Internal electric field engineering for steering photogenerated charge separation and enhancing photoactivity
Photocatalysis as a desirable technology shows great potential in environmental remediation and renewable energy generation, but the recombination of photogenerated carriers is a key limiting factor for efficiency in artificial photosynthesis. Internal electric field (IEF, also known as built‐in ele...
Saved in:
Published in | EcoMat (Beijing, China) Vol. 1; no. 1 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Hoboken, USA
John Wiley & Sons, Inc
01.12.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Photocatalysis as a desirable technology shows great potential in environmental remediation and renewable energy generation, but the recombination of photogenerated carriers is a key limiting factor for efficiency in artificial photosynthesis. Internal electric field (IEF, also known as built‐in electric field) engineering acts an emerging and clearly viable route to increase photocatalytic efficiency by facilitating charge separation and transfer. This review summarizes the basic principles of IEF including the source, the strategies for the enhancement and the measurement of IEF. Highlight is the recent progress in steering photogenerated charge separation of photocatalysts by IEF engineering and related mechanisms. Finally, the challenges in IEF engineering and exciting opportunities to further enhancing charge separation and photocatalytic performance are discussed.
In this review, we traced the source of IEF, summarized the enhancement methods of IEF and gave the measurement of IEF source. Highlight is the application advances in IEF for photocatalysis, firstly demonstrating that IEF engineering, an important, exciting, and highly potential emerging research area, is a whole new angle of view for steering the photogenerated charge. |
---|---|
AbstractList | Photocatalysis as a desirable technology shows great potential in environmental remediation and renewable energy generation, but the recombination of photogenerated carriers is a key limiting factor for efficiency in artificial photosynthesis. Internal electric field (IEF, also known as built‐in electric field) engineering acts an emerging and clearly viable route to increase photocatalytic efficiency by facilitating charge separation and transfer. This review summarizes the basic principles of IEF including the source, the strategies for the enhancement and the measurement of IEF. Highlight is the recent progress in steering photogenerated charge separation of photocatalysts by IEF engineering and related mechanisms. Finally, the challenges in IEF engineering and exciting opportunities to further enhancing charge separation and photocatalytic performance are discussed.
In this review, we traced the source of IEF, summarized the enhancement methods of IEF and gave the measurement of IEF source. Highlight is the application advances in IEF for photocatalysis, firstly demonstrating that IEF engineering, an important, exciting, and highly potential emerging research area, is a whole new angle of view for steering the photogenerated charge. |
Author | Shi, Wenxin Zhu, Yongfa Guo, Yan |
Author_xml | – sequence: 1 givenname: Yan surname: Guo fullname: Guo, Yan organization: Harbin Institute of Technology – sequence: 2 givenname: Wenxin surname: Shi fullname: Shi, Wenxin organization: Chongqing University – sequence: 3 givenname: Yongfa orcidid: 0000-0002-0042-7069 surname: Zhu fullname: Zhu, Yongfa email: zhuyf@mail.tsinghua.edu.cn organization: Tsinghua University |
BookMark | eNp9kEtLAzEUhYNUsNZu_AVZC1PzmOk0SylVC5VudD3cSW6mkWlSMkHpv3f6QETE1X3wnQPnXJOBDx4JueVswhkT9xi2YsIFY-UFGYpiWmaSl3LwY78i4657Zz1csFzkfEi2S58wemgptqhTdJpah62h6BvnEaPzDbUh0i6dj90mpNCgxwgJDdUbiA3SDnfQP1zwFPxBvQGvv3HQyX24tL8hlxbaDsfnOSJvj4vX-XO2Wj8t5w-rTEumysyoHIXSYgZFoY1QApiqURte1twqObOotalhWqiplcZCLcs-UZ4bYXOccZQjcnfy1TF0XURb7aLbQtxXnFWHrqpDV9Wxqx5mv2Dt0jFKiuDavyX8JPl0Le7_Ma8W6xdx0nwBvYyBGg |
CitedBy_id | crossref_primary_10_1016_j_jcis_2023_03_157 crossref_primary_10_1021_acs_langmuir_4c05287 crossref_primary_10_1002_adfm_202211565 crossref_primary_10_1021_acscatal_4c01703 crossref_primary_10_1016_S1872_2067_23_64502_4 crossref_primary_10_1016_j_seppur_2024_128829 crossref_primary_10_1016_j_jallcom_2025_179140 crossref_primary_10_1016_j_jcis_2021_06_003 crossref_primary_10_1002_smll_202401559 crossref_primary_10_1016_j_cej_2023_143369 crossref_primary_10_1016_j_cej_2023_146514 crossref_primary_10_1002_smll_202400344 crossref_primary_10_1016_j_apcatb_2020_119122 crossref_primary_10_1016_j_apsusc_2024_161863 crossref_primary_10_1016_j_ccr_2024_216115 crossref_primary_10_1039_D2CP02055F crossref_primary_10_3390_electronics12122738 crossref_primary_10_1016_j_jallcom_2023_170335 crossref_primary_10_1002_smll_202301717 crossref_primary_10_1016_j_cej_2024_155514 crossref_primary_10_1016_j_jallcom_2024_177642 crossref_primary_10_1021_acsnano_2c09888 crossref_primary_10_1016_j_ijhydene_2024_04_072 crossref_primary_10_1002_aesr_202400285 crossref_primary_10_1002_anie_202403949 crossref_primary_10_3390_ijms24119109 crossref_primary_10_1016_j_mtener_2023_101408 crossref_primary_10_1016_j_surfin_2024_104226 crossref_primary_10_1039_D3CY01139A crossref_primary_10_1038_s41467_023_41522_0 crossref_primary_10_1002_adfm_202104519 crossref_primary_10_1007_s10562_024_04887_5 crossref_primary_10_1016_j_surfin_2023_102823 crossref_primary_10_1016_j_apsusc_2020_146858 crossref_primary_10_1021_acsnano_4c06049 crossref_primary_10_1016_j_apcatb_2021_120492 crossref_primary_10_1021_acsami_3c16985 crossref_primary_10_1007_s12274_023_5582_5 crossref_primary_10_1016_j_envres_2021_112544 crossref_primary_10_1073_pnas_2119723119 crossref_primary_10_1016_j_seppur_2023_124352 crossref_primary_10_1002_aenm_202402416 crossref_primary_10_1039_D3CP02860G crossref_primary_10_1002_ange_202320218 crossref_primary_10_3390_molecules29246063 crossref_primary_10_1002_adma_202311937 crossref_primary_10_1002_anie_202107858 crossref_primary_10_1021_acs_inorgchem_2c03040 crossref_primary_10_1021_acsami_1c09774 crossref_primary_10_1039_D2TA08722G crossref_primary_10_1002_ange_202116057 crossref_primary_10_1039_D4SC07740G crossref_primary_10_1016_j_apcatb_2021_120536 crossref_primary_10_1016_j_seppur_2022_122066 crossref_primary_10_1039_D2TC04812D crossref_primary_10_1007_s11426_023_1943_5 crossref_primary_10_1002_smtd_202300350 crossref_primary_10_1016_j_rser_2024_114863 crossref_primary_10_1002_adfm_202411991 crossref_primary_10_1016_j_apt_2022_103936 crossref_primary_10_1016_j_apcatb_2023_122642 crossref_primary_10_1002_adfm_202408870 crossref_primary_10_1016_j_matlet_2021_131550 crossref_primary_10_1002_anie_202320218 crossref_primary_10_1039_D2NH00549B crossref_primary_10_1016_j_apsusc_2021_149366 crossref_primary_10_1016_j_jcis_2025_02_014 crossref_primary_10_1016_j_apcatb_2021_120266 crossref_primary_10_1002_aenm_202301643 crossref_primary_10_1016_j_jmst_2022_08_001 crossref_primary_10_1016_j_apcatb_2025_125164 crossref_primary_10_1016_j_micrna_2022_207422 crossref_primary_10_1002_anie_202116057 crossref_primary_10_1016_j_apsusc_2021_149809 crossref_primary_10_1039_D3TC01102J crossref_primary_10_1016_j_ceramint_2024_06_299 crossref_primary_10_1016_j_jcis_2022_08_120 crossref_primary_10_1016_j_apcatb_2024_123889 crossref_primary_10_1016_j_flatc_2025_100823 crossref_primary_10_1016_j_cjsc_2023_100201 crossref_primary_10_1016_j_cej_2024_154359 crossref_primary_10_1002_adfm_202110258 crossref_primary_10_1002_cnma_202300140 crossref_primary_10_1016_j_seppur_2021_120416 crossref_primary_10_1016_j_nanoen_2023_108228 crossref_primary_10_1016_j_jhazmat_2021_126280 crossref_primary_10_1016_j_ceramint_2024_09_246 crossref_primary_10_1016_j_apcatb_2022_121388 crossref_primary_10_1016_j_jallcom_2024_177652 crossref_primary_10_1038_s41467_021_24511_z crossref_primary_10_1002_smll_202205666 crossref_primary_10_1021_acs_langmuir_4c03461 crossref_primary_10_1039_D1TA10270B crossref_primary_10_1002_sstr_202300339 crossref_primary_10_1016_j_mattod_2022_05_022 crossref_primary_10_1002_smll_202100367 crossref_primary_10_1016_j_cej_2023_142512 crossref_primary_10_1039_D1CY00595B crossref_primary_10_1016_j_apcatb_2023_122859 crossref_primary_10_1007_s11051_024_06194_x crossref_primary_10_1016_j_nanoen_2025_110672 crossref_primary_10_1016_j_jallcom_2024_174729 crossref_primary_10_1002_idm2_12176 crossref_primary_10_1016_j_jcis_2022_10_022 crossref_primary_10_1021_acs_chemmater_0c04037 crossref_primary_10_1016_j_apcatb_2022_121373 crossref_primary_10_1039_D3EY00047H crossref_primary_10_1039_D1CY00803J crossref_primary_10_1016_j_cej_2024_149267 crossref_primary_10_1016_j_apcatb_2024_123790 crossref_primary_10_1039_D1NJ00668A crossref_primary_10_1016_j_cej_2023_144250 crossref_primary_10_1063_5_0148941 crossref_primary_10_1016_S1872_2067_23_64530_9 crossref_primary_10_1021_acs_chemmater_3c01298 crossref_primary_10_1002_slct_202400179 crossref_primary_10_1038_s41467_022_29826_z crossref_primary_10_1002_advs_202206286 crossref_primary_10_1007_s10562_021_03831_1 crossref_primary_10_1039_D4CS01322K crossref_primary_10_1039_D2QM00551D crossref_primary_10_1016_j_surfin_2022_102405 crossref_primary_10_1021_acsanm_3c04213 crossref_primary_10_1021_acsanm_3c05941 crossref_primary_10_1021_acs_jpcc_3c04814 crossref_primary_10_1016_j_jcis_2024_03_008 crossref_primary_10_1038_s41467_022_29825_0 crossref_primary_10_1021_acscatal_4c08035 crossref_primary_10_1039_D0TA00901F crossref_primary_10_1039_D2TA03333J crossref_primary_10_1016_j_apsusc_2024_160352 crossref_primary_10_1016_j_ijhydene_2024_08_464 crossref_primary_10_1002_cey2_66 crossref_primary_10_1016_j_apsusc_2022_154433 crossref_primary_10_1021_acsnano_4c01190 crossref_primary_10_1002_smll_202300770 crossref_primary_10_1007_s12274_024_6636_z crossref_primary_10_1002_ange_202403949 crossref_primary_10_1038_s41467_021_25261_8 crossref_primary_10_1016_j_cej_2020_125476 crossref_primary_10_1016_j_jmat_2021_02_015 crossref_primary_10_1016_j_cej_2021_130822 crossref_primary_10_1016_j_cej_2023_142577 crossref_primary_10_1007_s10854_024_11974_1 crossref_primary_10_1016_j_mattod_2022_06_009 crossref_primary_10_1016_S1872_2067_24_60039_2 crossref_primary_10_1016_j_cej_2024_150075 crossref_primary_10_1021_acs_inorgchem_4c05042 crossref_primary_10_1007_s10562_020_03389_4 crossref_primary_10_1016_j_jcis_2024_06_077 crossref_primary_10_1016_j_flatc_2024_100718 crossref_primary_10_1016_j_seppur_2023_124164 crossref_primary_10_1039_D4TA01795A crossref_primary_10_1016_j_jece_2021_107123 crossref_primary_10_1002_ange_202107858 crossref_primary_10_1016_j_cej_2022_140198 crossref_primary_10_1016_j_compscitech_2022_109657 crossref_primary_10_1016_j_jallcom_2023_171161 crossref_primary_10_1021_acscatal_4c04687 crossref_primary_10_1002_adma_202101026 crossref_primary_10_1016_j_apcatb_2021_120980 crossref_primary_10_1038_s41467_024_53834_w crossref_primary_10_1039_D2NR04727F crossref_primary_10_1016_j_jphotochem_2024_115834 crossref_primary_10_1016_j_ultsonch_2022_106223 crossref_primary_10_1016_j_cej_2020_125229 crossref_primary_10_1016_j_cej_2023_144628 crossref_primary_10_1016_j_materresbull_2023_112522 crossref_primary_10_1016_j_ccr_2024_216324 crossref_primary_10_1039_D4NR02217C crossref_primary_10_3390_ma16083249 crossref_primary_10_1039_D2NJ00976E crossref_primary_10_1021_acs_chemrev_4c00490 crossref_primary_10_1039_D4SC06333C crossref_primary_10_1016_j_apcatb_2023_123307 crossref_primary_10_1016_j_cej_2021_134104 crossref_primary_10_1016_j_esci_2025_100398 crossref_primary_10_1142_S0217984921501190 crossref_primary_10_1021_acscatal_0c05354 crossref_primary_10_1007_s12274_023_5507_3 crossref_primary_10_1039_D0TA02102D crossref_primary_10_1002_adma_202106308 crossref_primary_10_1016_j_apcatb_2023_123023 crossref_primary_10_1016_j_matt_2020_07_004 crossref_primary_10_1039_D1NJ03770F |
Cites_doi | 10.1039/C4EE03271C 10.1002/anie.201811709 10.1016/j.apcatb.2016.09.037 10.1002/anie.201706549 10.1346/CCMN.1990.0380206 10.1039/C5SC00766F 10.1016/j.watres.2013.01.056 10.1002/smll.201201161 10.1021/cm402092f 10.1016/j.jhazmat.2009.03.076 10.1039/C3NR05246J 10.1002/adfm.201707178 10.1103/PhysRevB.89.205309 10.1126/science.aad3459 10.1016/j.apcatb.2017.08.004 10.1016/j.jcis.2017.04.075 10.1002/adma.201601694 10.1073/pnas.1011972107 10.1021/jacs.8b04039 10.1021/acsami.9b00925 10.1039/C6SC03707K 10.1016/j.cej.2019.04.161 10.1002/adma.201806626 10.1002/cssc.201800180 10.1039/C4NR02553A 10.1103/PhysRevB.78.195313 10.1002/aenm.201870040 10.1016/j.apcatb.2013.09.050 10.1002/pssb.201800314 10.1016/j.nanoen.2019.04.038 10.1038/ncomms11480 10.1021/jacs.7b12641 10.1002/anie.201504135 10.1021/ja210484t 10.1016/j.apcatb.2008.01.024 10.1021/acs.jpclett.7b00285 10.1039/c2ce26005k 10.1002/adma.201900546 10.1021/ja205456b 10.1002/adma.201801988 10.1002/aenm.201803951 10.1021/acs.nanolett.7b02799 10.1002/aenm.201803889 10.1007/s101890170025 10.1103/PhysRevB.59.15363 10.1039/c1jm11005e 10.1093/acprof:oso/9780198507789.001.0001 10.1002/anie.201310635 10.1002/adma.201705941 10.1039/c2ra20881d 10.1002/anie.201103960 10.1016/j.apcatb.2019.118262 10.1021/es702495w 10.1039/C5TA01814E 10.1021/cr00017a013 10.1039/C4EE02914C 10.1038/ncomms13907 10.1039/C6CP06147H 10.1039/C8CS00320C 10.1039/c1cy00261a 10.1039/C4CS00126E 10.1039/C4TA04779F 10.1021/es801672a 10.1002/smll.201601546 10.1039/C4NR05058D 10.1021/jacs.5b12666 10.1063/1.105227 10.1016/j.apcatb.2018.06.013 10.1021/acssuschemeng.8b01023 10.1021/ar900209b 10.1021/acs.jpcc.9b02045 10.1103/PhysRevB.57.R9435 10.1016/j.nanoen.2018.05.053 10.1002/anie.201703827 10.1140/epjst/e2010-01212-5 10.1002/anie.201905274 10.1039/C5NJ03478G 10.1063/1.112823 10.1021/jp071987v 10.1002/adma.201705060 10.1002/adma.201600301 10.1039/c1cc11015b 10.1039/C4TA01807A 10.1002/cctc.201800859 10.1021/nn2001933 10.1016/j.molcata.2011.08.013 10.1021/ol403736m 10.1038/nphoton.2012.175 10.1002/chem.201302884 10.1021/jp906680e 10.1016/j.mtadv.2019.100006 10.1002/anie.201901361 10.1346/CCMN.2001.0490511 |
ContentType | Journal Article |
Copyright | 2019 The Authors. published by John Wiley & Sons Australia, Ltd on behalf of The Hong Kong Polytechnic University |
Copyright_xml | – notice: 2019 The Authors. published by John Wiley & Sons Australia, Ltd on behalf of The Hong Kong Polytechnic University |
DBID | 24P AAYXX CITATION |
DOI | 10.1002/eom2.12007 |
DatabaseName | Wiley Online Library Open Access CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2567-3173 |
EndPage | n/a |
ExternalDocumentID | 10_1002_eom2_12007 EOM212007 |
Genre | reviewArticle |
GrantInformation_xml | – fundername: Collaborative Innovation Center for Regional Environmental Quality – fundername: National Natural Science Foundation of China funderid: 21437003; 21621003; 21673126; 21761142017; 21872077 |
GroupedDBID | 0R~ 1OC 24P AAHHS ABJCF ACCFJ ACCMX ACXQS ADKYN ADZMN ADZOD AEEZP AEQDE AEUYN AFKRA AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ATCPS AVUZU BENPR BGLVJ BHPHI CCPQU EBS EDH GROUPED_DOAJ HCIFZ IAO ITC KB. M~E PATMY PDBOC PIMPY PYCSY WIN AAYXX CITATION IEP PHGZM PHGZT |
ID | FETCH-LOGICAL-c3097-d94e29c28a55cd292a09becd17b1f938feccdba6596f3dfab3702544d2f4e81e3 |
IEDL.DBID | 24P |
ISSN | 2567-3173 |
IngestDate | Tue Jul 01 02:50:12 EDT 2025 Thu Apr 24 23:12:20 EDT 2025 Wed Jan 22 16:37:40 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3097-d94e29c28a55cd292a09becd17b1f938feccdba6596f3dfab3702544d2f4e81e3 |
Notes | Funding information Collaborative Innovation Center for Regional Environmental Quality; National Natural Science Foundation of China, Grant/Award Numbers: 21437003, 21621003, 21673126, 21761142017, 21872077 |
ORCID | 0000-0002-0042-7069 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Feom2.12007 |
PageCount | 20 |
ParticipantIDs | crossref_primary_10_1002_eom2_12007 crossref_citationtrail_10_1002_eom2_12007 wiley_primary_10_1002_eom2_12007_EOM212007 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2019 2019-12-00 |
PublicationDateYYYYMMDD | 2019-12-01 |
PublicationDate_xml | – month: 12 year: 2019 text: December 2019 |
PublicationDecade | 2010 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA |
PublicationTitle | EcoMat (Beijing, China) |
PublicationYear | 2019 |
Publisher | John Wiley & Sons, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc |
References | 2017; 8 2013; 25 1991; 58 2009; 42 2019; 11 2019; 58 2008; 78 2009; 113 2001; 49 2012; 14 2010; 180 2019; 123 1994; 65 2018; 47 2013; 9 2013; 19 2018; 6 2018; 8 2012; 134 2019; 62 2014; 2 2001 2000; 11 1999; 59 2019; 25 2014; 16 1985 2016; 40 2011; 21 2018; 30 2014; 7 2014; 6 2017; 202 2009; 169 1998; 57 2014; 53 2018; 28 2018; 220 2019; 9 2015; 6 2013; 47 2018; 140 2011; 1 2015; 3 2019; 31 2020; 262 1990; 38 2019; 1 2015; 54 2017; 29 1992 2016; 18 2015; 8 2011; 5 2014; 89 2011; 133 2014; 43 2016; 12 2015; 350 2016; 7 2012; 2 2011; 108 2011; 348 2001; 6 2018; 237 1993; 93 2017; 17 2007; 111 2017; 56 2011; 50 2019; 256 2016; 138 2018; 50 2008; 42 2011; 47 2012; 6 2018; 11 2016; 28 2019; 372 2018; 10 2008; 82 2014; 147 2017; 501 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 e_1_2_8_5_1 e_1_2_8_9_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_87_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_83_1 e_1_2_8_19_1 e_1_2_8_15_1 e_1_2_8_38_1 Ran J (e_1_2_8_16_1) 2019; 25 e_1_2_8_95_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_30_1 e_1_2_8_72_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_48_1 e_1_2_8_2_1 Shaw D (e_1_2_8_69_1) 1992 e_1_2_8_6_1 e_1_2_8_21_1 e_1_2_8_67_1 e_1_2_8_44_1 e_1_2_8_86_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_82_1 e_1_2_8_18_1 e_1_2_8_14_1 e_1_2_8_37_1 e_1_2_8_79_1 e_1_2_8_94_1 e_1_2_8_90_1 Esser N (e_1_2_8_23_1) 2019; 256 e_1_2_8_98_1 e_1_2_8_10_1 e_1_2_8_56_1 e_1_2_8_33_1 e_1_2_8_75_1 e_1_2_8_28_1 Pierre L (e_1_2_8_52_1) 1999; 59 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_3_1 e_1_2_8_81_1 e_1_2_8_7_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_89_1 e_1_2_8_62_1 e_1_2_8_85_1 e_1_2_8_17_1 Steiner K (e_1_2_8_50_1) 2014; 89 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 Wu W (e_1_2_8_70_1) 2001; 49 e_1_2_8_97_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_78_1 e_1_2_8_51_1 e_1_2_8_74_1 Nye JF (e_1_2_8_91_1) 1985 e_1_2_8_93_1 e_1_2_8_46_1 e_1_2_8_27_1 RFG CJVANOSS (e_1_2_8_71_1) 1990; 38 e_1_2_8_80_1 e_1_2_8_4_1 e_1_2_8_8_1 e_1_2_8_42_1 e_1_2_8_88_1 e_1_2_8_65_1 e_1_2_8_84_1 e_1_2_8_61_1 e_1_2_8_39_1 e_1_2_8_35_1 e_1_2_8_58_1 e_1_2_8_92_1 e_1_2_8_96_1 e_1_2_8_31_1 e_1_2_8_77_1 Xue D (e_1_2_8_57_1) 2000; 11 e_1_2_8_12_1 e_1_2_8_54_1 e_1_2_8_73_1 |
References_xml | – volume: 1 start-page: 100006 year: 2019 article-title: Controlled synthesis of g‐C3N4@BiPO4 core–shell nanorods via low temperature reassembled strategy publication-title: Mater Today Adv – volume: 140 start-page: 6729 year: 2018 end-page: 6740 article-title: Charge carrier activity on single‐particle photo(electro)catalysts: toward function in solar energy conversion publication-title: J Am Chem Soc – volume: 8 start-page: 1870040 issue: 9 year: 2018 article-title: Atomically thin mesoporous In2O3–x/In2S3 lateral heterostructures enabling robust broadband‐light photo‐electrochemical water splitting publication-title: Adv Energy Mater – volume: 3 start-page: 12179 year: 2015 end-page: 12187 article-title: Efficient photocatalytic dechlorination of chlorophenols over a nonlinear optical material Na3VO2B6O11 under UV‐visible light irradiation publication-title: J Mater Chem A – volume: 47 start-page: 3947 year: 2013 end-page: 3958 article-title: Effects of nanosized titanium dioxide on the physicochemical stability of activated sludge flocs using the thermodynamic approach and Kelvin probe force microscopy publication-title: Water Res – volume: 348 start-page: 100 year: 2011 end-page: 105 article-title: Photocatalytic activity and photoelectric performance enhancement for ZnWO4 by fluorine substitution publication-title: J Mol Catal A Chem – volume: 28 start-page: 4059 year: 2016 end-page: 4064 article-title: Giant enhancement of internal electric field boosting bulk charge separation for Photocatalysis publication-title: Adv Mater – volume: 30 year: 2018 article-title: Energy materials design for steering charge kinetics publication-title: Adv Mater – volume: 30 start-page: 1705941 year: 2018 article-title: Interstitial P‐doped CdS with long‐lived Photogenerated electrons for photocatalytic water splitting without sacrificial agents publication-title: Adv Mater – volume: 350 start-page: 1061 year: 2015 article-title: Semiconductorinterfacial carrier dynamicsvia photoinduced electric fields publication-title: Science – volume: 43 start-page: 5234 year: 2014 end-page: 5244 article-title: Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances publication-title: Chem Soc Rev – volume: 7 start-page: 3934 year: 2014 end-page: 3951 article-title: Hetero‐nanostructured suspended photocatalysts for solar‐to‐fuel conversion publication-title: Energy Environ Sci – volume: 501 start-page: 273 year: 2017 end-page: 281 article-title: Study on dynamic properties of the photoexcited charge carriers at anatase TiO2 nanowires/fluorine doped tin oxide interface publication-title: J Colloid Interface Sci – volume: 9 start-page: 140 year: 2013 end-page: 147 article-title: Synthesis of few‐layer MoS2 nanosheet‐coated TiO2 nanobelt heterostructures for enhanced photocatalytic activities publication-title: Small – volume: 82 start-page: 219 year: 2008 end-page: 224 article-title: Nb2O5 as efficient and recyclable photocatalyst for indigo carmine degradation publication-title: Appl Catal B Environ – volume: 57 year: 1998 article-title: Reduction of oscillator strength due to piezoelectric fields in GaN/AlxGa1‐xN quantum wells publication-title: Phys Rev B – volume: 8 start-page: 731 year: 2015 end-page: 759 article-title: Visible‐light driven heterojunction photocatalysts for water splitting – a critical review publication-title: Energy Environ Sci – volume: 58 start-page: 2921 year: 1991 end-page: 2923 article-title: Kelvin probe force microscopy publication-title: Appl Phys Lett – volume: 180 start-page: 61 year: 2010 end-page: 89 article-title: Colossal dielectric constants in transition‐metal oxides publication-title: Europ Phys J Spec Topic – volume: 7 start-page: 11480 year: 2016 article-title: Superior visible light hydrogen evolution of Janus bilayer junctions via atomic‐level charge flow steering publication-title: Nat Commun – volume: 1 start-page: 1399 year: 2011 end-page: 1405 article-title: Effects of distortion of PO4 tetrahedron on the photocatalytic performances of BiPO4 publication-title: Cat Sci Technol – volume: 123 start-page: 10826 year: 2019 end-page: 10830 article-title: Design growth of triangular pyramid MAPbBr3 single crystal and its photoelectric anisotropy between (100) and (111) facets publication-title: J Phys Chem C – volume: 6 start-page: 8473 year: 2014 end-page: 8488 article-title: Bismuth oxyhalide nanomaterials: layered structures meet photocatalysis publication-title: Nanoscale – volume: 10 start-page: 4477 year: 2018 end-page: 4496 article-title: Facet, junction and electric field engineering of bismuth‐based materials for photocatalysis publication-title: ChemCatChem – volume: 6 start-page: 511 year: 2012 end-page: 518 article-title: Artificial photosynthesis for solar water‐splitting publication-title: Nat Photonics – volume: 78 year: 2008 article-title: Intrinsic optical nonlinearity in colloidal seeded grown CdSe/CdS nanostructures: Photoinduced screening of the internal electric field publication-title: Phys Rev B – volume: 25 start-page: 9 year: 2019 article-title: Atomically dispersed single co sites in Zeolitic imidazole frameworks promoting high‐efficiency visible‐light‐driven hydrogen production publication-title: Chemistry – volume: 6 start-page: 29 year: 2001 end-page: 35 article-title: Nanoparticles superficial density of chargein electric double‐layered magnetic fluid: A conductimetric and potentiometric approach publication-title: Eur Phys J E – volume: 14 start-page: 8076 year: 2012 end-page: 8082 article-title: Synthesis and photoactivity enhancement of ZnWO4 photocatalysts doped with chlorine publication-title: CrystEngComm – volume: 56 start-page: 10373 year: 2017 end-page: 10377 article-title: Phosphorene co‐catalyst advancing highly efficient visible‐light photocatalytic hydrogen production publication-title: Angew Chem Int Ed Engl – volume: 19 start-page: 14777 year: 2013 end-page: 14780 article-title: Efficient separation of photogenerated electron‐hole pairs by the combination of a heterolayered structure and internal polar field in pyroelectric BiOIO3 nanoplates publication-title: Chemistry – volume: 47 start-page: 8238 year: 2018 end-page: 8262 article-title: Imaging photogenerated charge carriers on surfaces and interfaces of photocatalysts with surface photovoltage microscopy publication-title: Chem Soc Rev – volume: 138 start-page: 4286 year: 2016 end-page: 4289 article-title: Synergetic integration of Cu1.94S‐ZnxCd1‐xS heteronanorods for enhanced visible‐light‐driven photocatalytic hydrogen production publication-title: J Am Chem Soc – volume: 50 start-page: 383 year: 2018 end-page: 392 article-title: Local spatial charge separation and proton activation induced by surface hydroxylation promoting photocatalytic hydrogen evolution of polymeric carbon nitride publication-title: Nano Energy – volume: 29 year: 2017 article-title: Heterojunction photocatalysts publication-title: Adv Mater – volume: 56 start-page: 11860 year: 2017 end-page: 11864 article-title: Macroscopic polarization enhancement promoting photo‐ and piezoelectric‐induced charge separation and molecular oxygen activation publication-title: Angew Chem Int Ed Engl – volume: 108 start-page: 29 year: 2011 end-page: 34 article-title: Photoinduced electron transfer from semiconductor quantum dots to metal oxide nanoparticles publication-title: Proc Natl Acad Sci U S A – volume: 42 start-page: 8516 year: 2008 end-page: 8521 article-title: Fluorination of ZnWO4 photocatalyst and influence on the degradation mechanism for 4‐chlorophenol publication-title: Environ Sci Technol – volume: 21 start-page: 12479 year: 2011 article-title: Synthesis of highly symmetrical BiOI single‐crystal nanosheets and their {001} facet‐dependent photoactivity publication-title: J Mater Chem – volume: 31 year: 2019 article-title: Surface‐halogenation‐induced atomic‐site activation and local charge separation for superb CO2 photoreduction publication-title: Adv Mater – volume: 11 start-page: 1521 year: 2018 end-page: 1532 article-title: Internal polarization modulation in Bi2 MoO6 for photocatalytic performance enhancement under visible‐light illumination publication-title: ChemSusChem – volume: 237 start-page: 633 year: 2018 end-page: 640 article-title: Ultrathin nanosheets g‐C 3 N 4 @Bi 2 WO 6 core‐shell structure via low temperature reassembled strategy to promote photocatalytic activity publication-title: Appl Catal B Environ – volume: 9 start-page: 1803951 year: 2019 article-title: Interfacial charge modulation: an efficient strategy for boosting spatial charge separation on semiconductor Photocatalysts publication-title: Adv Energy Mater – volume: 220 start-page: 337 year: 2018 end-page: 347 article-title: Photocatalytic activity enhancement of core‐shell structure g‐C3N4@TiO2 via controlled ultrathin g‐C3N4 layer publication-title: Appl Catal B Environ – year: 1992 – volume: 65 start-page: 1938 year: 1994 end-page: 1939 article-title: Empirical formula for the dielectric constant of cubic semiconductors publication-title: Appl Phys Lett – volume: 17 start-page: 6735 year: 2017 end-page: 6741 article-title: Visualizing the nano cocatalyst aligned electric fields on single photocatalyst particles publication-title: Nano Lett – volume: 262 start-page: 118262 year: 2020 article-title: Enhanced photoactivity and oxidizing ability simultaneously via internal electric field and valence band position by crystal structure of bismuth oxyiodide publication-title: Appl Catal B Environ – volume: 8 start-page: 13907 year: 2017 article-title: Ti3C2 MXene co‐catalyst on metal sulfide photo‐absorbers for enhanced visible‐light photocatalytic hydrogen production publication-title: Nat Commun – volume: 113 start-page: 19633 year: 2009 end-page: 19638 article-title: Photocatalytic activity enhancement for Bi2WO6 by fluorine substitution publication-title: J Phys Chem C – volume: 93 start-page: 267 year: 1993 article-title: Photochemistry on nonreactive and reactive (semiconductor) surfaces publication-title: Chem Rev – volume: 133 start-page: 12422 year: 2011 end-page: 12425 article-title: BiO(IO3): a new polar iodate that exhibits an aurivillius‐type (Bi2O2)2+ layer and a large SHG response publication-title: J Am Chem Soc – volume: 256 year: 2019 article-title: Electric field induced Raman scattering at the Sb‐InP(110) interface: the surface dipole contribution publication-title: Phys Status Solidi B – volume: 5 start-page: 3736 year: 2011 end-page: 3743 article-title: Synthesis, Control, and Characterization of Surface Properties of Cu O Nanostructures publication-title: ACS Nano – volume: 38 start-page: 151 year: 1990 end-page: 159 article-title: DLVO and non‐DLVO interactions in hectorite publication-title: Clay Clay Miner – year: 1985 – volume: 6 start-page: 167 year: 2014 end-page: 171 article-title: Synthesis and internal electric field dependent photoreactivity of Bi3O4Cl single‐crystalline nanosheets with high {001} facet exposure percentages publication-title: Nanoscale – volume: 31 year: 2019 article-title: A full‐spectrum metal‐free porphyrin supramolecular photocatalyst for dual functions of highly efficient hydrogen and oxygen evolution publication-title: Adv Mater – volume: 140 start-page: 4965 year: 2018 end-page: 4968 article-title: Chromophore dipole directs morphology and photocatalytic hydrogen generation publication-title: J Am Chem Soc – year: 2001 – volume: 111 start-page: 11952 year: 2007 end-page: 11958 article-title: Enhanced photocatalytic activity of ZnWO4 catalyst via fluorine doping publication-title: J Phys Chem C – volume: 25 start-page: 4215 year: 2013 end-page: 4223 article-title: Effect of ferroelectricity on solar‐light‐driven photocatalytic activity of BaTiO3—influence on the carrier separation and stern layer formation publication-title: Chem Mater – volume: 58 start-page: 10873 year: 2019 end-page: 10878 article-title: Dimension‐matched zinc phthalocyanine/BiVO4 ultrathin nanocomposites for CO reduction as efficient wide‐visible‐light‐driven photocatalysts via a cascade charge transfer publication-title: Angew Chem Int Ed Engl – volume: 2 start-page: 9224 year: 2012 end-page: 9229 article-title: First‐principles studies on facet‐dependent photocatalytic properties of bismuth oxyhalides (BiOXs) publication-title: RSC Advances – volume: 6 start-page: 4118 year: 2015 end-page: 4123 article-title: Insights into the structure‐photoreactivity relationships in well‐defined perovskite ferroelectric KNbO3 nanowires publication-title: Chem Sci – volume: 54 start-page: 9111 year: 2015 end-page: 9114 article-title: Direct imaging of highly anisotropic photogenerated charge separations on different facets of a single BiVO4 photocatalyst publication-title: Angew Chem Int Ed Engl – volume: 59 start-page: 15363 year: 1999 end-page: 15367 article-title: Time‐resolved photoluminescence as a probe of internal electric fields in GaN‐(GaAl)N quantum wells publication-title: Phys Rev B – volume: 42 start-page: 2085 year: 2008 end-page: 2091 article-title: Jianmin photocatalytic degradation of RhB by fluorinated Bi2WO6 and distributions of the intermediate products publication-title: Environ Sci Technol – volume: 42 start-page: 1890 year: 2009 end-page: 1898 article-title: Solar fuels via artificial photosynthesis publication-title: Acc Chem Res – volume: 50 start-page: 9141 year: 2011 end-page: 9144 article-title: NaSr3Be3B3O9F4: a promising deep‐ultraviolet nonlinear optical material resulting from the cooperative alignment of the [Be3B3O12F](10‐) anionic group publication-title: Angew Chem Int Ed Engl – volume: 6 start-page: 8704 year: 2018 end-page: 8710 article-title: Internal electric field assisted photocatalytic generation of hydrogen peroxide over BiOCl with HCOOH publication-title: ACS Sustain Chem Eng – volume: 8 start-page: 1419 year: 2017 end-page: 1423 article-title: Directly probing charge separation at Interface of TiO2 phase junction publication-title: J Phys Chem Lett – volume: 28 year: 2018 article-title: High performance BiOCl Nanosheets/TiO2 nanotube arrays heterojunction UV photodetector: the influences of self‐induced inner electric fields in the BiOCl nanosheets publication-title: Adv Funct Mater – volume: 58 start-page: 10061 year: 2019 end-page: 10073 article-title: The role of polarization in photocatalysis publication-title: Angew Chem Int Ed Engl – volume: 53 start-page: 5107 year: 2014 end-page: 5111 article-title: Designing p‐type semiconductor‐metal hybrid structures for improved photocatalysis publication-title: Angew Chem Int Ed Engl – volume: 2 start-page: 13041 year: 2014 end-page: 13048 article-title: Enhancement of photocatalytic activity for BiPO4via phase junction publication-title: J Mater Chem A – volume: 134 start-page: 4473 year: 2012 end-page: 4476 article-title: Synthesis and facet‐dependent photoreactivity of BiOCl single‐crystalline nanosheets publication-title: J Am Chem Soc – volume: 49 start-page: 446 issue: 5 year: 2001 end-page: 452 article-title: Baseline studies of the clay minerals society source clays colloid and surface phenomena publication-title: Clay Clay Miner – volume: 147 start-page: 851 year: 2014 end-page: 857 article-title: Fluorine mediated photocatalytic activity of BiPO4 publication-title: Appl Catal B Environ – volume: 202 start-page: 289 year: 2017 end-page: 297 article-title: Supramolecular organic nanofibers with highly efficient and stable visible light photooxidation performance publication-title: Appl Catal B Environ – volume: 62 start-page: 79 year: 2019 end-page: 84 article-title: Built‐in oriented electric field facilitating durable Zn MnO2 battery publication-title: Nano Energy – volume: 11 start-page: 4 year: 2000 article-title: A simple method for Determing dielectric constants of materials with the similar crystal structure publication-title: Chem Res Chinese U – volume: 16 start-page: 696 year: 2014 end-page: 699 article-title: Radical anions of trifluoromethylated perylene and naphthalene imide and diimide electron acceptors publication-title: Org Lett – volume: 372 start-page: 399 year: 2019 end-page: 407 article-title: BiVO4 nanocrystals with controllable oxygen vacancies induced by Zn‐doping coupled with graphene quantum dots for enhanced photoelectrochemical water splitting publication-title: Chem Eng J – volume: 30 year: 2018 article-title: Surface engineering for extremely enhanced charge separation and photocatalytic hydrogen evolution on g‐C3 N4 publication-title: Adv Mater – volume: 6 start-page: 15222 year: 2014 end-page: 15227 article-title: A superior photocatalytic performance of a novel Bi2SiO5 flower‐like microsphere via a phase junction publication-title: Nanoscale – volume: 40 start-page: 3000 year: 2016 end-page: 3009 article-title: Nitrogen‐doped titanium dioxide (N‐doped TiO2) for visible light photocatalysis publication-title: New J Chem – volume: 47 start-page: 6951 year: 2011 end-page: 6953 article-title: The {001} facets‐dependent high photoactivity of BiOCl nanosheets publication-title: Chem Commun (Camb) – volume: 169 start-page: 297 year: 2009 end-page: 301 article-title: Photocatalytic decouloration of malachite green dye by application of TiO2 nanotubes publication-title: J Hazard Mater – volume: 89 year: 2014 article-title: Band offsets of lattice‐matched semiconductor heterojunctions through hybrid functionals and G0W0 publication-title: Phys Rev B – volume: 11 start-page: 9629 year: 2019 end-page: 9640 article-title: Catalytic chemistry predicted by a charge polarization descriptor: synergistic O activation and CO oxidation by au‐cu bimetallic clusters on TiO (101) publication-title: ACS Appl Mater Interfaces – volume: 18 start-page: 31175 year: 2016 end-page: 31183 article-title: A new understanding of the photocatalytic mechanism of the direct Z‐scheme g‐C3N4/TiO2 heterostructure publication-title: Phys Chem Chem Phys – volume: 8 start-page: 91 year: 2017 end-page: 100 article-title: Gradient doping of phosphorus in Fe2O3 nanoarray photoanodes for enhanced charge separation publication-title: Chem Sci – volume: 58 start-page: 7526 year: 2019 end-page: 7536 article-title: Enabling PIEZOpotential in PIEZOelectric semiconductors for enhanced catalytic activities publication-title: Angew Chem Int Ed Engl – volume: 9 start-page: 1803889 issue: 15 year: 2019 article-title: Efficient plasmonic Au/CdSe nanodumbbell for photoelectrochemical hydrogen generation beyond visible region publication-title: Adv Energy Mater – volume: 12 start-page: 4370 year: 2016 end-page: 4378 article-title: Polyaniline/carbon nitride nanosheets composite hydrogel: a separation‐free and high‐efficient photocatalyst with 3D hierarchical structure publication-title: Small – volume: 3 start-page: 2741 year: 2015 end-page: 2747 article-title: Enhancement of photocatalytic performance via a P3HT‐g‐C3N4 heterojunction publication-title: J Mater Chem A – ident: e_1_2_8_5_1 doi: 10.1039/C4EE03271C – ident: e_1_2_8_93_1 doi: 10.1002/anie.201811709 – ident: e_1_2_8_42_1 doi: 10.1016/j.apcatb.2016.09.037 – ident: e_1_2_8_47_1 doi: 10.1002/anie.201706549 – volume: 38 start-page: 151 year: 1990 ident: e_1_2_8_71_1 article-title: DLVO and non‐DLVO interactions in hectorite publication-title: Clay Clay Miner doi: 10.1346/CCMN.1990.0380206 – ident: e_1_2_8_96_1 doi: 10.1039/C5SC00766F – ident: e_1_2_8_64_1 doi: 10.1016/j.watres.2013.01.056 – ident: e_1_2_8_61_1 doi: 10.1002/smll.201201161 – ident: e_1_2_8_98_1 doi: 10.1021/cm402092f – ident: e_1_2_8_68_1 doi: 10.1016/j.jhazmat.2009.03.076 – ident: e_1_2_8_29_1 doi: 10.1039/C3NR05246J – ident: e_1_2_8_20_1 doi: 10.1002/adfm.201707178 – volume: 89 start-page: 205309 year: 2014 ident: e_1_2_8_50_1 article-title: Band offsets of lattice‐matched semiconductor heterojunctions through hybrid functionals and G0W0 publication-title: Phys Rev B doi: 10.1103/PhysRevB.89.205309 – ident: e_1_2_8_18_1 doi: 10.1126/science.aad3459 – ident: e_1_2_8_36_1 doi: 10.1016/j.apcatb.2017.08.004 – ident: e_1_2_8_35_1 doi: 10.1016/j.jcis.2017.04.075 – ident: e_1_2_8_4_1 doi: 10.1002/adma.201601694 – ident: e_1_2_8_19_1 doi: 10.1073/pnas.1011972107 – ident: e_1_2_8_21_1 doi: 10.1021/jacs.8b04039 – ident: e_1_2_8_39_1 doi: 10.1021/acsami.9b00925 – ident: e_1_2_8_78_1 doi: 10.1039/C6SC03707K – ident: e_1_2_8_32_1 doi: 10.1016/j.cej.2019.04.161 – ident: e_1_2_8_30_1 doi: 10.1002/adma.201806626 – ident: e_1_2_8_22_1 doi: 10.1002/cssc.201800180 – ident: e_1_2_8_27_1 doi: 10.1039/C4NR02553A – ident: e_1_2_8_54_1 doi: 10.1103/PhysRevB.78.195313 – ident: e_1_2_8_9_1 doi: 10.1002/aenm.201870040 – ident: e_1_2_8_33_1 doi: 10.1016/j.apcatb.2013.09.050 – volume: 256 start-page: 1800314 year: 2019 ident: e_1_2_8_23_1 article-title: Electric field induced Raman scattering at the Sb‐InP(110) interface: the surface dipole contribution publication-title: Phys Status Solidi B doi: 10.1002/pssb.201800314 – ident: e_1_2_8_81_1 doi: 10.1016/j.nanoen.2019.04.038 – ident: e_1_2_8_26_1 doi: 10.1038/ncomms11480 – volume-title: Introduction to Colloid and Surface Chemistry An Imprint of Elsevier Science Linacre House, Jordan Hill, Oxford OX2 8DP 200 Wheeler Road year: 1992 ident: e_1_2_8_69_1 – ident: e_1_2_8_31_1 doi: 10.1021/jacs.7b12641 – ident: e_1_2_8_59_1 doi: 10.1002/anie.201504135 – ident: e_1_2_8_14_1 doi: 10.1021/ja210484t – ident: e_1_2_8_67_1 doi: 10.1016/j.apcatb.2008.01.024 – ident: e_1_2_8_72_1 doi: 10.1021/acs.jpclett.7b00285 – ident: e_1_2_8_77_1 doi: 10.1039/c2ce26005k – ident: e_1_2_8_38_1 doi: 10.1002/adma.201900546 – ident: e_1_2_8_97_1 doi: 10.1021/ja205456b – ident: e_1_2_8_45_1 doi: 10.1002/adma.201801988 – ident: e_1_2_8_46_1 doi: 10.1002/aenm.201803951 – ident: e_1_2_8_60_1 doi: 10.1021/acs.nanolett.7b02799 – ident: e_1_2_8_65_1 doi: 10.1002/aenm.201803889 – ident: e_1_2_8_66_1 doi: 10.1007/s101890170025 – volume: 59 start-page: 15363 year: 1999 ident: e_1_2_8_52_1 article-title: Time‐resolved photoluminescence as a probe of internal electric fields in GaN‐(GaAl)N quantum wells publication-title: Phys Rev B doi: 10.1103/PhysRevB.59.15363 – ident: e_1_2_8_90_1 doi: 10.1039/c1jm11005e – ident: e_1_2_8_92_1 doi: 10.1093/acprof:oso/9780198507789.001.0001 – ident: e_1_2_8_86_1 doi: 10.1002/anie.201310635 – ident: e_1_2_8_17_1 doi: 10.1002/adma.201705941 – ident: e_1_2_8_73_1 doi: 10.1039/c2ra20881d – ident: e_1_2_8_95_1 doi: 10.1002/anie.201103960 – ident: e_1_2_8_48_1 doi: 10.1016/j.apcatb.2019.118262 – ident: e_1_2_8_76_1 doi: 10.1021/es702495w – ident: e_1_2_8_63_1 doi: 10.1039/C5TA01814E – ident: e_1_2_8_7_1 doi: 10.1021/cr00017a013 – ident: e_1_2_8_10_1 doi: 10.1039/C4EE02914C – ident: e_1_2_8_15_1 doi: 10.1038/ncomms13907 – ident: e_1_2_8_51_1 doi: 10.1039/C6CP06147H – ident: e_1_2_8_58_1 doi: 10.1039/C8CS00320C – ident: e_1_2_8_41_1 doi: 10.1039/c1cy00261a – ident: e_1_2_8_6_1 doi: 10.1039/C4CS00126E – ident: e_1_2_8_44_1 doi: 10.1039/C4TA04779F – ident: e_1_2_8_34_1 doi: 10.1021/es801672a – ident: e_1_2_8_84_1 doi: 10.1002/smll.201601546 – volume: 25 start-page: 9 year: 2019 ident: e_1_2_8_16_1 article-title: Atomically dispersed single co sites in Zeolitic imidazole frameworks promoting high‐efficiency visible‐light‐driven hydrogen production publication-title: Chemistry – ident: e_1_2_8_13_1 doi: 10.1039/C4NR05058D – ident: e_1_2_8_11_1 doi: 10.1021/jacs.5b12666 – ident: e_1_2_8_62_1 doi: 10.1063/1.105227 – ident: e_1_2_8_82_1 doi: 10.1016/j.apcatb.2018.06.013 – ident: e_1_2_8_25_1 doi: 10.1021/acssuschemeng.8b01023 – ident: e_1_2_8_3_1 doi: 10.1021/ar900209b – ident: e_1_2_8_88_1 doi: 10.1021/acs.jpcc.9b02045 – volume-title: Physical Properties of Crystal year: 1985 ident: e_1_2_8_91_1 – ident: e_1_2_8_53_1 doi: 10.1103/PhysRevB.57.R9435 – ident: e_1_2_8_37_1 doi: 10.1016/j.nanoen.2018.05.053 – ident: e_1_2_8_85_1 doi: 10.1002/anie.201703827 – ident: e_1_2_8_56_1 doi: 10.1140/epjst/e2010-01212-5 – volume: 11 start-page: 4 year: 2000 ident: e_1_2_8_57_1 article-title: A simple method for Determing dielectric constants of materials with the similar crystal structure publication-title: Chem Res Chinese U – ident: e_1_2_8_8_1 doi: 10.1002/anie.201905274 – ident: e_1_2_8_80_1 doi: 10.1039/C5NJ03478G – ident: e_1_2_8_55_1 doi: 10.1063/1.112823 – ident: e_1_2_8_74_1 doi: 10.1021/jp071987v – ident: e_1_2_8_79_1 doi: 10.1002/adma.201705060 – ident: e_1_2_8_24_1 doi: 10.1002/adma.201600301 – ident: e_1_2_8_89_1 doi: 10.1039/c1cc11015b – ident: e_1_2_8_12_1 doi: 10.1039/C4TA01807A – ident: e_1_2_8_28_1 doi: 10.1002/cctc.201800859 – ident: e_1_2_8_87_1 doi: 10.1021/nn2001933 – ident: e_1_2_8_43_1 doi: 10.1016/j.molcata.2011.08.013 – ident: e_1_2_8_49_1 doi: 10.1021/ol403736m – ident: e_1_2_8_2_1 doi: 10.1038/nphoton.2012.175 – ident: e_1_2_8_94_1 doi: 10.1002/chem.201302884 – ident: e_1_2_8_75_1 doi: 10.1021/jp906680e – ident: e_1_2_8_83_1 doi: 10.1016/j.mtadv.2019.100006 – ident: e_1_2_8_40_1 doi: 10.1002/anie.201901361 – volume: 49 start-page: 446 issue: 5 year: 2001 ident: e_1_2_8_70_1 article-title: Baseline studies of the clay minerals society source clays colloid and surface phenomena publication-title: Clay Clay Miner doi: 10.1346/CCMN.2001.0490511 |
SSID | ssj0002504241 |
Score | 2.5245838 |
SecondaryResourceType | review_article |
Snippet | Photocatalysis as a desirable technology shows great potential in environmental remediation and renewable energy generation, but the recombination of... |
SourceID | crossref wiley |
SourceType | Enrichment Source Index Database Publisher |
SubjectTerms | built‐in electric field internal electric field photocatalysis photogenerated charge separation |
Title | Internal electric field engineering for steering photogenerated charge separation and enhancing photoactivity |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Feom2.12007 |
Volume | 1 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1LS8NAEICXUi96EJ9YH2VBLwqxyea54EWkpQhVDxZ6C7vZWSu0SbH16m93Zzd9CCJ4CQnMXmYymdnJzjeEXEmZyagA7mmfKy9K0aUYVsQg5jLxNVeAf3QHT0l_GD2O4lGD3C17YRwfYlVwQ8-w32t0cCHnnTU0FKopuw1cK_kW9tYiOZ9FL6sKC8K5mB1dacI6FuPScMUnZZ318h8RaTNDtSGmt0d269yQ3jtj7pMGlAdkZ4MYeEimdQVvQt38mveC2jNoFNZS1OSh1BjPPczG1aJ6s3Bpk1xSS0YCOgfH_K5KKkpcPUbuxlIcmx1wpsQRGfa6rw99r56Y4BWhz1NP8QgYL1gm4rhQjDPhc2MkFaQy0DzMtDGYkiKJeaJDpYUMU8soU0xHkAUQHpNmWZVwQmgSSCZUxLTiYAJdIjUXiYZUmO1rHAvZItdLreVFjRPHqRaT3IGQWY4azq2GW-RyJTtzEI1fpW6s8v8QybvPA2bvTv8jfEa2TZ7D3SmUc9JcfHzChcklFrJtX5m23Ymb6-Cr-w3r-8jS |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3dS8MwEMCDzAf1QfzE-RnQF4W6Nm3T5lFkY-o2fdhgbyVpEids7dD5_5tLajdBBN9auLzc9XrX693vELoSIhVRrpinfSa9KAGXIlARUzET1NdMKvij2x_Q7ih6HMfjqjcHZmEcH6IuuIFn2Pc1ODgUpFtLaqgqZ-Q2cLPk6xElCfgliV7qEgvQuYjdXWniOlTjkrAGlJLW8viPkLSaotoY09lB21VyiO-cNXfRmir20NYKMnAfzaoS3hS7BTZvObZNaFgtpbBJRLGxnruZT8pF-Wrp0ia7xBaNpPCHctDvssC8gNMTAG98i8O0AyyVOECjTnt43_WqlQleHvos8SSLFGE5SXkc55Iwwn1mrCSDRASahak2FpOC05hRHUrNRZhYSJkkOlJpoMJD1CjKQh0hTANBuIyIlkyZSEeFZpxqlXDz_RrHXDTR9bfWsrziicNai2nmSMgkAw1nVsNNdFnLzh1F41epG6v8P0Sy9nOf2Kvj_whfoI3usN_Leg-DpxO0aZIe5lpSTlFj8f6pzkxisRDn9vH5AlWIyhg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3dS8MwEMDD2ED0QfzE-RnQF4W6Nm3TBnwZujE_Nn2wMnwpSZM4YWuHzv_ffHTdBBF8a-HSh7tc73rN_Q6AM8ZiFmSCONIl3Aki7VJIV8RESBh2JeFC_9HtD3AvCe6G4bAGrua9MJYPURXctGeY97V28CmXrQU0VBQTdOnZVvKGxuSpPd1ovySvSVVj0XguZIZXqsCuy3GRXxFKUWvxgB8xaTlHNUGmuwHWy-wQtq05N0FN5FtgbYkZuA0mZQ1vDO0Em_cMmlNoUCykoMpEoTKfvZmOilnxZvDSKr2Eho0k4Kew1O8ihzTXq0eavDEX1-0OeqrEDki6nefrnlPOTHAy3yWRw0kgEMlQTMMw44gg6hJlJu5FzJPEj6UyGWcUhwRLn0vK_MhQyjiSgYg94e-Cel7kYg9A7DFEeYAkJ0KFOswkoViKiKoP2DCkrAnO51pLsxIorudajFOLQkap1nBqNNwEp5Xs1GI0fpW6MMr_QyTtPPaRudr_j_AJWHm66aYPt4P7A7Cqkh5ij6Qcgvrs40scqcRixo7L_fMNKdrLEA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Internal+electric+field+engineering+for+steering+photogenerated+charge+separation+and+enhancing+photoactivity&rft.jtitle=EcoMat+%28Beijing%2C+China%29&rft.au=Guo%2C+Yan&rft.au=Shi%2C+Wenxin&rft.au=Zhu%2C+Yongfa&rft.date=2019-12-01&rft.issn=2567-3173&rft.eissn=2567-3173&rft.volume=1&rft.issue=1&rft_id=info:doi/10.1002%2Feom2.12007&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_eom2_12007 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2567-3173&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2567-3173&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2567-3173&client=summon |