Recent progress of triboelectric nanogenerators: From fundamental theory to practical applications

For the development of the internet of things (IoTs), big data, and artificial intelligence, widely distributed sensing network is the most essential element, which has to be driven by the energy storage unit, with a limited lifetime and environmental concerns. Given that the wide distribution and h...

Full description

Saved in:
Bibliographic Details
Published inEcoMat (Beijing, China) Vol. 2; no. 4
Main Authors Luo, Jianjun, Wang, Zhong Lin
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.12.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract For the development of the internet of things (IoTs), big data, and artificial intelligence, widely distributed sensing network is the most essential element, which has to be driven by the energy storage unit, with a limited lifetime and environmental concerns. Given that the wide distribution and high mobility of these numerous sensors, the success of the IoTs and sustainable development of human society call for renewable distributed energy sources. Since triboelectrification effect is ubiquitous and universal in our living environment, the triboelectric nanogenerator (TENG) for mechanical energy harvesting and self‐powered sensing developed by Wang and co‐workers is one of the best choices for this energy for the new era. In this review, the recent progress of TENGs from fundamental theory to practical applications is systematically summarized. First, the mechanism of contact electrification, first principle theory, working principle, working modes, and figure of merits of the TENG are introduced. Furthermore, recent important progress in four major TENG applications, including micro/nano power sources, active self‐powered sensors, large‐scale blue energy, and direct high‐voltage power sources are reviewed. In the end, some perspectives and challenges for the future development of TENG are also discussed. The recent progress on the development of triboelectric nanogenerators (TENGs) is systematically reviewed. The basic knowledge and fundamental theory of TENGs are first introduced. Subsequently, recent important progress in four major application fields of TENGs are also summarized. At last, current challenges and future outlooks regarding to the TENG field are also discussed.
AbstractList For the development of the internet of things (IoTs), big data, and artificial intelligence, widely distributed sensing network is the most essential element, which has to be driven by the energy storage unit, with a limited lifetime and environmental concerns. Given that the wide distribution and high mobility of these numerous sensors, the success of the IoTs and sustainable development of human society call for renewable distributed energy sources. Since triboelectrification effect is ubiquitous and universal in our living environment, the triboelectric nanogenerator (TENG) for mechanical energy harvesting and self‐powered sensing developed by Wang and co‐workers is one of the best choices for this energy for the new era. In this review, the recent progress of TENGs from fundamental theory to practical applications is systematically summarized. First, the mechanism of contact electrification, first principle theory, working principle, working modes, and figure of merits of the TENG are introduced. Furthermore, recent important progress in four major TENG applications, including micro/nano power sources, active self‐powered sensors, large‐scale blue energy, and direct high‐voltage power sources are reviewed. In the end, some perspectives and challenges for the future development of TENG are also discussed. image
For the development of the internet of things (IoTs), big data, and artificial intelligence, widely distributed sensing network is the most essential element, which has to be driven by the energy storage unit, with a limited lifetime and environmental concerns. Given that the wide distribution and high mobility of these numerous sensors, the success of the IoTs and sustainable development of human society call for renewable distributed energy sources. Since triboelectrification effect is ubiquitous and universal in our living environment, the triboelectric nanogenerator (TENG) for mechanical energy harvesting and self‐powered sensing developed by Wang and co‐workers is one of the best choices for this energy for the new era. In this review, the recent progress of TENGs from fundamental theory to practical applications is systematically summarized. First, the mechanism of contact electrification, first principle theory, working principle, working modes, and figure of merits of the TENG are introduced. Furthermore, recent important progress in four major TENG applications, including micro/nano power sources, active self‐powered sensors, large‐scale blue energy, and direct high‐voltage power sources are reviewed. In the end, some perspectives and challenges for the future development of TENG are also discussed. The recent progress on the development of triboelectric nanogenerators (TENGs) is systematically reviewed. The basic knowledge and fundamental theory of TENGs are first introduced. Subsequently, recent important progress in four major application fields of TENGs are also summarized. At last, current challenges and future outlooks regarding to the TENG field are also discussed.
Author Luo, Jianjun
Wang, Zhong Lin
Author_xml – sequence: 1
  givenname: Jianjun
  surname: Luo
  fullname: Luo, Jianjun
  organization: University of Chinese Academy of Sciences
– sequence: 2
  givenname: Zhong Lin
  orcidid: 0000-0002-5530-0380
  surname: Wang
  fullname: Wang, Zhong Lin
  email: zhong.wang@mse.gatech.edu
  organization: Georgia Institute of Technology
BookMark eNp9kE9LAzEUxINUsNZe_AQ5C1tfkv3rTUpbhUpB9Lxk05e6spssSUT67U1bDyLi6Q2P-Q3DXJKRsQYJuWYwYwD8Fm3PZ4xDVp2RMc_yIhGsEKMf-oJMvX-HaM4g5Skbk-YZFZpAB2d3Dr2nVtPg2sZihyoKRY00docGnQzW-Tu6dLan-sNsZR9B2dHwhtbtabAxRKrQqviTw9BFEVpr_BU517LzOP2-E_K6XLzMH5L1ZvU4v18nSkBVJUJXeZmnkuWNyBmKJt2KokgVFjLXDVSZRJ2lZVMBFOVWVw3qEkGnXHMFJYCYkJtTrnLWe4e6HlzbS7evGdSHgerDQPVxoGiGX2bVhmPf4GTb_Y2wE_LZdrj_J7xebJ74ifkCpxp8Dg
CitedBy_id crossref_primary_10_1088_1361_665X_ad791b
crossref_primary_10_1002_ente_202300992
crossref_primary_10_1109_TPEL_2022_3169733
crossref_primary_10_1016_j_nanoso_2023_100980
crossref_primary_10_1002_adma_202416952
crossref_primary_10_3390_eng5020052
crossref_primary_10_1002_smll_202103430
crossref_primary_10_1016_j_cap_2023_03_013
crossref_primary_10_3390_nanoenergyadv4020010
crossref_primary_10_3390_s23031329
crossref_primary_10_1038_s41529_022_00272_y
crossref_primary_10_20517_energymater_2023_121
crossref_primary_10_1016_j_supmat_2024_100082
crossref_primary_10_1016_j_nanoen_2023_108834
crossref_primary_10_1016_j_nanoen_2024_109526
crossref_primary_10_1088_1361_6439_ac168e
crossref_primary_10_1007_s42114_024_00903_9
crossref_primary_10_1016_j_apmt_2024_102492
crossref_primary_10_1016_j_mtphys_2022_100798
crossref_primary_10_3390_polym15051295
crossref_primary_10_1016_j_nanoen_2024_110623
crossref_primary_10_1021_acsabm_4c00303
crossref_primary_10_1016_j_mtsust_2022_100233
crossref_primary_10_3390_nano11102657
crossref_primary_10_3390_s24010036
crossref_primary_10_1016_j_coco_2023_101602
crossref_primary_10_1007_s12274_023_5879_4
crossref_primary_10_1016_j_apenergy_2024_123468
crossref_primary_10_3390_nanoenergyadv4020009
crossref_primary_10_1016_j_nanoen_2024_109636
crossref_primary_10_1016_j_mseb_2023_116637
crossref_primary_10_1063_5_0250284
crossref_primary_10_1002_smll_202305502
crossref_primary_10_1021_acsomega_4c07889
crossref_primary_10_1007_s42114_023_00632_5
crossref_primary_10_1016_j_heliyon_2024_e32361
crossref_primary_10_1016_j_oceaneng_2024_117149
crossref_primary_10_1016_j_rser_2021_111230
crossref_primary_10_1039_D2TC01931K
crossref_primary_10_3390_jmse11040838
crossref_primary_10_1557_s43577_021_00123_2
crossref_primary_10_3389_fmats_2022_896953
crossref_primary_10_1002_smll_202300847
crossref_primary_10_1016_j_nanoen_2021_106517
crossref_primary_10_3390_nanoenergyadv2010004
crossref_primary_10_1002_advs_202309871
crossref_primary_10_1016_j_nanoen_2023_108856
crossref_primary_10_1016_j_nanoen_2023_108970
crossref_primary_10_1016_j_nanoen_2023_109151
crossref_primary_10_1016_j_nantod_2024_102232
crossref_primary_10_1088_1361_6439_aca59e
crossref_primary_10_1016_j_cej_2024_150204
crossref_primary_10_1021_acsabm_4c01414
crossref_primary_10_1002_admt_202301695
crossref_primary_10_1016_j_cplett_2023_140970
crossref_primary_10_7498_aps_71_20211632
crossref_primary_10_1002_adma_202314380
crossref_primary_10_1016_j_mser_2023_100747
crossref_primary_10_1002_smll_202204949
crossref_primary_10_1063_5_0241082
crossref_primary_10_1155_2023_3415211
crossref_primary_10_1063_5_0252915
crossref_primary_10_1002_admt_202201245
crossref_primary_10_55713_jmmm_v35i1_2226
crossref_primary_10_1021_acsami_4c12753
crossref_primary_10_3390_mi15091171
crossref_primary_10_1021_acsami_1c03328
crossref_primary_10_1002_eom2_12408
crossref_primary_10_1016_j_mattod_2024_08_013
crossref_primary_10_1016_j_rsurfi_2022_100075
crossref_primary_10_32710_tekstilvekonfeksiyon_1065348
crossref_primary_10_3389_fpubh_2023_1115000
crossref_primary_10_1016_j_matt_2023_09_017
crossref_primary_10_2147_IJN_S480938
crossref_primary_10_1016_j_nanoen_2023_108983
crossref_primary_10_1039_D3MH01529G
crossref_primary_10_1016_j_measurement_2023_113330
crossref_primary_10_3390_mi15030384
crossref_primary_10_1016_j_nanoen_2024_110554
crossref_primary_10_1021_acsanm_4c02017
crossref_primary_10_3390_s23146634
crossref_primary_10_1002_admt_202301225
crossref_primary_10_3390_polym15010094
crossref_primary_10_1002_aenm_202403289
crossref_primary_10_1088_2631_7990_ad7b04
crossref_primary_10_1109_JSEN_2021_3118565
crossref_primary_10_1039_D4RA08732A
crossref_primary_10_1016_j_nanoen_2021_105887
crossref_primary_10_1021_acsenergylett_4c02047
crossref_primary_10_1016_j_nanoen_2021_106739
crossref_primary_10_1063_5_0201860
crossref_primary_10_1016_j_carbon_2022_03_037
crossref_primary_10_1080_21663831_2022_2026513
crossref_primary_10_1016_j_cej_2024_149661
crossref_primary_10_1002_chem_202301076
crossref_primary_10_1002_chem_202303378
crossref_primary_10_1002_admt_202402212
crossref_primary_10_1016_j_nanoen_2024_110427
crossref_primary_10_1016_j_nanoen_2025_110844
crossref_primary_10_1016_j_cej_2024_156193
crossref_primary_10_3390_mi12020218
crossref_primary_10_1002_admt_202301592
crossref_primary_10_1557_s43578_024_01368_8
crossref_primary_10_1016_j_cej_2024_152392
crossref_primary_10_1021_acsnano_2c04043
crossref_primary_10_1002_adfm_202313534
crossref_primary_10_1016_j_nanoen_2022_107774
crossref_primary_10_1016_j_mtcomm_2023_105493
crossref_primary_10_1126_sciadv_abo5314
crossref_primary_10_3390_mi14071333
crossref_primary_10_1002_inf2_12262
crossref_primary_10_1016_j_nanoen_2024_109316
crossref_primary_10_1016_j_nanoen_2023_108365
crossref_primary_10_1109_JSEN_2024_3443229
crossref_primary_10_1016_j_nanoen_2024_110530
crossref_primary_10_1016_j_surfin_2024_104553
crossref_primary_10_1088_2631_8695_acf980
crossref_primary_10_1016_j_apenergy_2022_120218
crossref_primary_10_1002_adma_202308505
crossref_primary_10_1021_acs_jchemed_3c00684
crossref_primary_10_1016_j_rineng_2022_100869
crossref_primary_10_1002_eom2_12337
crossref_primary_10_1039_D4SE00869C
crossref_primary_10_3390_s24123782
crossref_primary_10_1039_D4TA07120D
crossref_primary_10_1002_smtd_202201435
crossref_primary_10_1016_j_matlet_2021_131474
crossref_primary_10_1021_acsaelm_4c01247
crossref_primary_10_3389_fmats_2022_909746
crossref_primary_10_1039_D2TA04433A
crossref_primary_10_1016_j_decarb_2024_100093
crossref_primary_10_1002_inf2_12391
crossref_primary_10_1016_j_nanoen_2024_109785
crossref_primary_10_1016_j_nanoen_2023_109110
crossref_primary_10_1016_j_mtener_2024_101529
crossref_primary_10_1016_j_nanoen_2022_108084
crossref_primary_10_3390_mi14081592
crossref_primary_10_1002_aenm_202100065
crossref_primary_10_1016_j_enrev_2023_100014
crossref_primary_10_1021_acs_chemrev_4c00369
crossref_primary_10_1016_j_nanoen_2023_109114
crossref_primary_10_1039_D3TA01763J
crossref_primary_10_1002_adfm_202213900
crossref_primary_10_1021_acsami_4c02319
crossref_primary_10_1063_5_0219223
crossref_primary_10_1007_s12274_023_5728_5
crossref_primary_10_1016_j_seta_2023_103251
crossref_primary_10_1088_2515_7655_ad1117
crossref_primary_10_1021_acs_langmuir_4c02576
crossref_primary_10_1002_adfm_202313506
crossref_primary_10_1016_j_sna_2023_114909
crossref_primary_10_1088_1361_6528_aca599
crossref_primary_10_1002_adfm_202413359
crossref_primary_10_3390_polym15234562
crossref_primary_10_1002_adem_202400134
crossref_primary_10_1021_acssuschemeng_3c05198
crossref_primary_10_1002_cssc_202400366
crossref_primary_10_1016_j_nanoen_2023_108559
crossref_primary_10_1021_acsami_4c10063
crossref_primary_10_1016_j_nanoen_2023_108555
crossref_primary_10_1039_D3TA02340K
crossref_primary_10_1002_smll_202401846
crossref_primary_10_1016_j_nanoen_2025_110767
crossref_primary_10_1021_acsomega_2c05457
crossref_primary_10_3390_nano13192718
crossref_primary_10_1002_eom2_12145
crossref_primary_10_1002_aelm_202201348
crossref_primary_10_1002_flm2_10
crossref_primary_10_1016_j_mser_2024_100866
crossref_primary_10_1039_D2NH00229A
crossref_primary_10_1016_j_nanoen_2022_107974
crossref_primary_10_3390_mi15091114
crossref_primary_10_1088_2631_7990_ad5bc6
crossref_primary_10_1109_JESTPE_2022_3158347
crossref_primary_10_1016_j_nanoen_2023_108445
crossref_primary_10_1016_j_xcrp_2024_101888
crossref_primary_10_1016_j_mtsust_2024_100781
crossref_primary_10_1002_adfm_202100447
crossref_primary_10_1021_acsami_1c15014
crossref_primary_10_3390_s21113741
crossref_primary_10_1002_smll_202406500
crossref_primary_10_1016_j_fmre_2021_05_002
crossref_primary_10_1021_acsaelm_3c01341
crossref_primary_10_1002_adfm_202307609
crossref_primary_10_1016_j_nanoen_2023_108211
crossref_primary_10_1002_aesr_202100161
crossref_primary_10_1016_j_cej_2023_143572
crossref_primary_10_1016_j_nanoen_2022_108043
crossref_primary_10_1016_j_nanoen_2023_108463
crossref_primary_10_1039_D1NR05129F
crossref_primary_10_1016_j_fmre_2022_01_021
crossref_primary_10_1002_ente_202401281
crossref_primary_10_1016_j_ceramint_2024_08_161
crossref_primary_10_3390_mi12030231
crossref_primary_10_1002_aenm_202201042
crossref_primary_10_1021_acsomega_4c08590
crossref_primary_10_3390_ma17091964
crossref_primary_10_1016_j_egyr_2022_11_049
crossref_primary_10_1016_j_nanoen_2024_110318
crossref_primary_10_1016_j_nanoen_2022_107633
crossref_primary_10_1002_adfm_202306749
crossref_primary_10_1016_j_nanoen_2023_108223
crossref_primary_10_1021_acsami_4c05946
crossref_primary_10_1002_aelm_202300333
crossref_primary_10_1002_smll_202411410
crossref_primary_10_1002_advs_202101834
crossref_primary_10_1016_j_nanoen_2023_109046
crossref_primary_10_1088_2631_8695_ac9e8c
crossref_primary_10_1002_admt_202300418
crossref_primary_10_1002_smll_202108091
crossref_primary_10_3390_mi14081640
crossref_primary_10_3389_fchem_2022_941065
crossref_primary_10_1016_j_jechem_2023_04_041
crossref_primary_10_3390_s23042021
crossref_primary_10_1088_1361_6528_acd789
crossref_primary_10_1039_D2TA09975F
crossref_primary_10_1002_adem_202301897
crossref_primary_10_1080_15435075_2024_2437511
crossref_primary_10_7736_JKSPE_023_025
crossref_primary_10_1002_adsu_202200383
crossref_primary_10_1039_D3NR01334K
crossref_primary_10_1002_marc_202400321
crossref_primary_10_1002_smtd_202201251
crossref_primary_10_1016_j_nanoen_2022_107144
crossref_primary_10_1016_j_heliyon_2023_e17467
crossref_primary_10_1016_j_talanta_2024_127085
crossref_primary_10_1038_s41598_023_36817_7
crossref_primary_10_1016_j_matpr_2022_09_584
crossref_primary_10_1002_adfm_202101047
crossref_primary_10_1088_1402_4896_ac2086
crossref_primary_10_3390_nanoenergyadv3040016
crossref_primary_10_1088_1361_6528_ad18e8
crossref_primary_10_1002_smll_202206107
crossref_primary_10_1016_j_apmt_2024_102570
crossref_primary_10_1007_s11664_022_09982_0
crossref_primary_10_1016_j_ccr_2023_215118
crossref_primary_10_1016_j_nanoen_2024_110380
crossref_primary_10_3390_polym14214495
crossref_primary_10_1088_1361_6439_ac7a8f
crossref_primary_10_1002_ente_202401029
crossref_primary_10_1016_j_nanoen_2021_106227
crossref_primary_10_1016_j_cej_2024_154974
crossref_primary_10_1016_j_nanoen_2023_108769
crossref_primary_10_1002_sus2_31
crossref_primary_10_3390_s22030975
crossref_primary_10_1016_j_cej_2023_148443
crossref_primary_10_1016_j_nanoen_2021_106585
crossref_primary_10_1016_j_cplett_2023_140648
crossref_primary_10_1002_eom2_12298
crossref_primary_10_1016_j_elstat_2025_104037
crossref_primary_10_1115_1_4056391
crossref_primary_10_3390_nanoenergyadv2040017
crossref_primary_10_3390_nanoenergyadv2040018
crossref_primary_10_1039_D2NR05962B
crossref_primary_10_3390_polym16040536
crossref_primary_10_1002_admt_202300672
crossref_primary_10_1016_j_nanoen_2023_108539
crossref_primary_10_1016_j_nanoen_2024_109707
crossref_primary_10_1016_j_nanoen_2023_108656
crossref_primary_10_1016_j_nanoen_2023_108413
crossref_primary_10_1016_j_nanoen_2022_107964
crossref_primary_10_1016_j_nanoen_2023_108531
crossref_primary_10_1016_j_nanoen_2021_106313
crossref_primary_10_1002_admt_202401744
crossref_primary_10_1088_2515_7655_ad307e
crossref_primary_10_3390_jmse10050566
crossref_primary_10_1016_j_nanoen_2025_110661
crossref_primary_10_1002_admt_202302068
crossref_primary_10_1039_D3NR00507K
crossref_primary_10_1002_adma_202208139
crossref_primary_10_1002_adfm_202306702
crossref_primary_10_1016_j_nanoen_2022_107833
crossref_primary_10_1016_j_pmatsci_2024_101354
crossref_primary_10_3390_nano12081248
crossref_primary_10_1088_2631_7990_ace669
crossref_primary_10_1016_j_nanoen_2023_108787
crossref_primary_10_1039_D4NA00340C
crossref_primary_10_1002_adma_202415099
crossref_primary_10_1155_2023_5568046
crossref_primary_10_1002_aelm_202201095
crossref_primary_10_1016_j_nanoen_2024_109259
crossref_primary_10_1557_s43577_025_00875_1
crossref_primary_10_1016_j_nanoen_2023_108786
Cites_doi 10.1021/acsami.5b04516
10.1016/j.nanoen.2018.12.054
10.1038/s41586-020-1985-6
10.1126/science.aag0476
10.1038/ncomms12744
10.1038/s41467-019-10433-4
10.1016/j.nanoen.2019.103908
10.1002/adma.201804944
10.1002/aenm.202000827
10.1016/j.mattod.2018.01.006
10.1002/adfm.201706680
10.1021/acsnano.6b04201
10.1038/s41467-020-16642-6
10.1038/ncomms9975
10.1016/j.nanoen.2018.02.022
10.1016/j.nanoen.2018.11.078
10.1039/C4FD00159A
10.1016/j.nanoen.2019.03.050
10.1021/acsnano.5b04995
10.1002/aenm.201800889
10.1016/j.nanoen.2019.03.019
10.1016/j.nanoen.2016.11.037
10.1021/acsnano.6b03293
10.1038/s41467-019-14278-9
10.1021/acsnano.7b02321
10.1021/acsnano.7b05203
10.1016/j.mattod.2019.05.016
10.1002/aenm.201601705
10.1002/adma.201502463
10.1016/j.comnet.2008.04.002
10.1016/j.nanoen.2019.02.073
10.1016/j.nanoen.2016.01.009
10.1021/nn507221f
10.1021/acsnano.5b05598
10.1002/adma.201503407
10.1021/nn502618f
10.1002/aenm.201501467
10.1002/aenm.202000627
10.1002/adfm.201501331
10.1021/nn405175z
10.1002/adma.201402439
10.1021/acsnano.5b03052
10.1002/admt.201700229
10.1016/j.nanoen.2019.03.054
10.1016/j.nanoen.2014.12.013
10.1016/j.nanoen.2016.11.042
10.1002/adma.201402064
10.1039/c3ee40764k
10.1021/acsnano.7b08014
10.1002/adma.201400021
10.1002/adma.201404794
10.1002/adma.201402574
10.1002/adma.201502560
10.1002/adma.201905696
10.1039/C4EE03596H
10.1016/j.nanoen.2018.05.011
10.1002/advs.201500419
10.1002/adma.201802898
10.1021/acsnano.7b05317
10.1002/aenm.201901320
10.1016/j.nanoen.2014.11.034
10.1039/C7LC01259D
10.1039/D0EE01236J
10.1016/j.nanoen.2017.06.035
10.1038/ncomms15310
10.1126/sciadv.aay2840
10.1021/acsnano.5b06327
10.1002/adfm.201603788
10.1002/aenm.201803027
10.1016/j.nanoen.2019.04.083
10.1088/0964-1726/17/4/043001
10.1021/acsnano.8b05359
10.1126/sciadv.1501624
10.1038/s41467-019-10061-y
10.1002/adma.201801511
10.1021/acsnano.8b01558
10.1016/j.nanoen.2017.05.039
10.1016/j.nanoen.2014.10.034
10.1002/aenm.202000137
10.1016/j.bios.2015.08.037
10.1038/s41467-019-09851-1
10.1002/adfm.201808820
10.1016/j.nanoen.2019.04.026
10.1016/j.nanoen.2018.10.036
10.1002/aenm.201801114
10.1039/C9EE03258D
10.1038/s41467-019-09464-8
10.1002/adma.201404291
10.1038/nenergy.2016.138
10.1038/s41467-019-09461-x
10.1038/s41467-019-12465-2
10.1002/aenm.202000965
10.1126/science.aan3997
10.1016/j.nanoen.2019.04.096
10.1021/acsnano.6b07030
10.1021/nn506832w
10.1021/acsnano.9b08496
10.1002/aenm.202000605
10.1002/adfm.201501695
10.1021/acsnano.6b01569
10.1038/s41467-019-10298-7
10.1002/aenm.201901124
10.1063/1.5135734
10.1126/sciadv.aba9624
10.1002/adma.201706790
10.1016/j.nanoen.2020.104675
10.1002/adma.201504403
10.1016/j.eml.2015.01.008
10.1016/j.nanoen.2018.02.039
10.1126/sciadv.1501478
10.1016/j.nanoen.2019.104272
10.1038/s41467-020-15926-1
10.1038/s41467-019-13166-6
10.1002/adfm.201803117
10.1002/adfm.201403577
10.1016/j.nanoen.2018.06.009
10.1039/C4TA02747G
10.1002/adma.201500121
10.1039/C5EE01532D
10.1021/acsnano.7b06451
10.1002/adfm.201800610
10.1038/s41467-018-06198-x
10.1021/nn4037514
10.1002/adma.201805722
10.1038/nnano.2017.17
10.1126/sciadv.1700694
10.1038/nnano.2011.184
10.1038/542159a
10.1109/COMST.2015.2444095
10.1021/acsnano.8b07567
10.1016/j.nanoen.2019.01.077
10.1021/acsnano.8b06747
10.1016/j.nanoen.2019.104243
10.1016/j.ensm.2019.03.009
10.1002/aenm.201802906
10.1021/nn4063616
10.1016/j.nanoen.2016.12.061
10.1021/acsnano.7b05626
10.1021/nn5012732
10.1039/C5TA07053H
10.1016/j.ensm.2017.11.013
10.1126/scirobotics.aat2516
10.1007/s12274-015-0894-8
10.1126/sciadv.aaz8693
10.1021/acs.chemrev.9b00821
10.1126/sciadv.1700015
10.1039/D0EE01102A
10.1109/COMST.2014.2368999
10.1016/j.nanoen.2012.01.004
10.1038/ncomms9376
10.1021/acsnano.5b07407
10.1016/j.nanoen.2016.12.004
10.1002/adma.202001466
10.1002/aenm.202000064
10.1016/j.nanoen.2019.04.047
10.1002/adfm.201807241
10.1021/nl5005652
10.1038/s41467-018-06045-z
10.1016/j.nanoen.2018.11.029
10.1016/j.mattod.2016.12.001
ContentType Journal Article
Copyright 2020 The Authors. published by The Hong Kong Polytechnic University and John Wiley & Sons Australia, Ltd.
Copyright_xml – notice: 2020 The Authors. published by The Hong Kong Polytechnic University and John Wiley & Sons Australia, Ltd.
DBID 24P
AAYXX
CITATION
DOI 10.1002/eom2.12059
DatabaseName Wiley Online Library Open Access (Activated by CARLI)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access (Activated by CARLI)
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2567-3173
EndPage n/a
ExternalDocumentID 10_1002_eom2_12059
EOM212059
Genre reviewArticle
GrantInformation_xml – fundername: China Postdoctoral Science Foundation
  funderid: BX20190324
– fundername: Beijing Municipal Science & Technology Commission
  funderid: Z171100002017017
– fundername: National Key R & D Project from Minister of Science and Technology
  funderid: 2016YFA0202704
– fundername: National Natural Science Foundation of China
  funderid: 51432005; 52002028
GroupedDBID 0R~
1OC
24P
AAHHS
ABJCF
ACCFJ
ACCMX
ACXQS
ADKYN
ADZMN
ADZOD
AEEZP
AEQDE
AEUYN
AFKRA
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ATCPS
AVUZU
BENPR
BGLVJ
BHPHI
CCPQU
EBS
EDH
GROUPED_DOAJ
HCIFZ
IAO
ITC
KB.
M~E
PATMY
PDBOC
PIMPY
PYCSY
WIN
AAYXX
CITATION
IEP
PHGZM
PHGZT
ID FETCH-LOGICAL-c3099-3f96864a16b361e3b4d3774ce7a6fb095aef548b90078df9bef8e0f42f2c08003
IEDL.DBID 24P
ISSN 2567-3173
IngestDate Thu Apr 24 22:54:57 EDT 2025
Tue Jul 01 02:50:12 EDT 2025
Wed Jan 22 16:31:32 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3099-3f96864a16b361e3b4d3774ce7a6fb095aef548b90078df9bef8e0f42f2c08003
Notes Funding information
Beijing Municipal Science & Technology Commission, Grant/Award Number: Z171100002017017; China Postdoctoral Science Foundation, Grant/Award Number: BX20190324; National Key R & D Project from Minister of Science and Technology, Grant/Award Number: 2016YFA0202704; National Natural Science Foundation of China, Grant/Award Numbers: 51432005, 52002028
ORCID 0000-0002-5530-0380
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Feom2.12059
PageCount 22
ParticipantIDs crossref_primary_10_1002_eom2_12059
crossref_citationtrail_10_1002_eom2_12059
wiley_primary_10_1002_eom2_12059_EOM212059
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2020
2020-12-00
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: December 2020
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
PublicationTitle EcoMat (Beijing, China)
PublicationYear 2020
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2017; 7
2017; 8
2017; 3
2020; 120
2019; 55
2019; 10
2019; 13
2019; 57
2019; 56
2019; 59
2016; 75
2014; 26
2020; 14
2020; 13
2020; 11
2020; 10
2014; 176
2013; 7
2013; 6
2018; 49
2019; 365
2018; 47
2020; 7
2020; 6
2018; 9
2017; 31
2018; 8
2019; 60
2018; 3
2019; 61
2014; 2
2019; 64
2017; 39
2017; 38
2019; 23
2017; 32
2020; 578
2016; 353
2014; 14
2019; 29
2018; 30
2014; 8
2015; 2
2017; 20
2019; 9
2015; 14
2018; 28
2015; 17
2015; 6
2015; 5
2015; 3
2019; 31
2019; 30
2017; 27
2015; 11
2008; 17
2016; 10
2008; 52
2020; 32
2015; 9
2015; 8
2011; 6
2018; 21
2015; 7
2018; 18
2015; 25
2016; 7
2015; 27
2016; 1
2016; 2
2012; 1
2016; 3
2020; 72
2017; 11
2017; 12
2020; 68
2020; 67
2018; 50
2018; 12
2016; 28
2017; 542
2016; 22
e_1_2_7_108_1
e_1_2_7_3_1
e_1_2_7_104_1
e_1_2_7_127_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_83_1
e_1_2_7_100_1
e_1_2_7_123_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_87_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_161_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_142_1
e_1_2_7_146_1
e_1_2_7_116_1
e_1_2_7_90_1
e_1_2_7_112_1
e_1_2_7_94_1
e_1_2_7_71_1
e_1_2_7_52_1
e_1_2_7_98_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_75_1
e_1_2_7_56_1
e_1_2_7_150_1
e_1_2_7_37_1
e_1_2_7_79_1
e_1_2_7_131_1
e_1_2_7_154_1
e_1_2_7_135_1
e_1_2_7_158_1
e_1_2_7_139_1
e_1_2_7_109_1
e_1_2_7_4_1
e_1_2_7_128_1
e_1_2_7_105_1
e_1_2_7_8_1
e_1_2_7_124_1
e_1_2_7_101_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_82_1
e_1_2_7_120_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_86_1
e_1_2_7_67_1
e_1_2_7_48_1
e_1_2_7_143_1
e_1_2_7_29_1
e_1_2_7_147_1
Hang X (e_1_2_7_138_1) 2019; 29
e_1_2_7_117_1
e_1_2_7_113_1
e_1_2_7_51_1
e_1_2_7_70_1
e_1_2_7_93_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_74_1
e_1_2_7_97_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_78_1
e_1_2_7_151_1
e_1_2_7_132_1
e_1_2_7_155_1
e_1_2_7_136_1
e_1_2_7_159_1
e_1_2_7_5_1
e_1_2_7_106_1
e_1_2_7_129_1
e_1_2_7_9_1
e_1_2_7_102_1
e_1_2_7_125_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_81_1
e_1_2_7_121_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_85_1
e_1_2_7_47_1
e_1_2_7_89_1
e_1_2_7_140_1
e_1_2_7_28_1
e_1_2_7_144_1
e_1_2_7_148_1
e_1_2_7_118_1
Dong K (e_1_2_7_122_1) 2018; 8
e_1_2_7_114_1
e_1_2_7_73_1
e_1_2_7_110_1
e_1_2_7_50_1
e_1_2_7_92_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_77_1
e_1_2_7_54_1
e_1_2_7_96_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_58_1
e_1_2_7_152_1
e_1_2_7_39_1
e_1_2_7_133_1
e_1_2_7_156_1
e_1_2_7_137_1
e_1_2_7_6_1
e_1_2_7_107_1
e_1_2_7_80_1
e_1_2_7_126_1
e_1_2_7_103_1
e_1_2_7_18_1
e_1_2_7_84_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_88_1
e_1_2_7_65_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_160_1
e_1_2_7_69_1
e_1_2_7_141_1
e_1_2_7_27_1
e_1_2_7_145_1
e_1_2_7_149_1
e_1_2_7_119_1
e_1_2_7_91_1
e_1_2_7_115_1
e_1_2_7_72_1
e_1_2_7_95_1
e_1_2_7_111_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_76_1
e_1_2_7_99_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_130_1
e_1_2_7_38_1
e_1_2_7_153_1
e_1_2_7_134_1
e_1_2_7_157_1
References_xml – volume: 9
  start-page: 8376
  year: 2015
  end-page: 8383
  article-title: Self‐powered triboelectric nanosensor with poly(tetrafluoroethylene) nanoparticle arrays for dopamine detection
  publication-title: ACS Nano
– volume: 6
  year: 2015
  article-title: A universal self‐charging system driven by random biomechanical energy for sustainable operation of mobile electronics
  publication-title: Nat Commun
– volume: 10
  start-page: 1427
  year: 2019
  article-title: Quantifying the triboelectric series
  publication-title: Nat Commun
– volume: 21
  start-page: 216
  year: 2018
  end-page: 222
  article-title: Keystroke dynamics enabled authentication and identification using triboelectric nanogenerator array
  publication-title: Mater Today
– volume: 10
  year: 2019
  article-title: A universal standardized method for output capability assessment of nanogenerators
  publication-title: Nat Commun
– volume: 9
  start-page: 3501
  year: 2015
  end-page: 3509
  article-title: Nanopatterned textile‐based wearable triboelectric nanogenerator
  publication-title: ACS Nano
– volume: 14
  start-page: 3208
  year: 2014
  end-page: 3213
  article-title: Self‐powered, ultrasensitive, flexible tactile sensors based on contact electrification
  publication-title: Nano Lett
– volume: 17
  start-page: 757
  year: 2015
  end-page: 789
  article-title: Wireless networks with RF energy harvesting: a contemporary survey
  publication-title: IEEE Coumun Surv Tut
– volume: 26
  start-page: 5851
  year: 2014
  end-page: 5856
  article-title: In vivo powering of pacemaker by breathing‐driven implanted Triboelectric Nanogenerator
  publication-title: Adv Mater
– volume: 6
  year: 2015
  article-title: Standards and figure‐of‐merits for quantifying the performance of triboelectric nanogenerators
  publication-title: Nat Commun
– volume: 30
  start-page: 1706790
  year: 2018
  article-title: On the electron‐transfer mechanism in the contact‐electrification effect
  publication-title: Adv Mater
– volume: 7
  start-page: 11317
  year: 2013
  end-page: 11324
  article-title: Harvesting energy from the natural vibration of human walking
  publication-title: ACS Nano
– volume: 26
  start-page: 6329
  year: 2014
  end-page: 6334
  article-title: Fabric‐based integrated energy devices for wearable activity monitors
  publication-title: Adv Mater
– volume: 3
  year: 2018
  article-title: A highly sensitive, self‐powered triboelectric auditory sensor for social robotics and hearing aids
  publication-title: Sci Robot
– volume: 10
  year: 2019
  article-title: Triboelectric micromotors actuated by ultralow frequency mechanical stimuli
  publication-title: Nat Commun
– volume: 10
  start-page: 3944
  year: 2016
  end-page: 3950
  article-title: Triboelectric Nanogenerator as a self‐powered communication unit for processing and transmitting information
  publication-title: ACS Nano
– volume: 52
  start-page: 2292
  year: 2008
  end-page: 2330
  article-title: Wireless sensor network survey
  publication-title: Comput Netw
– volume: 10
  year: 2019
  article-title: Extremely stretchable and self‐healing conductor based on thermoplastic elastomer for all‐three‐dimensional printed triboelectric nanogenerator
  publication-title: Nat Commun
– volume: 17
  start-page: 2347
  year: 2015
  end-page: 2376
  article-title: Internet of things: a survey on enabling technologies, protocols, and applications
  publication-title: IEEE Coumun Surv Tut
– volume: 25
  start-page: 739
  year: 2015
  end-page: 747
  article-title: Self‐powered trace memorization by conjunction of contact‐electrification and ferroelectricity
  publication-title: Adv Funct Mater
– volume: 9
  start-page: 12552
  year: 2015
  end-page: 12561
  article-title: Removal of particulate matter emissions from a vehicle using a self‐powered triboelectric filter
  publication-title: ACS Nano
– volume: 9
  start-page: 1803027
  year: 2019
  article-title: Nature driven bio‐piezoelectric/Triboelectric Nanogenerator as next‐generation green energy harvester for smart and pollution free society
  publication-title: Adv. Energy Mater.
– volume: 57
  start-page: 432
  year: 2019
  end-page: 439
  article-title: Largely enhanced triboelectric nanogenerator for efficient harvesting of water wave energy by soft contacted structure
  publication-title: Nano Energy
– volume: 578
  start-page: 392
  year: 2020
  end-page: 396
  article-title: A droplet‐based electricity generator with high instantaneous power density
  publication-title: Nature
– volume: 47
  start-page: 43
  year: 2018
  end-page: 50
  article-title: Suppressing self‐discharge of supercapacitors via electrorheological effect of liquid crystals
  publication-title: Nano Energy
– volume: 75
  start-page: 273
  year: 2016
  end-page: 284
  article-title: Biosensors and bioelectronics on smartphone for portable biochemical detection
  publication-title: Biosens Bioelectron
– volume: 11
  year: 2020
  article-title: Quantifying and understanding the triboelectric series of inorganic non‐metallic materials
  publication-title: Nat Commun
– volume: 10
  start-page: 11434
  year: 2016
  end-page: 11441
  article-title: Self‐powered random number generator based on coupled Triboelectric and electrostatic induction effects at the liquid‐dielectric Interface
  publication-title: ACS Nano
– volume: 6
  year: 2020
  article-title: Machine‐knitted washable sensor array textile for precise epidermal physiological signal monitoring
  publication-title: Sci Adv
– volume: 3
  year: 2017
  article-title: Ultrastretchable, transparent triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and tactile sensing
  publication-title: Sci Adv
– volume: 12
  start-page: 17
  year: 2018
  end-page: 22
  article-title: A flexible lithium‐ion battery with quasi‐solid gel electrolyte for storing pulsed energy generated by triboelectric nanogenerator
  publication-title: Energy Storage Mater
– volume: 28
  year: 2018
  article-title: Field emission of electrons powered by a triboelectric nanogenerator
  publication-title: Adv Funct Mater
– volume: 13
  start-page: 1940
  year: 2019
  end-page: 1952
  article-title: Self‐powered and self‐functional cotton sock using piezoelectric and triboelectric hybrid mechanism for healthcare and sports monitoring
  publication-title: ACS Nano
– volume: 27
  start-page: 2340
  year: 2015
  end-page: 2347
  article-title: Triboelectric‐pyroelectric‐piezoelectric hybrid cell for high‐efficiency energy‐harvesting and self‐powered sensing
  publication-title: Adv Mater
– volume: 25
  start-page: 4788
  year: 2015
  end-page: 4794
  article-title: Cellular polypropylene Piezoelectret for human body energy harvesting and health monitoring
  publication-title: Adv Funct Mater
– volume: 10
  start-page: 6526
  year: 2016
  end-page: 6534
  article-title: Harvesting broad frequency band blue energy by a Triboelectric‐electromagnetic hybrid Nanogenerator
  publication-title: ACS Nano
– volume: 8
  year: 2017
  article-title: Nanogenerator‐based dual‐functional and self‐powered thin patch loudspeaker or microphone for flexible electronics
  publication-title: Nat Commun
– volume: 14
  start-page: 161
  year: 2015
  end-page: 192
  article-title: Theoretical systems of triboelectric nanogenerators
  publication-title: Nano Energy
– volume: 8
  start-page: 2649
  year: 2014
  end-page: 2657
  article-title: Triboelectrification‐based organic film nanogenerator for acoustic energy harvesting and self‐powered active acoustic sensing
  publication-title: ACS Nano
– volume: 72
  year: 2020
  article-title: Self‐powered eye motion sensor based on triboelectric interaction and near‐field electrostatic induction for wearable assistive technologies
  publication-title: Nano Energy
– volume: 11
  start-page: 436
  year: 2015
  end-page: 462
  article-title: Triboelectric nanogenerators as self‐powered active sensors
  publication-title: Nano Energy
– volume: 39
  start-page: 9
  year: 2017
  end-page: 23
  article-title: Toward the blue energy dream by triboelectric nanogenerator networks
  publication-title: Nano Energy
– volume: 10
  start-page: 1821
  year: 2019
  article-title: Symbiotic cardiac pacemaker
  publication-title: Nat Commun
– volume: 29
  year: 2019
  article-title: Triboelectric Nanogenerator networks integrated with power management module for water wave energy harvesting
  publication-title: Adv Funct Mater
– volume: 13
  start-page: 2178
  year: 2020
  end-page: 2190
  article-title: Sustainable high‐voltage source based on triboelectric nanogenerator with a charge accumulation strategy
  publication-title: Energ Environ Sci
– volume: 60
  start-page: 137
  year: 2019
  end-page: 143
  article-title: Triboelectric nanogenerator by integrating a cam and a movable frame for ambient mechanical energy harvesting
  publication-title: Nano Energy
– volume: 29
  start-page: 1808820
  year: 2019
  article-title: Wearable and implantable triboelectric nanogenerators
  publication-title: Adv Funct Mater
– volume: 12
  start-page: 481
  year: 2017
  end-page: 487
  article-title: Triboelectric nanogenerators for sensitive nano‐coulomb molecular mass spectrometry
  publication-title: Nat Nanotechnol
– volume: 10
  year: 2019
  article-title: Flexible and durable wood‐based triboelectric nanogenerators for self‐powered sensing in athletic big data analytics
  publication-title: Nat Commun
– volume: 6
  start-page: 788
  year: 2011
  end-page: 792
  article-title: Skin‐like pressure and strain sensors based on transparent elastic films of carbon nanotubes
  publication-title: Nat Nanotechnol
– volume: 22
  start-page: 87
  year: 2016
  end-page: 94
  article-title: Multilayer wavy‐structured robust triboelectric nanogenerator for harvesting water wave energy
  publication-title: Nano Energy
– volume: 11
  start-page: 12411
  year: 2017
  end-page: 12418
  article-title: Self‐powered electrostatic filter with enhanced photocatalytic degradation of formaldehyde based on built‐in triboelectric nanogenerators
  publication-title: ACS Nano
– volume: 13
  start-page: 277
  year: 2020
  end-page: 285
  article-title: Spherical triboelectric nanogenerator integrated with power management module for harvesting multidirectional water wave energy
  publication-title: Energ Environ Sci
– volume: 50
  start-page: 536
  year: 2018
  end-page: 543
  article-title: Traditional weaving craft for one‐piece self‐charging power textile for wearable electronics
  publication-title: Nano Energy
– volume: 14
  start-page: 217
  year: 2015
  end-page: 225
  article-title: Self‐powered cleaning of air pollution by wind driven triboelectric nanogenerator
  publication-title: Nano Energy
– volume: 2
  year: 2016
  article-title: Biodegradable triboelectric nanogenerator as a life‐time designed implantable power source
  publication-title: Sci Adv
– volume: 6
  year: 2020
  article-title: Haptic‐feedback smart glove as a creative human‐machine interface (HMI) for virtual/augmented reality applications
  publication-title: Sci Adv
– volume: 5
  year: 2015
  article-title: Triboelectric Nanogenerator based on fully enclosed rolling spherical structure for harvesting low‐frequency water wave energy
  publication-title: Adv. Energy Mater
– volume: 12
  start-page: 4835
  year: 2018
  end-page: 4843
  article-title: Si@void@C Nanofibers fabricated using a self‐powered electrospinning system for lithium‐ion batteries
  publication-title: ACS Nano
– volume: 3
  year: 2018
  article-title: Ultrafine capillary‐tube triboelectric nanogenerator as active sensor for microliquid biological and chemical sensing
  publication-title: Adv Mater Technol
– volume: 120
  start-page: 3668
  year: 2020
  end-page: 3720
  article-title: Smart textiles for electricity generation
  publication-title: Chem Rev
– volume: 2
  start-page: 13219
  year: 2014
  end-page: 13225
  article-title: Highly transparent and flexible triboelectric nanogenerators: performance improvements and fundamental mechanisms
  publication-title: J Mater Chem A
– volume: 176
  start-page: 447
  year: 2014
  end-page: 458
  article-title: Triboelectric nanogenerators as new energy technology and self‐powered sensors ‐ principles, problems and perspectives
  publication-title: Faraday Discuss
– volume: 61
  start-page: 370
  year: 2019
  end-page: 380
  article-title: Rotational wind power triboelectric nanogenerator using aerodynamic changes of friction area and the adsorption effect of hematoxylin onto feather based on a diversely evolved hyper‐branched structure
  publication-title: Nano Energy
– volume: 60
  start-page: 61
  year: 2019
  end-page: 71
  article-title: A triboelectric nanogenerator based on waste tea leaves and packaging bags for powering electronic office supplies and behavior monitoring
  publication-title: Nano Energy
– volume: 2
  year: 2016
  article-title: A highly shape‐adaptive, stretchable design based on conductive liquid for energy harvesting and self‐powered biomechanical monitoring
  publication-title: Sci Adv
– volume: 1
  year: 2016
  article-title: Micro‐cable structured textile for simultaneously harvesting solar and mechanical energy
  publication-title: Nat Energy
– volume: 9
  year: 2018
  article-title: A self‐improving triboelectric nanogenerator with improved charge density and increased charge accumulation speed
  publication-title: Nat Commun
– volume: 20
  start-page: 74
  year: 2017
  end-page: 82
  article-title: On Maxwell's displacement current for energy and sensors: the origin of nanogenerators
  publication-title: Mater Today
– volume: 25
  start-page: 3718
  year: 2015
  end-page: 3725
  article-title: Liquid‐metal electrode for high‐performance triboelectric nanogenerator at an instantaneous energy conversion efficiency of 70.6%
  publication-title: Adv Funct Mater
– volume: 10
  year: 2019
  article-title: A bionic stretchable nanogenerator for underwater sensing and energy harvesting
  publication-title: Nat Commun
– volume: 11
  start-page: 6211
  year: 2017
  end-page: 6217
  article-title: Triboelectric nanogenerator enhanced nanofiber air filters for efficient particulate matter removal
  publication-title: ACS Nano
– volume: 7
  start-page: 19076
  year: 2015
  end-page: 19082
  article-title: Triboelectric nanogenerators as a self‐powered 3D acceleration sensor
  publication-title: ACS Appl Mater Interfaces
– volume: 9
  start-page: 12301
  year: 2015
  end-page: 12310
  article-title: Hybridized electromagnetic‐triboelectric nanogenerator for a self‐powered electronic watch
  publication-title: ACS Nano
– volume: 9
  year: 2019
  article-title: Multifunctional sensor based on translational‐rotary triboelectric nanogenerator
  publication-title: Adv Energy Mater
– volume: 28
  year: 2018
  article-title: Washable multilayer triboelectric air filter for efficient particulate matter PM2.5 removal
  publication-title: Adv Funct Mater
– volume: 8
  start-page: 12
  year: 2018
  article-title: Versatile core‐sheath yarn for sustainable biomechanical energy harvesting and real‐time human‐interactive sensing
  publication-title: Adv Energy Mater
– volume: 7
  year: 2017
  article-title: Self‐powered wireless sensor node enabled by a duck‐shaped Triboelectric Nanogenerator for harvesting water wave energy
  publication-title: Adv Energy Mater
– volume: 9
  start-page: 1802906
  year: 2019
  article-title: Triboelectric nanogenerator: a foundation of the energy for the new era
  publication-title: Adv Energy Mater
– volume: 38
  start-page: 91
  year: 2017
  end-page: 100
  article-title: Self‐powered modulation of elastomeric optical grating by using triboelectric nanogenerator
  publication-title: Nano Energy
– volume: 59
  start-page: 237
  year: 2019
  end-page: 257
  article-title: Progress on triboelectric nanogenerator with stretchability, self‐healability and bio‐compatibility
  publication-title: Nano Energy
– volume: 68
  year: 2020
  article-title: On the first principle theory of nanogenerators from Maxwell's equations
  publication-title: Nano Energy
– volume: 12
  start-page: 10262
  year: 2018
  end-page: 10271
  article-title: Giant voltage enhancement via triboelectric charge supplement channel for self‐powered electroadhesion
  publication-title: ACS Nano
– volume: 30
  year: 2018
  article-title: Implantable energy‐harvesting devices
  publication-title: Adv Mater
– volume: 31
  start-page: 560
  year: 2017
  end-page: 567
  article-title: Spring‐assisted triboelectric nanogenerator for efficiently harvesting water wave energy
  publication-title: Nano Energy
– volume: 28
  start-page: 98
  year: 2016
  end-page: 105
  article-title: Wearable self‐charging power textile based on flexible yarn Supercapacitors and fabric nanogenerators
  publication-title: Adv Mater
– volume: 2
  start-page: 28
  year: 2015
  end-page: 36
  article-title: Ultrasensitive self‐powered pressure sensing system
  publication-title: Extreme Mech Lett
– volume: 27
  start-page: 719
  year: 2015
  end-page: 726
  article-title: Active micro‐actuators for optical modulation based on a planar sliding triboelectric nanogenerator
  publication-title: Adv Mater
– volume: 8
  start-page: 6031
  year: 2014
  end-page: 6037
  article-title: Harvesting water wave energy by asymmetric screening of electrostatic charges on a nanostructured hydrophobic thin‐film surface
  publication-title: ACS Nano
– volume: 12
  start-page: 11561
  year: 2018
  end-page: 11571
  article-title: Triboelectric self‐powered wearable flexible patch as 3D motion control Interface for robotic manipulator
  publication-title: ACS Nano
– volume: 10
  year: 2020
  article-title: Rationally designed dual‐mode Triboelectric Nanogenerator for harvesting mechanical energy by both electrostatic induction and dielectric breakdown effects
  publication-title: Adv Energy Mater
– volume: 11
  year: 2020
  article-title: Quantifying electron‐transfer in liquid‐solid contact electrification and the formation of electric double‐layer
  publication-title: Nat Commun
– volume: 26
  start-page: 3788
  year: 2014
  end-page: 3796
  article-title: A shape‐adaptive thin‐film‐based approach for 50% high‐efficiency energy generation through micro‐grating sliding electrification
  publication-title: Adv Mater
– volume: 6
  start-page: eaba9624
  year: 2020
  article-title: A breathable, biodegradable, antibacterial, and self‐powered electronic skin based on all‐nanofiber triboelectric nanogenerators
  publication-title: Sci Adv
– volume: 8
  start-page: 2250
  year: 2015
  end-page: 2282
  article-title: Progress in triboelectric nanogenerators as a new energy technology and self‐powered sensors
  publication-title: Energ Environ Sci
– volume: 28
  start-page: 1803117
  year: 2018
  article-title: An amphiphobic hydraulic triboelectric nanogenerator for a self‐cleaning and self‐charging power system
  publication-title: Adv Funct Mater
– volume: 8
  start-page: 7405
  year: 2014
  end-page: 7412
  article-title: Harvesting broadband kinetic impact energy from mechanical triggering/vibration and water waves
  publication-title: ACS Nano
– volume: 30
  year: 2018
  article-title: "genetically engineered" biofunctional triboelectric nanogenerators using recombinant spider silk
  publication-title: Adv Mater
– volume: 11
  start-page: 10439
  year: 2017
  end-page: 10445
  article-title: Self‐powered electrospinning system driven by a Triboelectric Nanogenerator
  publication-title: ACS Nano
– volume: 8
  year: 2018
  article-title: Direct‐current triboelectric nanogenerator realized by air breakdown induced ionized air channel
  publication-title: Adv Energy Mater
– volume: 10
  start-page: 2000137
  year: 2020
  article-title: Triboelectric Nanogenerator (TENG)‐sparking an energy and sensor revolution
  publication-title: Adv Energy Mater
– volume: 28
  start-page: 2896
  year: 2016
  end-page: 2903
  article-title: Self‐powered high‐resolution and pressure‐sensitive Triboelectric sensor matrix for real‐time tactile mapping
  publication-title: Adv Mater
– volume: 3
  year: 2016
  article-title: Tribotronic enhanced Photoresponsivity of a MoS2 phototransistor
  publication-title: Adv Sci
– volume: 12
  start-page: 1491
  year: 2018
  end-page: 1499
  article-title: Self‐powered microfluidic transport system based on triboelectric nanogenerator and electrowetting technique
  publication-title: ACS Nano
– volume: 10
  year: 2019
  article-title: Integrated charge excitation triboelectric nanogenerator
  publication-title: Nat Commun
– volume: 23
  start-page: 617
  year: 2019
  end-page: 628
  article-title: Recent advances in triboelectric nanogenerator based self‐charging power systems
  publication-title: Energy Storage Mater
– volume: 67
  year: 2020
  article-title: Wearable and self‐cleaning hybrid energy harvesting system based on micro/nanostructured haze film
  publication-title: Nano Energy
– volume: 11
  start-page: 9490
  year: 2017
  end-page: 9499
  article-title: A highly stretchable and washable all‐yarn‐based self‐charging knitting power textile composed of fiber triboelectric nanogenerators and supercapacitors
  publication-title: ACS Nano
– volume: 10
  start-page: 8078
  year: 2016
  end-page: 8086
  article-title: Transparent and flexible self‐charging power film and its application in a sliding unlock system in touchpad technology
  publication-title: ACS Nano
– volume: 55
  start-page: 401
  year: 2019
  end-page: 423
  article-title: Recent progress on textile‐based triboelectric nanogenerators
  publication-title: Nano Energy
– volume: 9
  start-page: 11310
  year: 2015
  end-page: 11316
  article-title: High‐performance organolead halide perovskite‐based self‐powered triboelectric photodetector
  publication-title: ACS Nano
– volume: 10
  year: 2020
  article-title: Charge pumping strategy for rotation and sliding type triboelectric nanogenerators
  publication-title: Adv Energy Mater
– volume: 11
  year: 2020
  article-title: Shape adaptable and highly resilient 3D braided triboelectric nanogenerators as e‐textiles for power and sensing
  publication-title: Nat Commun
– volume: 8
  start-page: 3934
  year: 2015
  end-page: 3943
  article-title: Integration of micro‐supercapacitors with triboelectric nanogenerators for a flexible self‐charging power unit
  publication-title: Nano Res
– volume: 10
  year: 2020
  article-title: Robust swing‐structured triboelectric nanogenerator for efficient blue energy harvesting
  publication-title: Adv Energy Mater
– volume: 365
  start-page: 491
  year: 2019
  end-page: 494
  article-title: Transcutaneous ultrasound energy harvesting using capacitive triboelectric technology
  publication-title: Science
– volume: 11
  start-page: 10733
  year: 2017
  end-page: 10741
  article-title: Fully stretchable textile Triboelectric Nanogenerator with knitted fabric structures
  publication-title: ACS Nano
– volume: 56
  start-page: 40
  year: 2019
  end-page: 55
  article-title: Standardization of triboelectric nanogenerators: Progress and perspectives
  publication-title: Nano Energy
– volume: 1
  start-page: 328
  year: 2012
  end-page: 334.0
  article-title: Flexible triboelectric generator
  publication-title: Nano Energy
– volume: 32
  year: 2020
  article-title: A self‐powered angle sensor at Nanoradian‐resolution for robotic arms and personalized Medicare
  publication-title: Adv Mater
– volume: 56
  start-page: 516
  year: 2019
  end-page: 523
  article-title: Self‐powered gait pattern‐based identity recognition by a soft and stretchable triboelectric band
  publication-title: Nano Energy
– volume: 60
  start-page: 404
  year: 2019
  end-page: 412
  article-title: Macroscopic self‐assembly network of encapsulated high‐performance triboelectric nanogenerators for water wave energy harvesting
  publication-title: Nano Energy
– volume: 6
  start-page: 1744
  year: 2013
  end-page: 1749
  article-title: Simultaneously harvesting mechanical and chemical energies by a hybrid cell for self‐powered biosensors and personal electronics
  publication-title: Energ Environ Sci
– volume: 3
  start-page: 22663
  year: 2015
  end-page: 22668
  article-title: A self‐powered system based on triboelectric nanogenerators and supercapacitors for metal corrosion prevention
  publication-title: J Mater Chem A
– volume: 61
  start-page: 1
  year: 2019
  end-page: 9
  article-title: Self‐powered intelligent buoy system by water wave energy for sustainable and autonomous wireless sensing and data transmission
  publication-title: Nano Energy
– volume: 27
  start-page: 1316
  year: 2015
  end-page: 1326
  article-title: Eardrum‐inspired active sensors for self‐powered cardiovascular system characterization and throat‐attached anti‐interference voice recognition
  publication-title: Adv Mater
– volume: 31
  start-page: 351
  year: 2017
  end-page: 358
  article-title: Integrated triboelectric nanogenerator array based on air‐driven membrane structures for water wave energy harvesting
  publication-title: Nano Energy
– volume: 7
  year: 2020
  article-title: Cylindrical triboelectric nanogenerator based on swing structure for efficient harvesting of ultra‐low‐frequency water wave energy
  publication-title: Appl Phys Rev
– volume: 542
  start-page: 159
  year: 2017
  end-page: 160
  article-title: Catch wave power in floating nets
  publication-title: Nature
– volume: 3
  year: 2017
  article-title: Eye motion triggered self‐powered mechnosensational communication system using triboelectric nanogenerator
  publication-title: Sci Adv
– volume: 61
  start-page: 111
  year: 2019
  end-page: 118
  article-title: Remarkable merits of triboelectric nanogenerator than electromagnetic generator for harvesting small‐amplitude mechanical energy
  publication-title: Nano Energy
– volume: 31
  start-page: 533
  year: 2017
  end-page: 540
  article-title: Flexible transparent tribotronic transistor for active modulation of conventional electronics
  publication-title: Nano Energy
– volume: 32
  start-page: 287
  year: 2017
  end-page: 293
  article-title: A spring‐based resonance coupling for hugely enhancing the performance of triboelectric nanogenerators for harvesting low‐frequency vibration energy
  publication-title: Nano Energy
– volume: 17
  year: 2008
  article-title: Powering MEMS portable devices—a review of non‐regenerative and regenerative power supply systems with special emphasis on piezoelectric energy harvesting systems
  publication-title: Smart Mater Struct
– volume: 31
  year: 2019
  article-title: Hybrid energy harvesters: toward sustainable energy harvesting
  publication-title: Adv Mater
– volume: 47
  start-page: 74
  year: 2018
  end-page: 80
  article-title: Whirligig‐inspired triboelectric nanogenerator with ultrahigh specific output as reliable portable instant power supply for personal health monitoring devices
  publication-title: Nano Energy
– volume: 14
  start-page: 2751
  year: 2020
  end-page: 2759
  article-title: Wind‐driven radial‐engine‐shaped triboelectric nanogenerators for self‐powered absorption and degradation of NOx
  publication-title: ACS Nano
– volume: 30
  start-page: 34
  year: 2019
  end-page: 51
  article-title: On the origin of contact‐electrification
  publication-title: Mater Today
– volume: 32
  year: 2020
  article-title: Probing contact‐electrification‐induced Electron and ion transfers at a liquid‐solid Interface
  publication-title: Adv Mater
– volume: 26
  start-page: 7324
  year: 2014
  end-page: 7332
  article-title: Stretchable energy‐harvesting tactile electronic skin capable of differentiating multiple mechanical stimuli modes
  publication-title: Adv Mater
– volume: 9
  year: 2019
  article-title: TriboPump: a low‐cost, hand‐powered water disinfection system
  publication-title: Adv Energy Mater
– volume: 9
  year: 2018
  article-title: Triboelectric microplasma powered by mechanical stimuli
  publication-title: Nat Commun
– volume: 8
  start-page: 887
  year: 2015
  end-page: 896
  article-title: Beta‐cyclodextrin enhanced triboelectrification for self‐powered phenol detection and electrochemical degradation
  publication-title: Energ Environ Sci
– volume: 59
  start-page: 705
  year: 2019
  end-page: 714
  article-title: Self‐powered implantable electrical stimulator for osteoblasts' proliferation and differentiation
  publication-title: Nano Energy
– volume: 30
  year: 2018
  article-title: A stretchable yarn embedded Triboelectric Nanogenerator as electronic skin for biomechanical energy harvesting and multifunctional pressure sensing
  publication-title: Adv Mater
– volume: 27
  start-page: 1603788
  year: 2017
  article-title: Tunable optical modulator by coupling a triboelectric nanogenerator and a dielectric elastomer
  publication-title: Adv Funct Mater
– volume: 10
  year: 2020
  article-title: Mechanically asymmetrical triboelectric nanogenerator for self‐powered monitoring of in vivo microscale weak movement
  publication-title: Adv Energy Mater
– volume: 61
  start-page: 517
  year: 2019
  end-page: 532
  article-title: Power management and effective energy storage of pulsed output from triboelectric nanogenerator
  publication-title: Nano Energy
– volume: 10
  year: 2020
  article-title: Mechanical regulation Triboelectric Nanogenerator with controllable output performance for random energy harvesting
  publication-title: Adv Energy Mater
– volume: 27
  start-page: 5553
  year: 2015
  end-page: 5558
  article-title: Control of skin potential by Triboelectrification with ferroelectric polymers
  publication-title: Adv Mater
– volume: 49
  start-page: 625
  year: 2018
  end-page: 633
  article-title: Ultrahigh charge density realized by charge pumping at ambient conditions for triboelectric nanogenerators
  publication-title: Nano Energy
– volume: 9
  start-page: 105
  year: 2015
  end-page: 116
  article-title: Personalized keystroke dynamics for self‐powered human‐machine interfacing
  publication-title: ACS Nano
– volume: 10
  start-page: 4797
  year: 2016
  end-page: 4805
  article-title: Harvesting low‐frequency (<5 Hz) irregular mechanical energy: a possible killer application of Triboelectric Nanogenerator
  publication-title: ACS Nano
– volume: 64
  year: 2019
  article-title: Super‐robust and frequency‐multiplied triboelectric nanogenerator for efficient harvesting water and wind energy
  publication-title: Nano Energy
– volume: 7
  year: 2016
  article-title: Sustainably powering wearable electronics solely by biomechanical energy
  publication-title: Nat Commun
– volume: 353
  start-page: 124
  year: 2016
  end-page: 125
  article-title: Solar‐powering the internet of things
  publication-title: Science
– volume: 13
  start-page: 2450
  year: 2020
  end-page: 2458
  article-title: Self‐powered electrocatalytic ammonia synthesis directly from air as driven by dual triboelectric nanogenerators
  publication-title: Energ Environ Sci
– volume: 7
  start-page: 8266
  year: 2013
  end-page: 8274
  article-title: Triboelectric active sensor Array for self‐powered static and dynamic pressure detection and tactile imaging
  publication-title: ACS Nano
– volume: 18
  start-page: 1026
  year: 2018
  end-page: 1034
  article-title: A droplet energy harvesting and actuation system for self‐powered digital microfluidics
  publication-title: Lab Chip
– volume: 27
  start-page: 5210
  year: 2015
  end-page: 5216
  article-title: Roll‐to‐roll green transfer of CVD graphene onto plastic for a transparent and flexible triboelectric nanogenerator
  publication-title: Adv Mater
– ident: e_1_2_7_101_1
  doi: 10.1021/acsami.5b04516
– ident: e_1_2_7_132_1
  doi: 10.1016/j.nanoen.2018.12.054
– ident: e_1_2_7_7_1
  doi: 10.1038/s41586-020-1985-6
– ident: e_1_2_7_8_1
  doi: 10.1126/science.aag0476
– ident: e_1_2_7_89_1
  doi: 10.1038/ncomms12744
– ident: e_1_2_7_118_1
  doi: 10.1038/s41467-019-10433-4
– ident: e_1_2_7_137_1
  doi: 10.1016/j.nanoen.2019.103908
– ident: e_1_2_7_94_1
  doi: 10.1002/adma.201804944
– ident: e_1_2_7_77_1
  doi: 10.1002/aenm.202000827
– ident: e_1_2_7_120_1
  doi: 10.1016/j.mattod.2018.01.006
– ident: e_1_2_7_151_1
  doi: 10.1002/adfm.201706680
– ident: e_1_2_7_99_1
  doi: 10.1021/acsnano.6b04201
– ident: e_1_2_7_116_1
  doi: 10.1038/s41467-020-16642-6
– ident: e_1_2_7_19_1
  doi: 10.1038/ncomms9975
– ident: e_1_2_7_161_1
  doi: 10.1016/j.nanoen.2018.02.022
– ident: e_1_2_7_123_1
  doi: 10.1016/j.nanoen.2018.11.078
– ident: e_1_2_7_49_1
  doi: 10.1039/C4FD00159A
– ident: e_1_2_7_73_1
  doi: 10.1016/j.nanoen.2019.03.050
– ident: e_1_2_7_111_1
  doi: 10.1021/acsnano.5b04995
– ident: e_1_2_7_59_1
  doi: 10.1002/aenm.201800889
– ident: e_1_2_7_56_1
  doi: 10.1016/j.nanoen.2019.03.019
– ident: e_1_2_7_133_1
  doi: 10.1016/j.nanoen.2016.11.037
– ident: e_1_2_7_30_1
  doi: 10.1021/acsnano.6b03293
– ident: e_1_2_7_45_1
  doi: 10.1038/s41467-019-14278-9
– ident: e_1_2_7_146_1
  doi: 10.1021/acsnano.7b02321
– ident: e_1_2_7_71_1
  doi: 10.1021/acsnano.7b05203
– ident: e_1_2_7_41_1
  doi: 10.1016/j.mattod.2019.05.016
– ident: e_1_2_7_130_1
  doi: 10.1002/aenm.201601705
– ident: e_1_2_7_142_1
  doi: 10.1002/adma.201502463
– ident: e_1_2_7_13_1
  doi: 10.1016/j.comnet.2008.04.002
– ident: e_1_2_7_62_1
  doi: 10.1016/j.nanoen.2019.02.073
– ident: e_1_2_7_129_1
  doi: 10.1016/j.nanoen.2016.01.009
– ident: e_1_2_7_61_1
  doi: 10.1021/nn507221f
– ident: e_1_2_7_88_1
  doi: 10.1021/acsnano.5b05598
– ident: e_1_2_7_96_1
  doi: 10.1002/adma.201503407
– ident: e_1_2_7_128_1
  doi: 10.1021/nn502618f
– ident: e_1_2_7_131_1
  doi: 10.1002/aenm.201501467
– ident: e_1_2_7_58_1
  doi: 10.1002/aenm.202000627
– ident: e_1_2_7_48_1
  doi: 10.1002/adfm.201501331
– ident: e_1_2_7_55_1
  doi: 10.1021/nn405175z
– ident: e_1_2_7_100_1
  doi: 10.1002/adma.201402439
– ident: e_1_2_7_105_1
  doi: 10.1021/acsnano.5b03052
– ident: e_1_2_7_106_1
  doi: 10.1002/admt.201700229
– ident: e_1_2_7_31_1
  doi: 10.1016/j.nanoen.2019.03.054
– ident: e_1_2_7_145_1
  doi: 10.1016/j.nanoen.2014.12.013
– ident: e_1_2_7_98_1
  doi: 10.1016/j.nanoen.2016.11.042
– ident: e_1_2_7_17_1
  doi: 10.1002/adma.201402064
– ident: e_1_2_7_78_1
  doi: 10.1039/c3ee40764k
– ident: e_1_2_7_147_1
  doi: 10.1021/acsnano.7b08014
– ident: e_1_2_7_15_1
  doi: 10.1002/adma.201400021
– ident: e_1_2_7_22_1
  doi: 10.1002/adma.201404794
– ident: e_1_2_7_97_1
  doi: 10.1002/adma.201402574
– ident: e_1_2_7_3_1
  doi: 10.1002/adma.201502560
– ident: e_1_2_7_44_1
  doi: 10.1002/adma.201905696
– ident: e_1_2_7_104_1
  doi: 10.1039/C4EE03596H
– ident: e_1_2_7_156_1
  doi: 10.1016/j.nanoen.2018.05.011
– ident: e_1_2_7_110_1
  doi: 10.1002/advs.201500419
– ident: e_1_2_7_80_1
  doi: 10.1002/adma.201802898
– ident: e_1_2_7_84_1
  doi: 10.1021/acsnano.7b05317
– ident: e_1_2_7_87_1
  doi: 10.1002/aenm.201901320
– ident: e_1_2_7_50_1
  doi: 10.1016/j.nanoen.2014.11.034
– ident: e_1_2_7_148_1
  doi: 10.1039/C7LC01259D
– ident: e_1_2_7_153_1
  doi: 10.1039/D0EE01236J
– ident: e_1_2_7_32_1
  doi: 10.1016/j.nanoen.2017.06.035
– ident: e_1_2_7_108_1
  doi: 10.1038/ncomms15310
– ident: e_1_2_7_119_1
  doi: 10.1126/sciadv.aay2840
– ident: e_1_2_7_27_1
  doi: 10.1021/acsnano.5b06327
– ident: e_1_2_7_141_1
  doi: 10.1002/adfm.201603788
– ident: e_1_2_7_40_1
  doi: 10.1002/aenm.201803027
– ident: e_1_2_7_63_1
  doi: 10.1016/j.nanoen.2019.04.083
– ident: e_1_2_7_11_1
  doi: 10.1088/0964-1726/17/4/043001
– ident: e_1_2_7_152_1
  doi: 10.1021/acsnano.8b05359
– ident: e_1_2_7_64_1
  doi: 10.1126/sciadv.1501624
– ident: e_1_2_7_6_1
  doi: 10.1038/s41467-019-10061-y
– ident: e_1_2_7_34_1
  doi: 10.1002/adma.201801511
– ident: e_1_2_7_154_1
  doi: 10.1021/acsnano.8b01558
– ident: e_1_2_7_140_1
  doi: 10.1016/j.nanoen.2017.05.039
– ident: e_1_2_7_33_1
  doi: 10.1016/j.nanoen.2014.10.034
– ident: e_1_2_7_42_1
  doi: 10.1002/aenm.202000137
– ident: e_1_2_7_12_1
  doi: 10.1016/j.bios.2015.08.037
– ident: e_1_2_7_65_1
  doi: 10.1038/s41467-019-09851-1
– ident: e_1_2_7_76_1
  doi: 10.1002/adfm.201808820
– ident: e_1_2_7_139_1
  doi: 10.1016/j.nanoen.2019.04.026
– ident: e_1_2_7_39_1
  doi: 10.1016/j.nanoen.2018.10.036
– volume: 8
  start-page: 12
  year: 2018
  ident: e_1_2_7_122_1
  article-title: Versatile core‐sheath yarn for sustainable biomechanical energy harvesting and real‐time human‐interactive sensing
  publication-title: Adv Energy Mater
  doi: 10.1002/aenm.201801114
– ident: e_1_2_7_136_1
  doi: 10.1039/C9EE03258D
– ident: e_1_2_7_159_1
  doi: 10.1038/s41467-019-09464-8
– ident: e_1_2_7_144_1
  doi: 10.1002/adma.201404291
– ident: e_1_2_7_66_1
  doi: 10.1038/nenergy.2016.138
– ident: e_1_2_7_52_1
  doi: 10.1038/s41467-019-09461-x
– ident: e_1_2_7_54_1
  doi: 10.1038/s41467-019-12465-2
– ident: e_1_2_7_60_1
  doi: 10.1002/aenm.202000965
– ident: e_1_2_7_5_1
  doi: 10.1126/science.aan3997
– ident: e_1_2_7_37_1
  doi: 10.1016/j.nanoen.2019.04.096
– ident: e_1_2_7_113_1
  doi: 10.1021/acsnano.6b07030
– ident: e_1_2_7_23_1
  doi: 10.1021/nn506832w
– ident: e_1_2_7_91_1
  doi: 10.1021/acsnano.9b08496
– ident: e_1_2_7_158_1
  doi: 10.1002/aenm.202000605
– ident: e_1_2_7_86_1
  doi: 10.1002/adfm.201501695
– ident: e_1_2_7_124_1
  doi: 10.1021/acsnano.6b01569
– ident: e_1_2_7_24_1
  doi: 10.1038/s41467-019-10298-7
– ident: e_1_2_7_103_1
  doi: 10.1002/aenm.201901124
– ident: e_1_2_7_134_1
  doi: 10.1063/1.5135734
– ident: e_1_2_7_16_1
  doi: 10.1126/sciadv.aba9624
– ident: e_1_2_7_43_1
  doi: 10.1002/adma.201706790
– ident: e_1_2_7_115_1
  doi: 10.1016/j.nanoen.2020.104675
– ident: e_1_2_7_67_1
  doi: 10.1002/adma.201504403
– ident: e_1_2_7_93_1
  doi: 10.1016/j.eml.2015.01.008
– ident: e_1_2_7_68_1
  doi: 10.1016/j.nanoen.2018.02.039
– ident: e_1_2_7_74_1
  doi: 10.1126/sciadv.1501478
– ident: e_1_2_7_47_1
  doi: 10.1016/j.nanoen.2019.104272
– ident: e_1_2_7_53_1
  doi: 10.1038/s41467-020-15926-1
– ident: e_1_2_7_21_1
  doi: 10.1038/s41467-019-13166-6
– ident: e_1_2_7_83_1
  doi: 10.1002/adfm.201803117
– ident: e_1_2_7_143_1
  doi: 10.1002/adfm.201403577
– ident: e_1_2_7_85_1
  doi: 10.1016/j.nanoen.2018.06.009
– ident: e_1_2_7_72_1
  doi: 10.1039/C4TA02747G
– ident: e_1_2_7_79_1
  doi: 10.1002/adma.201500121
– ident: e_1_2_7_4_1
  doi: 10.1039/C5EE01532D
– ident: e_1_2_7_90_1
  doi: 10.1021/acsnano.7b06451
– ident: e_1_2_7_149_1
  doi: 10.1002/adfm.201800610
– ident: e_1_2_7_25_1
  doi: 10.1038/s41467-018-06198-x
– ident: e_1_2_7_92_1
  doi: 10.1021/nn4037514
– ident: e_1_2_7_75_1
  doi: 10.1002/adma.201805722
– ident: e_1_2_7_150_1
  doi: 10.1038/nnano.2017.17
– ident: e_1_2_7_117_1
  doi: 10.1126/sciadv.1700694
– ident: e_1_2_7_10_1
  doi: 10.1038/nnano.2011.184
– ident: e_1_2_7_126_1
  doi: 10.1038/542159a
– ident: e_1_2_7_9_1
  doi: 10.1109/COMST.2015.2444095
– ident: e_1_2_7_114_1
  doi: 10.1021/acsnano.8b07567
– ident: e_1_2_7_35_1
  doi: 10.1016/j.nanoen.2019.01.077
– ident: e_1_2_7_102_1
  doi: 10.1021/acsnano.8b06747
– ident: e_1_2_7_81_1
  doi: 10.1016/j.nanoen.2019.104243
– ident: e_1_2_7_82_1
  doi: 10.1016/j.ensm.2019.03.009
– ident: e_1_2_7_155_1
  doi: 10.1002/aenm.201802906
– ident: e_1_2_7_107_1
  doi: 10.1021/nn4063616
– ident: e_1_2_7_127_1
  doi: 10.1016/j.nanoen.2016.12.061
– ident: e_1_2_7_26_1
  doi: 10.1021/acsnano.7b05626
– ident: e_1_2_7_29_1
  doi: 10.1021/nn5012732
– ident: e_1_2_7_57_1
  doi: 10.1039/C5TA07053H
– ident: e_1_2_7_160_1
  doi: 10.1016/j.ensm.2017.11.013
– ident: e_1_2_7_112_1
  doi: 10.1126/scirobotics.aat2516
– ident: e_1_2_7_18_1
  doi: 10.1007/s12274-015-0894-8
– ident: e_1_2_7_121_1
  doi: 10.1126/sciadv.aaz8693
– ident: e_1_2_7_38_1
  doi: 10.1021/acs.chemrev.9b00821
– ident: e_1_2_7_70_1
  doi: 10.1126/sciadv.1700015
– ident: e_1_2_7_69_1
  doi: 10.1039/D0EE01102A
– ident: e_1_2_7_14_1
  doi: 10.1109/COMST.2014.2368999
– ident: e_1_2_7_2_1
  doi: 10.1016/j.nanoen.2012.01.004
– ident: e_1_2_7_51_1
  doi: 10.1038/ncomms9376
– ident: e_1_2_7_109_1
  doi: 10.1021/acsnano.5b07407
– ident: e_1_2_7_135_1
  doi: 10.1016/j.nanoen.2016.12.004
– ident: e_1_2_7_20_1
  doi: 10.1002/adma.202001466
– ident: e_1_2_7_28_1
  doi: 10.1002/aenm.202000064
– ident: e_1_2_7_125_1
  doi: 10.1016/j.nanoen.2019.04.047
– volume: 29
  start-page: 1807241
  year: 2019
  ident: e_1_2_7_138_1
  article-title: Triboelectric Nanogenerator networks integrated with power management module for water wave energy harvesting
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.201807241
– ident: e_1_2_7_95_1
  doi: 10.1021/nl5005652
– ident: e_1_2_7_157_1
  doi: 10.1038/s41467-018-06045-z
– ident: e_1_2_7_36_1
  doi: 10.1016/j.nanoen.2018.11.029
– ident: e_1_2_7_46_1
  doi: 10.1016/j.mattod.2016.12.001
SSID ssj0002504241
Score 2.5897117
SecondaryResourceType review_article
Snippet For the development of the internet of things (IoTs), big data, and artificial intelligence, widely distributed sensing network is the most essential element,...
SourceID crossref
wiley
SourceType Enrichment Source
Index Database
Publisher
SubjectTerms blue energy
contact electrification
energy harvesting
self‐powered
triboelectric nanogenerators
Title Recent progress of triboelectric nanogenerators: From fundamental theory to practical applications
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Feom2.12059
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8NAEB1qvehB_MT6URb0ohBNdpNNIl5EWopQ9WCht5BNdkSwidR68OJvd2eTphVE8BJCmFwm2Z03szPvAZy6PoauiYuOQomOL8LASVUeOwbZC09hxlNJs8PDezkY-XfjYNyC6_ksTMUP0RTcaGXY_ZoWeKreLxekobqc8AuPG3iwAqs0W0sNfdx_bCosRM7FrXSlCetUjAtFw0_KLxev_4hIywjVhpj-JmzU2JDdVB9zC1q62Ib1JcbAHVAG5pkwwWxbldmkWImMNKvKSs7mJWNFWpTPlkuadHSuWH9aThjSvEdF48_s6OInm5WsnpAyz5aPsXdh1O893Q6cWibByQTxawqMZST91JNKSE8L5efCgLpMh6lEZSBUqtHkJSomOJBjrDRG2kWfIyeacVfsQbsoC70PjEdKYh65AZ3zxjpQUobKw9yLlHYD9DpwNndVktUc4iRl8ZpU7Mc8Ibcm1q0dOGls3yrmjF-tzq3H_zBJeg9Dbu8O_mN8CGuccmPbenIE7dn0Qx8bADFTXfufdG36ba7Dr943PBfDPg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8QwEB58HNSD-MS3AfWgULdN2rQVPIi67LoPL66Il9q0iQjaiq6IP8r_aCbtdlcQwYO3UoZQppPMl0nm-wB2bVf5ts6LllBcWS7zPSsWaWhpZM8coRIac-wd7nR5o-de3Hg3Y_A56IUp-CGqghvODLNe4wTHgnRtyBoq8yd66FCND8o7lS358a53bK_HzTP9e_corZ9fnTasUlTAShiyUTIV8oC7scMF445kwk2ZhkCJ9GOuhAYcsVQaxYsQk2eqQiFVIG3lUkWRlNtmetxxmEQYpSfR5Ml177ZXFXWQD4watUyNJLD-57OKEpXWhh_8LQmOgmKT1epzMFvCUXJSxM88jMlsAWZGSAoXQWhkqTMTMTe59LpIckVQJisvFHQeEpLFWX5v6KtRuueI1F_yJ6KwxaRQDiCmW_KD9HNSNmXpd6Mn50vQ-xcnLsNElmdyBQgNBFdpYHt4tBxKT3DuC0elTiCk7SlnFfYHroqSkrYc1TMeo4JwmUbo1si4dRV2KtvngqzjR6sD4_FfTKLzyw41T2t_Md6GqcZVpx21m93WOkxT3Jqbmy8bMNF_eZObGr_0xVYZNQTu_jtQvwC9hf_T
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fS8MwED50guiD-BPnz4D6oFDXJm3aCj4Mdahz6oMT8aU2bU4E1445kf1P_pEmaZ0TRPDBt1KOUK6X3Jfk7vsAtm0XfVvlRUsgR8tlvmfFIg0theyZIzChMde9w61Lftp2z--8uzF4_-yFKfghhgduemaY9VpP8G6KtS_SUJl36L5DFTwoSyqbcvCmNmwvh2fH6u_uUNo4uTk6tUpNASthmoySYcgD7sYOF4w7kgk3ZQoBJdKPOQqFN2KJCsSLUOfOFEMhMZA2uhSp5uS2mRp3HCY8lQbtCkzUb9v37eGZjqYDo0YsUwEJffznsyEjKq19ffC3HDiKiU1Sa8zCTIlGSb0InzkYk9k8TI9wFC6AUMBSJSZiCrnUskhyJFolKy8EdJ4SksVZ_mjYq7VyzwFp9PIOQd1hUggHENMsOSD9nJQ9Werd6MX5IrT_xYlLUMnyTC4DoYHgmAa2p2-WQ-kJzn3hYOoEQtoeOlXY_XRVlJSs5Vo84zkq-JZppN0aGbdWYWto2y24On602jMe_8UkOrlqUfO08hfjTZi8Pm5EF2eXzVWYonpjbupe1qDS773KdYVe-mKjDBoCD_8dpx_zpP7z
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+progress+of+triboelectric+nanogenerators%3A+From+fundamental+theory+to+practical+applications&rft.jtitle=EcoMat+%28Beijing%2C+China%29&rft.au=Luo%2C+Jianjun&rft.au=Wang%2C+Zhong+Lin&rft.date=2020-12-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=2567-3173&rft.eissn=2567-3173&rft.volume=2&rft.issue=4&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Feom2.12059&rft.externalDBID=10.1002%252Feom2.12059&rft.externalDocID=EOM212059
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2567-3173&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2567-3173&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2567-3173&client=summon