A Simple and Practical Method for Fluence Determination in Bench‐Scale UV‐LED Setups

ABSTRACT In UV disinfection of water, the fluence of UV required to inactivate a target microorganism is determined based on the procedures developed for conventional mercury‐based UV lamps with collimation. In this regard, a simple and practical method with a mathematical model and radiometry is pr...

Full description

Saved in:
Bibliographic Details
Published inPhotochemistry and photobiology Vol. 99; no. 1; pp. 19 - 28
Main Authors Watanabe, Shinya, Oguma, Kumiko
Format Journal Article
LanguageEnglish
Published United States Blackwell Publishing Ltd 01.01.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract ABSTRACT In UV disinfection of water, the fluence of UV required to inactivate a target microorganism is determined based on the procedures developed for conventional mercury‐based UV lamps with collimation. In this regard, a simple and practical method with a mathematical model and radiometry is proposed for determining the fluence rate with UV light‐emitting diodes (UV‐LEDs). This method was applied to a bench‐scale UV‐LED setup and validated by comparing the calculations with the measurements using either a spectroradiometer or a chemical actinometer. The results showed high accordance with spectroradiometer outputs with a linear regression equation y = 0.997x (x: model calculation, y: spectroradiometer output, r2 = 0.999, P < 0.001 for n = 20) in an experiment varying the distance between the measurement points and the UV‐LEDs. Meanwhile, the proposed method and chemical actinometry exhibited 98% concordance. Furthermore, this method was applied to determine the fluence‐response profiles of Pseudomonas aeruginosa, and the results demonstrated that the proposed method was appropriate at two different distances between the UV‐LEDs and the solutions. To conclude, the proposed method can determine the fluence in a UV‐LED bench‐scale setup in a simple and practical way, which would potentially promote the research and development of water treatment using UV‐LEDs. A simple and practical method with a mathematical model and radiometry is proposed for determining the fluence rate with UV light‐emitting diodes (UV‐LEDs) for UV disinfection of water. The mathematical model is expressed as a single equation considering optical effects such as reflection, absorption and divergence. This method was applied to a bench‐scale UV‐LED setup and validated by comparing the calculations with the measurements using either a spectroradiometer or a chemical actinometer.
AbstractList ABSTRACT In UV disinfection of water, the fluence of UV required to inactivate a target microorganism is determined based on the procedures developed for conventional mercury‐based UV lamps with collimation. In this regard, a simple and practical method with a mathematical model and radiometry is proposed for determining the fluence rate with UV light‐emitting diodes (UV‐LEDs). This method was applied to a bench‐scale UV‐LED setup and validated by comparing the calculations with the measurements using either a spectroradiometer or a chemical actinometer. The results showed high accordance with spectroradiometer outputs with a linear regression equation y = 0.997x (x: model calculation, y: spectroradiometer output, r2 = 0.999, P < 0.001 for n = 20) in an experiment varying the distance between the measurement points and the UV‐LEDs. Meanwhile, the proposed method and chemical actinometry exhibited 98% concordance. Furthermore, this method was applied to determine the fluence‐response profiles of Pseudomonas aeruginosa, and the results demonstrated that the proposed method was appropriate at two different distances between the UV‐LEDs and the solutions. To conclude, the proposed method can determine the fluence in a UV‐LED bench‐scale setup in a simple and practical way, which would potentially promote the research and development of water treatment using UV‐LEDs. A simple and practical method with a mathematical model and radiometry is proposed for determining the fluence rate with UV light‐emitting diodes (UV‐LEDs) for UV disinfection of water. The mathematical model is expressed as a single equation considering optical effects such as reflection, absorption and divergence. This method was applied to a bench‐scale UV‐LED setup and validated by comparing the calculations with the measurements using either a spectroradiometer or a chemical actinometer.
In UV disinfection of water, the fluence of UV required to inactivate a target microorganism is determined based on the procedures developed for conventional mercury-based UV lamps with collimation. In this regard, a simple and practical method with a mathematical model and radiometry is proposed for determining the fluence rate with UV light-emitting diodes (UV-LEDs). This method was applied to a bench-scale UV-LED setup and validated by comparing the calculations with the measurements using either a spectroradiometer or a chemical actinometer. The results showed high accordance with spectroradiometer outputs with a linear regression equation y = 0.997x (x: model calculation, y: spectroradiometer output, r  = 0.999, P < 0.001 for n = 20) in an experiment varying the distance between the measurement points and the UV-LEDs. Meanwhile, the proposed method and chemical actinometry exhibited 98% concordance. Furthermore, this method was applied to determine the fluence-response profiles of Pseudomonas aeruginosa, and the results demonstrated that the proposed method was appropriate at two different distances between the UV-LEDs and the solutions. To conclude, the proposed method can determine the fluence in a UV-LED bench-scale setup in a simple and practical way, which would potentially promote the research and development of water treatment using UV-LEDs.
In UV disinfection of water, the fluence of UV required to inactivate a target microorganism is determined based on the procedures developed for conventional mercury‐based UV lamps with collimation. In this regard, a simple and practical method with a mathematical model and radiometry is proposed for determining the fluence rate with UV light‐emitting diodes (UV‐LEDs). This method was applied to a bench‐scale UV‐LED setup and validated by comparing the calculations with the measurements using either a spectroradiometer or a chemical actinometer. The results showed high accordance with spectroradiometer outputs with a linear regression equation y = 0.997x (x: model calculation, y: spectroradiometer output, r2 = 0.999, P < 0.001 for n = 20) in an experiment varying the distance between the measurement points and the UV‐LEDs. Meanwhile, the proposed method and chemical actinometry exhibited 98% concordance. Furthermore, this method was applied to determine the fluence‐response profiles of Pseudomonas aeruginosa, and the results demonstrated that the proposed method was appropriate at two different distances between the UV‐LEDs and the solutions. To conclude, the proposed method can determine the fluence in a UV‐LED bench‐scale setup in a simple and practical way, which would potentially promote the research and development of water treatment using UV‐LEDs.
ABSTRACT In UV disinfection of water, the fluence of UV required to inactivate a target microorganism is determined based on the procedures developed for conventional mercury‐based UV lamps with collimation. In this regard, a simple and practical method with a mathematical model and radiometry is proposed for determining the fluence rate with UV light‐emitting diodes (UV‐LEDs). This method was applied to a bench‐scale UV‐LED setup and validated by comparing the calculations with the measurements using either a spectroradiometer or a chemical actinometer. The results showed high accordance with spectroradiometer outputs with a linear regression equation  y  = 0.997 x ( x : model calculation, y : spectroradiometer output, r 2  = 0.999, P  < 0.001 for n  = 20) in an experiment varying the distance between the measurement points and the UV‐LEDs. Meanwhile, the proposed method and chemical actinometry exhibited 98% concordance. Furthermore, this method was applied to determine the fluence‐response profiles of Pseudomonas aeruginosa , and the results demonstrated that the proposed method was appropriate at two different distances between the UV‐LEDs and the solutions. To conclude, the proposed method can determine the fluence in a UV‐LED bench‐scale setup in a simple and practical way, which would potentially promote the research and development of water treatment using UV‐LEDs.
Author Oguma, Kumiko
Watanabe, Shinya
Author_xml – sequence: 1
  givenname: Shinya
  orcidid: 0000-0002-1265-8665
  surname: Watanabe
  fullname: Watanabe, Shinya
  email: watanabe‐shinya381@g.ecc.u‐tokyo.ac.jp
  organization: The University of Tokyo
– sequence: 2
  givenname: Kumiko
  orcidid: 0000-0001-5152-6553
  surname: Oguma
  fullname: Oguma, Kumiko
  organization: The University of Tokyo
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35726528$$D View this record in MEDLINE/PubMed
BookMark eNp1kM9O4zAQhy0EgpbdAy-ALHGBQ8CT1I5z5F8XpCIqdVlxs1x7ogYlTrATrbjtI_CMPAlmCxyQ8GU8o28-jX5jsulah4TsATuG-E66VXcMmRByg4wg55AAK_JNMmIsg0QKznfIOIQHxmBS5LBNdjKep4KnckTuT-miaroaqXaWzr02fWV0TW-wX7WWlq2n03pAZ5BeYI--qZzuq9bRytGzOF69_HtexAWkd3_id3Z5QRfYD134QbZKXQf8-V53yd308vf5VTK7_XV9fjpLTMYKmYCBnNnSloaVhURrhbUcjM20tiALaRFktiywZFrAMrITjJ0uWWqQoRTZLjlcezvfPg4YetVUwWBda4ftEFQq8iKdMOA8ogdf0Id28C5ep9Jc5BkHMXkTHq0p49sQPJaq81Wj_ZMCpt7iVjFu9T_uyO6_G4dlg_aT_Mg3Aidr4G9V49P3JjW_mq-Vr1gHjDE
Cites_doi 10.1016/j.foodcont.2021.107999
10.1021/acs.est.7b05797
10.1061/(ASCE)0733-9372(2003)129:3(209)
10.1016/j.jece.2021.105253
10.1364/AO.12.000555
10.1016/j.watres.2021.116895
10.2208/jscejer.77.7_III_93
10.1016/j.jhazmat.2012.02.021
10.1016/j.watres.2017.09.030
10.1016/j.watres.2020.116542
10.1016/j.jphotochem.2017.10.047
10.1016/j.jphotobiol.2021.112129
10.1016/j.watres.2021.117496
10.1117/12.795944
10.1016/j.scitotenv.2021.150725
10.1016/j.watres.2017.11.047
10.1016/j.jphotochem.2011.05.017
10.1016/j.jphotochem.2007.06.006
ContentType Journal Article
Copyright 2022 American Society for Photobiology.
Copyright © 2023 American Society for Photobiology
Copyright_xml – notice: 2022 American Society for Photobiology.
– notice: Copyright © 2023 American Society for Photobiology
DBID NPM
AAYXX
CITATION
4T-
7TM
7U7
8FD
C1K
FR3
K9.
NAPCQ
P64
RC3
7X8
DOI 10.1111/php.13668
DatabaseName PubMed
CrossRef
Docstoc
Nucleic Acids Abstracts
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
Nursing & Allied Health Premium
Genetics Abstracts
Technology Research Database
Toxicology Abstracts
Nucleic Acids Abstracts
Docstoc
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList
PubMed
Nursing & Allied Health Premium
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Chemistry
Biology
EISSN 1751-1097
EndPage 28
ExternalDocumentID 10_1111_php_13668
35726528
PHP13668
Genre article
Journal Article
GrantInformation_xml – fundername: Ministry of the Environment
– fundername: Japan Society for the Promotion of Science
  funderid: 20H00257
– fundername: Ministry of Health, Labour and Welfare
– fundername: Japan Science and Technology Agency
– fundername: Japan Society for the Promotion of Science
  grantid: 20H00257
GroupedDBID ---
-JH
-~X
.3N
.GA
.GJ
.Y3
05W
0R~
10A
123
1OB
1OC
29O
31~
33P
3O-
3SF
3V.
4.4
41~
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5RE
5VS
66C
702
7PT
7RV
7X2
7X7
8-0
8-1
8-3
8-4
8-5
88A
88E
88I
8AF
8AO
8FE
8FH
8FI
8FJ
8FW
8R4
8R5
8UM
8WZ
930
A03
A6W
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AAPSS
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEFU
ABEML
ABUWG
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOD
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADHSS
ADIZJ
ADKYN
ADMGS
ADOZA
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEPYG
AEQDE
AEUQT
AEUYR
AFBPY
AFFIJ
AFFPM
AFGKR
AFKRA
AFNWH
AFPWT
AFRAH
AFZJQ
AHBTC
AHEFC
AHMBA
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
AKPMI
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATCPS
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZQEC
AZVAB
BAFTC
BBNVY
BDRZF
BENPR
BFHJK
BHBCM
BHPHI
BKEYQ
BLYAC
BMNLL
BNHUX
BPHCQ
BROTX
BRXPI
BVXVI
BY8
C1A
CAG
CCPQU
COF
CS3
D-E
D-F
DC7
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
DWQXO
E3Z
EBS
ECGQY
EJD
ESX
EX3
F00
F01
F04
F5P
FEDTE
FYUFA
FZ0
G-S
G.N
G8K
GNUQQ
GODZA
H.T
H.X
H13
HCIFZ
HF~
HGLYW
HMCUK
HVGLF
HZ~
H~9
IH2
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LK8
LOXES
LP6
LP7
LUTES
LW6
LYRES
M0K
M0L
M1P
M2P
M2Q
M7P
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NAPCQ
NDZJH
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQ0
PQQKQ
PROAC
PSQYO
Q.N
Q11
Q2X
Q5J
QB0
R.K
RBO
RIG
RIWAO
RJQFR
ROL
RWL
RX1
S0X
SAMSI
SJN
SUPJJ
TAE
UB1
UKHRP
W8V
W99
WBKPD
WH7
WIH
WIK
WNSPC
WOHZO
WOW
WQJ
WRC
WSB
WXSBR
WYISQ
XG1
XOL
YNT
ZGI
ZXP
ZZTAW
~02
~IA
~KM
~WT
NPM
AAYXX
CITATION
4T-
7TM
7U7
8FD
C1K
FR3
K9.
P64
RC3
7X8
ID FETCH-LOGICAL-c3098-1c170dfdfc0f98edd6dd51cd3aad1898de183b9ef0a61b1704eb9eaf02ce0e863
IEDL.DBID DR2
ISSN 0031-8655
IngestDate Wed Jul 17 03:58:45 EDT 2024
Thu Oct 10 16:00:22 EDT 2024
Fri Aug 23 02:22:44 EDT 2024
Sat Sep 28 08:16:14 EDT 2024
Sat Aug 24 00:53:21 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2022 American Society for Photobiology.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3098-1c170dfdfc0f98edd6dd51cd3aad1898de183b9ef0a61b1704eb9eaf02ce0e863
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-1265-8665
0000-0001-5152-6553
PMID 35726528
PQID 2767351646
PQPubID 30729
PageCount 28
ParticipantIDs proquest_miscellaneous_2679240155
proquest_journals_2767351646
crossref_primary_10_1111_php_13668
pubmed_primary_35726528
wiley_primary_10_1111_php_13668_PHP13668
PublicationCentury 2000
PublicationDate January/February 2023
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: January/February 2023
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Lawrence
PublicationTitle Photochemistry and photobiology
PublicationTitleAlternate Photochem Photobiol
PublicationYear 2023
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 2021; 9
2017; 40
2018; 130
2018; 352
2003; 129
2021; 77
2021; 203
2020
2021; 125
1973; 12
2021; 217
2021; 193
2008
2022; 807
2012; 215–216
2018; 52
2021; 188
2017; 126
2011; 222
1972; 2
2022; 158
2008; 193
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_9_1
e_1_2_7_8_1
IES (e_1_2_7_20_1) 1972; 2
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_15_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_23_1
e_1_2_7_22_1
e_1_2_7_10_1
e_1_2_7_21_1
McSharry S. (e_1_2_7_11_1) 2022; 158
Sugimoto T. (e_1_2_7_2_1) 2020
Oguma K. (e_1_2_7_3_1) 2020
Oguma K. (e_1_2_7_24_1) 2017; 40
References_xml – volume: 77
  start-page: 93
  year: 2021
  end-page: 102
  article-title: Effects of ultraviolet irradiation on biofilm formation of
  publication-title: J. JSCE. Ser. G.
– volume: 9
  year: 2021
  article-title: UV disinfection studies on chlorine tolerant bacteria recovered from treated sewage
  publication-title: J. Environ. Chem. Eng.
– volume: 188
  year: 2021
  article-title: Nontargeted identification and pre dicte d toxicity of new byproducts generated from UV treatment of water containing micropollutant 2‐mercaptobenzothiazole
  publication-title: Water Res.
– volume: 352
  start-page: 113
  year: 2018
  end-page: 121
  article-title: UV‐LED radiation modeling and its applications in dose determination for water treatment
  publication-title: J. Photochem. Photobiol.
– volume: 52
  start-page: 7390
  year: 2018
  end-page: 7398
  article-title: Protocol for determining ultraviolet light emitting diode (UV‐LED) fluence for microbial inactivation studies
  publication-title: Environ. Sci. Technol.
– volume: 193
  year: 2021
  article-title: Quantification and modeling of the response of surface biofilm growth to continuous low intensity UVC irradiation
  publication-title: Water Res.
– volume: 158
  year: 2022
  article-title: Inactivation of listeria monocytogenes and salmonella typhimurium in beef broth and on diced beef using an ultraviolet light emitting diode (UV‐LED) system
  publication-title: Food Sci. Technol.
– volume: 217
  year: 2021
  article-title: Wavelength‐dependent time‐dose reciprocity and stress mechanism for UV‐LED disinfection of
  publication-title: J. Photochem. Photobiol.
– volume: 203
  year: 2021
  article-title: UVC inactivation of MS2‐phage in drinking water – Modelling and field testing
  publication-title: Water Res.
– year: 2008
– year: 2020
– volume: 2
  start-page: 70
  issue: 1
  year: 1972
  end-page: 78
  article-title: Photometric testing of indoor fluorescent luminaires
  publication-title: J. IES
– volume: 222
  start-page: 166
  year: 2011
  end-page: 169
  article-title: Determination of the quantum yields of the potassium ferrioxalate and potassium iodide‐iodate actinometers and a method for the calibration of radiometer detectors
  publication-title: J. Photochem. Photobiol.
– volume: 12
  start-page: 555
  year: 1973
  end-page: 563
  article-title: Optical constants of water in the 200‐nm to 200‐μm wavelength region
  publication-title: Appl. Optics
– volume: 807
  year: 2022
  article-title: Combined sewer overflow treatment: Assessing chemical pre‐treatment and microsieve‐based filtration in enhancing the performance of UV disinfection
  publication-title: Sci. Total Environ.
– volume: 126
  start-page: 134
  year: 2017
  end-page: 143
  article-title: Comparison of UV‐LED and low‐pressure UV for water disinfection: Photoreactivation and dark repair of
  publication-title: Water Res.
– volume: 130
  start-page: 31
  year: 2018
  end-page: 37
  article-title: Inactivation kinetics and efficiencies of UV‐LEDs against , legionella pneumophila, and surrogate microorganisms
  publication-title: Water Res.
– volume: 129
  start-page: 209
  year: 2003
  end-page: 215
  article-title: Standardization of methods for fluence (UV dose) determination in bench‐scale UV experiments
  publication-title: J. Environ. Eng.
– volume: 193
  start-page: 50
  year: 2008
  end-page: 55
  article-title: The ferrioxalate and iodide‐iodate actinometers in the UV region
  publication-title: J. Photochem. and Photobiol.
– volume: 125
  year: 2021
  article-title: Inactivation of foodborne pathogenic and spoilage bacteria by single and dual wavelength UV‐LEDs: Synergistic effect and pulsed operation
  publication-title: Food Control
– volume: 215–216
  start-page: 25
  year: 2012
  end-page: 31
  article-title: CFD modeling of a UV‐LED photocatalytic odor abatement process in a continuous reactor
  publication-title: J. Hazard. Mater.
– volume: 40
  start-page: 59
  year: 2017
  end-page: 65
  article-title: Effects of suspended particles in water on efficiency of UV disinfection
  publication-title: J. JSWE
– ident: e_1_2_7_10_1
  doi: 10.1016/j.foodcont.2021.107999
– ident: e_1_2_7_16_1
  doi: 10.1021/acs.est.7b05797
– ident: e_1_2_7_4_1
  doi: 10.1061/(ASCE)0733-9372(2003)129:3(209)
– ident: e_1_2_7_6_1
  doi: 10.1016/j.jece.2021.105253
– ident: e_1_2_7_23_1
  doi: 10.1364/AO.12.000555
– volume: 2
  start-page: 70
  issue: 1
  year: 1972
  ident: e_1_2_7_20_1
  article-title: Photometric testing of indoor fluorescent luminaires
  publication-title: J. IES
  contributor:
    fullname: IES
– ident: e_1_2_7_9_1
  doi: 10.1016/j.watres.2021.116895
– ident: e_1_2_7_19_1
  doi: 10.2208/jscejer.77.7_III_93
– ident: e_1_2_7_22_1
  doi: 10.1016/j.jhazmat.2012.02.021
– ident: e_1_2_7_12_1
  doi: 10.1016/j.watres.2017.09.030
– volume: 158
  start-page: 113150
  year: 2022
  ident: e_1_2_7_11_1
  article-title: Inactivation of listeria monocytogenes and salmonella typhimurium in beef broth and on diced beef using an ultraviolet light emitting diode (UV‐LED) system
  publication-title: Food Sci. Technol.
  contributor:
    fullname: McSharry S.
– volume: 40
  start-page: 59
  year: 2017
  ident: e_1_2_7_24_1
  article-title: Effects of suspended particles in water on efficiency of UV disinfection
  publication-title: J. JSWE
  contributor:
    fullname: Oguma K.
– volume-title: UV Solutions
  year: 2020
  ident: e_1_2_7_3_1
  contributor:
    fullname: Oguma K.
– ident: e_1_2_7_7_1
  doi: 10.1016/j.watres.2020.116542
– ident: e_1_2_7_15_1
  doi: 10.1016/j.jphotochem.2017.10.047
– ident: e_1_2_7_14_1
  doi: 10.1016/j.jphotobiol.2021.112129
– ident: e_1_2_7_5_1
  doi: 10.1016/j.watres.2021.117496
– volume-title: UV Solutions
  year: 2020
  ident: e_1_2_7_2_1
  contributor:
    fullname: Sugimoto T.
– ident: e_1_2_7_21_1
  doi: 10.1117/12.795944
– ident: e_1_2_7_8_1
  doi: 10.1016/j.scitotenv.2021.150725
– ident: e_1_2_7_13_1
  doi: 10.1016/j.watres.2017.11.047
– ident: e_1_2_7_18_1
  doi: 10.1016/j.jphotochem.2011.05.017
– ident: e_1_2_7_17_1
  doi: 10.1016/j.jphotochem.2007.06.006
SSID ssj0014971
Score 2.429449
Snippet ABSTRACT In UV disinfection of water, the fluence of UV required to inactivate a target microorganism is determined based on the procedures developed for...
In UV disinfection of water, the fluence of UV required to inactivate a target microorganism is determined based on the procedures developed for conventional...
SourceID proquest
crossref
pubmed
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage 19
SubjectTerms Actinometry
Disinfection
Disinfection - methods
Fluence
Light emitting diodes
Mathematical models
Mercury
Models, Theoretical
Pseudomonas aeruginosa
R&D
Research & development
Spectroradiometers
Ultraviolet radiation
Ultraviolet Rays
Water Purification - methods
Water treatment
Title A Simple and Practical Method for Fluence Determination in Bench‐Scale UV‐LED Setups
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fphp.13668
https://www.ncbi.nlm.nih.gov/pubmed/35726528
https://www.proquest.com/docview/2767351646
https://search.proquest.com/docview/2679240155
Volume 99
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD6aJsF44dKNUSjIQ3vYS6Y4TuJEPI12VYVWNK3r1AekyPFFmyZlFW0f4ImfwG_kl3BOnEQMhIR4cxI7Tnx8-Wwffx_AYR4Z7jTxaVvjgpgrHZTKyMC5rBbiFlbQaeTpx3Qyjz8sksUWvGvPwnh-iG7BjVpG3V9TA1fl6pdGvrxeko9WSgd9uZDkzjW66KijEPhLr5YneECHLxtWIfLi6VLeH4v-AJj38Wo94IyfwKf2U72fye3xZl0e66-_sTj-5788hccNEGUnvuY8gy1b9eCBl6b80oOdYasE14OH02YDfhcWJ2x2Q4TCTFWGebIjtDKb1kLUDBEwG3vREzZqHW3I9OymYu_x9vWPb99nmMCy-RUGz05HbGbXm-VqD-bj08vhJGjEGQItiIOUay5D44zTocszS8JUJuHaCKUMz_LMWOwsyty6UKW8xLixxSvlwkjb0GapeA7b1V1lXwDLY25MrLISsVuspEEEo8I0MwgmRa6d6MPb1kzF0nNwFO3cBUuuqEuuD4PWgEXTDFdFJFMpEqJQ68NB9xhLj3ZFVGXvNhgnlTgHJejYh31v-C4XkcgoTSJ8-VFtvr9nX5xPzuvAy3-P-goekXi9X9AZwPb688a-RoizLt_UdfknJ1j3mA
link.rule.ids 315,783,787,1378,27936,27937,46306,46730
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bT9RAFD5BiOIL6AqyiDoaH3wp6XR6TXxBls2qu4S4rNkX0kznEohJ2cDugzzxE_iN_BLP6bQNSEyMb9N2ptPOmTPzze37AD5kgeZWEZ-20dYLuVReIXXiWZtWQtzCCDqNPDqMB5Pw6zSaLsGn5iyM44doJ9zIM6r2mhycJqTvePnsdEabtOL0EayguwsSbuh9b8mjEPonTi9PcI-OX9a8QrSPp016vzd6ADHvI9aqy-mvw0nzsW6nyc_dxbzYVVd_8Dj-7988g7Uai7I9V3mew5IpO_DYqVP-6sDqfiMG14Eno3oN_gVM99j4jDiFmSw1c3xHaGg2qrSoGYJg1ne6J6zX7LUh67Ozkn3G26e31zdjTGDY5AcGhwc9NjbzxexyAyb9g-P9gVfrM3hKEA0pVzzxtdVW-TZLDWlT6YgrLaTUPM1SbbC9KDJjfRnzAuOGBq-k9QNlfJPGYhOWy_PSbAHLQq51KNMC4VsoE40gRvpxqhFPikxZ0YX3jZ3ymaPhyJvhC5ZcXpVcF3YaC-a1J17mQYJVIyIWtS68ax9j6dHCiCzN-QLjxAkOQwk9duGls3ybi4iSII4CfPnHyn5_zz4_GhxVge1_j_oWVgfHo2E-_HL47RU8JS17N7-zA8vzi4V5jYhnXrypKvZvkb_7sA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9MwGH41hti48FHYVhhgph12SRXHiZOI01hXFWiriq5TD0iR4w9tmpRFW3uAEz9hv3G_hNdxEjHQJMTNSew48euPx_br5wHYTwNFjbR82loZL6RCerlQsWdMUglxM83saeTxhA_n4edFtFiDD81ZGMcP0S642ZZR9de2gZfK_NbIy7PS-mjx5AE8DDkiX4uIvrbcUYj8YyeXx6hnT1_WtELWjadNencw-gth3gWs1YgzeArfmm91jiYXvdUy78kff9A4_ufPPIMnNRIlh67qPIc1XXTgkdOm_N6BzaNGCq4DG-N6B_4FLA7J7NwyChNRKOLYjtDMZFwpUROEwGTgVE9Iv_G0sbYn5wX5iLfPbn_ezDCBJvNTDI6O-2Sml6vy-iXMB8cnR0OvVmfwJLMkpFTS2FdGGembNNFWmUpFVComhKJJmiiNvUWeauMLTnOMG2q8EsYPpPZ1wtkWrBeXhd4BkoZUqVAkOYK3UMQKIYzweaIQTbJUGtaFvcZMWelIOLJm8oIll1Ul14XdxoBZ3Q6vsyDmMYssh1oX3rePsfTstogo9OUK4_AYJ6EWO3Zh2xm-zYVFccCjAF9-UJnv_uyz6XBaBV79e9R3sDHtD7LRp8mX1_DYCtm7xZ1dWF9erfQbhDvL_G1VrX8BqBX6Xw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Simple+and+Practical+Method+for+Fluence+Determination+in+Bench%E2%80%90Scale+UV%E2%80%90LED+Setups&rft.jtitle=Photochemistry+and+photobiology&rft.au=Watanabe%2C+Shinya&rft.au=Oguma%2C+Kumiko&rft.date=2023-01-01&rft.issn=0031-8655&rft.eissn=1751-1097&rft.volume=99&rft.issue=1&rft.spage=19&rft.epage=28&rft_id=info:doi/10.1111%2Fphp.13668&rft.externalDBID=10.1111%252Fphp.13668&rft.externalDocID=PHP13668
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-8655&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-8655&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-8655&client=summon