  publication-title: Adv Mater
– volume: 2
  start-page: 194
  year: 2014
  end-page: 199
  article-title: Cellulose/polysulfonamide composite membrane as a high performance lithium‐ion battery separator
  publication-title: Acs Sustain Chem Eng
– volume: 15
  year: 2019
  article-title: Biological metabolism synthesis of metal oxides nanorods from bacteria as a biofactory toward high‐performance lithium‐ion battery anodes
  publication-title: Small
– volume: 26
  start-page: 6100
  year: 2014
  end-page: 6105
  article-title: Nitrogen‐doped aligned carbon nanotube/graphene sandwiches: facile catalytic growth on bifunctional natural catalysts and their applications as scaffolds for high‐rate lithium‐sulfur batteries
  publication-title: Adv Mater
– volume: 30
  year: 2018
  article-title: Uniform lithium nucleation/growth induced by lightweight nitrogen‐doped graphitic carbon foams for high‐performance lithium metal anodes
  publication-title: Adv Mater
– volume: 4
  start-page: 7845
  year: 2014
  end-page: 7850
  article-title: Polydopamine‐coated cellulose microfibrillated membrane as high performance lithium‐ion battery separator
  publication-title: RSC Adv
– volume: 32
  start-page: 9997
  year: 2018
  end-page: 10007
  article-title: An eco‐friendly microorganism method to activate biomass for cathode materials for high‐performance lithium‐sulfur batteries
  publication-title: Energ Fuel
– volume: 12
  start-page: 1751
  year: 2019
  end-page: 1779
  article-title: Emerging applications of biochar‐based materials for energy storage and conversion
  publication-title: Energy Environ Sci
– volume: 10
  year: 2019
  article-title: A versatile functionalized ionic liquid to boost the solution‐mediated performances of lithium‐oxygen batteries
  publication-title: Nat Commun
– volume: 29
  year: 2017
  article-title: Toward practical high‐energy batteries: a modular‐assembled oval‐like carbon microstructure for thick sulfur electrodes
  publication-title: Adv Mater
– volume: 6
  year: 2019
  article-title: Sulfur redox reactions at working interfaces in lithium‐sulfur batteries: a perspective
  publication-title: Adv Mater Interfaces
– volume: 10
  start-page: 1
  year: 2018
  end-page: 9
  article-title: Facilitation of sulfur evolution reaction by pyridinic nitrogen doped carbon nanoflakes for highly‐stable lithium‐sulfur batteries
  publication-title: Energy Storage Mater
– volume: 103
  start-page: 1032
  year: 2017
  end-page: 1043
  article-title: A review on cellulose and lignin based binders and electrodes: small steps towards a sustainable lithium ion battery
  publication-title: Int J Biol Macromol
– volume: 299
  start-page: 636
  year: 2019
  end-page: 644
  article-title: Suppressing Li dendrite by a protective biopolymeric film from tamarind seed polysaccharide for high‐performance Li metal anode
  publication-title: Electrochim Acta
– volume: 1
  start-page: 633
  year: 2016
  end-page: 637
  article-title: Cellulose‐based porous membrane for suppressing Li dendrite formation in lithium‐sulfur battery
  publication-title: ACS Energy Lett
– volume: 10
  start-page: 750
  year: 2017
  end-page: 755
  article-title: Exploiting a robust biopolymer network binder for an ultrahigh‐areal‐capacity Li–S battery
  publication-title: Energy Environ Sci
– volume: 8
  year: 2018
  article-title: Hierarchically porous, ultrathick, "breathable" wood‐derived cathode for lithium‐oxygen batteries
  publication-title: Adv Energy Mater
– volume: 118
  year: 2019
  article-title: Study on Mg‐ion conducting solid biopolymer electrolytes based on tamarind seed polysaccharide for magnesium ion batteries
  publication-title: Mater Res Bull
– volume: 9
  start-page: 78
  year: 2019
  article-title: A review on inorganic nanoparticles modified composite membranes for lithium‐ion batteries: recent progress and prospects
  publication-title: Membranes
– volume: 19
  start-page: 1013
  year: 2013
  end-page: 1019
  article-title: Encapsulating sulfur into hierarchically ordered porous carbon as a high‐performance cathode for lithium–sulfur batteries
  publication-title: Chem Eur J
– volume: 4
  start-page: 366
  year: 2005
  end-page: 377
  article-title: Nanostructured materials for advanced energy conversion and storage devices
  publication-title: Nat Mater
– volume: 28
  start-page: 2180
  year: 2017
  end-page: 2194
  article-title: A review of transition metal chalcogenide/graphene nanocomposites for energy storage and conversion
  publication-title: Chin Chem Lett
– volume: 12
  start-page: 4889
  year: 2019
  end-page: 4900
  article-title: Lignin@nafion membranes forming Zn solid‐electrolyte interfaces enhance the cycle life for rechargeable zinc‐ion batteries
  publication-title: ChemSusChem
– volume: 16
  start-page: 259
  year: 2019
  end-page: 266
  article-title: Spatially uniform deposition of lithium metal in 3D Janus hosts
  publication-title: Energy Storage Mater
– volume: 28
  start-page: 738
  year: 2017
  end-page: 742
  article-title: Natural nitrogen‐doped multiporous carbon from biological cells as sulfur stabilizers for lithium‐sulfur batteries
  publication-title: Chin Chem Lett
– volume: 11
  start-page: 3276
  year: 2018
  end-page: 3285
  article-title: Impact of the acid treatment on lignocellulosic biomass hard carbon for sodium‐ion battery anodes
  publication-title: ChemSusChem
– volume: 10
  start-page: 4318
  year: 2017
  end-page: 4326
  article-title: Free‐standing porous carbon electrodes derived from wood for high‐performance Li‐O battery applications
  publication-title: Nano Res
– volume: 22
  start-page: 9209
  year: 2012
  end-page: 9215
  article-title: Biotemplated fabrication of hierarchically porous NiO/C composite from lotus pollen grains for lithium‐ion batteries
  publication-title: J Mater Chem
– volume: 59
  start-page: 389
  year: 2016
  end-page: 407
  article-title: Biomass‐derived nanostructured porous carbons for lithium‐sulfur batteries
  publication-title: Sci China Mater
– volume: 10
  start-page: 38526
  year: 2018
  end-page: 38537
  article-title: From nature to energy storage: a novel sustainable 3D cross‐linked chitosan‐pegge‐based gel polymer electrolyte with excellent lithium‐ion transport properties for lithium batteries
  publication-title: ACS Appl Mater Interfaces
– volume: 4
  start-page: 3673
  year: 2013
  end-page: 3677
  article-title: Stable cycling of lithium sulfide cathodes through strong affinity with a bifunctional binder
  publication-title: Chem Sci
– volume: 7
  start-page: 3857
  year: 2014
  end-page: 3886
  article-title: A review of recent developments in membrane separators for rechargeable lithium‐ion batteries
  publication-title: Energy Environ Sci
– volume: 18
  start-page: 2078
  year: 2016
  end-page: 2088
  article-title: Interconnected highly graphitic carbon nanosheets derived from wheat stalk as high performance anode materials for lithium ion batteries
  publication-title: Green Chem
– volume: 57
  start-page: 13722
  year: 2018
  end-page: 13734
  article-title: Versatile nanostructures from rice husk biomass for energy applications
  publication-title: Angew Chem Int Ed
– volume: 1
  year: 2014
  article-title: Strongly coupled interfaces between a heterogeneous carbon host and a sulfur‐containing guest for highly stable lithium‐sulfur batteries: mechanistic insight into capacity degradation
  publication-title: Adv Mater Interfaces
– volume: 31
  year: 2019
  article-title: Hierarchically porous carbon plates derived from wood as bifunctional ORR/OER electrodes
  publication-title: Adv Mater
– volume: 12
  start-page: 161
  year: 2018
  end-page: 175
  article-title: Beyond lithium ion batteries: higher energy density battery systems based on lithium metal anodes
  publication-title: Energy Storage Mater
– volume: 6
  start-page: 256
  year: 2018
  end-page: 265
  article-title: Cellulose‐based electrospun fibers functionalized with polypyrrole and polyaniline for fully organic batteries
  publication-title: J Mater Chem A
– volume: 28
  start-page: 2888
  year: 2016
  end-page: 2895
  article-title: Dendrite‐free lithium deposition induced by uniformly distributed lithium ions for efficient lithium metal batteries
  publication-title: Adv Mater
– volume: 7
  start-page: 10662
  year: 2019
  end-page: 10671
  article-title: Biomass‐derived hierarchically porous carbon skeletons with decorated IrCo nanoparticles as high‐performance cathode catalysts for Li‐O batteries
  publication-title: J Mater Chem A
– volume: 10
  start-page: 1803
  year: 2017
  end-page: 1812
  article-title: Honeycomb‐like nitrogen and sulfur dual‐doped hierarchical porous biomass‐derived carbon for lithium‐sulfur batteries
  publication-title: ChemSusChem
– volume: 31
  year: 2019
  article-title: Sustainable carbonaceous materials derived from biomass as metal‐free electrocatalysts
  publication-title: Adv Mater
– volume: 1
  start-page: 563
  year: 2017
  end-page: 575
  article-title: Free‐standing hollow carbon fibers as high‐capacity containers for stable lithium metal anodes
  publication-title: Joule
– volume: 239
  start-page: 1
  year: 2017
  end-page: 9
  article-title: Chrysanthemum‐derived N and S co‐doped porous carbon for efficient oxygen reduction reaction and aluminum‐air battery
  publication-title: Electrochim Acta
– volume: 135
  start-page: 1167
  year: 2013
  end-page: 1176
  article-title: The Li‐ion rechargeable battery: a perspective
  publication-title: J Am Chem Soc
– volume: 14
  year: 2018
  article-title: A natural biopolymer film as a robust protective layer to effectively stabilize lithium‐metal anodes
  publication-title: Small
– volume: 12
  start-page: 11106
  year: 2018
  end-page: 11119
  article-title: Rational design of 1D partially graphitized N‐doped hierarchical porous carbon with uniaxially packed carbon nanotubes for high‐performance lithium‐Ion batteries
  publication-title: ACS Nano
– volume: 3
  year: 2019
  article-title: Uniform lithium nucleation guided by atomically dispersed lithiophilic CoN sites for safe lithium metal batteries
  publication-title: Small Methods
– volume: 46
  start-page: 6764
  year: 2017
  end-page: 6815
  article-title: New insights and perspectives into biological materials for flexible electronics
  publication-title: Chem Soc Rev
– volume: 28
  year: 2018
  article-title: Rational design of nanostructured functional interlayer/separator for advanced Li‐S batteries
  publication-title: Adv Funct Mater
– volume: 8
  year: 2018
  article-title: Popcorn inspired porous macrocellular carbon: rapid puffing fabrication from rice and its applications in lithium‐sulfur batteries
  publication-title: Adv Energy Mater
– volume: 62
  start-page: 1556
  year: 2019
  end-page: 1573
  article-title: Safety regulation of gel electrolytes in electrochemical energy storage devices
  publication-title: Sci China Mater
– volume: 5
  start-page: 2367
  year: 2018
  end-page: 2375
  article-title: Nitrogen, sulfur, phosphorous co‐doped interconnected porous carbon nanosheets with high defect density for enhancing supercapacitor and lithium‐ion battery properties
  publication-title: ChemElectroChem
– volume: 25
  start-page: 967
  year: 2016
  end-page: 984
  article-title: Nanostructured energy materials for electrochemical energy conversion and storage: a review
  publication-title: J Energy Chem
– volume: 43
  start-page: 141
  year: 2013
  end-page: 149
  article-title: Studies on the structural characterization of lignin, hemicelluloses and cellulose fractionated by ionic liquid followed by alkaline extraction from bamboo
  publication-title: Ind Crop Prod
– volume: 6
  start-page: 17057
  year: 2018
  end-page: 17066
  article-title: NaCl‐templated synthesis of hierarchical porous carbon with extremely large specific surface area and improved graphitization degree for high energy density lithium ion capacitors
  publication-title: J Mater Chem A
– volume: 1
  year: 2017
  article-title: Dendrite‐free lithium anode via a homogenous Li‐ion distribution enabled by a kimwipe paper
  publication-title: Adv Sustain Systems
– volume: 7
  start-page: 1655
  year: 2014
  end-page: 1661
  article-title: A natural carbonized leaf as polysulfide diffusion inhibitor for high‐performance lithium‐sulfur battery cells
  publication-title: ChemSusChem
– volume: 6
  start-page: 7382
  year: 2018
  end-page: 7388
  article-title: A robust network binder with dual functions of Cu ions as ionic crosslinking and chemical binding agents for highly stable Li‐S batteries
  publication-title: J Mater Chem A
– volume: 57
  start-page: 5301
  year: 2018
  end-page: 5305
  article-title: Highly stable lithium metal batteries enabled by regulating the solvation of lithium ions in nonaqueous electrolytes
  publication-title: Angew Chem Int Ed
– volume: 9
  year: 2019
  article-title: Nature‐inspired tri‐pathway design enabling high‐performance flexible Li‐O Batteries
  publication-title: Adv Energy Mater
– volume: 61
  start-page: 133
  year: 2018
  end-page: 158
  article-title: Biomass‐derived carbon materials with structural diversities and their applications in energy storage
  publication-title: Sci China Mater
– volume: 11
  start-page: 6114
  year: 2017
  end-page: 6121
  article-title: Hierarchical chitin fibers with aligned nanofibrillar architectures: a nonwoven‐mat separator for lithium metal batteries
  publication-title: Acs Nano
– volume: 5
  start-page: 7950
  year: 2012
  end-page: 7955
  article-title: Lithium storage in nitrogen‐rich mesoporous carbon materials
  publication-title: Energy Environ Sci
– volume: 18
  start-page: 5169
  year: 2016
  end-page: 5179
  article-title: Porous carbon derived from rice husks as sustainable bioresources: insights into the role of micro‐/mesoporous hierarchy in hosting active species for lithium‐sulphur batteries
  publication-title: Green Chem
– volume: 54
  start-page: 1888
  year: 2009
  end-page: 1892
  article-title: A microporous gel electrolyte based on poly(vinylidene fluoride‐co‐hexafluoropropylene)/fully cyanoethylated cellulose derivative blend for lithium‐ion battery
  publication-title: Electrochim Acta
– volume: 141
  start-page: 9422
  year: 2019
  end-page: 9429
  article-title: Regulating the inner helmholtz plane for stable solid electrolyte interphase on lithium metal anodes
  publication-title: J Am Chem Soc
– volume: 3
  start-page: 9609
  year: 2015
  end-page: 9615
  article-title: A graphene wrapped hair‐derived carbon/sulfur composite for lithium‐sulfur batteries
  publication-title: J Mater Chem A
– volume: 8
  year: 2018
  article-title: A review of functional binders in lithium‐sulfur batteries
  publication-title: Adv Energy Mater
– volume: 9
  year: 2019
  article-title: Trifunctional electrode additive for high active material content and volumetric lithium‐ion electrode densities
  publication-title: Adv Energy Mater
– volume: 12
  start-page: 3283
  year: 2016
  end-page: 3291
  article-title: Design principles for heteroatom‐doped nanocarbon to achieve strong anchoring of polysulfides for lithium‐sulfur batteries
  publication-title: Small
– volume: 6
  start-page: 8789
  year: 2014
  end-page: 8795
  article-title: Insight into the effect of boron doping on sulfur/carbon cathode in lithium‐sulfur batteries
  publication-title: ACS Appl Mater Interfaces
– volume: 62
  start-page: 455
  year: 2019
  end-page: 464
  article-title: Enhancing kinetics of Li‐S batteries by graphene‐like N,S‐codoped biochar fabricated in NaCl non‐aqueous ionic liquid
  publication-title: Sci China Mater
– volume: 34
  start-page: 171
  year: 2019
  end-page: 185
  article-title: Biomass‐derived porous carbon materials for advanced lithium sulfur batteries
  publication-title: J Energy Chem
– volume: 2
  start-page: 258
  year: 2017
  end-page: 270
  article-title: Implantable solid electrolyte interphase in lithium‐metal batteries
  publication-title: Chem
– volume: 8
  year: 2018
  article-title: Gel polymer electrolytes for electrochemical energy storage
  publication-title: Adv Energy Mater
– volume: 4
  start-page: 12136
  year: 2016
  end-page: 12143
  article-title: Degradable cellulose acetate/poly‐l‐lactic acid/halloysite nanotube composite nanofiber membranes with outstanding performance for gel polymer electrolytes
  publication-title: J Mater Chem A
– volume: 17
  start-page: 224
  year: 2015
  end-page: 232
  article-title: Porous carbonized graphene‐embedded fungus film as an interlayer for superior Li‐S batteries
  publication-title: Nano Energy
– volume: 1
  start-page: 127
  year: 2015
  end-page: 145
  article-title: Multi‐functional separator/interlayer system for high‐stable lithium‐sulfur batteries: progress and prospects
  publication-title: Energy Storage Mater
– volume: 11
  start-page: 1197
  year: 2018
  end-page: 1203
  article-title: A multifunctional polymer electrolyte enables ultra‐long cycle‐life in a high‐voltage lithium metal battery
  publication-title: Energy Environ Sci
– volume: 2
  year: 2019
  article-title: Carbon materials for traffic power battery
  publication-title: eTransportation
– volume: 30
  start-page: 121
  year: 2019
  end-page: 131
  article-title: Sulfur‐encapsulated in heteroatom‐doped hierarchical porous carbon derived from goat hair for high performance lithium‐sulfur batteries
  publication-title: J Energy Chem
– volume: 4
  start-page: 14324
  year: 2016
  end-page: 14333
  article-title: A free‐standing sulfur‐doped microporous carbon interlayer derived from luffa sponge for high performance lithium‐sulfur batteries
  publication-title: J Mater Chem A
– volume: 3
  start-page: 732
  year: 2019
  end-page: 744
  article-title: High‐energy Li metal battery with lithiated host
  publication-title: Joule
– volume: 20
  start-page: 1527
  year: 2018
  end-page: 1537
  article-title: Addressing the energy sustainability of biowaste‐derived hard carbon materials for battery electrodes
  publication-title: Green Chem
– volume: 7
  start-page: 7083
  year: 2013
  end-page: 7092
  article-title: Green and facile fabrication of hollow porous mno/c microspheres from microalgaes for lithium‐ion batteries
  publication-title: ACS Nano
– volume: 8
  year: 2019
  article-title: A review of naturally derived nanostructured materials for safe lithium metal batteries
  publication-title: Materials Today Nano
– volume: 3
  start-page: 9502
  year: 2015
  end-page: 9509
  article-title: A conductive interwoven bamboo carbon fiber membrane for Li‐S batteries
  publication-title: J Mater Chem A
– volume: 16
  start-page: 3926
  year: 2014
  end-page: 3934
  article-title: Preparation of a macroscopic, robust carbon‐fiber monolith from filamentous fungi and its application in Li‐S batteries
  publication-title: Green Chem
– volume: 114
  start-page: 3584
  year: 2017
  end-page: 3589
  article-title: High‐capacity, low‐tortuosity, and channel‐guided lithium metal anode
  publication-title: Proc Natl Acad Sci U S A
– volume: 51
  start-page: 3154
  year: 2018
  end-page: 3165
  article-title: Nanocellulose toward advanced energy storage devices: structure and electrochemistry
  publication-title: Acc Chem Res
– volume: 4
  year: 2014
  article-title: Nanoporous polymer‐ceramic composite electrolytes for lithium metal batteries
  publication-title: Adv Energy Mater
– volume: 1
  year: 2017
  article-title: A toolbox for lithium–sulfur battery research: methods and protocols
  publication-title: Small Methods
– volume: 6
  year: 2016
  article-title: Novel proton conducting solid bio‐polymer electrolytes based on carboxymethyl cellulose doped with oleic acid and plasticized with glycerol
  publication-title: Sci Rep
– volume: 58
  start-page: 102
  year: 2018
  end-page: 163
  article-title: A review of cellulose and cellulose blends for preparation of bio‐derived and conventional membranes, nanostructured thin films, and composites
  publication-title: Polym Rev
– volume: 9
  year: 2019
  article-title: Conductive and catalytic triple‐phase interfaces enabling uniform nucleation in high‐rate lithium‐sulfur batteries
  publication-title: Adv Energy Mater
– volume: 11
  start-page: 3096
  year: 2018
  end-page: 3127
  article-title: Alternative binders for sustainable electrochemical energy storage‐the transition to aqueous electrode processing and bio‐derived polymers
  publication-title: Energy Environ Sci
– volume: 12
  start-page: 310
  year: 2019
  end-page: 319
  article-title: Nitrogen‐doped biomass‐derived carbon formed by mechanochemical synthesis for lithium‐sulfur batteries
  publication-title: ChemSusChem
– volume: 9
  year: 2019
  article-title: Biomaterials for high‐energy lithium‐based batteries: strategies, challenges, and perspectives
  publication-title: Adv Energy Mater
– volume: 27
  start-page: 1390
  year: 2018
  end-page: 1396
  article-title: Cooperation of nitrogen‐doping and catalysis to improve the Li‐ion storage performance of lignin‐based hard carbon
  publication-title: J Energy Chem
– volume: 7
  year: 2017
  article-title: A comprehensive approach toward stable lithium‐sulfur batteries with high volumetric energy density
  publication-title: Adv Energy Mater
– volume: 405
  start-page: 7
  year: 2018
  end-page: 17
  article-title: Safety‐reinforced plastic crystal composite polymer electrolyte by 3D MoS ‐based nano‐hybrid for Li‐metal batteries
  publication-title: J Power Sources
– volume: 8
  start-page: 2658
  year: 2016
  end-page: 2665
  article-title: Cross‐linked chitosan as an efficient binder for Si anode of Li‐ion batteries
  publication-title: ACS Appl Mater Interfaces
– volume: 113
  start-page: 1041
  year: 2018
  end-page: 1051
  article-title: Incorporating allylated lignin‐derivatives in thiol‐ene gel‐polymer electrolytes
  publication-title: Int J Biol Macromol
– volume: 22
  start-page: 813
  year: 2010
  end-page: 828
  article-title: Engineering carbon materials from the hydrothermal carbonization process of biomass
  publication-title: Adv Mater
– volume: 128
  start-page: 147
  year: 2018
  end-page: 163
  article-title: Carbons from biomass precursors as anode materials for lithium ion batteries: new insights into carbonization and graphitization behavior and into their correlation to electrochemical performance
  publication-title: Carbon
– volume: 526
  start-page: S93
  year: 2015
  article-title: Lithium batteries: to the limits of lithium
  publication-title: Nature
– volume: 4
  start-page: 831
  year: 2018
  end-page: 847
  article-title: Recent advances in energy chemical engineering of next‐generation lithium batteries
  publication-title: Engineering
– volume: 44
  start-page: 61
  year: 2020
  end-page: 67
  article-title: Biomass‐derived nitrogen‐doped hierarchical porous carbon as efficient sulfur host for lithium–sulfur batteries
  publication-title: J Energy Chem
– volume: 17
  start-page: 22
  year: 2019
  end-page: 30
  article-title: From double‐helix structured seaweed to S‐doped carbon aerogel with ultra‐high surface area for energy storage
  publication-title: Energy Storage Mater
– volume: 4
  start-page: 819
  year: 2016
  end-page: 826
  article-title: Partially unzipped carbon nanotubes for high‐rate and stable lithium‐sulfur batteries
  publication-title: J Mater Chem A
– volume: 1
  year: 2019
  article-title: Identifying the crystal and electronic structure evolution in tri‐component transition metal oxide nanosheets for efficient electrocatalytic oxygen evolution
  publication-title: EcoMat
– volume: 5
  start-page: 128
  year: 2013
  end-page: 134
  article-title: Renewable and superior thermal‐resistant cellulose‐based composite nonwoven as lithium‐ion battery separator
  publication-title: ACS Appl Mater Interfaces
– volume: 26
  start-page: 1077
  year: 2017
  end-page: 1093
  article-title: A review of nanocarbons in energy electrocatalysis: multifunctional substrates and highly active sites
  publication-title: J Energy Chem
– volume: 3
  start-page: 10910
  year: 2015
  end-page: 10918
  article-title: Flexible cathodes and multifunctional interlayers based on carbonized bacterial cellulose for high‐performance lithium‐sulfur batteries
  publication-title: J Mater Chem A
– volume: 370
  start-page: 1068
  year: 2019
  end-page: 1076
  article-title: An optimal carbon fiber interlayer integrated with bio‐based gel polymer electrolyte enabling trapping‐diffusion‐conversion of polysulfides in lithium‐sulfur batteries
  publication-title: Chem Eng J
– volume: 1
  start-page: 6
  year: 2019
  end-page: 32
  article-title: A review of rechargeable batteries for portable electronic devices
  publication-title: InfoMat
– volume: 7
  start-page: 402
  year: 2017
  article-title: Biomass‐derived oxygen and nitrogen co‐doped porous carbon with hierarchical architecture as sulfur hosts for high‐performance lithium/sulfur batteries
  publication-title: Nanomaterials
– volume: 44
  start-page: 250
  year: 2015
  end-page: 290
  article-title: Sustainable carbon materials
  publication-title: Chem Soc Rev
– volume: 70
  start-page: 241
  year: 2014
  end-page: 248
  article-title: Lithium‐sulfur batteries with activated carbons derived from olive stones
  publication-title: Carbon
– volume: 46
  start-page: 725
  year: 2016
  end-page: 733
  article-title: Enhanced electrochemical performance from cross‐linked polymeric network as binder for Li‐S battery cathodes
  publication-title: J Appl Electrochem
– volume: 13
  start-page: 9520
  year: 2019
  end-page: 9532
  article-title: Adenine derivative host with interlaced 2D structure and dual lithiophilic‐sulfiphilic sites to enable high‐loading Li‐S batteries
  publication-title: ACS Nano
– volume: 37
  start-page: 177
  year: 2017
  end-page: 186
  article-title: 3D lithium metal embedded within lithiophilic porous matrix for stable lithium metal batteries
  publication-title: Nano Energy
– volume: 13
  start-page: 3385
  year: 2013
  end-page: 3390
  article-title: Crab shells as sustainable templates from nature for nanostructured battery electrodes
  publication-title: Nano Lett
– volume: 7
  year: 2017
  article-title: Water soluble binder, an electrochemical performance booster for electrode materials with high energy density
  publication-title: Adv Energy Mater
– volume: 117
  start-page: 10403
  year: 2017
  end-page: 10473
  article-title: Toward safe lithium metal anode in rechargeable batteries: a review
  publication-title: Chem Rev
– volume: 12
  start-page: 194
  year: 2017
  end-page: 206
  article-title: Reviving the lithium metal anode for high‐energy batteries
  publication-title: Nat Nanotechnol
– volume: 15
  start-page: 218
  year: 2018
  end-page: 225
  article-title: Sustainable, inexpensive, naturally multi‐functionalized biomass carbon for both Li metal anode and sulfur cathode
  publication-title: Energy Storage Mater
– volume: 39
  start-page: 1
  year: 2019
  end-page: 7
  article-title: Microwave‐assisted conversion of biomass wastes to pseudocapacitive mesoporous carbon for high‐performance supercapacitor
  publication-title: J Energy Chem
– volume: 7
  year: 2017
  article-title: Review on high‐loading and high‐energy lithium‐sulfur batteries
  publication-title: Adv Energy Mater
– volume: 55
  start-page: 14382
  year: 2016
  end-page: 14386
  article-title: A self‐healing aqueous lithium‐ion battery
  publication-title: Angew Chem Int Ed
– volume: 6
  start-page: 12623
  year: 2018
  end-page: 12629
  article-title: Disordered carbon tubes based on cotton cloth for modulating interface impedance in β″‐Al O ‐based solid‐state sodium metal batteries
  publication-title: J Mater Chem A
– volume: 106
  start-page: 43
  year: 2016
  end-page: 52
  article-title: A protein‐reinforced adhesive composite electrolyte
  publication-title: Polymer
– volume: 20
  start-page: 5031
  year: 2018
  end-page: 5057
  article-title: State‐of‐the‐art on the production and application of carbon nanomaterials from biomass
  publication-title: Green Chem
– volume: 10
  start-page: 7484
  year: 2019
  end-page: 7495
  article-title: A review of biomass materials for advanced lithium‐sulfur batteries
  publication-title: Chem Sci
– ident: e_1_2_6_40_1
  doi: 10.1016/j.ijbiomac.2017.05.155
– ident: e_1_2_6_103_1
  doi: 10.1002/aenm.201802964
– ident: e_1_2_6_21_1
  doi: 10.1039/C4CS00232F
– ident: e_1_2_6_100_1
  doi: 10.1002/adma.201900341
– ident: e_1_2_6_58_1
  doi: 10.1039/C6GC00444J
– ident: e_1_2_6_106_1
  doi: 10.1007/s12274-017-1660-x
– ident: e_1_2_6_116_1
  doi: 10.1002/adma.201401243
– ident: e_1_2_6_73_1
  doi: 10.1021/acsenergylett.6b00209
– ident: e_1_2_6_87_1
  doi: 10.1016/j.jechem.2019.01.006
– ident: e_1_2_6_124_1
  doi: 10.1016/j.nanoen.2017.05.015
– ident: e_1_2_6_51_1
  doi: 10.1002/aenm.201803390
– ident: e_1_2_6_113_1
  doi: 10.1021/acsnano.9b04519
– ident: e_1_2_6_85_1
  doi: 10.1016/j.jechem.2017.08.008
– ident: e_1_2_6_13_1
  doi: 10.1002/aenm.201300654
– ident: e_1_2_6_16_1
  doi: 10.1039/C5TA07818K
– ident: e_1_2_6_15_1
  doi: 10.1016/j.etran.2019.100033
– ident: e_1_2_6_2_1
  doi: 10.1021/ja3091438
– ident: e_1_2_6_101_1
  doi: 10.1002/aenm.201701110
– ident: e_1_2_6_29_1
  doi: 10.1016/j.carbon.2014.01.002
– ident: e_1_2_6_70_1
  doi: 10.1021/sc400370h
– ident: e_1_2_6_86_1
  doi: 10.1016/j.jechem.2018.01.025
– ident: e_1_2_6_90_1
  doi: 10.1039/C9TA00543A
– ident: e_1_2_6_130_1
  doi: 10.1016/j.ensm.2018.02.011
– ident: e_1_2_6_35_1
  doi: 10.1038/526S93a
– ident: e_1_2_6_93_1
  doi: 10.1002/cssc.201801997
– ident: e_1_2_6_32_1
  doi: 10.1002/adma.201805718
– ident: e_1_2_6_91_1
  doi: 10.1039/c2ee21817h
– ident: e_1_2_6_69_1
  doi: 10.1021/am302290n
– ident: e_1_2_6_143_1
  doi: 10.1007/s40843-016-5047-8
– ident: e_1_2_6_11_1
  doi: 10.1016/j.joule.2018.11.025
– ident: e_1_2_6_5_1
  doi: 10.1002/admi.201802046
– ident: e_1_2_6_43_1
  doi: 10.1021/acsami.5b10673
– ident: e_1_2_6_133_1
  doi: 10.1002/cssc.201301287
– ident: e_1_2_6_98_1
  doi: 10.1016/j.jechem.2018.01.015
– ident: e_1_2_6_125_1
  doi: 10.1002/celc.201800444
– ident: e_1_2_6_64_1
  doi: 10.1016/j.electacta.2008.10.011
– ident: e_1_2_6_28_1
  doi: 10.1016/j.ensm.2018.04.001
– ident: e_1_2_6_78_1
  doi: 10.1002/cssc.201901409
– ident: e_1_2_6_108_1
  doi: 10.1007/s40843-018-9331-x
– ident: e_1_2_6_24_1
  doi: 10.1016/j.indcrop.2012.07.024
– ident: e_1_2_6_59_1
  doi: 10.1039/C7EE03365F
– ident: e_1_2_6_94_1
  doi: 10.1039/C6GC00612D
– ident: e_1_2_6_137_1
  doi: 10.1021/acs.energyfuels.8b01453
– ident: e_1_2_6_31_1
  doi: 10.1039/C7CS00278E
– ident: e_1_2_6_140_1
  doi: 10.1016/j.nanoen.2015.09.001
– ident: e_1_2_6_67_1
  doi: 10.1002/adfm.201707411
– ident: e_1_2_6_50_1
  doi: 10.1007/s10800-016-0957-x
– ident: e_1_2_6_47_1
  doi: 10.1002/aenm.201802768
– ident: e_1_2_6_55_1
  doi: 10.1002/aenm.201702184
– ident: e_1_2_6_136_1
  doi: 10.1021/am501627f
– ident: e_1_2_6_4_1
  doi: 10.1021/acs.chemrev.7b00115
– ident: e_1_2_6_65_1
  doi: 10.1016/j.jpowsour.2018.10.030
– ident: e_1_2_6_110_1
  doi: 10.1073/pnas.1618871114
– ident: e_1_2_6_61_1
  doi: 10.1038/srep27328
– ident: e_1_2_6_20_1
  doi: 10.1016/j.mtnano.2019.100049
– ident: e_1_2_6_8_1
  doi: 10.1016/j.ensm.2017.12.002
– ident: e_1_2_6_114_1
  doi: 10.1016/j.cclet.2017.11.038
– ident: e_1_2_6_14_1
  doi: 10.1016/j.jechem.2016.11.003
– ident: e_1_2_6_49_1
  doi: 10.1039/C8TA01138A
– ident: e_1_2_6_52_1
  doi: 10.1016/j.cej.2019.03.245
– ident: e_1_2_6_81_1
  doi: 10.1002/anie.201801513
– ident: e_1_2_6_54_1
  doi: 10.1007/s40843-019-9475-4
– ident: e_1_2_6_102_1
  doi: 10.1016/j.joule.2017.06.004
– ident: e_1_2_6_135_1
  doi: 10.1002/cssc.201700050
– ident: e_1_2_6_112_1
  doi: 10.1039/C8TA05853A
– ident: e_1_2_6_3_1
  doi: 10.1002/inf2.12000
– ident: e_1_2_6_66_1
  doi: 10.1039/C4EE01432D
– ident: e_1_2_6_36_1
  doi: 10.1038/nmat1368
– ident: e_1_2_6_144_1
  doi: 10.1039/C6TA06250D
– ident: e_1_2_6_68_1
  doi: 10.1039/c3ra45879b
– ident: e_1_2_6_134_1
  doi: 10.1039/C5TA00681C
– ident: e_1_2_6_99_1
  doi: 10.1002/cssc.201801148
– ident: e_1_2_6_138_1
  doi: 10.1021/acs.accounts.8b00391
– ident: e_1_2_6_76_1
  doi: 10.1021/acsami.8b15247
– ident: e_1_2_6_92_1
  doi: 10.1002/adma.201502467
– ident: e_1_2_6_107_1
  doi: 10.1002/adma.201700598
– ident: e_1_2_6_123_1
  doi: 10.1016/j.ensm.2018.08.004
– ident: e_1_2_6_27_1
  doi: 10.1039/C9SC02743B
– ident: e_1_2_6_142_1
  doi: 10.1016/j.ensm.2017.07.015
– ident: e_1_2_6_56_1
  doi: 10.1002/anie.201607951
– ident: e_1_2_6_75_1
  doi: 10.1016/j.chempr.2017.01.003
– ident: e_1_2_6_121_1
  doi: 10.1016/j.carbon.2017.11.065
– ident: e_1_2_6_45_1
  doi: 10.1002/aenm.201700260
– ident: e_1_2_6_95_1
  doi: 10.1016/j.jechem.2018.01.013
– ident: e_1_2_6_105_1
  doi: 10.1002/chem.201202127
– ident: e_1_2_6_122_1
  doi: 10.1039/C5TA00651A
– ident: e_1_2_6_88_1
  doi: 10.1021/acsnano.8b05529
– ident: e_1_2_6_44_1
  doi: 10.1016/j.ensm.2018.04.032
– ident: e_1_2_6_71_1
  doi: 10.1039/C7TA06457H
– ident: e_1_2_6_18_1
  doi: 10.1016/j.jechem.2018.10.005
– ident: e_1_2_6_96_1
  doi: 10.1039/C8GC00085A
– ident: e_1_2_6_132_1
  doi: 10.1021/nn4023894
– ident: e_1_2_6_129_1
  doi: 10.1002/adma.201706216
– ident: e_1_2_6_26_1
  doi: 10.1016/j.ensm.2015.09.008
– ident: e_1_2_6_82_1
  doi: 10.1002/adsu.201600034
– ident: e_1_2_6_33_1
  doi: 10.1002/anie.201802050
– ident: e_1_2_6_97_1
  doi: 10.1039/C8GC01748D
– ident: e_1_2_6_80_1
  doi: 10.3390/membranes9070078
– ident: e_1_2_6_23_1
  doi: 10.1016/j.ensm.2018.09.002
– ident: e_1_2_6_39_1
  doi: 10.1002/aenm.201701185
– ident: e_1_2_6_74_1
  doi: 10.1021/acsnano.7b02085
– ident: e_1_2_6_104_1
  doi: 10.1021/nl401729r
– ident: e_1_2_6_120_1
  doi: 10.1007/s40843-017-9169-4
– ident: e_1_2_6_131_1
  doi: 10.1039/c2jm16935e
– ident: e_1_2_6_34_1
  doi: 10.1002/smll.201902032
– ident: e_1_2_6_128_1
  doi: 10.1002/smtd.201800354
– ident: e_1_2_6_48_1
  doi: 10.1039/c3sc51476e
– ident: e_1_2_6_111_1
  doi: 10.1039/C5GC02122G
– volume: 118
  start-page: 110490
  year: 2019
  ident: e_1_2_6_57_1
  article-title: Study on Mg‐ion conducting solid biopolymer electrolytes based on tamarind seed polysaccharide for magnesium ion batteries
  publication-title: Mater Res Bull
  doi: 10.1016/j.materresbull.2019.05.015
– ident: e_1_2_6_118_1
  doi: 10.1002/admi.201400227
– ident: e_1_2_6_42_1
  doi: 10.1002/aenm.201601630
– ident: e_1_2_6_9_1
  doi: 10.1002/eom2.12005
– ident: e_1_2_6_72_1
  doi: 10.1080/15583724.2016.1269124
– ident: e_1_2_6_37_1
  doi: 10.1039/C8EE00640G
– ident: e_1_2_6_19_1
  doi: 10.1039/C9EE00206E
– ident: e_1_2_6_46_1
  doi: 10.1002/smtd.201700134
– ident: e_1_2_6_127_1
  doi: 10.1016/j.electacta.2017.04.002
– ident: e_1_2_6_6_1
  doi: 10.1038/nnano.2017.16
– ident: e_1_2_6_22_1
  doi: 10.1002/adma.200902812
– ident: e_1_2_6_25_1
  doi: 10.1002/eom2.12004
– ident: e_1_2_6_79_1
  doi: 10.1002/smll.201801054
– ident: e_1_2_6_63_1
  doi: 10.1016/j.ijbiomac.2018.02.160
– ident: e_1_2_6_10_1
  doi: 10.1038/s41467-019-08422-8
– ident: e_1_2_6_38_1
  doi: 10.1002/aenm.201802107
– ident: e_1_2_6_41_1
  doi: 10.1039/C6EE03033E
– ident: e_1_2_6_7_1
  doi: 10.1016/j.eng.2018.10.008
– ident: e_1_2_6_12_1
  doi: 10.1021/jacs.9b05029
– ident: e_1_2_6_83_1
  doi: 10.1088/0022-3727/19/1/005
– ident: e_1_2_6_89_1
  doi: 10.1007/s10853-017-1818-7
– ident: e_1_2_6_77_1
  doi: 10.1016/j.electacta.2019.01.045
– ident: e_1_2_6_17_1
  doi: 10.1002/aenm.201901774
– ident: e_1_2_6_30_1
  doi: 10.1016/j.jechem.2019.09.004
– ident: e_1_2_6_115_1
  doi: 10.1039/C8TA01883A
– ident: e_1_2_6_139_1
  doi: 10.1039/C5TA01515D
– ident: e_1_2_6_53_1
  doi: 10.1016/j.chempr.2019.05.009
– ident: e_1_2_6_117_1
  doi: 10.1002/smll.201600809
– ident: e_1_2_6_141_1
  doi: 10.1039/C4GC00761A
– ident: e_1_2_6_84_1
  doi: 10.1002/adma.201506124
– ident: e_1_2_6_126_1
  doi: 10.3390/nano7110402
– ident: e_1_2_6_119_1
  doi: 10.1016/j.cclet.2016.07.030
– ident: e_1_2_6_62_1
  doi: 10.1016/j.polymer.2016.10.052
– ident: e_1_2_6_60_1
  doi: 10.1039/C6TA05207J
– ident: e_1_2_6_109_1
  doi: 10.1002/aenm.201701203
SSID ssj0002504241
Score 2.5067573
SecondaryResourceType review_article
Snippet Biomass materials are of great interest in high‐energy rechargeable batteries due to their appealing merits of sustainability, environmental benefits, and more...
SourceID crossref
wiley
SourceType Enrichment Source
Index Database
Publisher
SubjectTerms biomass
ecomaterials
lithium batteries
Title Recent progress on biomass‐derived ecomaterials toward advanced rechargeable lithium batteries
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Feom2.12019
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NSgMxEA61XvQg_mL9KQG9KKzdJml2A15EWopQ9WChtzWbnaBgt6KtR_ERfEafxEm23VYQwcuyh9nLZDLzzezMN4QcG5MZA5wHVkY2EDZUAVqJdE3jcYgRmsnYTSP3rmW3L64GrUGFnM9mYQp-iLLg5m6G99fuguv0tTEnDYXRkJ01MX6pJbLsZmtdQx8Tt2WFxZFzMb-6EsO6K8ZFvOQnZY355z8i0iJC9SGms07WptiQXhSHuUEqkG-S1QXGwC1yjzAPwwT1bVXopOgop26CHiHw18dnhlJvkFFMKRGIFrZFx74xls5-9lN0cY4dCdzMFEUQ_vA4GdLU02xi1rxN-p323WU3mC5JCAx37JqGAbfWGsYj1RKRkmkap5jnASZOYSaBZ80mAMQRRFJqHWpmVCZ1bKUUqRCK75BqPsphl1BpDZdcWoUHK6xqxXEKIWi3jENEOtM1cjJTVGKmDOJukcVTUnAfs8QpNfFKrZGjUva54M34VerU6_sPkaR902P-be8_wvtkhbnM2HeLHZDq-GUChwgfxmndW0ndJ9_47L23vwGpVcOm
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NTsMwDI5gOwAHxK8Yv5HgAlJZl2Rpe5zQpgHbuKxo4lLaNBFIbENo48wj8Iw8CXbadUNCSNx6sHpwHPuzY38m5EypVCnNuWOkZxxh3MABK5HYNO67EKGZ9HEauduT7VDcDOqDvDcHZ2Eyfoii4IY3w_prvOBYkK7OWUP1eMguaxDAgmVSRlgDRl1u3IcPYVFkQX4uZrdXQmTHepzHC4pSVp3_4EdQWgSpNsq0Nsh6Dg9pIzvPTbKkR1tkbYE0cJs8AtKDSEFtZxX4KToeURyiBxT89fGZgtS7TilklYBFM_OiE9sbS2fv_RS8HBIkaRybooDDn56nQ5pYpk1InHdI2Gr2r9pOvifBURwJNhXT3BijGPeCuvACmSR-AqmehtzJTaXmaa2mtfY97UkZx27MVJDK2DdSikSIgO-S0mg80nuESqO45NIEcLbCBHXfT7SrY9zHIbw4jSvkfKaoSOUk4rjL4iXK6I9ZhEqNrFIr5LSQfc2oM36VurD6_kMkat51mf3a_4_wCVlp97udqHPduz0gqwwTZds8dkhKk7epPgI0MUmOc5v5Bt3Exrs
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB5qC6IH8Yn1uaAXhWi6m2wS8FK0pT5aPVgpXmKy2UXBpkVaz_4Ef6O_xNlNmlYQwVsOQw6zu_N9szvzDcChEIkQkjFLcU9ZjrIDC3cJ10Xjvo0ITbmvu5HbHd7qOlc9t1eCs0kvTKYPUVy46ZNh4rU-4MNEnU5FQ-WgT09qiF_BHFRchCW7DJX6Q_exW9yxaHkuaoZXIrDr6ziPFQql9HT6gx-YNMtRDcg0l2EpZ4ekni3nCpRkugqLM5qBa_CERA-BgpjCKgxTZJAS3UOPJPjr4zNBq3eZEEwqkYpmu4uMTGksmTz3EwxyWh9J6q4pgjT8-WXcJ7ER2sS8eR26zcb9ecvKxyRYgml9TUElU0oJyrzAdbyAx7EfY6YnMXWyEy5ZUqtJKX1PepxHkR1RESQ88hXnTuw4AduAcjpI5SYQrgTjjKsAl9ZRgev7sbRlpMdxOF6URFU4mjgqFLmGuB5l8Rpm6sc01E4NjVOrcFDYDjPljF-tjo2__zAJG7dtar62_mO8D_N3F83w5rJzvQ0LVKfJpnRsB8qjt7HcRS4xivfyLfMNwT_F2w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+progress+on+biomass%E2%80%90derived+ecomaterials+toward+advanced+rechargeable+lithium+batteries&rft.jtitle=EcoMat+%28Beijing%2C+China%29&rft.au=Liu%2C+Jia&rft.au=Yuan%2C+Hong&rft.au=Tao%2C+Xinyong&rft.au=Liang%2C+Yeru&rft.date=2020-03-01&rft.issn=2567-3173&rft.eissn=2567-3173&rft.volume=2&rft.issue=1&rft_id=info:doi/10.1002%2Feom2.12019&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_eom2_12019
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2567-3173&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2567-3173&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2567-3173&client=summon