Recent progress of triboelectric nanogenerators: From fundamental theory to practical applications
For the development of the internet of things (IoTs), big data, and artificial intelligence, widely distributed sensing network is the most essential element, which has to be driven by the energy storage unit, with a limited lifetime and environmental concerns. Given that the wide distribution and h...
Saved in:
Published in | EcoMat (Beijing, China) Vol. 2; no. 4 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Hoboken, USA
John Wiley & Sons, Inc
01.12.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | For the development of the internet of things (IoTs), big data, and artificial intelligence, widely distributed sensing network is the most essential element, which has to be driven by the energy storage unit, with a limited lifetime and environmental concerns. Given that the wide distribution and high mobility of these numerous sensors, the success of the IoTs and sustainable development of human society call for renewable distributed energy sources. Since triboelectrification effect is ubiquitous and universal in our living environment, the triboelectric nanogenerator (TENG) for mechanical energy harvesting and self‐powered sensing developed by Wang and co‐workers is one of the best choices for this energy for the new era. In this review, the recent progress of TENGs from fundamental theory to practical applications is systematically summarized. First, the mechanism of contact electrification, first principle theory, working principle, working modes, and figure of merits of the TENG are introduced. Furthermore, recent important progress in four major TENG applications, including micro/nano power sources, active self‐powered sensors, large‐scale blue energy, and direct high‐voltage power sources are reviewed. In the end, some perspectives and challenges for the future development of TENG are also discussed.
The recent progress on the development of triboelectric nanogenerators (TENGs) is systematically reviewed. The basic knowledge and fundamental theory of TENGs are first introduced. Subsequently, recent important progress in four major application fields of TENGs are also summarized. At last, current challenges and future outlooks regarding to the TENG field are also discussed. |
---|---|
AbstractList | For the development of the internet of things (IoTs), big data, and artificial intelligence, widely distributed sensing network is the most essential element, which has to be driven by the energy storage unit, with a limited lifetime and environmental concerns. Given that the wide distribution and high mobility of these numerous sensors, the success of the IoTs and sustainable development of human society call for renewable distributed energy sources. Since triboelectrification effect is ubiquitous and universal in our living environment, the triboelectric nanogenerator (TENG) for mechanical energy harvesting and self‐powered sensing developed by Wang and co‐workers is one of the best choices for this energy for the new era. In this review, the recent progress of TENGs from fundamental theory to practical applications is systematically summarized. First, the mechanism of contact electrification, first principle theory, working principle, working modes, and figure of merits of the TENG are introduced. Furthermore, recent important progress in four major TENG applications, including micro/nano power sources, active self‐powered sensors, large‐scale blue energy, and direct high‐voltage power sources are reviewed. In the end, some perspectives and challenges for the future development of TENG are also discussed.
image For the development of the internet of things (IoTs), big data, and artificial intelligence, widely distributed sensing network is the most essential element, which has to be driven by the energy storage unit, with a limited lifetime and environmental concerns. Given that the wide distribution and high mobility of these numerous sensors, the success of the IoTs and sustainable development of human society call for renewable distributed energy sources. Since triboelectrification effect is ubiquitous and universal in our living environment, the triboelectric nanogenerator (TENG) for mechanical energy harvesting and self‐powered sensing developed by Wang and co‐workers is one of the best choices for this energy for the new era. In this review, the recent progress of TENGs from fundamental theory to practical applications is systematically summarized. First, the mechanism of contact electrification, first principle theory, working principle, working modes, and figure of merits of the TENG are introduced. Furthermore, recent important progress in four major TENG applications, including micro/nano power sources, active self‐powered sensors, large‐scale blue energy, and direct high‐voltage power sources are reviewed. In the end, some perspectives and challenges for the future development of TENG are also discussed. The recent progress on the development of triboelectric nanogenerators (TENGs) is systematically reviewed. The basic knowledge and fundamental theory of TENGs are first introduced. Subsequently, recent important progress in four major application fields of TENGs are also summarized. At last, current challenges and future outlooks regarding to the TENG field are also discussed. |
Author | Luo, Jianjun Wang, Zhong Lin |
Author_xml | – sequence: 1 givenname: Jianjun surname: Luo fullname: Luo, Jianjun organization: University of Chinese Academy of Sciences – sequence: 2 givenname: Zhong Lin orcidid: 0000-0002-5530-0380 surname: Wang fullname: Wang, Zhong Lin email: zhong.wang@mse.gatech.edu organization: Georgia Institute of Technology |
BookMark | eNp9kE9LAzEUxINUsNZe_AQ5C1tfkv3rTUpbhUpB9Lxk05e6spssSUT67U1bDyLi6Q2P-Q3DXJKRsQYJuWYwYwD8Fm3PZ4xDVp2RMc_yIhGsEKMf-oJMvX-HaM4g5Skbk-YZFZpAB2d3Dr2nVtPg2sZihyoKRY00docGnQzW-Tu6dLan-sNsZR9B2dHwhtbtabAxRKrQqviTw9BFEVpr_BU517LzOP2-E_K6XLzMH5L1ZvU4v18nSkBVJUJXeZmnkuWNyBmKJt2KokgVFjLXDVSZRJ2lZVMBFOVWVw3qEkGnXHMFJYCYkJtTrnLWe4e6HlzbS7evGdSHgerDQPVxoGiGX2bVhmPf4GTb_Y2wE_LZdrj_J7xebJ74ifkCpxp8Dg |
CitedBy_id | crossref_primary_10_1088_1361_665X_ad791b crossref_primary_10_1002_ente_202300992 crossref_primary_10_1109_TPEL_2022_3169733 crossref_primary_10_1016_j_nanoso_2023_100980 crossref_primary_10_1002_adma_202416952 crossref_primary_10_3390_eng5020052 crossref_primary_10_1002_smll_202103430 crossref_primary_10_1016_j_cap_2023_03_013 crossref_primary_10_3390_nanoenergyadv4020010 crossref_primary_10_3390_s23031329 crossref_primary_10_1038_s41529_022_00272_y crossref_primary_10_20517_energymater_2023_121 crossref_primary_10_1016_j_supmat_2024_100082 crossref_primary_10_1016_j_nanoen_2023_108834 crossref_primary_10_1016_j_nanoen_2024_109526 crossref_primary_10_1088_1361_6439_ac168e crossref_primary_10_1007_s42114_024_00903_9 crossref_primary_10_1016_j_apmt_2024_102492 crossref_primary_10_1016_j_mtphys_2022_100798 crossref_primary_10_3390_polym15051295 crossref_primary_10_1016_j_nanoen_2024_110623 crossref_primary_10_1021_acsabm_4c00303 crossref_primary_10_1016_j_mtsust_2022_100233 crossref_primary_10_3390_nano11102657 crossref_primary_10_3390_s24010036 crossref_primary_10_1016_j_coco_2023_101602 crossref_primary_10_1007_s12274_023_5879_4 crossref_primary_10_1016_j_apenergy_2024_123468 crossref_primary_10_3390_nanoenergyadv4020009 crossref_primary_10_1016_j_nanoen_2024_109636 crossref_primary_10_1016_j_mseb_2023_116637 crossref_primary_10_1063_5_0250284 crossref_primary_10_1002_smll_202305502 crossref_primary_10_1021_acsomega_4c07889 crossref_primary_10_1007_s42114_023_00632_5 crossref_primary_10_1016_j_heliyon_2024_e32361 crossref_primary_10_1016_j_oceaneng_2024_117149 crossref_primary_10_1016_j_rser_2021_111230 crossref_primary_10_1039_D2TC01931K crossref_primary_10_3390_jmse11040838 crossref_primary_10_1557_s43577_021_00123_2 crossref_primary_10_3389_fmats_2022_896953 crossref_primary_10_1002_smll_202300847 crossref_primary_10_1016_j_nanoen_2021_106517 crossref_primary_10_3390_nanoenergyadv2010004 crossref_primary_10_1002_advs_202309871 crossref_primary_10_1016_j_nanoen_2023_108856 crossref_primary_10_1016_j_nanoen_2023_108970 crossref_primary_10_1016_j_nanoen_2023_109151 crossref_primary_10_1016_j_nantod_2024_102232 crossref_primary_10_1088_1361_6439_aca59e crossref_primary_10_1016_j_cej_2024_150204 crossref_primary_10_1021_acsabm_4c01414 crossref_primary_10_1002_admt_202301695 crossref_primary_10_1016_j_cplett_2023_140970 crossref_primary_10_7498_aps_71_20211632 crossref_primary_10_1002_adma_202314380 crossref_primary_10_1016_j_mser_2023_100747 crossref_primary_10_1002_smll_202204949 crossref_primary_10_1063_5_0241082 crossref_primary_10_1155_2023_3415211 crossref_primary_10_1063_5_0252915 crossref_primary_10_1002_admt_202201245 crossref_primary_10_55713_jmmm_v35i1_2226 crossref_primary_10_1021_acsami_4c12753 crossref_primary_10_3390_mi15091171 crossref_primary_10_1021_acsami_1c03328 crossref_primary_10_1002_eom2_12408 crossref_primary_10_1016_j_mattod_2024_08_013 crossref_primary_10_1016_j_rsurfi_2022_100075 crossref_primary_10_32710_tekstilvekonfeksiyon_1065348 crossref_primary_10_3389_fpubh_2023_1115000 crossref_primary_10_1016_j_matt_2023_09_017 crossref_primary_10_2147_IJN_S480938 crossref_primary_10_1016_j_nanoen_2023_108983 crossref_primary_10_1039_D3MH01529G crossref_primary_10_1016_j_measurement_2023_113330 crossref_primary_10_3390_mi15030384 crossref_primary_10_1016_j_nanoen_2024_110554 crossref_primary_10_1021_acsanm_4c02017 crossref_primary_10_3390_s23146634 crossref_primary_10_1002_admt_202301225 crossref_primary_10_3390_polym15010094 crossref_primary_10_1002_aenm_202403289 crossref_primary_10_1088_2631_7990_ad7b04 crossref_primary_10_1109_JSEN_2021_3118565 crossref_primary_10_1039_D4RA08732A crossref_primary_10_1016_j_nanoen_2021_105887 crossref_primary_10_1021_acsenergylett_4c02047 crossref_primary_10_1016_j_nanoen_2021_106739 crossref_primary_10_1063_5_0201860 crossref_primary_10_1016_j_carbon_2022_03_037 crossref_primary_10_1080_21663831_2022_2026513 crossref_primary_10_1016_j_cej_2024_149661 crossref_primary_10_1002_chem_202301076 crossref_primary_10_1002_chem_202303378 crossref_primary_10_1002_admt_202402212 crossref_primary_10_1016_j_nanoen_2024_110427 crossref_primary_10_1016_j_nanoen_2025_110844 crossref_primary_10_1016_j_cej_2024_156193 crossref_primary_10_3390_mi12020218 crossref_primary_10_1002_admt_202301592 crossref_primary_10_1557_s43578_024_01368_8 crossref_primary_10_1016_j_cej_2024_152392 crossref_primary_10_1021_acsnano_2c04043 crossref_primary_10_1002_adfm_202313534 crossref_primary_10_1016_j_nanoen_2022_107774 crossref_primary_10_1016_j_mtcomm_2023_105493 crossref_primary_10_1126_sciadv_abo5314 crossref_primary_10_3390_mi14071333 crossref_primary_10_1002_inf2_12262 crossref_primary_10_1016_j_nanoen_2024_109316 crossref_primary_10_1016_j_nanoen_2023_108365 crossref_primary_10_1109_JSEN_2024_3443229 crossref_primary_10_1016_j_nanoen_2024_110530 crossref_primary_10_1016_j_surfin_2024_104553 crossref_primary_10_1088_2631_8695_acf980 crossref_primary_10_1016_j_apenergy_2022_120218 crossref_primary_10_1002_adma_202308505 crossref_primary_10_1021_acs_jchemed_3c00684 crossref_primary_10_1016_j_rineng_2022_100869 crossref_primary_10_1002_eom2_12337 crossref_primary_10_1039_D4SE00869C crossref_primary_10_3390_s24123782 crossref_primary_10_1039_D4TA07120D crossref_primary_10_1002_smtd_202201435 crossref_primary_10_1016_j_matlet_2021_131474 crossref_primary_10_1021_acsaelm_4c01247 crossref_primary_10_3389_fmats_2022_909746 crossref_primary_10_1039_D2TA04433A crossref_primary_10_1016_j_decarb_2024_100093 crossref_primary_10_1002_inf2_12391 crossref_primary_10_1016_j_nanoen_2024_109785 crossref_primary_10_1016_j_nanoen_2023_109110 crossref_primary_10_1016_j_mtener_2024_101529 crossref_primary_10_1016_j_nanoen_2022_108084 crossref_primary_10_3390_mi14081592 crossref_primary_10_1002_aenm_202100065 crossref_primary_10_1016_j_enrev_2023_100014 crossref_primary_10_1021_acs_chemrev_4c00369 crossref_primary_10_1016_j_nanoen_2023_109114 crossref_primary_10_1039_D3TA01763J crossref_primary_10_1002_adfm_202213900 crossref_primary_10_1021_acsami_4c02319 crossref_primary_10_1063_5_0219223 crossref_primary_10_1007_s12274_023_5728_5 crossref_primary_10_1016_j_seta_2023_103251 crossref_primary_10_1088_2515_7655_ad1117 crossref_primary_10_1021_acs_langmuir_4c02576 crossref_primary_10_1002_adfm_202313506 crossref_primary_10_1016_j_sna_2023_114909 crossref_primary_10_1088_1361_6528_aca599 crossref_primary_10_1002_adfm_202413359 crossref_primary_10_3390_polym15234562 crossref_primary_10_1002_adem_202400134 crossref_primary_10_1021_acssuschemeng_3c05198 crossref_primary_10_1002_cssc_202400366 crossref_primary_10_1016_j_nanoen_2023_108559 crossref_primary_10_1021_acsami_4c10063 crossref_primary_10_1016_j_nanoen_2023_108555 crossref_primary_10_1039_D3TA02340K crossref_primary_10_1002_smll_202401846 crossref_primary_10_1016_j_nanoen_2025_110767 crossref_primary_10_1021_acsomega_2c05457 crossref_primary_10_3390_nano13192718 crossref_primary_10_1002_eom2_12145 crossref_primary_10_1002_aelm_202201348 crossref_primary_10_1002_flm2_10 crossref_primary_10_1016_j_mser_2024_100866 crossref_primary_10_1039_D2NH00229A crossref_primary_10_1016_j_nanoen_2022_107974 crossref_primary_10_3390_mi15091114 crossref_primary_10_1088_2631_7990_ad5bc6 crossref_primary_10_1109_JESTPE_2022_3158347 crossref_primary_10_1016_j_nanoen_2023_108445 crossref_primary_10_1016_j_xcrp_2024_101888 crossref_primary_10_1016_j_mtsust_2024_100781 crossref_primary_10_1002_adfm_202100447 crossref_primary_10_1021_acsami_1c15014 crossref_primary_10_3390_s21113741 crossref_primary_10_1002_smll_202406500 crossref_primary_10_1016_j_fmre_2021_05_002 crossref_primary_10_1021_acsaelm_3c01341 crossref_primary_10_1002_adfm_202307609 crossref_primary_10_1016_j_nanoen_2023_108211 crossref_primary_10_1002_aesr_202100161 crossref_primary_10_1016_j_cej_2023_143572 crossref_primary_10_1016_j_nanoen_2022_108043 crossref_primary_10_1016_j_nanoen_2023_108463 crossref_primary_10_1039_D1NR05129F crossref_primary_10_1016_j_fmre_2022_01_021 crossref_primary_10_1002_ente_202401281 crossref_primary_10_1016_j_ceramint_2024_08_161 crossref_primary_10_3390_mi12030231 crossref_primary_10_1002_aenm_202201042 crossref_primary_10_1021_acsomega_4c08590 crossref_primary_10_3390_ma17091964 crossref_primary_10_1016_j_egyr_2022_11_049 crossref_primary_10_1016_j_nanoen_2024_110318 crossref_primary_10_1016_j_nanoen_2022_107633 crossref_primary_10_1002_adfm_202306749 crossref_primary_10_1016_j_nanoen_2023_108223 crossref_primary_10_1021_acsami_4c05946 crossref_primary_10_1002_aelm_202300333 crossref_primary_10_1002_smll_202411410 crossref_primary_10_1002_advs_202101834 crossref_primary_10_1016_j_nanoen_2023_109046 crossref_primary_10_1088_2631_8695_ac9e8c crossref_primary_10_1002_admt_202300418 crossref_primary_10_1002_smll_202108091 crossref_primary_10_3390_mi14081640 crossref_primary_10_3389_fchem_2022_941065 crossref_primary_10_1016_j_jechem_2023_04_041 crossref_primary_10_3390_s23042021 crossref_primary_10_1088_1361_6528_acd789 crossref_primary_10_1039_D2TA09975F crossref_primary_10_1002_adem_202301897 crossref_primary_10_1080_15435075_2024_2437511 crossref_primary_10_7736_JKSPE_023_025 crossref_primary_10_1002_adsu_202200383 crossref_primary_10_1039_D3NR01334K crossref_primary_10_1002_marc_202400321 crossref_primary_10_1002_smtd_202201251 crossref_primary_10_1016_j_nanoen_2022_107144 crossref_primary_10_1016_j_heliyon_2023_e17467 crossref_primary_10_1016_j_talanta_2024_127085 crossref_primary_10_1038_s41598_023_36817_7 crossref_primary_10_1016_j_matpr_2022_09_584 crossref_primary_10_1002_adfm_202101047 crossref_primary_10_1088_1402_4896_ac2086 crossref_primary_10_3390_nanoenergyadv3040016 crossref_primary_10_1088_1361_6528_ad18e8 crossref_primary_10_1002_smll_202206107 crossref_primary_10_1016_j_apmt_2024_102570 crossref_primary_10_1007_s11664_022_09982_0 crossref_primary_10_1016_j_ccr_2023_215118 crossref_primary_10_1016_j_nanoen_2024_110380 crossref_primary_10_3390_polym14214495 crossref_primary_10_1088_1361_6439_ac7a8f crossref_primary_10_1002_ente_202401029 crossref_primary_10_1016_j_nanoen_2021_106227 crossref_primary_10_1016_j_cej_2024_154974 crossref_primary_10_1016_j_nanoen_2023_108769 crossref_primary_10_1002_sus2_31 crossref_primary_10_3390_s22030975 crossref_primary_10_1016_j_cej_2023_148443 crossref_primary_10_1016_j_nanoen_2021_106585 crossref_primary_10_1016_j_cplett_2023_140648 crossref_primary_10_1002_eom2_12298 crossref_primary_10_1016_j_elstat_2025_104037 crossref_primary_10_1115_1_4056391 crossref_primary_10_3390_nanoenergyadv2040017 crossref_primary_10_3390_nanoenergyadv2040018 crossref_primary_10_1039_D2NR05962B crossref_primary_10_3390_polym16040536 crossref_primary_10_1002_admt_202300672 crossref_primary_10_1016_j_nanoen_2023_108539 crossref_primary_10_1016_j_nanoen_2024_109707 crossref_primary_10_1016_j_nanoen_2023_108656 crossref_primary_10_1016_j_nanoen_2023_108413 crossref_primary_10_1016_j_nanoen_2022_107964 crossref_primary_10_1016_j_nanoen_2023_108531 crossref_primary_10_1016_j_nanoen_2021_106313 crossref_primary_10_1002_admt_202401744 crossref_primary_10_1088_2515_7655_ad307e crossref_primary_10_3390_jmse10050566 crossref_primary_10_1016_j_nanoen_2025_110661 crossref_primary_10_1002_admt_202302068 crossref_primary_10_1039_D3NR00507K crossref_primary_10_1002_adma_202208139 crossref_primary_10_1002_adfm_202306702 crossref_primary_10_1016_j_nanoen_2022_107833 crossref_primary_10_1016_j_pmatsci_2024_101354 crossref_primary_10_3390_nano12081248 crossref_primary_10_1088_2631_7990_ace669 crossref_primary_10_1016_j_nanoen_2023_108787 crossref_primary_10_1039_D4NA00340C crossref_primary_10_1002_adma_202415099 crossref_primary_10_1155_2023_5568046 crossref_primary_10_1002_aelm_202201095 crossref_primary_10_1016_j_nanoen_2024_109259 crossref_primary_10_1557_s43577_025_00875_1 crossref_primary_10_1016_j_nanoen_2023_108786 |
Cites_doi | 10.1021/acsami.5b04516 10.1016/j.nanoen.2018.12.054 10.1038/s41586-020-1985-6 10.1126/science.aag0476 10.1038/ncomms12744 10.1038/s41467-019-10433-4 10.1016/j.nanoen.2019.103908 10.1002/adma.201804944 10.1002/aenm.202000827 10.1016/j.mattod.2018.01.006 10.1002/adfm.201706680 10.1021/acsnano.6b04201 10.1038/s41467-020-16642-6 10.1038/ncomms9975 10.1016/j.nanoen.2018.02.022 10.1016/j.nanoen.2018.11.078 10.1039/C4FD00159A 10.1016/j.nanoen.2019.03.050 10.1021/acsnano.5b04995 10.1002/aenm.201800889 10.1016/j.nanoen.2019.03.019 10.1016/j.nanoen.2016.11.037 10.1021/acsnano.6b03293 10.1038/s41467-019-14278-9 10.1021/acsnano.7b02321 10.1021/acsnano.7b05203 10.1016/j.mattod.2019.05.016 10.1002/aenm.201601705 10.1002/adma.201502463 10.1016/j.comnet.2008.04.002 10.1016/j.nanoen.2019.02.073 10.1016/j.nanoen.2016.01.009 10.1021/nn507221f 10.1021/acsnano.5b05598 10.1002/adma.201503407 10.1021/nn502618f 10.1002/aenm.201501467 10.1002/aenm.202000627 10.1002/adfm.201501331 10.1021/nn405175z 10.1002/adma.201402439 10.1021/acsnano.5b03052 10.1002/admt.201700229 10.1016/j.nanoen.2019.03.054 10.1016/j.nanoen.2014.12.013 10.1016/j.nanoen.2016.11.042 10.1002/adma.201402064 10.1039/c3ee40764k 10.1021/acsnano.7b08014 10.1002/adma.201400021 10.1002/adma.201404794 10.1002/adma.201402574 10.1002/adma.201502560 10.1002/adma.201905696 10.1039/C4EE03596H 10.1016/j.nanoen.2018.05.011 10.1002/advs.201500419 10.1002/adma.201802898 10.1021/acsnano.7b05317 10.1002/aenm.201901320 10.1016/j.nanoen.2014.11.034 10.1039/C7LC01259D 10.1039/D0EE01236J 10.1016/j.nanoen.2017.06.035 10.1038/ncomms15310 10.1126/sciadv.aay2840 10.1021/acsnano.5b06327 10.1002/adfm.201603788 10.1002/aenm.201803027 10.1016/j.nanoen.2019.04.083 10.1088/0964-1726/17/4/043001 10.1021/acsnano.8b05359 10.1126/sciadv.1501624 10.1038/s41467-019-10061-y 10.1002/adma.201801511 10.1021/acsnano.8b01558 10.1016/j.nanoen.2017.05.039 10.1016/j.nanoen.2014.10.034 10.1002/aenm.202000137 10.1016/j.bios.2015.08.037 10.1038/s41467-019-09851-1 10.1002/adfm.201808820 10.1016/j.nanoen.2019.04.026 10.1016/j.nanoen.2018.10.036 10.1002/aenm.201801114 10.1039/C9EE03258D 10.1038/s41467-019-09464-8 10.1002/adma.201404291 10.1038/nenergy.2016.138 10.1038/s41467-019-09461-x 10.1038/s41467-019-12465-2 10.1002/aenm.202000965 10.1126/science.aan3997 10.1016/j.nanoen.2019.04.096 10.1021/acsnano.6b07030 10.1021/nn506832w 10.1021/acsnano.9b08496 10.1002/aenm.202000605 10.1002/adfm.201501695 10.1021/acsnano.6b01569 10.1038/s41467-019-10298-7 10.1002/aenm.201901124 10.1063/1.5135734 10.1126/sciadv.aba9624 10.1002/adma.201706790 10.1016/j.nanoen.2020.104675 10.1002/adma.201504403 10.1016/j.eml.2015.01.008 10.1016/j.nanoen.2018.02.039 10.1126/sciadv.1501478 10.1016/j.nanoen.2019.104272 10.1038/s41467-020-15926-1 10.1038/s41467-019-13166-6 10.1002/adfm.201803117 10.1002/adfm.201403577 10.1016/j.nanoen.2018.06.009 10.1039/C4TA02747G 10.1002/adma.201500121 10.1039/C5EE01532D 10.1021/acsnano.7b06451 10.1002/adfm.201800610 10.1038/s41467-018-06198-x 10.1021/nn4037514 10.1002/adma.201805722 10.1038/nnano.2017.17 10.1126/sciadv.1700694 10.1038/nnano.2011.184 10.1038/542159a 10.1109/COMST.2015.2444095 10.1021/acsnano.8b07567 10.1016/j.nanoen.2019.01.077 10.1021/acsnano.8b06747 10.1016/j.nanoen.2019.104243 10.1016/j.ensm.2019.03.009 10.1002/aenm.201802906 10.1021/nn4063616 10.1016/j.nanoen.2016.12.061 10.1021/acsnano.7b05626 10.1021/nn5012732 10.1039/C5TA07053H 10.1016/j.ensm.2017.11.013 10.1126/scirobotics.aat2516 10.1007/s12274-015-0894-8 10.1126/sciadv.aaz8693 10.1021/acs.chemrev.9b00821 10.1126/sciadv.1700015 10.1039/D0EE01102A 10.1109/COMST.2014.2368999 10.1016/j.nanoen.2012.01.004 10.1038/ncomms9376 10.1021/acsnano.5b07407 10.1016/j.nanoen.2016.12.004 10.1002/adma.202001466 10.1002/aenm.202000064 10.1016/j.nanoen.2019.04.047 10.1002/adfm.201807241 10.1021/nl5005652 10.1038/s41467-018-06045-z 10.1016/j.nanoen.2018.11.029 10.1016/j.mattod.2016.12.001 |
ContentType | Journal Article |
Copyright | 2020 The Authors. published by The Hong Kong Polytechnic University and John Wiley & Sons Australia, Ltd. |
Copyright_xml | – notice: 2020 The Authors. published by The Hong Kong Polytechnic University and John Wiley & Sons Australia, Ltd. |
DBID | 24P AAYXX CITATION |
DOI | 10.1002/eom2.12059 |
DatabaseName | Wiley Online Library Open Access (Activated by CARLI) CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access (Activated by CARLI) url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2567-3173 |
EndPage | n/a |
ExternalDocumentID | 10_1002_eom2_12059 EOM212059 |
Genre | reviewArticle |
GrantInformation_xml | – fundername: China Postdoctoral Science Foundation funderid: BX20190324 – fundername: Beijing Municipal Science & Technology Commission funderid: Z171100002017017 – fundername: National Key R & D Project from Minister of Science and Technology funderid: 2016YFA0202704 – fundername: National Natural Science Foundation of China funderid: 51432005; 52002028 |
GroupedDBID | 0R~ 1OC 24P AAHHS ABJCF ACCFJ ACCMX ACXQS ADKYN ADZMN ADZOD AEEZP AEQDE AEUYN AFKRA AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ATCPS AVUZU BENPR BGLVJ BHPHI CCPQU EBS EDH GROUPED_DOAJ HCIFZ IAO ITC KB. M~E PATMY PDBOC PIMPY PYCSY WIN AAYXX CITATION IEP PHGZM PHGZT |
ID | FETCH-LOGICAL-c3099-3f96864a16b361e3b4d3774ce7a6fb095aef548b90078df9bef8e0f42f2c08003 |
IEDL.DBID | 24P |
ISSN | 2567-3173 |
IngestDate | Thu Apr 24 22:54:57 EDT 2025 Tue Jul 01 02:50:12 EDT 2025 Wed Jan 22 16:31:32 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3099-3f96864a16b361e3b4d3774ce7a6fb095aef548b90078df9bef8e0f42f2c08003 |
Notes | Funding information Beijing Municipal Science & Technology Commission, Grant/Award Number: Z171100002017017; China Postdoctoral Science Foundation, Grant/Award Number: BX20190324; National Key R & D Project from Minister of Science and Technology, Grant/Award Number: 2016YFA0202704; National Natural Science Foundation of China, Grant/Award Numbers: 51432005, 52002028 |
ORCID | 0000-0002-5530-0380 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Feom2.12059 |
PageCount | 22 |
ParticipantIDs | crossref_primary_10_1002_eom2_12059 crossref_citationtrail_10_1002_eom2_12059 wiley_primary_10_1002_eom2_12059_EOM212059 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2020 2020-12-00 |
PublicationDateYYYYMMDD | 2020-12-01 |
PublicationDate_xml | – month: 12 year: 2020 text: December 2020 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA |
PublicationTitle | EcoMat (Beijing, China) |
PublicationYear | 2020 |
Publisher | John Wiley & Sons, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc |
References | 2017; 7 2017; 8 2017; 3 2020; 120 2019; 55 2019; 10 2019; 13 2019; 57 2019; 56 2019; 59 2016; 75 2014; 26 2020; 14 2020; 13 2020; 11 2020; 10 2014; 176 2013; 7 2013; 6 2018; 49 2019; 365 2018; 47 2020; 7 2020; 6 2018; 9 2017; 31 2018; 8 2019; 60 2018; 3 2019; 61 2014; 2 2019; 64 2017; 39 2017; 38 2019; 23 2017; 32 2020; 578 2016; 353 2014; 14 2019; 29 2018; 30 2014; 8 2015; 2 2017; 20 2019; 9 2015; 14 2018; 28 2015; 17 2015; 6 2015; 5 2015; 3 2019; 31 2019; 30 2017; 27 2015; 11 2008; 17 2016; 10 2008; 52 2020; 32 2015; 9 2015; 8 2011; 6 2018; 21 2015; 7 2018; 18 2015; 25 2016; 7 2015; 27 2016; 1 2016; 2 2012; 1 2016; 3 2020; 72 2017; 11 2017; 12 2020; 68 2020; 67 2018; 50 2018; 12 2016; 28 2017; 542 2016; 22 e_1_2_7_108_1 e_1_2_7_3_1 e_1_2_7_104_1 e_1_2_7_127_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_83_1 e_1_2_7_100_1 e_1_2_7_123_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_87_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_161_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_142_1 e_1_2_7_146_1 e_1_2_7_116_1 e_1_2_7_90_1 e_1_2_7_112_1 e_1_2_7_94_1 e_1_2_7_71_1 e_1_2_7_52_1 e_1_2_7_98_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_75_1 e_1_2_7_56_1 e_1_2_7_150_1 e_1_2_7_37_1 e_1_2_7_79_1 e_1_2_7_131_1 e_1_2_7_154_1 e_1_2_7_135_1 e_1_2_7_158_1 e_1_2_7_139_1 e_1_2_7_109_1 e_1_2_7_4_1 e_1_2_7_128_1 e_1_2_7_105_1 e_1_2_7_8_1 e_1_2_7_124_1 e_1_2_7_101_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_82_1 e_1_2_7_120_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_86_1 e_1_2_7_67_1 e_1_2_7_48_1 e_1_2_7_143_1 e_1_2_7_29_1 e_1_2_7_147_1 Hang X (e_1_2_7_138_1) 2019; 29 e_1_2_7_117_1 e_1_2_7_113_1 e_1_2_7_51_1 e_1_2_7_70_1 e_1_2_7_93_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_74_1 e_1_2_7_97_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_78_1 e_1_2_7_151_1 e_1_2_7_132_1 e_1_2_7_155_1 e_1_2_7_136_1 e_1_2_7_159_1 e_1_2_7_5_1 e_1_2_7_106_1 e_1_2_7_129_1 e_1_2_7_9_1 e_1_2_7_102_1 e_1_2_7_125_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_81_1 e_1_2_7_121_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_85_1 e_1_2_7_47_1 e_1_2_7_89_1 e_1_2_7_140_1 e_1_2_7_28_1 e_1_2_7_144_1 e_1_2_7_148_1 e_1_2_7_118_1 Dong K (e_1_2_7_122_1) 2018; 8 e_1_2_7_114_1 e_1_2_7_73_1 e_1_2_7_110_1 e_1_2_7_50_1 e_1_2_7_92_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_77_1 e_1_2_7_54_1 e_1_2_7_96_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_58_1 e_1_2_7_152_1 e_1_2_7_39_1 e_1_2_7_133_1 e_1_2_7_156_1 e_1_2_7_137_1 e_1_2_7_6_1 e_1_2_7_107_1 e_1_2_7_80_1 e_1_2_7_126_1 e_1_2_7_103_1 e_1_2_7_18_1 e_1_2_7_84_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_88_1 e_1_2_7_65_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_160_1 e_1_2_7_69_1 e_1_2_7_141_1 e_1_2_7_27_1 e_1_2_7_145_1 e_1_2_7_149_1 e_1_2_7_119_1 e_1_2_7_91_1 e_1_2_7_115_1 e_1_2_7_72_1 e_1_2_7_95_1 e_1_2_7_111_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_76_1 e_1_2_7_99_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_130_1 e_1_2_7_38_1 e_1_2_7_153_1 e_1_2_7_134_1 e_1_2_7_157_1 |
References_xml | – volume: 9 start-page: 8376 year: 2015 end-page: 8383 article-title: Self‐powered triboelectric nanosensor with poly(tetrafluoroethylene) nanoparticle arrays for dopamine detection publication-title: ACS Nano – volume: 6 year: 2015 article-title: A universal self‐charging system driven by random biomechanical energy for sustainable operation of mobile electronics publication-title: Nat Commun – volume: 10 start-page: 1427 year: 2019 article-title: Quantifying the triboelectric series publication-title: Nat Commun – volume: 21 start-page: 216 year: 2018 end-page: 222 article-title: Keystroke dynamics enabled authentication and identification using triboelectric nanogenerator array publication-title: Mater Today – volume: 10 year: 2019 article-title: A universal standardized method for output capability assessment of nanogenerators publication-title: Nat Commun – volume: 9 start-page: 3501 year: 2015 end-page: 3509 article-title: Nanopatterned textile‐based wearable triboelectric nanogenerator publication-title: ACS Nano – volume: 14 start-page: 3208 year: 2014 end-page: 3213 article-title: Self‐powered, ultrasensitive, flexible tactile sensors based on contact electrification publication-title: Nano Lett – volume: 17 start-page: 757 year: 2015 end-page: 789 article-title: Wireless networks with RF energy harvesting: a contemporary survey publication-title: IEEE Coumun Surv Tut – volume: 26 start-page: 5851 year: 2014 end-page: 5856 article-title: In vivo powering of pacemaker by breathing‐driven implanted Triboelectric Nanogenerator publication-title: Adv Mater – volume: 6 year: 2015 article-title: Standards and figure‐of‐merits for quantifying the performance of triboelectric nanogenerators publication-title: Nat Commun – volume: 30 start-page: 1706790 year: 2018 article-title: On the electron‐transfer mechanism in the contact‐electrification effect publication-title: Adv Mater – volume: 7 start-page: 11317 year: 2013 end-page: 11324 article-title: Harvesting energy from the natural vibration of human walking publication-title: ACS Nano – volume: 26 start-page: 6329 year: 2014 end-page: 6334 article-title: Fabric‐based integrated energy devices for wearable activity monitors publication-title: Adv Mater – volume: 3 year: 2018 article-title: A highly sensitive, self‐powered triboelectric auditory sensor for social robotics and hearing aids publication-title: Sci Robot – volume: 10 year: 2019 article-title: Triboelectric micromotors actuated by ultralow frequency mechanical stimuli publication-title: Nat Commun – volume: 10 start-page: 3944 year: 2016 end-page: 3950 article-title: Triboelectric Nanogenerator as a self‐powered communication unit for processing and transmitting information publication-title: ACS Nano – volume: 52 start-page: 2292 year: 2008 end-page: 2330 article-title: Wireless sensor network survey publication-title: Comput Netw – volume: 10 year: 2019 article-title: Extremely stretchable and self‐healing conductor based on thermoplastic elastomer for all‐three‐dimensional printed triboelectric nanogenerator publication-title: Nat Commun – volume: 17 start-page: 2347 year: 2015 end-page: 2376 article-title: Internet of things: a survey on enabling technologies, protocols, and applications publication-title: IEEE Coumun Surv Tut – volume: 25 start-page: 739 year: 2015 end-page: 747 article-title: Self‐powered trace memorization by conjunction of contact‐electrification and ferroelectricity publication-title: Adv Funct Mater – volume: 9 start-page: 12552 year: 2015 end-page: 12561 article-title: Removal of particulate matter emissions from a vehicle using a self‐powered triboelectric filter publication-title: ACS Nano – volume: 9 start-page: 1803027 year: 2019 article-title: Nature driven bio‐piezoelectric/Triboelectric Nanogenerator as next‐generation green energy harvester for smart and pollution free society publication-title: Adv. Energy Mater. – volume: 57 start-page: 432 year: 2019 end-page: 439 article-title: Largely enhanced triboelectric nanogenerator for efficient harvesting of water wave energy by soft contacted structure publication-title: Nano Energy – volume: 578 start-page: 392 year: 2020 end-page: 396 article-title: A droplet‐based electricity generator with high instantaneous power density publication-title: Nature – volume: 47 start-page: 43 year: 2018 end-page: 50 article-title: Suppressing self‐discharge of supercapacitors via electrorheological effect of liquid crystals publication-title: Nano Energy – volume: 75 start-page: 273 year: 2016 end-page: 284 article-title: Biosensors and bioelectronics on smartphone for portable biochemical detection publication-title: Biosens Bioelectron – volume: 11 year: 2020 article-title: Quantifying and understanding the triboelectric series of inorganic non‐metallic materials publication-title: Nat Commun – volume: 10 start-page: 11434 year: 2016 end-page: 11441 article-title: Self‐powered random number generator based on coupled Triboelectric and electrostatic induction effects at the liquid‐dielectric Interface publication-title: ACS Nano – volume: 6 year: 2020 article-title: Machine‐knitted washable sensor array textile for precise epidermal physiological signal monitoring publication-title: Sci Adv – volume: 3 year: 2017 article-title: Ultrastretchable, transparent triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and tactile sensing publication-title: Sci Adv – volume: 12 start-page: 17 year: 2018 end-page: 22 article-title: A flexible lithium‐ion battery with quasi‐solid gel electrolyte for storing pulsed energy generated by triboelectric nanogenerator publication-title: Energy Storage Mater – volume: 28 year: 2018 article-title: Field emission of electrons powered by a triboelectric nanogenerator publication-title: Adv Funct Mater – volume: 13 start-page: 1940 year: 2019 end-page: 1952 article-title: Self‐powered and self‐functional cotton sock using piezoelectric and triboelectric hybrid mechanism for healthcare and sports monitoring publication-title: ACS Nano – volume: 27 start-page: 2340 year: 2015 end-page: 2347 article-title: Triboelectric‐pyroelectric‐piezoelectric hybrid cell for high‐efficiency energy‐harvesting and self‐powered sensing publication-title: Adv Mater – volume: 25 start-page: 4788 year: 2015 end-page: 4794 article-title: Cellular polypropylene Piezoelectret for human body energy harvesting and health monitoring publication-title: Adv Funct Mater – volume: 10 start-page: 6526 year: 2016 end-page: 6534 article-title: Harvesting broad frequency band blue energy by a Triboelectric‐electromagnetic hybrid Nanogenerator publication-title: ACS Nano – volume: 8 year: 2017 article-title: Nanogenerator‐based dual‐functional and self‐powered thin patch loudspeaker or microphone for flexible electronics publication-title: Nat Commun – volume: 14 start-page: 161 year: 2015 end-page: 192 article-title: Theoretical systems of triboelectric nanogenerators publication-title: Nano Energy – volume: 8 start-page: 2649 year: 2014 end-page: 2657 article-title: Triboelectrification‐based organic film nanogenerator for acoustic energy harvesting and self‐powered active acoustic sensing publication-title: ACS Nano – volume: 72 year: 2020 article-title: Self‐powered eye motion sensor based on triboelectric interaction and near‐field electrostatic induction for wearable assistive technologies publication-title: Nano Energy – volume: 11 start-page: 436 year: 2015 end-page: 462 article-title: Triboelectric nanogenerators as self‐powered active sensors publication-title: Nano Energy – volume: 39 start-page: 9 year: 2017 end-page: 23 article-title: Toward the blue energy dream by triboelectric nanogenerator networks publication-title: Nano Energy – volume: 10 start-page: 1821 year: 2019 article-title: Symbiotic cardiac pacemaker publication-title: Nat Commun – volume: 29 year: 2019 article-title: Triboelectric Nanogenerator networks integrated with power management module for water wave energy harvesting publication-title: Adv Funct Mater – volume: 13 start-page: 2178 year: 2020 end-page: 2190 article-title: Sustainable high‐voltage source based on triboelectric nanogenerator with a charge accumulation strategy publication-title: Energ Environ Sci – volume: 60 start-page: 137 year: 2019 end-page: 143 article-title: Triboelectric nanogenerator by integrating a cam and a movable frame for ambient mechanical energy harvesting publication-title: Nano Energy – volume: 29 start-page: 1808820 year: 2019 article-title: Wearable and implantable triboelectric nanogenerators publication-title: Adv Funct Mater – volume: 12 start-page: 481 year: 2017 end-page: 487 article-title: Triboelectric nanogenerators for sensitive nano‐coulomb molecular mass spectrometry publication-title: Nat Nanotechnol – volume: 10 year: 2019 article-title: Flexible and durable wood‐based triboelectric nanogenerators for self‐powered sensing in athletic big data analytics publication-title: Nat Commun – volume: 6 start-page: 788 year: 2011 end-page: 792 article-title: Skin‐like pressure and strain sensors based on transparent elastic films of carbon nanotubes publication-title: Nat Nanotechnol – volume: 22 start-page: 87 year: 2016 end-page: 94 article-title: Multilayer wavy‐structured robust triboelectric nanogenerator for harvesting water wave energy publication-title: Nano Energy – volume: 11 start-page: 12411 year: 2017 end-page: 12418 article-title: Self‐powered electrostatic filter with enhanced photocatalytic degradation of formaldehyde based on built‐in triboelectric nanogenerators publication-title: ACS Nano – volume: 13 start-page: 277 year: 2020 end-page: 285 article-title: Spherical triboelectric nanogenerator integrated with power management module for harvesting multidirectional water wave energy publication-title: Energ Environ Sci – volume: 50 start-page: 536 year: 2018 end-page: 543 article-title: Traditional weaving craft for one‐piece self‐charging power textile for wearable electronics publication-title: Nano Energy – volume: 14 start-page: 217 year: 2015 end-page: 225 article-title: Self‐powered cleaning of air pollution by wind driven triboelectric nanogenerator publication-title: Nano Energy – volume: 2 year: 2016 article-title: Biodegradable triboelectric nanogenerator as a life‐time designed implantable power source publication-title: Sci Adv – volume: 6 year: 2020 article-title: Haptic‐feedback smart glove as a creative human‐machine interface (HMI) for virtual/augmented reality applications publication-title: Sci Adv – volume: 5 year: 2015 article-title: Triboelectric Nanogenerator based on fully enclosed rolling spherical structure for harvesting low‐frequency water wave energy publication-title: Adv. Energy Mater – volume: 12 start-page: 4835 year: 2018 end-page: 4843 article-title: Si@void@C Nanofibers fabricated using a self‐powered electrospinning system for lithium‐ion batteries publication-title: ACS Nano – volume: 3 year: 2018 article-title: Ultrafine capillary‐tube triboelectric nanogenerator as active sensor for microliquid biological and chemical sensing publication-title: Adv Mater Technol – volume: 120 start-page: 3668 year: 2020 end-page: 3720 article-title: Smart textiles for electricity generation publication-title: Chem Rev – volume: 2 start-page: 13219 year: 2014 end-page: 13225 article-title: Highly transparent and flexible triboelectric nanogenerators: performance improvements and fundamental mechanisms publication-title: J Mater Chem A – volume: 176 start-page: 447 year: 2014 end-page: 458 article-title: Triboelectric nanogenerators as new energy technology and self‐powered sensors ‐ principles, problems and perspectives publication-title: Faraday Discuss – volume: 61 start-page: 370 year: 2019 end-page: 380 article-title: Rotational wind power triboelectric nanogenerator using aerodynamic changes of friction area and the adsorption effect of hematoxylin onto feather based on a diversely evolved hyper‐branched structure publication-title: Nano Energy – volume: 60 start-page: 61 year: 2019 end-page: 71 article-title: A triboelectric nanogenerator based on waste tea leaves and packaging bags for powering electronic office supplies and behavior monitoring publication-title: Nano Energy – volume: 2 year: 2016 article-title: A highly shape‐adaptive, stretchable design based on conductive liquid for energy harvesting and self‐powered biomechanical monitoring publication-title: Sci Adv – volume: 1 year: 2016 article-title: Micro‐cable structured textile for simultaneously harvesting solar and mechanical energy publication-title: Nat Energy – volume: 9 year: 2018 article-title: A self‐improving triboelectric nanogenerator with improved charge density and increased charge accumulation speed publication-title: Nat Commun – volume: 20 start-page: 74 year: 2017 end-page: 82 article-title: On Maxwell's displacement current for energy and sensors: the origin of nanogenerators publication-title: Mater Today – volume: 25 start-page: 3718 year: 2015 end-page: 3725 article-title: Liquid‐metal electrode for high‐performance triboelectric nanogenerator at an instantaneous energy conversion efficiency of 70.6% publication-title: Adv Funct Mater – volume: 10 year: 2019 article-title: A bionic stretchable nanogenerator for underwater sensing and energy harvesting publication-title: Nat Commun – volume: 11 start-page: 6211 year: 2017 end-page: 6217 article-title: Triboelectric nanogenerator enhanced nanofiber air filters for efficient particulate matter removal publication-title: ACS Nano – volume: 7 start-page: 19076 year: 2015 end-page: 19082 article-title: Triboelectric nanogenerators as a self‐powered 3D acceleration sensor publication-title: ACS Appl Mater Interfaces – volume: 9 start-page: 12301 year: 2015 end-page: 12310 article-title: Hybridized electromagnetic‐triboelectric nanogenerator for a self‐powered electronic watch publication-title: ACS Nano – volume: 9 year: 2019 article-title: Multifunctional sensor based on translational‐rotary triboelectric nanogenerator publication-title: Adv Energy Mater – volume: 28 year: 2018 article-title: Washable multilayer triboelectric air filter for efficient particulate matter PM2.5 removal publication-title: Adv Funct Mater – volume: 8 start-page: 12 year: 2018 article-title: Versatile core‐sheath yarn for sustainable biomechanical energy harvesting and real‐time human‐interactive sensing publication-title: Adv Energy Mater – volume: 7 year: 2017 article-title: Self‐powered wireless sensor node enabled by a duck‐shaped Triboelectric Nanogenerator for harvesting water wave energy publication-title: Adv Energy Mater – volume: 9 start-page: 1802906 year: 2019 article-title: Triboelectric nanogenerator: a foundation of the energy for the new era publication-title: Adv Energy Mater – volume: 38 start-page: 91 year: 2017 end-page: 100 article-title: Self‐powered modulation of elastomeric optical grating by using triboelectric nanogenerator publication-title: Nano Energy – volume: 59 start-page: 237 year: 2019 end-page: 257 article-title: Progress on triboelectric nanogenerator with stretchability, self‐healability and bio‐compatibility publication-title: Nano Energy – volume: 68 year: 2020 article-title: On the first principle theory of nanogenerators from Maxwell's equations publication-title: Nano Energy – volume: 12 start-page: 10262 year: 2018 end-page: 10271 article-title: Giant voltage enhancement via triboelectric charge supplement channel for self‐powered electroadhesion publication-title: ACS Nano – volume: 30 year: 2018 article-title: Implantable energy‐harvesting devices publication-title: Adv Mater – volume: 31 start-page: 560 year: 2017 end-page: 567 article-title: Spring‐assisted triboelectric nanogenerator for efficiently harvesting water wave energy publication-title: Nano Energy – volume: 28 start-page: 98 year: 2016 end-page: 105 article-title: Wearable self‐charging power textile based on flexible yarn Supercapacitors and fabric nanogenerators publication-title: Adv Mater – volume: 2 start-page: 28 year: 2015 end-page: 36 article-title: Ultrasensitive self‐powered pressure sensing system publication-title: Extreme Mech Lett – volume: 27 start-page: 719 year: 2015 end-page: 726 article-title: Active micro‐actuators for optical modulation based on a planar sliding triboelectric nanogenerator publication-title: Adv Mater – volume: 8 start-page: 6031 year: 2014 end-page: 6037 article-title: Harvesting water wave energy by asymmetric screening of electrostatic charges on a nanostructured hydrophobic thin‐film surface publication-title: ACS Nano – volume: 12 start-page: 11561 year: 2018 end-page: 11571 article-title: Triboelectric self‐powered wearable flexible patch as 3D motion control Interface for robotic manipulator publication-title: ACS Nano – volume: 10 year: 2020 article-title: Rationally designed dual‐mode Triboelectric Nanogenerator for harvesting mechanical energy by both electrostatic induction and dielectric breakdown effects publication-title: Adv Energy Mater – volume: 11 year: 2020 article-title: Quantifying electron‐transfer in liquid‐solid contact electrification and the formation of electric double‐layer publication-title: Nat Commun – volume: 26 start-page: 3788 year: 2014 end-page: 3796 article-title: A shape‐adaptive thin‐film‐based approach for 50% high‐efficiency energy generation through micro‐grating sliding electrification publication-title: Adv Mater – volume: 6 start-page: eaba9624 year: 2020 article-title: A breathable, biodegradable, antibacterial, and self‐powered electronic skin based on all‐nanofiber triboelectric nanogenerators publication-title: Sci Adv – volume: 8 start-page: 2250 year: 2015 end-page: 2282 article-title: Progress in triboelectric nanogenerators as a new energy technology and self‐powered sensors publication-title: Energ Environ Sci – volume: 28 start-page: 1803117 year: 2018 article-title: An amphiphobic hydraulic triboelectric nanogenerator for a self‐cleaning and self‐charging power system publication-title: Adv Funct Mater – volume: 8 start-page: 7405 year: 2014 end-page: 7412 article-title: Harvesting broadband kinetic impact energy from mechanical triggering/vibration and water waves publication-title: ACS Nano – volume: 30 year: 2018 article-title: "genetically engineered" biofunctional triboelectric nanogenerators using recombinant spider silk publication-title: Adv Mater – volume: 11 start-page: 10439 year: 2017 end-page: 10445 article-title: Self‐powered electrospinning system driven by a Triboelectric Nanogenerator publication-title: ACS Nano – volume: 8 year: 2018 article-title: Direct‐current triboelectric nanogenerator realized by air breakdown induced ionized air channel publication-title: Adv Energy Mater – volume: 10 start-page: 2000137 year: 2020 article-title: Triboelectric Nanogenerator (TENG)‐sparking an energy and sensor revolution publication-title: Adv Energy Mater – volume: 28 start-page: 2896 year: 2016 end-page: 2903 article-title: Self‐powered high‐resolution and pressure‐sensitive Triboelectric sensor matrix for real‐time tactile mapping publication-title: Adv Mater – volume: 3 year: 2016 article-title: Tribotronic enhanced Photoresponsivity of a MoS2 phototransistor publication-title: Adv Sci – volume: 12 start-page: 1491 year: 2018 end-page: 1499 article-title: Self‐powered microfluidic transport system based on triboelectric nanogenerator and electrowetting technique publication-title: ACS Nano – volume: 10 year: 2019 article-title: Integrated charge excitation triboelectric nanogenerator publication-title: Nat Commun – volume: 23 start-page: 617 year: 2019 end-page: 628 article-title: Recent advances in triboelectric nanogenerator based self‐charging power systems publication-title: Energy Storage Mater – volume: 67 year: 2020 article-title: Wearable and self‐cleaning hybrid energy harvesting system based on micro/nanostructured haze film publication-title: Nano Energy – volume: 11 start-page: 9490 year: 2017 end-page: 9499 article-title: A highly stretchable and washable all‐yarn‐based self‐charging knitting power textile composed of fiber triboelectric nanogenerators and supercapacitors publication-title: ACS Nano – volume: 10 start-page: 8078 year: 2016 end-page: 8086 article-title: Transparent and flexible self‐charging power film and its application in a sliding unlock system in touchpad technology publication-title: ACS Nano – volume: 55 start-page: 401 year: 2019 end-page: 423 article-title: Recent progress on textile‐based triboelectric nanogenerators publication-title: Nano Energy – volume: 9 start-page: 11310 year: 2015 end-page: 11316 article-title: High‐performance organolead halide perovskite‐based self‐powered triboelectric photodetector publication-title: ACS Nano – volume: 10 year: 2020 article-title: Charge pumping strategy for rotation and sliding type triboelectric nanogenerators publication-title: Adv Energy Mater – volume: 11 year: 2020 article-title: Shape adaptable and highly resilient 3D braided triboelectric nanogenerators as e‐textiles for power and sensing publication-title: Nat Commun – volume: 8 start-page: 3934 year: 2015 end-page: 3943 article-title: Integration of micro‐supercapacitors with triboelectric nanogenerators for a flexible self‐charging power unit publication-title: Nano Res – volume: 10 year: 2020 article-title: Robust swing‐structured triboelectric nanogenerator for efficient blue energy harvesting publication-title: Adv Energy Mater – volume: 365 start-page: 491 year: 2019 end-page: 494 article-title: Transcutaneous ultrasound energy harvesting using capacitive triboelectric technology publication-title: Science – volume: 11 start-page: 10733 year: 2017 end-page: 10741 article-title: Fully stretchable textile Triboelectric Nanogenerator with knitted fabric structures publication-title: ACS Nano – volume: 56 start-page: 40 year: 2019 end-page: 55 article-title: Standardization of triboelectric nanogenerators: Progress and perspectives publication-title: Nano Energy – volume: 1 start-page: 328 year: 2012 end-page: 334.0 article-title: Flexible triboelectric generator publication-title: Nano Energy – volume: 32 year: 2020 article-title: A self‐powered angle sensor at Nanoradian‐resolution for robotic arms and personalized Medicare publication-title: Adv Mater – volume: 56 start-page: 516 year: 2019 end-page: 523 article-title: Self‐powered gait pattern‐based identity recognition by a soft and stretchable triboelectric band publication-title: Nano Energy – volume: 60 start-page: 404 year: 2019 end-page: 412 article-title: Macroscopic self‐assembly network of encapsulated high‐performance triboelectric nanogenerators for water wave energy harvesting publication-title: Nano Energy – volume: 6 start-page: 1744 year: 2013 end-page: 1749 article-title: Simultaneously harvesting mechanical and chemical energies by a hybrid cell for self‐powered biosensors and personal electronics publication-title: Energ Environ Sci – volume: 3 start-page: 22663 year: 2015 end-page: 22668 article-title: A self‐powered system based on triboelectric nanogenerators and supercapacitors for metal corrosion prevention publication-title: J Mater Chem A – volume: 61 start-page: 1 year: 2019 end-page: 9 article-title: Self‐powered intelligent buoy system by water wave energy for sustainable and autonomous wireless sensing and data transmission publication-title: Nano Energy – volume: 27 start-page: 1316 year: 2015 end-page: 1326 article-title: Eardrum‐inspired active sensors for self‐powered cardiovascular system characterization and throat‐attached anti‐interference voice recognition publication-title: Adv Mater – volume: 31 start-page: 351 year: 2017 end-page: 358 article-title: Integrated triboelectric nanogenerator array based on air‐driven membrane structures for water wave energy harvesting publication-title: Nano Energy – volume: 7 year: 2020 article-title: Cylindrical triboelectric nanogenerator based on swing structure for efficient harvesting of ultra‐low‐frequency water wave energy publication-title: Appl Phys Rev – volume: 542 start-page: 159 year: 2017 end-page: 160 article-title: Catch wave power in floating nets publication-title: Nature – volume: 3 year: 2017 article-title: Eye motion triggered self‐powered mechnosensational communication system using triboelectric nanogenerator publication-title: Sci Adv – volume: 61 start-page: 111 year: 2019 end-page: 118 article-title: Remarkable merits of triboelectric nanogenerator than electromagnetic generator for harvesting small‐amplitude mechanical energy publication-title: Nano Energy – volume: 31 start-page: 533 year: 2017 end-page: 540 article-title: Flexible transparent tribotronic transistor for active modulation of conventional electronics publication-title: Nano Energy – volume: 32 start-page: 287 year: 2017 end-page: 293 article-title: A spring‐based resonance coupling for hugely enhancing the performance of triboelectric nanogenerators for harvesting low‐frequency vibration energy publication-title: Nano Energy – volume: 17 year: 2008 article-title: Powering MEMS portable devices—a review of non‐regenerative and regenerative power supply systems with special emphasis on piezoelectric energy harvesting systems publication-title: Smart Mater Struct – volume: 31 year: 2019 article-title: Hybrid energy harvesters: toward sustainable energy harvesting publication-title: Adv Mater – volume: 47 start-page: 74 year: 2018 end-page: 80 article-title: Whirligig‐inspired triboelectric nanogenerator with ultrahigh specific output as reliable portable instant power supply for personal health monitoring devices publication-title: Nano Energy – volume: 14 start-page: 2751 year: 2020 end-page: 2759 article-title: Wind‐driven radial‐engine‐shaped triboelectric nanogenerators for self‐powered absorption and degradation of NOx publication-title: ACS Nano – volume: 30 start-page: 34 year: 2019 end-page: 51 article-title: On the origin of contact‐electrification publication-title: Mater Today – volume: 32 year: 2020 article-title: Probing contact‐electrification‐induced Electron and ion transfers at a liquid‐solid Interface publication-title: Adv Mater – volume: 26 start-page: 7324 year: 2014 end-page: 7332 article-title: Stretchable energy‐harvesting tactile electronic skin capable of differentiating multiple mechanical stimuli modes publication-title: Adv Mater – volume: 9 year: 2019 article-title: TriboPump: a low‐cost, hand‐powered water disinfection system publication-title: Adv Energy Mater – volume: 9 year: 2018 article-title: Triboelectric microplasma powered by mechanical stimuli publication-title: Nat Commun – volume: 8 start-page: 887 year: 2015 end-page: 896 article-title: Beta‐cyclodextrin enhanced triboelectrification for self‐powered phenol detection and electrochemical degradation publication-title: Energ Environ Sci – volume: 59 start-page: 705 year: 2019 end-page: 714 article-title: Self‐powered implantable electrical stimulator for osteoblasts' proliferation and differentiation publication-title: Nano Energy – volume: 30 year: 2018 article-title: A stretchable yarn embedded Triboelectric Nanogenerator as electronic skin for biomechanical energy harvesting and multifunctional pressure sensing publication-title: Adv Mater – volume: 27 start-page: 1603788 year: 2017 article-title: Tunable optical modulator by coupling a triboelectric nanogenerator and a dielectric elastomer publication-title: Adv Funct Mater – volume: 10 year: 2020 article-title: Mechanically asymmetrical triboelectric nanogenerator for self‐powered monitoring of in vivo microscale weak movement publication-title: Adv Energy Mater – volume: 61 start-page: 517 year: 2019 end-page: 532 article-title: Power management and effective energy storage of pulsed output from triboelectric nanogenerator publication-title: Nano Energy – volume: 10 year: 2020 article-title: Mechanical regulation Triboelectric Nanogenerator with controllable output performance for random energy harvesting publication-title: Adv Energy Mater – volume: 27 start-page: 5553 year: 2015 end-page: 5558 article-title: Control of skin potential by Triboelectrification with ferroelectric polymers publication-title: Adv Mater – volume: 49 start-page: 625 year: 2018 end-page: 633 article-title: Ultrahigh charge density realized by charge pumping at ambient conditions for triboelectric nanogenerators publication-title: Nano Energy – volume: 9 start-page: 105 year: 2015 end-page: 116 article-title: Personalized keystroke dynamics for self‐powered human‐machine interfacing publication-title: ACS Nano – volume: 10 start-page: 4797 year: 2016 end-page: 4805 article-title: Harvesting low‐frequency (<5 Hz) irregular mechanical energy: a possible killer application of Triboelectric Nanogenerator publication-title: ACS Nano – volume: 64 year: 2019 article-title: Super‐robust and frequency‐multiplied triboelectric nanogenerator for efficient harvesting water and wind energy publication-title: Nano Energy – volume: 7 year: 2016 article-title: Sustainably powering wearable electronics solely by biomechanical energy publication-title: Nat Commun – volume: 353 start-page: 124 year: 2016 end-page: 125 article-title: Solar‐powering the internet of things publication-title: Science – volume: 13 start-page: 2450 year: 2020 end-page: 2458 article-title: Self‐powered electrocatalytic ammonia synthesis directly from air as driven by dual triboelectric nanogenerators publication-title: Energ Environ Sci – volume: 7 start-page: 8266 year: 2013 end-page: 8274 article-title: Triboelectric active sensor Array for self‐powered static and dynamic pressure detection and tactile imaging publication-title: ACS Nano – volume: 18 start-page: 1026 year: 2018 end-page: 1034 article-title: A droplet energy harvesting and actuation system for self‐powered digital microfluidics publication-title: Lab Chip – volume: 27 start-page: 5210 year: 2015 end-page: 5216 article-title: Roll‐to‐roll green transfer of CVD graphene onto plastic for a transparent and flexible triboelectric nanogenerator publication-title: Adv Mater – ident: e_1_2_7_101_1 doi: 10.1021/acsami.5b04516 – ident: e_1_2_7_132_1 doi: 10.1016/j.nanoen.2018.12.054 – ident: e_1_2_7_7_1 doi: 10.1038/s41586-020-1985-6 – ident: e_1_2_7_8_1 doi: 10.1126/science.aag0476 – ident: e_1_2_7_89_1 doi: 10.1038/ncomms12744 – ident: e_1_2_7_118_1 doi: 10.1038/s41467-019-10433-4 – ident: e_1_2_7_137_1 doi: 10.1016/j.nanoen.2019.103908 – ident: e_1_2_7_94_1 doi: 10.1002/adma.201804944 – ident: e_1_2_7_77_1 doi: 10.1002/aenm.202000827 – ident: e_1_2_7_120_1 doi: 10.1016/j.mattod.2018.01.006 – ident: e_1_2_7_151_1 doi: 10.1002/adfm.201706680 – ident: e_1_2_7_99_1 doi: 10.1021/acsnano.6b04201 – ident: e_1_2_7_116_1 doi: 10.1038/s41467-020-16642-6 – ident: e_1_2_7_19_1 doi: 10.1038/ncomms9975 – ident: e_1_2_7_161_1 doi: 10.1016/j.nanoen.2018.02.022 – ident: e_1_2_7_123_1 doi: 10.1016/j.nanoen.2018.11.078 – ident: e_1_2_7_49_1 doi: 10.1039/C4FD00159A – ident: e_1_2_7_73_1 doi: 10.1016/j.nanoen.2019.03.050 – ident: e_1_2_7_111_1 doi: 10.1021/acsnano.5b04995 – ident: e_1_2_7_59_1 doi: 10.1002/aenm.201800889 – ident: e_1_2_7_56_1 doi: 10.1016/j.nanoen.2019.03.019 – ident: e_1_2_7_133_1 doi: 10.1016/j.nanoen.2016.11.037 – ident: e_1_2_7_30_1 doi: 10.1021/acsnano.6b03293 – ident: e_1_2_7_45_1 doi: 10.1038/s41467-019-14278-9 – ident: e_1_2_7_146_1 doi: 10.1021/acsnano.7b02321 – ident: e_1_2_7_71_1 doi: 10.1021/acsnano.7b05203 – ident: e_1_2_7_41_1 doi: 10.1016/j.mattod.2019.05.016 – ident: e_1_2_7_130_1 doi: 10.1002/aenm.201601705 – ident: e_1_2_7_142_1 doi: 10.1002/adma.201502463 – ident: e_1_2_7_13_1 doi: 10.1016/j.comnet.2008.04.002 – ident: e_1_2_7_62_1 doi: 10.1016/j.nanoen.2019.02.073 – ident: e_1_2_7_129_1 doi: 10.1016/j.nanoen.2016.01.009 – ident: e_1_2_7_61_1 doi: 10.1021/nn507221f – ident: e_1_2_7_88_1 doi: 10.1021/acsnano.5b05598 – ident: e_1_2_7_96_1 doi: 10.1002/adma.201503407 – ident: e_1_2_7_128_1 doi: 10.1021/nn502618f – ident: e_1_2_7_131_1 doi: 10.1002/aenm.201501467 – ident: e_1_2_7_58_1 doi: 10.1002/aenm.202000627 – ident: e_1_2_7_48_1 doi: 10.1002/adfm.201501331 – ident: e_1_2_7_55_1 doi: 10.1021/nn405175z – ident: e_1_2_7_100_1 doi: 10.1002/adma.201402439 – ident: e_1_2_7_105_1 doi: 10.1021/acsnano.5b03052 – ident: e_1_2_7_106_1 doi: 10.1002/admt.201700229 – ident: e_1_2_7_31_1 doi: 10.1016/j.nanoen.2019.03.054 – ident: e_1_2_7_145_1 doi: 10.1016/j.nanoen.2014.12.013 – ident: e_1_2_7_98_1 doi: 10.1016/j.nanoen.2016.11.042 – ident: e_1_2_7_17_1 doi: 10.1002/adma.201402064 – ident: e_1_2_7_78_1 doi: 10.1039/c3ee40764k – ident: e_1_2_7_147_1 doi: 10.1021/acsnano.7b08014 – ident: e_1_2_7_15_1 doi: 10.1002/adma.201400021 – ident: e_1_2_7_22_1 doi: 10.1002/adma.201404794 – ident: e_1_2_7_97_1 doi: 10.1002/adma.201402574 – ident: e_1_2_7_3_1 doi: 10.1002/adma.201502560 – ident: e_1_2_7_44_1 doi: 10.1002/adma.201905696 – ident: e_1_2_7_104_1 doi: 10.1039/C4EE03596H – ident: e_1_2_7_156_1 doi: 10.1016/j.nanoen.2018.05.011 – ident: e_1_2_7_110_1 doi: 10.1002/advs.201500419 – ident: e_1_2_7_80_1 doi: 10.1002/adma.201802898 – ident: e_1_2_7_84_1 doi: 10.1021/acsnano.7b05317 – ident: e_1_2_7_87_1 doi: 10.1002/aenm.201901320 – ident: e_1_2_7_50_1 doi: 10.1016/j.nanoen.2014.11.034 – ident: e_1_2_7_148_1 doi: 10.1039/C7LC01259D – ident: e_1_2_7_153_1 doi: 10.1039/D0EE01236J – ident: e_1_2_7_32_1 doi: 10.1016/j.nanoen.2017.06.035 – ident: e_1_2_7_108_1 doi: 10.1038/ncomms15310 – ident: e_1_2_7_119_1 doi: 10.1126/sciadv.aay2840 – ident: e_1_2_7_27_1 doi: 10.1021/acsnano.5b06327 – ident: e_1_2_7_141_1 doi: 10.1002/adfm.201603788 – ident: e_1_2_7_40_1 doi: 10.1002/aenm.201803027 – ident: e_1_2_7_63_1 doi: 10.1016/j.nanoen.2019.04.083 – ident: e_1_2_7_11_1 doi: 10.1088/0964-1726/17/4/043001 – ident: e_1_2_7_152_1 doi: 10.1021/acsnano.8b05359 – ident: e_1_2_7_64_1 doi: 10.1126/sciadv.1501624 – ident: e_1_2_7_6_1 doi: 10.1038/s41467-019-10061-y – ident: e_1_2_7_34_1 doi: 10.1002/adma.201801511 – ident: e_1_2_7_154_1 doi: 10.1021/acsnano.8b01558 – ident: e_1_2_7_140_1 doi: 10.1016/j.nanoen.2017.05.039 – ident: e_1_2_7_33_1 doi: 10.1016/j.nanoen.2014.10.034 – ident: e_1_2_7_42_1 doi: 10.1002/aenm.202000137 – ident: e_1_2_7_12_1 doi: 10.1016/j.bios.2015.08.037 – ident: e_1_2_7_65_1 doi: 10.1038/s41467-019-09851-1 – ident: e_1_2_7_76_1 doi: 10.1002/adfm.201808820 – ident: e_1_2_7_139_1 doi: 10.1016/j.nanoen.2019.04.026 – ident: e_1_2_7_39_1 doi: 10.1016/j.nanoen.2018.10.036 – volume: 8 start-page: 12 year: 2018 ident: e_1_2_7_122_1 article-title: Versatile core‐sheath yarn for sustainable biomechanical energy harvesting and real‐time human‐interactive sensing publication-title: Adv Energy Mater doi: 10.1002/aenm.201801114 – ident: e_1_2_7_136_1 doi: 10.1039/C9EE03258D – ident: e_1_2_7_159_1 doi: 10.1038/s41467-019-09464-8 – ident: e_1_2_7_144_1 doi: 10.1002/adma.201404291 – ident: e_1_2_7_66_1 doi: 10.1038/nenergy.2016.138 – ident: e_1_2_7_52_1 doi: 10.1038/s41467-019-09461-x – ident: e_1_2_7_54_1 doi: 10.1038/s41467-019-12465-2 – ident: e_1_2_7_60_1 doi: 10.1002/aenm.202000965 – ident: e_1_2_7_5_1 doi: 10.1126/science.aan3997 – ident: e_1_2_7_37_1 doi: 10.1016/j.nanoen.2019.04.096 – ident: e_1_2_7_113_1 doi: 10.1021/acsnano.6b07030 – ident: e_1_2_7_23_1 doi: 10.1021/nn506832w – ident: e_1_2_7_91_1 doi: 10.1021/acsnano.9b08496 – ident: e_1_2_7_158_1 doi: 10.1002/aenm.202000605 – ident: e_1_2_7_86_1 doi: 10.1002/adfm.201501695 – ident: e_1_2_7_124_1 doi: 10.1021/acsnano.6b01569 – ident: e_1_2_7_24_1 doi: 10.1038/s41467-019-10298-7 – ident: e_1_2_7_103_1 doi: 10.1002/aenm.201901124 – ident: e_1_2_7_134_1 doi: 10.1063/1.5135734 – ident: e_1_2_7_16_1 doi: 10.1126/sciadv.aba9624 – ident: e_1_2_7_43_1 doi: 10.1002/adma.201706790 – ident: e_1_2_7_115_1 doi: 10.1016/j.nanoen.2020.104675 – ident: e_1_2_7_67_1 doi: 10.1002/adma.201504403 – ident: e_1_2_7_93_1 doi: 10.1016/j.eml.2015.01.008 – ident: e_1_2_7_68_1 doi: 10.1016/j.nanoen.2018.02.039 – ident: e_1_2_7_74_1 doi: 10.1126/sciadv.1501478 – ident: e_1_2_7_47_1 doi: 10.1016/j.nanoen.2019.104272 – ident: e_1_2_7_53_1 doi: 10.1038/s41467-020-15926-1 – ident: e_1_2_7_21_1 doi: 10.1038/s41467-019-13166-6 – ident: e_1_2_7_83_1 doi: 10.1002/adfm.201803117 – ident: e_1_2_7_143_1 doi: 10.1002/adfm.201403577 – ident: e_1_2_7_85_1 doi: 10.1016/j.nanoen.2018.06.009 – ident: e_1_2_7_72_1 doi: 10.1039/C4TA02747G – ident: e_1_2_7_79_1 doi: 10.1002/adma.201500121 – ident: e_1_2_7_4_1 doi: 10.1039/C5EE01532D – ident: e_1_2_7_90_1 doi: 10.1021/acsnano.7b06451 – ident: e_1_2_7_149_1 doi: 10.1002/adfm.201800610 – ident: e_1_2_7_25_1 doi: 10.1038/s41467-018-06198-x – ident: e_1_2_7_92_1 doi: 10.1021/nn4037514 – ident: e_1_2_7_75_1 doi: 10.1002/adma.201805722 – ident: e_1_2_7_150_1 doi: 10.1038/nnano.2017.17 – ident: e_1_2_7_117_1 doi: 10.1126/sciadv.1700694 – ident: e_1_2_7_10_1 doi: 10.1038/nnano.2011.184 – ident: e_1_2_7_126_1 doi: 10.1038/542159a – ident: e_1_2_7_9_1 doi: 10.1109/COMST.2015.2444095 – ident: e_1_2_7_114_1 doi: 10.1021/acsnano.8b07567 – ident: e_1_2_7_35_1 doi: 10.1016/j.nanoen.2019.01.077 – ident: e_1_2_7_102_1 doi: 10.1021/acsnano.8b06747 – ident: e_1_2_7_81_1 doi: 10.1016/j.nanoen.2019.104243 – ident: e_1_2_7_82_1 doi: 10.1016/j.ensm.2019.03.009 – ident: e_1_2_7_155_1 doi: 10.1002/aenm.201802906 – ident: e_1_2_7_107_1 doi: 10.1021/nn4063616 – ident: e_1_2_7_127_1 doi: 10.1016/j.nanoen.2016.12.061 – ident: e_1_2_7_26_1 doi: 10.1021/acsnano.7b05626 – ident: e_1_2_7_29_1 doi: 10.1021/nn5012732 – ident: e_1_2_7_57_1 doi: 10.1039/C5TA07053H – ident: e_1_2_7_160_1 doi: 10.1016/j.ensm.2017.11.013 – ident: e_1_2_7_112_1 doi: 10.1126/scirobotics.aat2516 – ident: e_1_2_7_18_1 doi: 10.1007/s12274-015-0894-8 – ident: e_1_2_7_121_1 doi: 10.1126/sciadv.aaz8693 – ident: e_1_2_7_38_1 doi: 10.1021/acs.chemrev.9b00821 – ident: e_1_2_7_70_1 doi: 10.1126/sciadv.1700015 – ident: e_1_2_7_69_1 doi: 10.1039/D0EE01102A – ident: e_1_2_7_14_1 doi: 10.1109/COMST.2014.2368999 – ident: e_1_2_7_2_1 doi: 10.1016/j.nanoen.2012.01.004 – ident: e_1_2_7_51_1 doi: 10.1038/ncomms9376 – ident: e_1_2_7_109_1 doi: 10.1021/acsnano.5b07407 – ident: e_1_2_7_135_1 doi: 10.1016/j.nanoen.2016.12.004 – ident: e_1_2_7_20_1 doi: 10.1002/adma.202001466 – ident: e_1_2_7_28_1 doi: 10.1002/aenm.202000064 – ident: e_1_2_7_125_1 doi: 10.1016/j.nanoen.2019.04.047 – volume: 29 start-page: 1807241 year: 2019 ident: e_1_2_7_138_1 article-title: Triboelectric Nanogenerator networks integrated with power management module for water wave energy harvesting publication-title: Adv Funct Mater doi: 10.1002/adfm.201807241 – ident: e_1_2_7_95_1 doi: 10.1021/nl5005652 – ident: e_1_2_7_157_1 doi: 10.1038/s41467-018-06045-z – ident: e_1_2_7_36_1 doi: 10.1016/j.nanoen.2018.11.029 – ident: e_1_2_7_46_1 doi: 10.1016/j.mattod.2016.12.001 |
SSID | ssj0002504241 |
Score | 2.5897117 |
SecondaryResourceType | review_article |
Snippet | For the development of the internet of things (IoTs), big data, and artificial intelligence, widely distributed sensing network is the most essential element,... |
SourceID | crossref wiley |
SourceType | Enrichment Source Index Database Publisher |
SubjectTerms | blue energy contact electrification energy harvesting self‐powered triboelectric nanogenerators |
Title | Recent progress of triboelectric nanogenerators: From fundamental theory to practical applications |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Feom2.12059 |
Volume | 2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8NAEB1qvehB_MT6URb0ohBNdpNNIl5EWopQ9WCht5BNdkSwidR68OJvd2eTphVE8BJCmFwm2Z03szPvAZy6PoauiYuOQomOL8LASVUeOwbZC09hxlNJs8PDezkY-XfjYNyC6_ksTMUP0RTcaGXY_ZoWeKreLxekobqc8AuPG3iwAqs0W0sNfdx_bCosRM7FrXSlCetUjAtFw0_KLxev_4hIywjVhpj-JmzU2JDdVB9zC1q62Ib1JcbAHVAG5pkwwWxbldmkWImMNKvKSs7mJWNFWpTPlkuadHSuWH9aThjSvEdF48_s6OInm5WsnpAyz5aPsXdh1O893Q6cWibByQTxawqMZST91JNKSE8L5efCgLpMh6lEZSBUqtHkJSomOJBjrDRG2kWfIyeacVfsQbsoC70PjEdKYh65AZ3zxjpQUobKw9yLlHYD9DpwNndVktUc4iRl8ZpU7Mc8Ibcm1q0dOGls3yrmjF-tzq3H_zBJeg9Dbu8O_mN8CGuccmPbenIE7dn0Qx8bADFTXfufdG36ba7Dr943PBfDPg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8QwEB58HNSD-MS3AfWgULdN2rQVPIi67LoPL66Il9q0iQjaiq6IP8r_aCbtdlcQwYO3UoZQppPMl0nm-wB2bVf5ts6LllBcWS7zPSsWaWhpZM8coRIac-wd7nR5o-de3Hg3Y_A56IUp-CGqghvODLNe4wTHgnRtyBoq8yd66FCND8o7lS358a53bK_HzTP9e_corZ9fnTasUlTAShiyUTIV8oC7scMF445kwk2ZhkCJ9GOuhAYcsVQaxYsQk2eqQiFVIG3lUkWRlNtmetxxmEQYpSfR5Ml177ZXFXWQD4watUyNJLD-57OKEpXWhh_8LQmOgmKT1epzMFvCUXJSxM88jMlsAWZGSAoXQWhkqTMTMTe59LpIckVQJisvFHQeEpLFWX5v6KtRuueI1F_yJ6KwxaRQDiCmW_KD9HNSNmXpd6Mn50vQ-xcnLsNElmdyBQgNBFdpYHt4tBxKT3DuC0elTiCk7SlnFfYHroqSkrYc1TMeo4JwmUbo1si4dRV2KtvngqzjR6sD4_FfTKLzyw41T2t_Md6GqcZVpx21m93WOkxT3Jqbmy8bMNF_eZObGr_0xVYZNQTu_jtQvwC9hf_T |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fS8MwED50guiD-BPnz4D6oFDXJm3aCj4Mdahz6oMT8aU2bU4E1445kf1P_pEmaZ0TRPDBt1KOUK6X3Jfk7vsAtm0XfVvlRUsgR8tlvmfFIg0theyZIzChMde9w61Lftp2z--8uzF4_-yFKfghhgduemaY9VpP8G6KtS_SUJl36L5DFTwoSyqbcvCmNmwvh2fH6u_uUNo4uTk6tUpNASthmoySYcgD7sYOF4w7kgk3ZQoBJdKPOQqFN2KJCsSLUOfOFEMhMZA2uhSp5uS2mRp3HCY8lQbtCkzUb9v37eGZjqYDo0YsUwEJffznsyEjKq19ffC3HDiKiU1Sa8zCTIlGSb0InzkYk9k8TI9wFC6AUMBSJSZiCrnUskhyJFolKy8EdJ4SksVZ_mjYq7VyzwFp9PIOQd1hUggHENMsOSD9nJQ9Werd6MX5IrT_xYlLUMnyTC4DoYHgmAa2p2-WQ-kJzn3hYOoEQtoeOlXY_XRVlJSs5Vo84zkq-JZppN0aGbdWYWto2y24On602jMe_8UkOrlqUfO08hfjTZi8Pm5EF2eXzVWYonpjbupe1qDS773KdYVe-mKjDBoCD_8dpx_zpP7z |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+progress+of+triboelectric+nanogenerators%3A+From+fundamental+theory+to+practical+applications&rft.jtitle=EcoMat+%28Beijing%2C+China%29&rft.au=Luo%2C+Jianjun&rft.au=Wang%2C+Zhong+Lin&rft.date=2020-12-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=2567-3173&rft.eissn=2567-3173&rft.volume=2&rft.issue=4&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Feom2.12059&rft.externalDBID=10.1002%252Feom2.12059&rft.externalDocID=EOM212059 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2567-3173&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2567-3173&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2567-3173&client=summon |