Recent progress on biomass‐derived ecomaterials toward advanced rechargeable lithium batteries
Biomass materials are of great interest in high‐energy rechargeable batteries due to their appealing merits of sustainability, environmental benefits, and more importantly, structural/compositional versatilities, abundant functional groups and many other unique physicochemical properties. In this pe...
Saved in:
Published in | EcoMat (Beijing, China) Vol. 2; no. 1 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken, USA
John Wiley & Sons, Inc
01.03.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Biomass materials are of great interest in high‐energy rechargeable batteries due to their appealing merits of sustainability, environmental benefits, and more importantly, structural/compositional versatilities, abundant functional groups and many other unique physicochemical properties. In this perspective, we provide both overview and prospect on the contributions of biomass‐derived ecomaterials to battery component engineering including binders, separators, polymer electrolytes, electrode hosts, and functional interlayers, and so forth toward high‐stable lithium–ion batteries, lithium–sulfur batteries, lithium–oxygen batteries, and solid state lithium metal batteries. Furthermore, based on the multifunctionalities of bio‐based materials, the design protocols for battery components with desired properties are highlighted. This perspective affords fresh inspiration on the rational designs of biomass‐based materials for advanced lithium‐based batteries, as well as the sustainable development of advanced energy storage devices.
Biomass Derived EcoMaterials with special properties and functionalities render great promise in advanced rechargeable lithium batteries. We summarize the recent progresses of bio‐based ecomaterials in addressing critical problems in lithium battery systems, and offer some perspectives for promoting the greenness and sustainability of energy devices. |
---|---|
AbstractList | Biomass materials are of great interest in high‐energy rechargeable batteries due to their appealing merits of sustainability, environmental benefits, and more importantly, structural/compositional versatilities, abundant functional groups and many other unique physicochemical properties. In this perspective, we provide both overview and prospect on the contributions of biomass‐derived ecomaterials to battery component engineering including binders, separators, polymer electrolytes, electrode hosts, and functional interlayers, and so forth toward high‐stable lithium–ion batteries, lithium–sulfur batteries, lithium–oxygen batteries, and solid state lithium metal batteries. Furthermore, based on the multifunctionalities of bio‐based materials, the design protocols for battery components with desired properties are highlighted. This perspective affords fresh inspiration on the rational designs of biomass‐based materials for advanced lithium‐based batteries, as well as the sustainable development of advanced energy storage devices.
image Biomass materials are of great interest in high‐energy rechargeable batteries due to their appealing merits of sustainability, environmental benefits, and more importantly, structural/compositional versatilities, abundant functional groups and many other unique physicochemical properties. In this perspective, we provide both overview and prospect on the contributions of biomass‐derived ecomaterials to battery component engineering including binders, separators, polymer electrolytes, electrode hosts, and functional interlayers, and so forth toward high‐stable lithium–ion batteries, lithium–sulfur batteries, lithium–oxygen batteries, and solid state lithium metal batteries. Furthermore, based on the multifunctionalities of bio‐based materials, the design protocols for battery components with desired properties are highlighted. This perspective affords fresh inspiration on the rational designs of biomass‐based materials for advanced lithium‐based batteries, as well as the sustainable development of advanced energy storage devices. Biomass Derived EcoMaterials with special properties and functionalities render great promise in advanced rechargeable lithium batteries. We summarize the recent progresses of bio‐based ecomaterials in addressing critical problems in lithium battery systems, and offer some perspectives for promoting the greenness and sustainability of energy devices. |
Author | Huang, Jia‐Qi Yuan, Tong‐Qi Yang, Seung Jae Yuan, Hong Liang, Yeru Zhang, Qiang Titirici, Maria‐Magdalena Liu, Jia Tao, Xinyong |
Author_xml | – sequence: 1 givenname: Jia surname: Liu fullname: Liu, Jia organization: Tsinghua University – sequence: 2 givenname: Hong surname: Yuan fullname: Yuan, Hong organization: Beijing Institute of Technology – sequence: 3 givenname: Xinyong surname: Tao fullname: Tao, Xinyong organization: Zhejiang University of Technology – sequence: 4 givenname: Yeru surname: Liang fullname: Liang, Yeru organization: South China Agricultural University – sequence: 5 givenname: Seung Jae surname: Yang fullname: Yang, Seung Jae organization: Inha University – sequence: 6 givenname: Jia‐Qi surname: Huang fullname: Huang, Jia‐Qi organization: Beijing Institute of Technology – sequence: 7 givenname: Tong‐Qi surname: Yuan fullname: Yuan, Tong‐Qi email: ytq581234@bjfu.edu.cn organization: Beijing Forestry University – sequence: 8 givenname: Maria‐Magdalena surname: Titirici fullname: Titirici, Maria‐Magdalena organization: Imperial College London – sequence: 9 givenname: Qiang orcidid: 0000-0002-3929-1541 surname: Zhang fullname: Zhang, Qiang email: zhang-qiang@mails.tsinghua.edu.cn organization: Tsinghua University |
BookMark | eNp9kMtKAzEUhoNUsNZufIKshalJJs10llLqBSoF0fV4JjnTRmYmJYkt3fkIPqNP4tS6EBFX5_Z9Z_Gfkl7rWiTknLMRZ0xcomvEiAvG8yPSF2OVJSnP0t6P_oQMQ3hhHTxmUkjeJ88PqLGNdO3d0mMI1LW0tK6BED7e3g16u0FDUXeb2A1QBxrdFryhYDbQ6u7oUa_ALxHKGmlt48q-NrSEuOcxnJHjqrNw-F0H5Ol69ji9TeaLm7vp1TzRKcvzRAtMq6rSIs3yscxyVZaTkjOFknFmFKaGc0ScZJgpBcBA6NwomFRKyVLKPB2Qi8Nf7V0IHqti7W0DfldwVuzjKfbxFF_xdDD7BWsbIVrXRg-2_lvhB2Vra9z987yYLe7FwfkEtkl8PQ |
CitedBy_id | crossref_primary_10_3390_molecules28196905 crossref_primary_10_1002_aenm_202003456 crossref_primary_10_1021_acs_accounts_1c00120 crossref_primary_10_1002_adfm_202409812 crossref_primary_10_1016_j_pmatsci_2024_101264 crossref_primary_10_3390_coatings12081161 crossref_primary_10_1016_j_cjche_2021_03_021 crossref_primary_10_1002_sus2_4 crossref_primary_10_1002_batt_202100359 crossref_primary_10_1039_D1GC01814K crossref_primary_10_1007_s11426_023_1908_9 crossref_primary_10_1002_aenm_202100748 crossref_primary_10_23919_IEN_2022_0003 crossref_primary_10_1016_j_cej_2023_142786 crossref_primary_10_1016_j_jallcom_2023_168876 crossref_primary_10_1021_jacs_5c00294 crossref_primary_10_1016_j_fuel_2022_125056 crossref_primary_10_1002_advs_202205557 crossref_primary_10_1002_eom2_12027 crossref_primary_10_1016_j_etran_2022_100211 crossref_primary_10_1002_aenm_202401568 crossref_primary_10_1007_s12598_022_02174_z crossref_primary_10_1002_sus2_74 crossref_primary_10_1002_smm2_1007 crossref_primary_10_1007_s40242_020_0103_5 crossref_primary_10_1016_j_carbon_2024_119143 crossref_primary_10_1016_S1872_5805_22_60620_6 crossref_primary_10_1039_D0TA12153C crossref_primary_10_1016_j_ijhydene_2023_12_248 crossref_primary_10_1039_D1QM00255D crossref_primary_10_1002_marc_202200327 crossref_primary_10_1002_adfm_202201584 crossref_primary_10_1016_j_mtchem_2023_101595 crossref_primary_10_1016_j_jechem_2021_12_020 crossref_primary_10_1039_D1GC02872C crossref_primary_10_1039_D1TA04059F crossref_primary_10_1002_smll_202403239 crossref_primary_10_1016_j_jechem_2021_12_024 crossref_primary_10_1016_j_jechem_2023_02_012 crossref_primary_10_1016_j_cclet_2023_108187 crossref_primary_10_1016_j_est_2024_111803 crossref_primary_10_1080_00219592_2024_2397996 crossref_primary_10_1039_D0QM01134G crossref_primary_10_1063_5_0083830 crossref_primary_10_1007_s10853_022_06903_8 crossref_primary_10_1016_j_electacta_2022_141525 crossref_primary_10_1002_aenm_202200584 crossref_primary_10_3390_batteries8090123 crossref_primary_10_1002_metm_6 crossref_primary_10_1016_j_partic_2020_12_003 crossref_primary_10_1039_D3RA06873K crossref_primary_10_1016_j_rser_2020_110308 crossref_primary_10_1039_D1NJ05027C crossref_primary_10_1021_acs_chemmater_1c03727 crossref_primary_10_1002_sus2_8 crossref_primary_10_1002_eom2_12126 crossref_primary_10_1016_j_carbpol_2021_118787 crossref_primary_10_1146_annurev_matsci_010622_105440 crossref_primary_10_1016_j_fmre_2022_11_005 crossref_primary_10_1002_aenm_202201044 crossref_primary_10_1002_cey2_147 crossref_primary_10_34133_research_0267 crossref_primary_10_1002_adsu_202200396 crossref_primary_10_1021_acsami_2c13862 crossref_primary_10_1002_adma_202414880 crossref_primary_10_1016_j_jcis_2023_05_191 crossref_primary_10_3390_batteries8120286 crossref_primary_10_1002_eom2_12198 crossref_primary_10_1016_j_jechem_2021_04_045 crossref_primary_10_1016_j_scitotenv_2022_153892 crossref_primary_10_1016_j_cclet_2023_108164 crossref_primary_10_1002_advs_202004814 crossref_primary_10_1016_j_biombioe_2024_107348 crossref_primary_10_1002_advs_202203189 crossref_primary_10_1016_S1872_5805_23_60773_5 crossref_primary_10_1088_2515_7639_ac5753 crossref_primary_10_1002_eom2_12357 crossref_primary_10_1002_eom2_12478 crossref_primary_10_1002_adfm_202315201 crossref_primary_10_1002_sus2_27 crossref_primary_10_1007_s40242_022_2214_7 crossref_primary_10_1360_SSC_2024_0098 crossref_primary_10_1002_adfm_202100594 crossref_primary_10_1063_5_0029686 crossref_primary_10_1002_smll_202203874 crossref_primary_10_1016_j_ensm_2024_103244 crossref_primary_10_1016_j_cej_2022_137050 crossref_primary_10_1007_s12598_023_02444_4 crossref_primary_10_1016_j_cej_2021_128733 crossref_primary_10_1016_j_ensm_2021_02_005 crossref_primary_10_1002_aenm_202101650 crossref_primary_10_1016_j_electacta_2022_141495 crossref_primary_10_1002_adfm_202307261 crossref_primary_10_1002_inf2_12304 crossref_primary_10_1002_aesr_202000059 crossref_primary_10_1016_j_ccr_2024_216380 crossref_primary_10_1149_1945_7111_ac4843 crossref_primary_10_1016_j_coelec_2021_100860 crossref_primary_10_1021_acs_energyfuels_1c01226 crossref_primary_10_1002_sus2_37 crossref_primary_10_1016_j_icheatmasstransfer_2024_108213 crossref_primary_10_1002_eem2_12402 crossref_primary_10_1002_adsu_202200010 crossref_primary_10_1016_j_fmre_2021_06_007 crossref_primary_10_1021_acssuschemeng_4c04145 crossref_primary_10_3390_nano12040677 crossref_primary_10_1016_j_jcis_2022_11_103 crossref_primary_10_17159_sajs_2022_9747 crossref_primary_10_1016_j_cjche_2021_05_008 crossref_primary_10_1039_D1NJ01622A crossref_primary_10_1002_eom2_12172 crossref_primary_10_1016_j_ensm_2021_03_016 crossref_primary_10_1002_pol_20230726 crossref_primary_10_3390_inorganics11020081 crossref_primary_10_1016_j_jechem_2022_01_019 crossref_primary_10_1002_eom2_12213 crossref_primary_10_1002_aenm_202203770 crossref_primary_10_1016_j_est_2024_113186 crossref_primary_10_1016_j_jallcom_2024_175961 crossref_primary_10_1002_adsu_202100308 crossref_primary_10_1021_acsanm_4c01231 crossref_primary_10_1002_smll_202205315 crossref_primary_10_1002_eom2_12283 crossref_primary_10_1002_aenm_202300092 crossref_primary_10_1002_advs_202307369 crossref_primary_10_1002_cey2_185 crossref_primary_10_1039_D3GC03970F crossref_primary_10_1016_j_indcrop_2023_117507 crossref_primary_10_1007_s11426_023_1866_y crossref_primary_10_1002_aenm_202300646 crossref_primary_10_1002_aenm_202303991 crossref_primary_10_1039_D3EE01173A |
Cites_doi | 10.1016/j.ijbiomac.2017.05.155 10.1002/aenm.201802964 10.1039/C4CS00232F 10.1002/adma.201900341 10.1039/C6GC00444J 10.1007/s12274-017-1660-x 10.1002/adma.201401243 10.1021/acsenergylett.6b00209 10.1016/j.jechem.2019.01.006 10.1016/j.nanoen.2017.05.015 10.1002/aenm.201803390 10.1021/acsnano.9b04519 10.1016/j.jechem.2017.08.008 10.1002/aenm.201300654 10.1039/C5TA07818K 10.1016/j.etran.2019.100033 10.1021/ja3091438 10.1002/aenm.201701110 10.1016/j.carbon.2014.01.002 10.1021/sc400370h 10.1016/j.jechem.2018.01.025 10.1039/C9TA00543A 10.1016/j.ensm.2018.02.011 10.1038/526S93a 10.1002/cssc.201801997 10.1002/adma.201805718 10.1039/c2ee21817h 10.1021/am302290n 10.1007/s40843-016-5047-8 10.1016/j.joule.2018.11.025 10.1002/admi.201802046 10.1021/acsami.5b10673 10.1002/cssc.201301287 10.1016/j.jechem.2018.01.015 10.1002/celc.201800444 10.1016/j.electacta.2008.10.011 10.1016/j.ensm.2018.04.001 10.1002/cssc.201901409 10.1007/s40843-018-9331-x 10.1016/j.indcrop.2012.07.024 10.1039/C7EE03365F 10.1039/C6GC00612D 10.1021/acs.energyfuels.8b01453 10.1039/C7CS00278E 10.1016/j.nanoen.2015.09.001 10.1002/adfm.201707411 10.1007/s10800-016-0957-x 10.1002/aenm.201802768 10.1002/aenm.201702184 10.1021/am501627f 10.1021/acs.chemrev.7b00115 10.1016/j.jpowsour.2018.10.030 10.1073/pnas.1618871114 10.1038/srep27328 10.1016/j.mtnano.2019.100049 10.1016/j.ensm.2017.12.002 10.1016/j.cclet.2017.11.038 10.1016/j.jechem.2016.11.003 10.1039/C8TA01138A 10.1016/j.cej.2019.03.245 10.1002/anie.201801513 10.1007/s40843-019-9475-4 10.1016/j.joule.2017.06.004 10.1002/cssc.201700050 10.1039/C8TA05853A 10.1002/inf2.12000 10.1039/C4EE01432D 10.1038/nmat1368 10.1039/C6TA06250D 10.1039/c3ra45879b 10.1039/C5TA00681C 10.1002/cssc.201801148 10.1021/acs.accounts.8b00391 10.1021/acsami.8b15247 10.1002/adma.201502467 10.1002/adma.201700598 10.1016/j.ensm.2018.08.004 10.1039/C9SC02743B 10.1016/j.ensm.2017.07.015 10.1002/anie.201607951 10.1016/j.chempr.2017.01.003 10.1016/j.carbon.2017.11.065 10.1002/aenm.201700260 10.1016/j.jechem.2018.01.013 10.1002/chem.201202127 10.1039/C5TA00651A 10.1021/acsnano.8b05529 10.1016/j.ensm.2018.04.032 10.1039/C7TA06457H 10.1016/j.jechem.2018.10.005 10.1039/C8GC00085A 10.1021/nn4023894 10.1002/adma.201706216 10.1016/j.ensm.2015.09.008 10.1002/adsu.201600034 10.1002/anie.201802050 10.1039/C8GC01748D 10.3390/membranes9070078 10.1016/j.ensm.2018.09.002 10.1002/aenm.201701185 10.1021/acsnano.7b02085 10.1021/nl401729r 10.1007/s40843-017-9169-4 10.1039/c2jm16935e 10.1002/smll.201902032 10.1002/smtd.201800354 10.1039/c3sc51476e 10.1039/C5GC02122G 10.1016/j.materresbull.2019.05.015 10.1002/admi.201400227 10.1002/aenm.201601630 10.1002/eom2.12005 10.1080/15583724.2016.1269124 10.1039/C8EE00640G 10.1039/C9EE00206E 10.1002/smtd.201700134 10.1016/j.electacta.2017.04.002 10.1038/nnano.2017.16 10.1002/adma.200902812 10.1002/eom2.12004 10.1002/smll.201801054 10.1016/j.ijbiomac.2018.02.160 10.1038/s41467-019-08422-8 10.1002/aenm.201802107 10.1039/C6EE03033E 10.1016/j.eng.2018.10.008 10.1021/jacs.9b05029 10.1088/0022-3727/19/1/005 10.1007/s10853-017-1818-7 10.1016/j.electacta.2019.01.045 10.1002/aenm.201901774 10.1016/j.jechem.2019.09.004 10.1039/C8TA01883A 10.1039/C5TA01515D 10.1016/j.chempr.2019.05.009 10.1002/smll.201600809 10.1039/C4GC00761A 10.1002/adma.201506124 10.3390/nano7110402 10.1016/j.cclet.2016.07.030 10.1016/j.polymer.2016.10.052 10.1039/C6TA05207J 10.1002/aenm.201701203 |
ContentType | Journal Article |
Copyright | 2020 The Authors. published by John Wiley & Sons Australia, Ltd on behalf of The Hong Kong Polytechnic University |
Copyright_xml | – notice: 2020 The Authors. published by John Wiley & Sons Australia, Ltd on behalf of The Hong Kong Polytechnic University |
DBID | 24P AAYXX CITATION |
DOI | 10.1002/eom2.12019 |
DatabaseName | Wiley Online Library Open Access CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2567-3173 |
EndPage | n/a |
ExternalDocumentID | 10_1002_eom2_12019 EOM212019 |
Genre | reviewArticle |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 21676160; 21825501; 21805161; 21808121; U1801257 – fundername: China Postdoctoral Science Foundation funderid: 2018M631480; BX201700125 – fundername: National Key Research and Development Program funderid: 2016YFA0202500; 2016YFA0200102 |
GroupedDBID | 0R~ 1OC 24P AAHHS ABJCF ACCFJ ACCMX ACXQS ADKYN ADZMN ADZOD AEEZP AEQDE AEUYN AFKRA AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ATCPS AVUZU BENPR BGLVJ BHPHI CCPQU EBS EDH GROUPED_DOAJ HCIFZ IAO ITC KB. M~E PATMY PDBOC PIMPY PYCSY WIN AAYXX CITATION IEP PHGZM PHGZT |
ID | FETCH-LOGICAL-c3099-c2e3fffc237954796bb8b106e4010d6e3d11eee87e766aa0a2c9d6a8f664b4493 |
IEDL.DBID | 24P |
ISSN | 2567-3173 |
IngestDate | Thu Apr 24 22:58:43 EDT 2025 Tue Jul 01 02:50:12 EDT 2025 Wed Jan 22 16:36:51 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3099-c2e3fffc237954796bb8b106e4010d6e3d11eee87e766aa0a2c9d6a8f664b4493 |
Notes | Funding information China Postdoctoral Science Foundation, Grant/Award Numbers: 2018M631480, BX201700125; National Key Research and Development Program, Grant/Award Numbers: 2016YFA0202500, 2016YFA0200102; National Natural Science Foundation of China, Grant/Award Numbers: 21676160, 21825501, 21805161, 21808121, U1801257 |
ORCID | 0000-0002-3929-1541 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Feom2.12019 |
PageCount | 16 |
ParticipantIDs | crossref_primary_10_1002_eom2_12019 crossref_citationtrail_10_1002_eom2_12019 wiley_primary_10_1002_eom2_12019_EOM212019 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2020 2020-03-00 |
PublicationDateYYYYMMDD | 2020-03-01 |
PublicationDate_xml | – month: 03 year: 2020 text: March 2020 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA |
PublicationTitle | EcoMat (Beijing, China) |
PublicationYear | 2020 |
Publisher | John Wiley & Sons, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc |
References | 2013; 4 2019; 10 2019; 13 2019; 12 2019; 15 2019; 17 2019; 16 2014; 26 2019; 18 2013; 7 2013; 5 2010; 22 2018; 6 2018; 8 2018; 5 2018; 4 2014; 16 2019; 29 2018; 30 2018; 32 2012; 22 2016; 46 2019; 8 2019; 7 2019; 9 2018; 28 2019; 3 2019; 6 2019; 5 2019; 31 2019; 30 2019; 2 2019; 1 2019; 34 2019; 39 1986; 19 2015; 526 2016; 18 2018; 20 2018; 27 2016; 12 2016; 4 2016; 6 2016; 1 2018; 113 2005; 4 2018; 12 2018; 11 2016; 28 2018; 10 2016; 25 2016; 8 2018; 15 2019; 299 2018; 14 2017; 7 2014; 70 2017; 1 2017; 2 2018; 128 2018; 405 2017; 46 2016; 106 2017; 114 2017; 117 2017; 239 2013; 19 2014; 1 2014; 4 2019; 62 2009; 54 2014; 2 2017; 37 2013; 13 2015; 44 2020; 44 2019; 118 2014; 7 2014; 6 2015; 1 2015; 17 2015; 3 2017; 26 2013; 43 2017; 28 2017; 29 2018; 61 2019; 141 2016; 59 2016; 55 2015; 27 2017; 11 2017; 10 2017; 12 2013; 135 2018; 51 2017; 103 2019; 370 2018; 53 2012; 5 2018; 58 2018; 57 e_1_2_6_114_1 e_1_2_6_137_1 e_1_2_6_53_1 e_1_2_6_76_1 e_1_2_6_95_1 e_1_2_6_118_1 e_1_2_6_30_1 e_1_2_6_72_1 e_1_2_6_91_1 e_1_2_6_110_1 e_1_2_6_133_1 e_1_2_6_19_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_99_1 e_1_2_6_125_1 e_1_2_6_64_1 e_1_2_6_87_1 e_1_2_6_106_1 e_1_2_6_129_1 e_1_2_6_41_1 e_1_2_6_60_1 e_1_2_6_83_1 e_1_2_6_140_1 e_1_2_6_121_1 e_1_2_6_102_1 e_1_2_6_144_1 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_49_1 e_1_2_6_22_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_68_1 e_1_2_6_73_1 e_1_2_6_136_1 e_1_2_6_54_1 e_1_2_6_96_1 e_1_2_6_117_1 e_1_2_6_31_1 e_1_2_6_50_1 e_1_2_6_92_1 e_1_2_6_132_1 e_1_2_6_113_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_39_1 e_1_2_6_77_1 e_1_2_6_16_1 e_1_2_6_58_1 e_1_2_6_84_1 e_1_2_6_42_1 e_1_2_6_105_1 e_1_2_6_128_1 e_1_2_6_65_1 e_1_2_6_80_1 e_1_2_6_109_1 e_1_2_6_61_1 e_1_2_6_120_1 e_1_2_6_101_1 e_1_2_6_124_1 e_1_2_6_143_1 e_1_2_6_6_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_88_1 e_1_2_6_27_1 e_1_2_6_46_1 e_1_2_6_69_1 e_1_2_6_51_1 e_1_2_6_74_1 e_1_2_6_97_1 e_1_2_6_116_1 e_1_2_6_139_1 e_1_2_6_32_1 e_1_2_6_70_1 e_1_2_6_93_1 e_1_2_6_131_1 e_1_2_6_112_1 e_1_2_6_135_1 Perumal P (e_1_2_6_57_1) 2019; 118 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_59_1 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_78_1 e_1_2_6_62_1 e_1_2_6_85_1 e_1_2_6_104_1 e_1_2_6_43_1 e_1_2_6_127_1 e_1_2_6_81_1 e_1_2_6_20_1 e_1_2_6_108_1 e_1_2_6_142_1 e_1_2_6_100_1 e_1_2_6_123_1 e_1_2_6_7_1 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_66_1 e_1_2_6_89_1 e_1_2_6_28_1 e_1_2_6_47_1 e_1_2_6_52_1 e_1_2_6_98_1 e_1_2_6_115_1 e_1_2_6_75_1 e_1_2_6_138_1 e_1_2_6_10_1 e_1_2_6_94_1 e_1_2_6_119_1 e_1_2_6_71_1 e_1_2_6_90_1 e_1_2_6_130_1 e_1_2_6_111_1 e_1_2_6_134_1 e_1_2_6_14_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_56_1 e_1_2_6_37_1 e_1_2_6_79_1 e_1_2_6_103_1 e_1_2_6_126_1 e_1_2_6_63_1 e_1_2_6_86_1 e_1_2_6_21_1 e_1_2_6_107_1 e_1_2_6_40_1 e_1_2_6_82_1 e_1_2_6_141_1 e_1_2_6_122_1 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_67_1 |
References_xml | – volume: 12 start-page: 277 year: 2018 end-page: 283 article-title: Biomass‐derived FeNi alloy and nitrogen‐codoped porous carbons as highly efficient oxygen reduction and evolution bifunctional electrocatalysts for rechargeable Zn‐air battery publication-title: Energy Storage Mater – volume: 19 start-page: 1 year: 1986 end-page: 6 article-title: The distribution fuction of surface‐charge density with respect to surface curvature publication-title: J Phys D Appl Phys – volume: 29 start-page: 17 year: 2019 end-page: 22 article-title: Hard carbon derived from rice husk as low cost negative electrodes in Na‐ion batteries publication-title: J Energy Chem – volume: 1 year: 2019 article-title: Recent advances toward efficient and stable tin‐based perovskite solar cells publication-title: EcoMat – volume: 18 start-page: 3796 year: 2016 end-page: 3803 article-title: Unique starch polymer electrolyte for high capacity all‐solid‐state lithium sulfur battery publication-title: Green Chem – volume: 5 start-page: 2326 year: 2019 end-page: 2352 article-title: Polymer electrolytes for lithium‐based batteries: advances and prospects publication-title: Chem – volume: 18 start-page: 269 year: 2019 end-page: 279 article-title: Superior electrochemical performance of sodium‐ion full‐cell using poplar wood derived hard carbon anode publication-title: Energy Storage Mater – volume: 53 start-page: 4395 year: 2018 end-page: 4405 article-title: Facile synthesis of 3D binder‐free N‐doped carbon nanonet derived from silkworm cocoon for Li‐O battery publication-title: J Mater Sci – volume: 27 start-page: 6021 year: 2015 end-page: 6028 article-title: A nitrogen and sulfur dual‐doped carbon derived from polyrhodanine@cellulose for advanced lithium‐sulfur batteries publication-title: Adv Mater – volume: 2 start-page: 194 year: 2014 end-page: 199 article-title: Cellulose/polysulfonamide composite membrane as a high performance lithium‐ion battery separator publication-title: Acs Sustain Chem Eng – volume: 15 year: 2019 article-title: Biological metabolism synthesis of metal oxides nanorods from bacteria as a biofactory toward high‐performance lithium‐ion battery anodes publication-title: Small – volume: 26 start-page: 6100 year: 2014 end-page: 6105 article-title: Nitrogen‐doped aligned carbon nanotube/graphene sandwiches: facile catalytic growth on bifunctional natural catalysts and their applications as scaffolds for high‐rate lithium‐sulfur batteries publication-title: Adv Mater – volume: 30 year: 2018 article-title: Uniform lithium nucleation/growth induced by lightweight nitrogen‐doped graphitic carbon foams for high‐performance lithium metal anodes publication-title: Adv Mater – volume: 4 start-page: 7845 year: 2014 end-page: 7850 article-title: Polydopamine‐coated cellulose microfibrillated membrane as high performance lithium‐ion battery separator publication-title: RSC Adv – volume: 32 start-page: 9997 year: 2018 end-page: 10007 article-title: An eco‐friendly microorganism method to activate biomass for cathode materials for high‐performance lithium‐sulfur batteries publication-title: Energ Fuel – volume: 12 start-page: 1751 year: 2019 end-page: 1779 article-title: Emerging applications of biochar‐based materials for energy storage and conversion publication-title: Energy Environ Sci – volume: 10 year: 2019 article-title: A versatile functionalized ionic liquid to boost the solution‐mediated performances of lithium‐oxygen batteries publication-title: Nat Commun – volume: 29 year: 2017 article-title: Toward practical high‐energy batteries: a modular‐assembled oval‐like carbon microstructure for thick sulfur electrodes publication-title: Adv Mater – volume: 6 year: 2019 article-title: Sulfur redox reactions at working interfaces in lithium‐sulfur batteries: a perspective publication-title: Adv Mater Interfaces – volume: 10 start-page: 1 year: 2018 end-page: 9 article-title: Facilitation of sulfur evolution reaction by pyridinic nitrogen doped carbon nanoflakes for highly‐stable lithium‐sulfur batteries publication-title: Energy Storage Mater – volume: 103 start-page: 1032 year: 2017 end-page: 1043 article-title: A review on cellulose and lignin based binders and electrodes: small steps towards a sustainable lithium ion battery publication-title: Int J Biol Macromol – volume: 299 start-page: 636 year: 2019 end-page: 644 article-title: Suppressing Li dendrite by a protective biopolymeric film from tamarind seed polysaccharide for high‐performance Li metal anode publication-title: Electrochim Acta – volume: 1 start-page: 633 year: 2016 end-page: 637 article-title: Cellulose‐based porous membrane for suppressing Li dendrite formation in lithium‐sulfur battery publication-title: ACS Energy Lett – volume: 10 start-page: 750 year: 2017 end-page: 755 article-title: Exploiting a robust biopolymer network binder for an ultrahigh‐areal‐capacity Li–S battery publication-title: Energy Environ Sci – volume: 8 year: 2018 article-title: Hierarchically porous, ultrathick, "breathable" wood‐derived cathode for lithium‐oxygen batteries publication-title: Adv Energy Mater – volume: 118 year: 2019 article-title: Study on Mg‐ion conducting solid biopolymer electrolytes based on tamarind seed polysaccharide for magnesium ion batteries publication-title: Mater Res Bull – volume: 9 start-page: 78 year: 2019 article-title: A review on inorganic nanoparticles modified composite membranes for lithium‐ion batteries: recent progress and prospects publication-title: Membranes – volume: 19 start-page: 1013 year: 2013 end-page: 1019 article-title: Encapsulating sulfur into hierarchically ordered porous carbon as a high‐performance cathode for lithium–sulfur batteries publication-title: Chem Eur J – volume: 4 start-page: 366 year: 2005 end-page: 377 article-title: Nanostructured materials for advanced energy conversion and storage devices publication-title: Nat Mater – volume: 28 start-page: 2180 year: 2017 end-page: 2194 article-title: A review of transition metal chalcogenide/graphene nanocomposites for energy storage and conversion publication-title: Chin Chem Lett – volume: 12 start-page: 4889 year: 2019 end-page: 4900 article-title: Lignin@nafion membranes forming Zn solid‐electrolyte interfaces enhance the cycle life for rechargeable zinc‐ion batteries publication-title: ChemSusChem – volume: 16 start-page: 259 year: 2019 end-page: 266 article-title: Spatially uniform deposition of lithium metal in 3D Janus hosts publication-title: Energy Storage Mater – volume: 28 start-page: 738 year: 2017 end-page: 742 article-title: Natural nitrogen‐doped multiporous carbon from biological cells as sulfur stabilizers for lithium‐sulfur batteries publication-title: Chin Chem Lett – volume: 11 start-page: 3276 year: 2018 end-page: 3285 article-title: Impact of the acid treatment on lignocellulosic biomass hard carbon for sodium‐ion battery anodes publication-title: ChemSusChem – volume: 10 start-page: 4318 year: 2017 end-page: 4326 article-title: Free‐standing porous carbon electrodes derived from wood for high‐performance Li‐O battery applications publication-title: Nano Res – volume: 22 start-page: 9209 year: 2012 end-page: 9215 article-title: Biotemplated fabrication of hierarchically porous NiO/C composite from lotus pollen grains for lithium‐ion batteries publication-title: J Mater Chem – volume: 59 start-page: 389 year: 2016 end-page: 407 article-title: Biomass‐derived nanostructured porous carbons for lithium‐sulfur batteries publication-title: Sci China Mater – volume: 10 start-page: 38526 year: 2018 end-page: 38537 article-title: From nature to energy storage: a novel sustainable 3D cross‐linked chitosan‐pegge‐based gel polymer electrolyte with excellent lithium‐ion transport properties for lithium batteries publication-title: ACS Appl Mater Interfaces – volume: 4 start-page: 3673 year: 2013 end-page: 3677 article-title: Stable cycling of lithium sulfide cathodes through strong affinity with a bifunctional binder publication-title: Chem Sci – volume: 7 start-page: 3857 year: 2014 end-page: 3886 article-title: A review of recent developments in membrane separators for rechargeable lithium‐ion batteries publication-title: Energy Environ Sci – volume: 18 start-page: 2078 year: 2016 end-page: 2088 article-title: Interconnected highly graphitic carbon nanosheets derived from wheat stalk as high performance anode materials for lithium ion batteries publication-title: Green Chem – volume: 57 start-page: 13722 year: 2018 end-page: 13734 article-title: Versatile nanostructures from rice husk biomass for energy applications publication-title: Angew Chem Int Ed – volume: 1 year: 2014 article-title: Strongly coupled interfaces between a heterogeneous carbon host and a sulfur‐containing guest for highly stable lithium‐sulfur batteries: mechanistic insight into capacity degradation publication-title: Adv Mater Interfaces – volume: 31 year: 2019 article-title: Hierarchically porous carbon plates derived from wood as bifunctional ORR/OER electrodes publication-title: Adv Mater – volume: 12 start-page: 161 year: 2018 end-page: 175 article-title: Beyond lithium ion batteries: higher energy density battery systems based on lithium metal anodes publication-title: Energy Storage Mater – volume: 6 start-page: 256 year: 2018 end-page: 265 article-title: Cellulose‐based electrospun fibers functionalized with polypyrrole and polyaniline for fully organic batteries publication-title: J Mater Chem A – volume: 28 start-page: 2888 year: 2016 end-page: 2895 article-title: Dendrite‐free lithium deposition induced by uniformly distributed lithium ions for efficient lithium metal batteries publication-title: Adv Mater – volume: 7 start-page: 10662 year: 2019 end-page: 10671 article-title: Biomass‐derived hierarchically porous carbon skeletons with decorated IrCo nanoparticles as high‐performance cathode catalysts for Li‐O batteries publication-title: J Mater Chem A – volume: 10 start-page: 1803 year: 2017 end-page: 1812 article-title: Honeycomb‐like nitrogen and sulfur dual‐doped hierarchical porous biomass‐derived carbon for lithium‐sulfur batteries publication-title: ChemSusChem – volume: 31 year: 2019 article-title: Sustainable carbonaceous materials derived from biomass as metal‐free electrocatalysts publication-title: Adv Mater – volume: 1 start-page: 563 year: 2017 end-page: 575 article-title: Free‐standing hollow carbon fibers as high‐capacity containers for stable lithium metal anodes publication-title: Joule – volume: 239 start-page: 1 year: 2017 end-page: 9 article-title: Chrysanthemum‐derived N and S co‐doped porous carbon for efficient oxygen reduction reaction and aluminum‐air battery publication-title: Electrochim Acta – volume: 135 start-page: 1167 year: 2013 end-page: 1176 article-title: The Li‐ion rechargeable battery: a perspective publication-title: J Am Chem Soc – volume: 14 year: 2018 article-title: A natural biopolymer film as a robust protective layer to effectively stabilize lithium‐metal anodes publication-title: Small – volume: 12 start-page: 11106 year: 2018 end-page: 11119 article-title: Rational design of 1D partially graphitized N‐doped hierarchical porous carbon with uniaxially packed carbon nanotubes for high‐performance lithium‐Ion batteries publication-title: ACS Nano – volume: 3 year: 2019 article-title: Uniform lithium nucleation guided by atomically dispersed lithiophilic CoN sites for safe lithium metal batteries publication-title: Small Methods – volume: 46 start-page: 6764 year: 2017 end-page: 6815 article-title: New insights and perspectives into biological materials for flexible electronics publication-title: Chem Soc Rev – volume: 28 year: 2018 article-title: Rational design of nanostructured functional interlayer/separator for advanced Li‐S batteries publication-title: Adv Funct Mater – volume: 8 year: 2018 article-title: Popcorn inspired porous macrocellular carbon: rapid puffing fabrication from rice and its applications in lithium‐sulfur batteries publication-title: Adv Energy Mater – volume: 62 start-page: 1556 year: 2019 end-page: 1573 article-title: Safety regulation of gel electrolytes in electrochemical energy storage devices publication-title: Sci China Mater – volume: 5 start-page: 2367 year: 2018 end-page: 2375 article-title: Nitrogen, sulfur, phosphorous co‐doped interconnected porous carbon nanosheets with high defect density for enhancing supercapacitor and lithium‐ion battery properties publication-title: ChemElectroChem – volume: 25 start-page: 967 year: 2016 end-page: 984 article-title: Nanostructured energy materials for electrochemical energy conversion and storage: a review publication-title: J Energy Chem – volume: 43 start-page: 141 year: 2013 end-page: 149 article-title: Studies on the structural characterization of lignin, hemicelluloses and cellulose fractionated by ionic liquid followed by alkaline extraction from bamboo publication-title: Ind Crop Prod – volume: 6 start-page: 17057 year: 2018 end-page: 17066 article-title: NaCl‐templated synthesis of hierarchical porous carbon with extremely large specific surface area and improved graphitization degree for high energy density lithium ion capacitors publication-title: J Mater Chem A – volume: 1 year: 2017 article-title: Dendrite‐free lithium anode via a homogenous Li‐ion distribution enabled by a kimwipe paper publication-title: Adv Sustain Systems – volume: 7 start-page: 1655 year: 2014 end-page: 1661 article-title: A natural carbonized leaf as polysulfide diffusion inhibitor for high‐performance lithium‐sulfur battery cells publication-title: ChemSusChem – volume: 6 start-page: 7382 year: 2018 end-page: 7388 article-title: A robust network binder with dual functions of Cu ions as ionic crosslinking and chemical binding agents for highly stable Li‐S batteries publication-title: J Mater Chem A – volume: 57 start-page: 5301 year: 2018 end-page: 5305 article-title: Highly stable lithium metal batteries enabled by regulating the solvation of lithium ions in nonaqueous electrolytes publication-title: Angew Chem Int Ed – volume: 9 year: 2019 article-title: Nature‐inspired tri‐pathway design enabling high‐performance flexible Li‐O Batteries publication-title: Adv Energy Mater – volume: 61 start-page: 133 year: 2018 end-page: 158 article-title: Biomass‐derived carbon materials with structural diversities and their applications in energy storage publication-title: Sci China Mater – volume: 11 start-page: 6114 year: 2017 end-page: 6121 article-title: Hierarchical chitin fibers with aligned nanofibrillar architectures: a nonwoven‐mat separator for lithium metal batteries publication-title: Acs Nano – volume: 5 start-page: 7950 year: 2012 end-page: 7955 article-title: Lithium storage in nitrogen‐rich mesoporous carbon materials publication-title: Energy Environ Sci – volume: 18 start-page: 5169 year: 2016 end-page: 5179 article-title: Porous carbon derived from rice husks as sustainable bioresources: insights into the role of micro‐/mesoporous hierarchy in hosting active species for lithium‐sulphur batteries publication-title: Green Chem – volume: 54 start-page: 1888 year: 2009 end-page: 1892 article-title: A microporous gel electrolyte based on poly(vinylidene fluoride‐co‐hexafluoropropylene)/fully cyanoethylated cellulose derivative blend for lithium‐ion battery publication-title: Electrochim Acta – volume: 141 start-page: 9422 year: 2019 end-page: 9429 article-title: Regulating the inner helmholtz plane for stable solid electrolyte interphase on lithium metal anodes publication-title: J Am Chem Soc – volume: 3 start-page: 9609 year: 2015 end-page: 9615 article-title: A graphene wrapped hair‐derived carbon/sulfur composite for lithium‐sulfur batteries publication-title: J Mater Chem A – volume: 8 year: 2018 article-title: A review of functional binders in lithium‐sulfur batteries publication-title: Adv Energy Mater – volume: 9 year: 2019 article-title: Trifunctional electrode additive for high active material content and volumetric lithium‐ion electrode densities publication-title: Adv Energy Mater – volume: 12 start-page: 3283 year: 2016 end-page: 3291 article-title: Design principles for heteroatom‐doped nanocarbon to achieve strong anchoring of polysulfides for lithium‐sulfur batteries publication-title: Small – volume: 6 start-page: 8789 year: 2014 end-page: 8795 article-title: Insight into the effect of boron doping on sulfur/carbon cathode in lithium‐sulfur batteries publication-title: ACS Appl Mater Interfaces – volume: 62 start-page: 455 year: 2019 end-page: 464 article-title: Enhancing kinetics of Li‐S batteries by graphene‐like N,S‐codoped biochar fabricated in NaCl non‐aqueous ionic liquid publication-title: Sci China Mater – volume: 34 start-page: 171 year: 2019 end-page: 185 article-title: Biomass‐derived porous carbon materials for advanced lithium sulfur batteries publication-title: J Energy Chem – volume: 2 start-page: 258 year: 2017 end-page: 270 article-title: Implantable solid electrolyte interphase in lithium‐metal batteries publication-title: Chem – volume: 8 year: 2018 article-title: Gel polymer electrolytes for electrochemical energy storage publication-title: Adv Energy Mater – volume: 4 start-page: 12136 year: 2016 end-page: 12143 article-title: Degradable cellulose acetate/poly‐l‐lactic acid/halloysite nanotube composite nanofiber membranes with outstanding performance for gel polymer electrolytes publication-title: J Mater Chem A – volume: 17 start-page: 224 year: 2015 end-page: 232 article-title: Porous carbonized graphene‐embedded fungus film as an interlayer for superior Li‐S batteries publication-title: Nano Energy – volume: 1 start-page: 127 year: 2015 end-page: 145 article-title: Multi‐functional separator/interlayer system for high‐stable lithium‐sulfur batteries: progress and prospects publication-title: Energy Storage Mater – volume: 11 start-page: 1197 year: 2018 end-page: 1203 article-title: A multifunctional polymer electrolyte enables ultra‐long cycle‐life in a high‐voltage lithium metal battery publication-title: Energy Environ Sci – volume: 2 year: 2019 article-title: Carbon materials for traffic power battery publication-title: eTransportation – volume: 30 start-page: 121 year: 2019 end-page: 131 article-title: Sulfur‐encapsulated in heteroatom‐doped hierarchical porous carbon derived from goat hair for high performance lithium‐sulfur batteries publication-title: J Energy Chem – volume: 4 start-page: 14324 year: 2016 end-page: 14333 article-title: A free‐standing sulfur‐doped microporous carbon interlayer derived from luffa sponge for high performance lithium‐sulfur batteries publication-title: J Mater Chem A – volume: 3 start-page: 732 year: 2019 end-page: 744 article-title: High‐energy Li metal battery with lithiated host publication-title: Joule – volume: 20 start-page: 1527 year: 2018 end-page: 1537 article-title: Addressing the energy sustainability of biowaste‐derived hard carbon materials for battery electrodes publication-title: Green Chem – volume: 7 start-page: 7083 year: 2013 end-page: 7092 article-title: Green and facile fabrication of hollow porous mno/c microspheres from microalgaes for lithium‐ion batteries publication-title: ACS Nano – volume: 8 year: 2019 article-title: A review of naturally derived nanostructured materials for safe lithium metal batteries publication-title: Materials Today Nano – volume: 3 start-page: 9502 year: 2015 end-page: 9509 article-title: A conductive interwoven bamboo carbon fiber membrane for Li‐S batteries publication-title: J Mater Chem A – volume: 16 start-page: 3926 year: 2014 end-page: 3934 article-title: Preparation of a macroscopic, robust carbon‐fiber monolith from filamentous fungi and its application in Li‐S batteries publication-title: Green Chem – volume: 114 start-page: 3584 year: 2017 end-page: 3589 article-title: High‐capacity, low‐tortuosity, and channel‐guided lithium metal anode publication-title: Proc Natl Acad Sci U S A – volume: 51 start-page: 3154 year: 2018 end-page: 3165 article-title: Nanocellulose toward advanced energy storage devices: structure and electrochemistry publication-title: Acc Chem Res – volume: 4 year: 2014 article-title: Nanoporous polymer‐ceramic composite electrolytes for lithium metal batteries publication-title: Adv Energy Mater – volume: 1 year: 2017 article-title: A toolbox for lithium–sulfur battery research: methods and protocols publication-title: Small Methods – volume: 6 year: 2016 article-title: Novel proton conducting solid bio‐polymer electrolytes based on carboxymethyl cellulose doped with oleic acid and plasticized with glycerol publication-title: Sci Rep – volume: 58 start-page: 102 year: 2018 end-page: 163 article-title: A review of cellulose and cellulose blends for preparation of bio‐derived and conventional membranes, nanostructured thin films, and composites publication-title: Polym Rev – volume: 9 year: 2019 article-title: Conductive and catalytic triple‐phase interfaces enabling uniform nucleation in high‐rate lithium‐sulfur batteries publication-title: Adv Energy Mater – volume: 11 start-page: 3096 year: 2018 end-page: 3127 article-title: Alternative binders for sustainable electrochemical energy storage‐the transition to aqueous electrode processing and bio‐derived polymers publication-title: Energy Environ Sci – volume: 12 start-page: 310 year: 2019 end-page: 319 article-title: Nitrogen‐doped biomass‐derived carbon formed by mechanochemical synthesis for lithium‐sulfur batteries publication-title: ChemSusChem – volume: 9 year: 2019 article-title: Biomaterials for high‐energy lithium‐based batteries: strategies, challenges, and perspectives publication-title: Adv Energy Mater – volume: 27 start-page: 1390 year: 2018 end-page: 1396 article-title: Cooperation of nitrogen‐doping and catalysis to improve the Li‐ion storage performance of lignin‐based hard carbon publication-title: J Energy Chem – volume: 7 year: 2017 article-title: A comprehensive approach toward stable lithium‐sulfur batteries with high volumetric energy density publication-title: Adv Energy Mater – volume: 405 start-page: 7 year: 2018 end-page: 17 article-title: Safety‐reinforced plastic crystal composite polymer electrolyte by 3D MoS ‐based nano‐hybrid for Li‐metal batteries publication-title: J Power Sources – volume: 8 start-page: 2658 year: 2016 end-page: 2665 article-title: Cross‐linked chitosan as an efficient binder for Si anode of Li‐ion batteries publication-title: ACS Appl Mater Interfaces – volume: 113 start-page: 1041 year: 2018 end-page: 1051 article-title: Incorporating allylated lignin‐derivatives in thiol‐ene gel‐polymer electrolytes publication-title: Int J Biol Macromol – volume: 22 start-page: 813 year: 2010 end-page: 828 article-title: Engineering carbon materials from the hydrothermal carbonization process of biomass publication-title: Adv Mater – volume: 128 start-page: 147 year: 2018 end-page: 163 article-title: Carbons from biomass precursors as anode materials for lithium ion batteries: new insights into carbonization and graphitization behavior and into their correlation to electrochemical performance publication-title: Carbon – volume: 526 start-page: S93 year: 2015 article-title: Lithium batteries: to the limits of lithium publication-title: Nature – volume: 4 start-page: 831 year: 2018 end-page: 847 article-title: Recent advances in energy chemical engineering of next‐generation lithium batteries publication-title: Engineering – volume: 44 start-page: 61 year: 2020 end-page: 67 article-title: Biomass‐derived nitrogen‐doped hierarchical porous carbon as efficient sulfur host for lithium–sulfur batteries publication-title: J Energy Chem – volume: 17 start-page: 22 year: 2019 end-page: 30 article-title: From double‐helix structured seaweed to S‐doped carbon aerogel with ultra‐high surface area for energy storage publication-title: Energy Storage Mater – volume: 4 start-page: 819 year: 2016 end-page: 826 article-title: Partially unzipped carbon nanotubes for high‐rate and stable lithium‐sulfur batteries publication-title: J Mater Chem A – volume: 1 year: 2019 article-title: Identifying the crystal and electronic structure evolution in tri‐component transition metal oxide nanosheets for efficient electrocatalytic oxygen evolution publication-title: EcoMat – volume: 5 start-page: 128 year: 2013 end-page: 134 article-title: Renewable and superior thermal‐resistant cellulose‐based composite nonwoven as lithium‐ion battery separator publication-title: ACS Appl Mater Interfaces – volume: 26 start-page: 1077 year: 2017 end-page: 1093 article-title: A review of nanocarbons in energy electrocatalysis: multifunctional substrates and highly active sites publication-title: J Energy Chem – volume: 3 start-page: 10910 year: 2015 end-page: 10918 article-title: Flexible cathodes and multifunctional interlayers based on carbonized bacterial cellulose for high‐performance lithium‐sulfur batteries publication-title: J Mater Chem A – volume: 370 start-page: 1068 year: 2019 end-page: 1076 article-title: An optimal carbon fiber interlayer integrated with bio‐based gel polymer electrolyte enabling trapping‐diffusion‐conversion of polysulfides in lithium‐sulfur batteries publication-title: Chem Eng J – volume: 1 start-page: 6 year: 2019 end-page: 32 article-title: A review of rechargeable batteries for portable electronic devices publication-title: InfoMat – volume: 7 start-page: 402 year: 2017 article-title: Biomass‐derived oxygen and nitrogen co‐doped porous carbon with hierarchical architecture as sulfur hosts for high‐performance lithium/sulfur batteries publication-title: Nanomaterials – volume: 44 start-page: 250 year: 2015 end-page: 290 article-title: Sustainable carbon materials publication-title: Chem Soc Rev – volume: 70 start-page: 241 year: 2014 end-page: 248 article-title: Lithium‐sulfur batteries with activated carbons derived from olive stones publication-title: Carbon – volume: 46 start-page: 725 year: 2016 end-page: 733 article-title: Enhanced electrochemical performance from cross‐linked polymeric network as binder for Li‐S battery cathodes publication-title: J Appl Electrochem – volume: 13 start-page: 9520 year: 2019 end-page: 9532 article-title: Adenine derivative host with interlaced 2D structure and dual lithiophilic‐sulfiphilic sites to enable high‐loading Li‐S batteries publication-title: ACS Nano – volume: 37 start-page: 177 year: 2017 end-page: 186 article-title: 3D lithium metal embedded within lithiophilic porous matrix for stable lithium metal batteries publication-title: Nano Energy – volume: 13 start-page: 3385 year: 2013 end-page: 3390 article-title: Crab shells as sustainable templates from nature for nanostructured battery electrodes publication-title: Nano Lett – volume: 7 year: 2017 article-title: Water soluble binder, an electrochemical performance booster for electrode materials with high energy density publication-title: Adv Energy Mater – volume: 117 start-page: 10403 year: 2017 end-page: 10473 article-title: Toward safe lithium metal anode in rechargeable batteries: a review publication-title: Chem Rev – volume: 12 start-page: 194 year: 2017 end-page: 206 article-title: Reviving the lithium metal anode for high‐energy batteries publication-title: Nat Nanotechnol – volume: 15 start-page: 218 year: 2018 end-page: 225 article-title: Sustainable, inexpensive, naturally multi‐functionalized biomass carbon for both Li metal anode and sulfur cathode publication-title: Energy Storage Mater – volume: 39 start-page: 1 year: 2019 end-page: 7 article-title: Microwave‐assisted conversion of biomass wastes to pseudocapacitive mesoporous carbon for high‐performance supercapacitor publication-title: J Energy Chem – volume: 7 year: 2017 article-title: Review on high‐loading and high‐energy lithium‐sulfur batteries publication-title: Adv Energy Mater – volume: 55 start-page: 14382 year: 2016 end-page: 14386 article-title: A self‐healing aqueous lithium‐ion battery publication-title: Angew Chem Int Ed – volume: 6 start-page: 12623 year: 2018 end-page: 12629 article-title: Disordered carbon tubes based on cotton cloth for modulating interface impedance in β″‐Al O ‐based solid‐state sodium metal batteries publication-title: J Mater Chem A – volume: 106 start-page: 43 year: 2016 end-page: 52 article-title: A protein‐reinforced adhesive composite electrolyte publication-title: Polymer – volume: 20 start-page: 5031 year: 2018 end-page: 5057 article-title: State‐of‐the‐art on the production and application of carbon nanomaterials from biomass publication-title: Green Chem – volume: 10 start-page: 7484 year: 2019 end-page: 7495 article-title: A review of biomass materials for advanced lithium‐sulfur batteries publication-title: Chem Sci – ident: e_1_2_6_40_1 doi: 10.1016/j.ijbiomac.2017.05.155 – ident: e_1_2_6_103_1 doi: 10.1002/aenm.201802964 – ident: e_1_2_6_21_1 doi: 10.1039/C4CS00232F – ident: e_1_2_6_100_1 doi: 10.1002/adma.201900341 – ident: e_1_2_6_58_1 doi: 10.1039/C6GC00444J – ident: e_1_2_6_106_1 doi: 10.1007/s12274-017-1660-x – ident: e_1_2_6_116_1 doi: 10.1002/adma.201401243 – ident: e_1_2_6_73_1 doi: 10.1021/acsenergylett.6b00209 – ident: e_1_2_6_87_1 doi: 10.1016/j.jechem.2019.01.006 – ident: e_1_2_6_124_1 doi: 10.1016/j.nanoen.2017.05.015 – ident: e_1_2_6_51_1 doi: 10.1002/aenm.201803390 – ident: e_1_2_6_113_1 doi: 10.1021/acsnano.9b04519 – ident: e_1_2_6_85_1 doi: 10.1016/j.jechem.2017.08.008 – ident: e_1_2_6_13_1 doi: 10.1002/aenm.201300654 – ident: e_1_2_6_16_1 doi: 10.1039/C5TA07818K – ident: e_1_2_6_15_1 doi: 10.1016/j.etran.2019.100033 – ident: e_1_2_6_2_1 doi: 10.1021/ja3091438 – ident: e_1_2_6_101_1 doi: 10.1002/aenm.201701110 – ident: e_1_2_6_29_1 doi: 10.1016/j.carbon.2014.01.002 – ident: e_1_2_6_70_1 doi: 10.1021/sc400370h – ident: e_1_2_6_86_1 doi: 10.1016/j.jechem.2018.01.025 – ident: e_1_2_6_90_1 doi: 10.1039/C9TA00543A – ident: e_1_2_6_130_1 doi: 10.1016/j.ensm.2018.02.011 – ident: e_1_2_6_35_1 doi: 10.1038/526S93a – ident: e_1_2_6_93_1 doi: 10.1002/cssc.201801997 – ident: e_1_2_6_32_1 doi: 10.1002/adma.201805718 – ident: e_1_2_6_91_1 doi: 10.1039/c2ee21817h – ident: e_1_2_6_69_1 doi: 10.1021/am302290n – ident: e_1_2_6_143_1 doi: 10.1007/s40843-016-5047-8 – ident: e_1_2_6_11_1 doi: 10.1016/j.joule.2018.11.025 – ident: e_1_2_6_5_1 doi: 10.1002/admi.201802046 – ident: e_1_2_6_43_1 doi: 10.1021/acsami.5b10673 – ident: e_1_2_6_133_1 doi: 10.1002/cssc.201301287 – ident: e_1_2_6_98_1 doi: 10.1016/j.jechem.2018.01.015 – ident: e_1_2_6_125_1 doi: 10.1002/celc.201800444 – ident: e_1_2_6_64_1 doi: 10.1016/j.electacta.2008.10.011 – ident: e_1_2_6_28_1 doi: 10.1016/j.ensm.2018.04.001 – ident: e_1_2_6_78_1 doi: 10.1002/cssc.201901409 – ident: e_1_2_6_108_1 doi: 10.1007/s40843-018-9331-x – ident: e_1_2_6_24_1 doi: 10.1016/j.indcrop.2012.07.024 – ident: e_1_2_6_59_1 doi: 10.1039/C7EE03365F – ident: e_1_2_6_94_1 doi: 10.1039/C6GC00612D – ident: e_1_2_6_137_1 doi: 10.1021/acs.energyfuels.8b01453 – ident: e_1_2_6_31_1 doi: 10.1039/C7CS00278E – ident: e_1_2_6_140_1 doi: 10.1016/j.nanoen.2015.09.001 – ident: e_1_2_6_67_1 doi: 10.1002/adfm.201707411 – ident: e_1_2_6_50_1 doi: 10.1007/s10800-016-0957-x – ident: e_1_2_6_47_1 doi: 10.1002/aenm.201802768 – ident: e_1_2_6_55_1 doi: 10.1002/aenm.201702184 – ident: e_1_2_6_136_1 doi: 10.1021/am501627f – ident: e_1_2_6_4_1 doi: 10.1021/acs.chemrev.7b00115 – ident: e_1_2_6_65_1 doi: 10.1016/j.jpowsour.2018.10.030 – ident: e_1_2_6_110_1 doi: 10.1073/pnas.1618871114 – ident: e_1_2_6_61_1 doi: 10.1038/srep27328 – ident: e_1_2_6_20_1 doi: 10.1016/j.mtnano.2019.100049 – ident: e_1_2_6_8_1 doi: 10.1016/j.ensm.2017.12.002 – ident: e_1_2_6_114_1 doi: 10.1016/j.cclet.2017.11.038 – ident: e_1_2_6_14_1 doi: 10.1016/j.jechem.2016.11.003 – ident: e_1_2_6_49_1 doi: 10.1039/C8TA01138A – ident: e_1_2_6_52_1 doi: 10.1016/j.cej.2019.03.245 – ident: e_1_2_6_81_1 doi: 10.1002/anie.201801513 – ident: e_1_2_6_54_1 doi: 10.1007/s40843-019-9475-4 – ident: e_1_2_6_102_1 doi: 10.1016/j.joule.2017.06.004 – ident: e_1_2_6_135_1 doi: 10.1002/cssc.201700050 – ident: e_1_2_6_112_1 doi: 10.1039/C8TA05853A – ident: e_1_2_6_3_1 doi: 10.1002/inf2.12000 – ident: e_1_2_6_66_1 doi: 10.1039/C4EE01432D – ident: e_1_2_6_36_1 doi: 10.1038/nmat1368 – ident: e_1_2_6_144_1 doi: 10.1039/C6TA06250D – ident: e_1_2_6_68_1 doi: 10.1039/c3ra45879b – ident: e_1_2_6_134_1 doi: 10.1039/C5TA00681C – ident: e_1_2_6_99_1 doi: 10.1002/cssc.201801148 – ident: e_1_2_6_138_1 doi: 10.1021/acs.accounts.8b00391 – ident: e_1_2_6_76_1 doi: 10.1021/acsami.8b15247 – ident: e_1_2_6_92_1 doi: 10.1002/adma.201502467 – ident: e_1_2_6_107_1 doi: 10.1002/adma.201700598 – ident: e_1_2_6_123_1 doi: 10.1016/j.ensm.2018.08.004 – ident: e_1_2_6_27_1 doi: 10.1039/C9SC02743B – ident: e_1_2_6_142_1 doi: 10.1016/j.ensm.2017.07.015 – ident: e_1_2_6_56_1 doi: 10.1002/anie.201607951 – ident: e_1_2_6_75_1 doi: 10.1016/j.chempr.2017.01.003 – ident: e_1_2_6_121_1 doi: 10.1016/j.carbon.2017.11.065 – ident: e_1_2_6_45_1 doi: 10.1002/aenm.201700260 – ident: e_1_2_6_95_1 doi: 10.1016/j.jechem.2018.01.013 – ident: e_1_2_6_105_1 doi: 10.1002/chem.201202127 – ident: e_1_2_6_122_1 doi: 10.1039/C5TA00651A – ident: e_1_2_6_88_1 doi: 10.1021/acsnano.8b05529 – ident: e_1_2_6_44_1 doi: 10.1016/j.ensm.2018.04.032 – ident: e_1_2_6_71_1 doi: 10.1039/C7TA06457H – ident: e_1_2_6_18_1 doi: 10.1016/j.jechem.2018.10.005 – ident: e_1_2_6_96_1 doi: 10.1039/C8GC00085A – ident: e_1_2_6_132_1 doi: 10.1021/nn4023894 – ident: e_1_2_6_129_1 doi: 10.1002/adma.201706216 – ident: e_1_2_6_26_1 doi: 10.1016/j.ensm.2015.09.008 – ident: e_1_2_6_82_1 doi: 10.1002/adsu.201600034 – ident: e_1_2_6_33_1 doi: 10.1002/anie.201802050 – ident: e_1_2_6_97_1 doi: 10.1039/C8GC01748D – ident: e_1_2_6_80_1 doi: 10.3390/membranes9070078 – ident: e_1_2_6_23_1 doi: 10.1016/j.ensm.2018.09.002 – ident: e_1_2_6_39_1 doi: 10.1002/aenm.201701185 – ident: e_1_2_6_74_1 doi: 10.1021/acsnano.7b02085 – ident: e_1_2_6_104_1 doi: 10.1021/nl401729r – ident: e_1_2_6_120_1 doi: 10.1007/s40843-017-9169-4 – ident: e_1_2_6_131_1 doi: 10.1039/c2jm16935e – ident: e_1_2_6_34_1 doi: 10.1002/smll.201902032 – ident: e_1_2_6_128_1 doi: 10.1002/smtd.201800354 – ident: e_1_2_6_48_1 doi: 10.1039/c3sc51476e – ident: e_1_2_6_111_1 doi: 10.1039/C5GC02122G – volume: 118 start-page: 110490 year: 2019 ident: e_1_2_6_57_1 article-title: Study on Mg‐ion conducting solid biopolymer electrolytes based on tamarind seed polysaccharide for magnesium ion batteries publication-title: Mater Res Bull doi: 10.1016/j.materresbull.2019.05.015 – ident: e_1_2_6_118_1 doi: 10.1002/admi.201400227 – ident: e_1_2_6_42_1 doi: 10.1002/aenm.201601630 – ident: e_1_2_6_9_1 doi: 10.1002/eom2.12005 – ident: e_1_2_6_72_1 doi: 10.1080/15583724.2016.1269124 – ident: e_1_2_6_37_1 doi: 10.1039/C8EE00640G – ident: e_1_2_6_19_1 doi: 10.1039/C9EE00206E – ident: e_1_2_6_46_1 doi: 10.1002/smtd.201700134 – ident: e_1_2_6_127_1 doi: 10.1016/j.electacta.2017.04.002 – ident: e_1_2_6_6_1 doi: 10.1038/nnano.2017.16 – ident: e_1_2_6_22_1 doi: 10.1002/adma.200902812 – ident: e_1_2_6_25_1 doi: 10.1002/eom2.12004 – ident: e_1_2_6_79_1 doi: 10.1002/smll.201801054 – ident: e_1_2_6_63_1 doi: 10.1016/j.ijbiomac.2018.02.160 – ident: e_1_2_6_10_1 doi: 10.1038/s41467-019-08422-8 – ident: e_1_2_6_38_1 doi: 10.1002/aenm.201802107 – ident: e_1_2_6_41_1 doi: 10.1039/C6EE03033E – ident: e_1_2_6_7_1 doi: 10.1016/j.eng.2018.10.008 – ident: e_1_2_6_12_1 doi: 10.1021/jacs.9b05029 – ident: e_1_2_6_83_1 doi: 10.1088/0022-3727/19/1/005 – ident: e_1_2_6_89_1 doi: 10.1007/s10853-017-1818-7 – ident: e_1_2_6_77_1 doi: 10.1016/j.electacta.2019.01.045 – ident: e_1_2_6_17_1 doi: 10.1002/aenm.201901774 – ident: e_1_2_6_30_1 doi: 10.1016/j.jechem.2019.09.004 – ident: e_1_2_6_115_1 doi: 10.1039/C8TA01883A – ident: e_1_2_6_139_1 doi: 10.1039/C5TA01515D – ident: e_1_2_6_53_1 doi: 10.1016/j.chempr.2019.05.009 – ident: e_1_2_6_117_1 doi: 10.1002/smll.201600809 – ident: e_1_2_6_141_1 doi: 10.1039/C4GC00761A – ident: e_1_2_6_84_1 doi: 10.1002/adma.201506124 – ident: e_1_2_6_126_1 doi: 10.3390/nano7110402 – ident: e_1_2_6_119_1 doi: 10.1016/j.cclet.2016.07.030 – ident: e_1_2_6_62_1 doi: 10.1016/j.polymer.2016.10.052 – ident: e_1_2_6_60_1 doi: 10.1039/C6TA05207J – ident: e_1_2_6_109_1 doi: 10.1002/aenm.201701203 |
SSID | ssj0002504241 |
Score | 2.5067573 |
SecondaryResourceType | review_article |
Snippet | Biomass materials are of great interest in high‐energy rechargeable batteries due to their appealing merits of sustainability, environmental benefits, and more... |
SourceID | crossref wiley |
SourceType | Enrichment Source Index Database Publisher |
SubjectTerms | biomass ecomaterials lithium batteries |
Title | Recent progress on biomass‐derived ecomaterials toward advanced rechargeable lithium batteries |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Feom2.12019 |
Volume | 2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NSgMxEA61XvQg_mL9KQG9KKzdJml2A15EWopQ9WChtzWbnaBgt6KtR_ERfEafxEm23VYQwcuyh9nLZDLzzezMN4QcG5MZA5wHVkY2EDZUAVqJdE3jcYgRmsnYTSP3rmW3L64GrUGFnM9mYQp-iLLg5m6G99fuguv0tTEnDYXRkJ01MX6pJbLsZmtdQx8Tt2WFxZFzMb-6EsO6K8ZFvOQnZY355z8i0iJC9SGms07WptiQXhSHuUEqkG-S1QXGwC1yjzAPwwT1bVXopOgop26CHiHw18dnhlJvkFFMKRGIFrZFx74xls5-9lN0cY4dCdzMFEUQ_vA4GdLU02xi1rxN-p323WU3mC5JCAx37JqGAbfWGsYj1RKRkmkap5jnASZOYSaBZ80mAMQRRFJqHWpmVCZ1bKUUqRCK75BqPsphl1BpDZdcWoUHK6xqxXEKIWi3jENEOtM1cjJTVGKmDOJukcVTUnAfs8QpNfFKrZGjUva54M34VerU6_sPkaR902P-be8_wvtkhbnM2HeLHZDq-GUChwgfxmndW0ndJ9_47L23vwGpVcOm |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NTsMwDI5gOwAHxK8Yv5HgAlJZl2Rpe5zQpgHbuKxo4lLaNBFIbENo48wj8Iw8CXbadUNCSNx6sHpwHPuzY38m5EypVCnNuWOkZxxh3MABK5HYNO67EKGZ9HEauduT7VDcDOqDvDcHZ2Eyfoii4IY3w_prvOBYkK7OWUP1eMguaxDAgmVSRlgDRl1u3IcPYVFkQX4uZrdXQmTHepzHC4pSVp3_4EdQWgSpNsq0Nsh6Dg9pIzvPTbKkR1tkbYE0cJs8AtKDSEFtZxX4KToeURyiBxT89fGZgtS7TilklYBFM_OiE9sbS2fv_RS8HBIkaRybooDDn56nQ5pYpk1InHdI2Gr2r9pOvifBURwJNhXT3BijGPeCuvACmSR-AqmehtzJTaXmaa2mtfY97UkZx27MVJDK2DdSikSIgO-S0mg80nuESqO45NIEcLbCBHXfT7SrY9zHIbw4jSvkfKaoSOUk4rjL4iXK6I9ZhEqNrFIr5LSQfc2oM36VurD6_kMkat51mf3a_4_wCVlp97udqHPduz0gqwwTZds8dkhKk7epPgI0MUmOc5v5Bt3Exrs |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB5qC6IH8Yn1uaAXhWi6m2wS8FK0pT5aPVgpXmKy2UXBpkVaz_4Ef6O_xNlNmlYQwVsOQw6zu_N9szvzDcChEIkQkjFLcU9ZjrIDC3cJ10Xjvo0ITbmvu5HbHd7qOlc9t1eCs0kvTKYPUVy46ZNh4rU-4MNEnU5FQ-WgT09qiF_BHFRchCW7DJX6Q_exW9yxaHkuaoZXIrDr6ziPFQql9HT6gx-YNMtRDcg0l2EpZ4ekni3nCpRkugqLM5qBa_CERA-BgpjCKgxTZJAS3UOPJPjr4zNBq3eZEEwqkYpmu4uMTGksmTz3EwxyWh9J6q4pgjT8-WXcJ7ER2sS8eR26zcb9ecvKxyRYgml9TUElU0oJyrzAdbyAx7EfY6YnMXWyEy5ZUqtJKX1PepxHkR1RESQ88hXnTuw4AduAcjpI5SYQrgTjjKsAl9ZRgev7sbRlpMdxOF6URFU4mjgqFLmGuB5l8Rpm6sc01E4NjVOrcFDYDjPljF-tjo2__zAJG7dtar62_mO8D_N3F83w5rJzvQ0LVKfJpnRsB8qjt7HcRS4xivfyLfMNwT_F2w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+progress+on+biomass%E2%80%90derived+ecomaterials+toward+advanced+rechargeable+lithium+batteries&rft.jtitle=EcoMat+%28Beijing%2C+China%29&rft.au=Liu%2C+Jia&rft.au=Yuan%2C+Hong&rft.au=Tao%2C+Xinyong&rft.au=Liang%2C+Yeru&rft.date=2020-03-01&rft.issn=2567-3173&rft.eissn=2567-3173&rft.volume=2&rft.issue=1&rft_id=info:doi/10.1002%2Feom2.12019&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_eom2_12019 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2567-3173&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2567-3173&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2567-3173&client=summon |