Internal electric field engineering for steering photogenerated charge separation and enhancing photoactivity

Photocatalysis as a desirable technology shows great potential in environmental remediation and renewable energy generation, but the recombination of photogenerated carriers is a key limiting factor for efficiency in artificial photosynthesis. Internal electric field (IEF, also known as built‐in ele...

Full description

Saved in:
Bibliographic Details
Published inEcoMat (Beijing, China) Vol. 1; no. 1
Main Authors Guo, Yan, Shi, Wenxin, Zhu, Yongfa
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.12.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Photocatalysis as a desirable technology shows great potential in environmental remediation and renewable energy generation, but the recombination of photogenerated carriers is a key limiting factor for efficiency in artificial photosynthesis. Internal electric field (IEF, also known as built‐in electric field) engineering acts an emerging and clearly viable route to increase photocatalytic efficiency by facilitating charge separation and transfer. This review summarizes the basic principles of IEF including the source, the strategies for the enhancement and the measurement of IEF. Highlight is the recent progress in steering photogenerated charge separation of photocatalysts by IEF engineering and related mechanisms. Finally, the challenges in IEF engineering and exciting opportunities to further enhancing charge separation and photocatalytic performance are discussed. In this review, we traced the source of IEF, summarized the enhancement methods of IEF and gave the measurement of IEF source. Highlight is the application advances in IEF for photocatalysis, firstly demonstrating that IEF engineering, an important, exciting, and highly potential emerging research area, is a whole new angle of view for steering the photogenerated charge.
AbstractList Photocatalysis as a desirable technology shows great potential in environmental remediation and renewable energy generation, but the recombination of photogenerated carriers is a key limiting factor for efficiency in artificial photosynthesis. Internal electric field (IEF, also known as built‐in electric field) engineering acts an emerging and clearly viable route to increase photocatalytic efficiency by facilitating charge separation and transfer. This review summarizes the basic principles of IEF including the source, the strategies for the enhancement and the measurement of IEF. Highlight is the recent progress in steering photogenerated charge separation of photocatalysts by IEF engineering and related mechanisms. Finally, the challenges in IEF engineering and exciting opportunities to further enhancing charge separation and photocatalytic performance are discussed. In this review, we traced the source of IEF, summarized the enhancement methods of IEF and gave the measurement of IEF source. Highlight is the application advances in IEF for photocatalysis, firstly demonstrating that IEF engineering, an important, exciting, and highly potential emerging research area, is a whole new angle of view for steering the photogenerated charge.
Author Shi, Wenxin
Zhu, Yongfa
Guo, Yan
Author_xml – sequence: 1
  givenname: Yan
  surname: Guo
  fullname: Guo, Yan
  organization: Harbin Institute of Technology
– sequence: 2
  givenname: Wenxin
  surname: Shi
  fullname: Shi, Wenxin
  organization: Chongqing University
– sequence: 3
  givenname: Yongfa
  orcidid: 0000-0002-0042-7069
  surname: Zhu
  fullname: Zhu, Yongfa
  email: zhuyf@mail.tsinghua.edu.cn
  organization: Tsinghua University
BookMark eNp9kEtLAzEUhYNUsNZu_AVZC1PzmOk0SylVC5VudD3cSW6mkWlSMkHpv3f6QETE1X3wnQPnXJOBDx4JueVswhkT9xi2YsIFY-UFGYpiWmaSl3LwY78i4657Zz1csFzkfEi2S58wemgptqhTdJpah62h6BvnEaPzDbUh0i6dj90mpNCgxwgJDdUbiA3SDnfQP1zwFPxBvQGvv3HQyX24tL8hlxbaDsfnOSJvj4vX-XO2Wj8t5w-rTEumysyoHIXSYgZFoY1QApiqURte1twqObOotalhWqiplcZCLcs-UZ4bYXOccZQjcnfy1TF0XURb7aLbQtxXnFWHrqpDV9Wxqx5mv2Dt0jFKiuDavyX8JPl0Le7_Ma8W6xdx0nwBvYyBGg
CitedBy_id crossref_primary_10_1016_j_jcis_2023_03_157
crossref_primary_10_1021_acs_langmuir_4c05287
crossref_primary_10_1002_adfm_202211565
crossref_primary_10_1021_acscatal_4c01703
crossref_primary_10_1016_S1872_2067_23_64502_4
crossref_primary_10_1016_j_seppur_2024_128829
crossref_primary_10_1016_j_jallcom_2025_179140
crossref_primary_10_1016_j_jcis_2021_06_003
crossref_primary_10_1002_smll_202401559
crossref_primary_10_1016_j_cej_2023_143369
crossref_primary_10_1016_j_cej_2023_146514
crossref_primary_10_1002_smll_202400344
crossref_primary_10_1016_j_apcatb_2020_119122
crossref_primary_10_1016_j_apsusc_2024_161863
crossref_primary_10_1016_j_ccr_2024_216115
crossref_primary_10_1039_D2CP02055F
crossref_primary_10_3390_electronics12122738
crossref_primary_10_1016_j_jallcom_2023_170335
crossref_primary_10_1002_smll_202301717
crossref_primary_10_1016_j_cej_2024_155514
crossref_primary_10_1016_j_jallcom_2024_177642
crossref_primary_10_1021_acsnano_2c09888
crossref_primary_10_1016_j_ijhydene_2024_04_072
crossref_primary_10_1002_aesr_202400285
crossref_primary_10_1002_anie_202403949
crossref_primary_10_3390_ijms24119109
crossref_primary_10_1016_j_mtener_2023_101408
crossref_primary_10_1016_j_surfin_2024_104226
crossref_primary_10_1039_D3CY01139A
crossref_primary_10_1038_s41467_023_41522_0
crossref_primary_10_1002_adfm_202104519
crossref_primary_10_1007_s10562_024_04887_5
crossref_primary_10_1016_j_surfin_2023_102823
crossref_primary_10_1016_j_apsusc_2020_146858
crossref_primary_10_1021_acsnano_4c06049
crossref_primary_10_1016_j_apcatb_2021_120492
crossref_primary_10_1021_acsami_3c16985
crossref_primary_10_1007_s12274_023_5582_5
crossref_primary_10_1016_j_envres_2021_112544
crossref_primary_10_1073_pnas_2119723119
crossref_primary_10_1016_j_seppur_2023_124352
crossref_primary_10_1002_aenm_202402416
crossref_primary_10_1039_D3CP02860G
crossref_primary_10_1002_ange_202320218
crossref_primary_10_3390_molecules29246063
crossref_primary_10_1002_adma_202311937
crossref_primary_10_1002_anie_202107858
crossref_primary_10_1021_acs_inorgchem_2c03040
crossref_primary_10_1021_acsami_1c09774
crossref_primary_10_1039_D2TA08722G
crossref_primary_10_1002_ange_202116057
crossref_primary_10_1039_D4SC07740G
crossref_primary_10_1016_j_apcatb_2021_120536
crossref_primary_10_1016_j_seppur_2022_122066
crossref_primary_10_1039_D2TC04812D
crossref_primary_10_1007_s11426_023_1943_5
crossref_primary_10_1002_smtd_202300350
crossref_primary_10_1016_j_rser_2024_114863
crossref_primary_10_1002_adfm_202411991
crossref_primary_10_1016_j_apt_2022_103936
crossref_primary_10_1016_j_apcatb_2023_122642
crossref_primary_10_1002_adfm_202408870
crossref_primary_10_1016_j_matlet_2021_131550
crossref_primary_10_1002_anie_202320218
crossref_primary_10_1039_D2NH00549B
crossref_primary_10_1016_j_apsusc_2021_149366
crossref_primary_10_1016_j_jcis_2025_02_014
crossref_primary_10_1016_j_apcatb_2021_120266
crossref_primary_10_1002_aenm_202301643
crossref_primary_10_1016_j_jmst_2022_08_001
crossref_primary_10_1016_j_apcatb_2025_125164
crossref_primary_10_1016_j_micrna_2022_207422
crossref_primary_10_1002_anie_202116057
crossref_primary_10_1016_j_apsusc_2021_149809
crossref_primary_10_1039_D3TC01102J
crossref_primary_10_1016_j_ceramint_2024_06_299
crossref_primary_10_1016_j_jcis_2022_08_120
crossref_primary_10_1016_j_apcatb_2024_123889
crossref_primary_10_1016_j_flatc_2025_100823
crossref_primary_10_1016_j_cjsc_2023_100201
crossref_primary_10_1016_j_cej_2024_154359
crossref_primary_10_1002_adfm_202110258
crossref_primary_10_1002_cnma_202300140
crossref_primary_10_1016_j_seppur_2021_120416
crossref_primary_10_1016_j_nanoen_2023_108228
crossref_primary_10_1016_j_jhazmat_2021_126280
crossref_primary_10_1016_j_ceramint_2024_09_246
crossref_primary_10_1016_j_apcatb_2022_121388
crossref_primary_10_1016_j_jallcom_2024_177652
crossref_primary_10_1038_s41467_021_24511_z
crossref_primary_10_1002_smll_202205666
crossref_primary_10_1021_acs_langmuir_4c03461
crossref_primary_10_1039_D1TA10270B
crossref_primary_10_1002_sstr_202300339
crossref_primary_10_1016_j_mattod_2022_05_022
crossref_primary_10_1002_smll_202100367
crossref_primary_10_1016_j_cej_2023_142512
crossref_primary_10_1039_D1CY00595B
crossref_primary_10_1016_j_apcatb_2023_122859
crossref_primary_10_1007_s11051_024_06194_x
crossref_primary_10_1016_j_nanoen_2025_110672
crossref_primary_10_1016_j_jallcom_2024_174729
crossref_primary_10_1002_idm2_12176
crossref_primary_10_1016_j_jcis_2022_10_022
crossref_primary_10_1021_acs_chemmater_0c04037
crossref_primary_10_1016_j_apcatb_2022_121373
crossref_primary_10_1039_D3EY00047H
crossref_primary_10_1039_D1CY00803J
crossref_primary_10_1016_j_cej_2024_149267
crossref_primary_10_1016_j_apcatb_2024_123790
crossref_primary_10_1039_D1NJ00668A
crossref_primary_10_1016_j_cej_2023_144250
crossref_primary_10_1063_5_0148941
crossref_primary_10_1016_S1872_2067_23_64530_9
crossref_primary_10_1021_acs_chemmater_3c01298
crossref_primary_10_1002_slct_202400179
crossref_primary_10_1038_s41467_022_29826_z
crossref_primary_10_1002_advs_202206286
crossref_primary_10_1007_s10562_021_03831_1
crossref_primary_10_1039_D4CS01322K
crossref_primary_10_1039_D2QM00551D
crossref_primary_10_1016_j_surfin_2022_102405
crossref_primary_10_1021_acsanm_3c04213
crossref_primary_10_1021_acsanm_3c05941
crossref_primary_10_1021_acs_jpcc_3c04814
crossref_primary_10_1016_j_jcis_2024_03_008
crossref_primary_10_1038_s41467_022_29825_0
crossref_primary_10_1021_acscatal_4c08035
crossref_primary_10_1039_D0TA00901F
crossref_primary_10_1039_D2TA03333J
crossref_primary_10_1016_j_apsusc_2024_160352
crossref_primary_10_1016_j_ijhydene_2024_08_464
crossref_primary_10_1002_cey2_66
crossref_primary_10_1016_j_apsusc_2022_154433
crossref_primary_10_1021_acsnano_4c01190
crossref_primary_10_1002_smll_202300770
crossref_primary_10_1007_s12274_024_6636_z
crossref_primary_10_1002_ange_202403949
crossref_primary_10_1038_s41467_021_25261_8
crossref_primary_10_1016_j_cej_2020_125476
crossref_primary_10_1016_j_jmat_2021_02_015
crossref_primary_10_1016_j_cej_2021_130822
crossref_primary_10_1016_j_cej_2023_142577
crossref_primary_10_1007_s10854_024_11974_1
crossref_primary_10_1016_j_mattod_2022_06_009
crossref_primary_10_1016_S1872_2067_24_60039_2
crossref_primary_10_1016_j_cej_2024_150075
crossref_primary_10_1021_acs_inorgchem_4c05042
crossref_primary_10_1007_s10562_020_03389_4
crossref_primary_10_1016_j_jcis_2024_06_077
crossref_primary_10_1016_j_flatc_2024_100718
crossref_primary_10_1016_j_seppur_2023_124164
crossref_primary_10_1039_D4TA01795A
crossref_primary_10_1016_j_jece_2021_107123
crossref_primary_10_1002_ange_202107858
crossref_primary_10_1016_j_cej_2022_140198
crossref_primary_10_1016_j_compscitech_2022_109657
crossref_primary_10_1016_j_jallcom_2023_171161
crossref_primary_10_1021_acscatal_4c04687
crossref_primary_10_1002_adma_202101026
crossref_primary_10_1016_j_apcatb_2021_120980
crossref_primary_10_1038_s41467_024_53834_w
crossref_primary_10_1039_D2NR04727F
crossref_primary_10_1016_j_jphotochem_2024_115834
crossref_primary_10_1016_j_ultsonch_2022_106223
crossref_primary_10_1016_j_cej_2020_125229
crossref_primary_10_1016_j_cej_2023_144628
crossref_primary_10_1016_j_materresbull_2023_112522
crossref_primary_10_1016_j_ccr_2024_216324
crossref_primary_10_1039_D4NR02217C
crossref_primary_10_3390_ma16083249
crossref_primary_10_1039_D2NJ00976E
crossref_primary_10_1021_acs_chemrev_4c00490
crossref_primary_10_1039_D4SC06333C
crossref_primary_10_1016_j_apcatb_2023_123307
crossref_primary_10_1016_j_cej_2021_134104
crossref_primary_10_1016_j_esci_2025_100398
crossref_primary_10_1142_S0217984921501190
crossref_primary_10_1021_acscatal_0c05354
crossref_primary_10_1007_s12274_023_5507_3
crossref_primary_10_1039_D0TA02102D
crossref_primary_10_1002_adma_202106308
crossref_primary_10_1016_j_apcatb_2023_123023
crossref_primary_10_1016_j_matt_2020_07_004
crossref_primary_10_1039_D1NJ03770F
Cites_doi 10.1039/C4EE03271C
10.1002/anie.201811709
10.1016/j.apcatb.2016.09.037
10.1002/anie.201706549
10.1346/CCMN.1990.0380206
10.1039/C5SC00766F
10.1016/j.watres.2013.01.056
10.1002/smll.201201161
10.1021/cm402092f
10.1016/j.jhazmat.2009.03.076
10.1039/C3NR05246J
10.1002/adfm.201707178
10.1103/PhysRevB.89.205309
10.1126/science.aad3459
10.1016/j.apcatb.2017.08.004
10.1016/j.jcis.2017.04.075
10.1002/adma.201601694
10.1073/pnas.1011972107
10.1021/jacs.8b04039
10.1021/acsami.9b00925
10.1039/C6SC03707K
10.1016/j.cej.2019.04.161
10.1002/adma.201806626
10.1002/cssc.201800180
10.1039/C4NR02553A
10.1103/PhysRevB.78.195313
10.1002/aenm.201870040
10.1016/j.apcatb.2013.09.050
10.1002/pssb.201800314
10.1016/j.nanoen.2019.04.038
10.1038/ncomms11480
10.1021/jacs.7b12641
10.1002/anie.201504135
10.1021/ja210484t
10.1016/j.apcatb.2008.01.024
10.1021/acs.jpclett.7b00285
10.1039/c2ce26005k
10.1002/adma.201900546
10.1021/ja205456b
10.1002/adma.201801988
10.1002/aenm.201803951
10.1021/acs.nanolett.7b02799
10.1002/aenm.201803889
10.1007/s101890170025
10.1103/PhysRevB.59.15363
10.1039/c1jm11005e
10.1093/acprof:oso/9780198507789.001.0001
10.1002/anie.201310635
10.1002/adma.201705941
10.1039/c2ra20881d
10.1002/anie.201103960
10.1016/j.apcatb.2019.118262
10.1021/es702495w
10.1039/C5TA01814E
10.1021/cr00017a013
10.1039/C4EE02914C
10.1038/ncomms13907
10.1039/C6CP06147H
10.1039/C8CS00320C
10.1039/c1cy00261a
10.1039/C4CS00126E
10.1039/C4TA04779F
10.1021/es801672a
10.1002/smll.201601546
10.1039/C4NR05058D
10.1021/jacs.5b12666
10.1063/1.105227
10.1016/j.apcatb.2018.06.013
10.1021/acssuschemeng.8b01023
10.1021/ar900209b
10.1021/acs.jpcc.9b02045
10.1103/PhysRevB.57.R9435
10.1016/j.nanoen.2018.05.053
10.1002/anie.201703827
10.1140/epjst/e2010-01212-5
10.1002/anie.201905274
10.1039/C5NJ03478G
10.1063/1.112823
10.1021/jp071987v
10.1002/adma.201705060
10.1002/adma.201600301
10.1039/c1cc11015b
10.1039/C4TA01807A
10.1002/cctc.201800859
10.1021/nn2001933
10.1016/j.molcata.2011.08.013
10.1021/ol403736m
10.1038/nphoton.2012.175
10.1002/chem.201302884
10.1021/jp906680e
10.1016/j.mtadv.2019.100006
10.1002/anie.201901361
10.1346/CCMN.2001.0490511
ContentType Journal Article
Copyright 2019 The Authors. published by John Wiley & Sons Australia, Ltd on behalf of The Hong Kong Polytechnic University
Copyright_xml – notice: 2019 The Authors. published by John Wiley & Sons Australia, Ltd on behalf of The Hong Kong Polytechnic University
DBID 24P
AAYXX
CITATION
DOI 10.1002/eom2.12007
DatabaseName Wiley Online Library Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2567-3173
EndPage n/a
ExternalDocumentID 10_1002_eom2_12007
EOM212007
Genre reviewArticle
GrantInformation_xml – fundername: Collaborative Innovation Center for Regional Environmental Quality
– fundername: National Natural Science Foundation of China
  funderid: 21437003; 21621003; 21673126; 21761142017; 21872077
GroupedDBID 0R~
1OC
24P
AAHHS
ABJCF
ACCFJ
ACCMX
ACXQS
ADKYN
ADZMN
ADZOD
AEEZP
AEQDE
AEUYN
AFKRA
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ATCPS
AVUZU
BENPR
BGLVJ
BHPHI
CCPQU
EBS
EDH
GROUPED_DOAJ
HCIFZ
IAO
ITC
KB.
M~E
PATMY
PDBOC
PIMPY
PYCSY
WIN
AAYXX
CITATION
IEP
PHGZM
PHGZT
ID FETCH-LOGICAL-c3097-d94e29c28a55cd292a09becd17b1f938feccdba6596f3dfab3702544d2f4e81e3
IEDL.DBID 24P
ISSN 2567-3173
IngestDate Tue Jul 01 02:50:12 EDT 2025
Thu Apr 24 23:12:20 EDT 2025
Wed Jan 22 16:37:40 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3097-d94e29c28a55cd292a09becd17b1f938feccdba6596f3dfab3702544d2f4e81e3
Notes Funding information
Collaborative Innovation Center for Regional Environmental Quality; National Natural Science Foundation of China, Grant/Award Numbers: 21437003, 21621003, 21673126, 21761142017, 21872077
ORCID 0000-0002-0042-7069
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Feom2.12007
PageCount 20
ParticipantIDs crossref_primary_10_1002_eom2_12007
crossref_citationtrail_10_1002_eom2_12007
wiley_primary_10_1002_eom2_12007_EOM212007
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2019
2019-12-00
PublicationDateYYYYMMDD 2019-12-01
PublicationDate_xml – month: 12
  year: 2019
  text: December 2019
PublicationDecade 2010
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
PublicationTitle EcoMat (Beijing, China)
PublicationYear 2019
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2017; 8
2013; 25
1991; 58
2009; 42
2019; 11
2019; 58
2008; 78
2009; 113
2001; 49
2012; 14
2010; 180
2019; 123
1994; 65
2018; 47
2013; 9
2013; 19
2018; 6
2018; 8
2012; 134
2019; 62
2014; 2
2001
2000; 11
1999; 59
2019; 25
2014; 16
1985
2016; 40
2011; 21
2018; 30
2014; 7
2014; 6
2017; 202
2009; 169
1998; 57
2014; 53
2018; 28
2018; 220
2019; 9
2015; 6
2013; 47
2018; 140
2011; 1
2015; 3
2019; 31
2020; 262
1990; 38
2019; 1
2015; 54
2017; 29
1992
2016; 18
2015; 8
2011; 5
2014; 89
2011; 133
2014; 43
2016; 12
2015; 350
2016; 7
2012; 2
2011; 108
2011; 348
2001; 6
2018; 237
1993; 93
2017; 17
2007; 111
2017; 56
2011; 50
2019; 256
2016; 138
2018; 50
2008; 42
2011; 47
2012; 6
2018; 11
2016; 28
2019; 372
2018; 10
2008; 82
2014; 147
2017; 501
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
e_1_2_8_5_1
e_1_2_8_9_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_87_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_83_1
e_1_2_8_19_1
e_1_2_8_15_1
e_1_2_8_38_1
Ran J (e_1_2_8_16_1) 2019; 25
e_1_2_8_95_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_30_1
e_1_2_8_72_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_48_1
e_1_2_8_2_1
Shaw D (e_1_2_8_69_1) 1992
e_1_2_8_6_1
e_1_2_8_21_1
e_1_2_8_67_1
e_1_2_8_44_1
e_1_2_8_86_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_82_1
e_1_2_8_18_1
e_1_2_8_14_1
e_1_2_8_37_1
e_1_2_8_79_1
e_1_2_8_94_1
e_1_2_8_90_1
Esser N (e_1_2_8_23_1) 2019; 256
e_1_2_8_98_1
e_1_2_8_10_1
e_1_2_8_56_1
e_1_2_8_33_1
e_1_2_8_75_1
e_1_2_8_28_1
Pierre L (e_1_2_8_52_1) 1999; 59
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_3_1
e_1_2_8_81_1
e_1_2_8_7_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_89_1
e_1_2_8_62_1
e_1_2_8_85_1
e_1_2_8_17_1
Steiner K (e_1_2_8_50_1) 2014; 89
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
Wu W (e_1_2_8_70_1) 2001; 49
e_1_2_8_97_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_78_1
e_1_2_8_51_1
e_1_2_8_74_1
Nye JF (e_1_2_8_91_1) 1985
e_1_2_8_93_1
e_1_2_8_46_1
e_1_2_8_27_1
RFG CJVANOSS (e_1_2_8_71_1) 1990; 38
e_1_2_8_80_1
e_1_2_8_4_1
e_1_2_8_8_1
e_1_2_8_42_1
e_1_2_8_88_1
e_1_2_8_65_1
e_1_2_8_84_1
e_1_2_8_61_1
e_1_2_8_39_1
e_1_2_8_35_1
e_1_2_8_58_1
e_1_2_8_92_1
e_1_2_8_96_1
e_1_2_8_31_1
e_1_2_8_77_1
Xue D (e_1_2_8_57_1) 2000; 11
e_1_2_8_12_1
e_1_2_8_54_1
e_1_2_8_73_1
References_xml – volume: 1
  start-page: 100006
  year: 2019
  article-title: Controlled synthesis of g‐C3N4@BiPO4 core–shell nanorods via low temperature reassembled strategy
  publication-title: Mater Today Adv
– volume: 140
  start-page: 6729
  year: 2018
  end-page: 6740
  article-title: Charge carrier activity on single‐particle photo(electro)catalysts: toward function in solar energy conversion
  publication-title: J Am Chem Soc
– volume: 8
  start-page: 1870040
  issue: 9
  year: 2018
  article-title: Atomically thin mesoporous In2O3–x/In2S3 lateral heterostructures enabling robust broadband‐light photo‐electrochemical water splitting
  publication-title: Adv Energy Mater
– volume: 3
  start-page: 12179
  year: 2015
  end-page: 12187
  article-title: Efficient photocatalytic dechlorination of chlorophenols over a nonlinear optical material Na3VO2B6O11 under UV‐visible light irradiation
  publication-title: J Mater Chem A
– volume: 47
  start-page: 3947
  year: 2013
  end-page: 3958
  article-title: Effects of nanosized titanium dioxide on the physicochemical stability of activated sludge flocs using the thermodynamic approach and Kelvin probe force microscopy
  publication-title: Water Res
– volume: 348
  start-page: 100
  year: 2011
  end-page: 105
  article-title: Photocatalytic activity and photoelectric performance enhancement for ZnWO4 by fluorine substitution
  publication-title: J Mol Catal A Chem
– volume: 28
  start-page: 4059
  year: 2016
  end-page: 4064
  article-title: Giant enhancement of internal electric field boosting bulk charge separation for Photocatalysis
  publication-title: Adv Mater
– volume: 30
  year: 2018
  article-title: Energy materials design for steering charge kinetics
  publication-title: Adv Mater
– volume: 30
  start-page: 1705941
  year: 2018
  article-title: Interstitial P‐doped CdS with long‐lived Photogenerated electrons for photocatalytic water splitting without sacrificial agents
  publication-title: Adv Mater
– volume: 350
  start-page: 1061
  year: 2015
  article-title: Semiconductorinterfacial carrier dynamicsvia photoinduced electric fields
  publication-title: Science
– volume: 43
  start-page: 5234
  year: 2014
  end-page: 5244
  article-title: Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances
  publication-title: Chem Soc Rev
– volume: 7
  start-page: 3934
  year: 2014
  end-page: 3951
  article-title: Hetero‐nanostructured suspended photocatalysts for solar‐to‐fuel conversion
  publication-title: Energy Environ Sci
– volume: 501
  start-page: 273
  year: 2017
  end-page: 281
  article-title: Study on dynamic properties of the photoexcited charge carriers at anatase TiO2 nanowires/fluorine doped tin oxide interface
  publication-title: J Colloid Interface Sci
– volume: 9
  start-page: 140
  year: 2013
  end-page: 147
  article-title: Synthesis of few‐layer MoS2 nanosheet‐coated TiO2 nanobelt heterostructures for enhanced photocatalytic activities
  publication-title: Small
– volume: 82
  start-page: 219
  year: 2008
  end-page: 224
  article-title: Nb2O5 as efficient and recyclable photocatalyst for indigo carmine degradation
  publication-title: Appl Catal B Environ
– volume: 57
  year: 1998
  article-title: Reduction of oscillator strength due to piezoelectric fields in GaN/AlxGa1‐xN quantum wells
  publication-title: Phys Rev B
– volume: 8
  start-page: 731
  year: 2015
  end-page: 759
  article-title: Visible‐light driven heterojunction photocatalysts for water splitting – a critical review
  publication-title: Energy Environ Sci
– volume: 58
  start-page: 2921
  year: 1991
  end-page: 2923
  article-title: Kelvin probe force microscopy
  publication-title: Appl Phys Lett
– volume: 180
  start-page: 61
  year: 2010
  end-page: 89
  article-title: Colossal dielectric constants in transition‐metal oxides
  publication-title: Europ Phys J Spec Topic
– volume: 7
  start-page: 11480
  year: 2016
  article-title: Superior visible light hydrogen evolution of Janus bilayer junctions via atomic‐level charge flow steering
  publication-title: Nat Commun
– volume: 1
  start-page: 1399
  year: 2011
  end-page: 1405
  article-title: Effects of distortion of PO4 tetrahedron on the photocatalytic performances of BiPO4
  publication-title: Cat Sci Technol
– volume: 123
  start-page: 10826
  year: 2019
  end-page: 10830
  article-title: Design growth of triangular pyramid MAPbBr3 single crystal and its photoelectric anisotropy between (100) and (111) facets
  publication-title: J Phys Chem C
– volume: 6
  start-page: 8473
  year: 2014
  end-page: 8488
  article-title: Bismuth oxyhalide nanomaterials: layered structures meet photocatalysis
  publication-title: Nanoscale
– volume: 10
  start-page: 4477
  year: 2018
  end-page: 4496
  article-title: Facet, junction and electric field engineering of bismuth‐based materials for photocatalysis
  publication-title: ChemCatChem
– volume: 6
  start-page: 511
  year: 2012
  end-page: 518
  article-title: Artificial photosynthesis for solar water‐splitting
  publication-title: Nat Photonics
– volume: 78
  year: 2008
  article-title: Intrinsic optical nonlinearity in colloidal seeded grown CdSe/CdS nanostructures: Photoinduced screening of the internal electric field
  publication-title: Phys Rev B
– volume: 25
  start-page: 9
  year: 2019
  article-title: Atomically dispersed single co sites in Zeolitic imidazole frameworks promoting high‐efficiency visible‐light‐driven hydrogen production
  publication-title: Chemistry
– volume: 6
  start-page: 29
  year: 2001
  end-page: 35
  article-title: Nanoparticles superficial density of chargein electric double‐layered magnetic fluid: A conductimetric and potentiometric approach
  publication-title: Eur Phys J E
– volume: 14
  start-page: 8076
  year: 2012
  end-page: 8082
  article-title: Synthesis and photoactivity enhancement of ZnWO4 photocatalysts doped with chlorine
  publication-title: CrystEngComm
– volume: 56
  start-page: 10373
  year: 2017
  end-page: 10377
  article-title: Phosphorene co‐catalyst advancing highly efficient visible‐light photocatalytic hydrogen production
  publication-title: Angew Chem Int Ed Engl
– volume: 19
  start-page: 14777
  year: 2013
  end-page: 14780
  article-title: Efficient separation of photogenerated electron‐hole pairs by the combination of a heterolayered structure and internal polar field in pyroelectric BiOIO3 nanoplates
  publication-title: Chemistry
– volume: 47
  start-page: 8238
  year: 2018
  end-page: 8262
  article-title: Imaging photogenerated charge carriers on surfaces and interfaces of photocatalysts with surface photovoltage microscopy
  publication-title: Chem Soc Rev
– volume: 138
  start-page: 4286
  year: 2016
  end-page: 4289
  article-title: Synergetic integration of Cu1.94S‐ZnxCd1‐xS heteronanorods for enhanced visible‐light‐driven photocatalytic hydrogen production
  publication-title: J Am Chem Soc
– volume: 50
  start-page: 383
  year: 2018
  end-page: 392
  article-title: Local spatial charge separation and proton activation induced by surface hydroxylation promoting photocatalytic hydrogen evolution of polymeric carbon nitride
  publication-title: Nano Energy
– volume: 29
  year: 2017
  article-title: Heterojunction photocatalysts
  publication-title: Adv Mater
– volume: 56
  start-page: 11860
  year: 2017
  end-page: 11864
  article-title: Macroscopic polarization enhancement promoting photo‐ and piezoelectric‐induced charge separation and molecular oxygen activation
  publication-title: Angew Chem Int Ed Engl
– volume: 108
  start-page: 29
  year: 2011
  end-page: 34
  article-title: Photoinduced electron transfer from semiconductor quantum dots to metal oxide nanoparticles
  publication-title: Proc Natl Acad Sci U S A
– volume: 42
  start-page: 8516
  year: 2008
  end-page: 8521
  article-title: Fluorination of ZnWO4 photocatalyst and influence on the degradation mechanism for 4‐chlorophenol
  publication-title: Environ Sci Technol
– volume: 21
  start-page: 12479
  year: 2011
  article-title: Synthesis of highly symmetrical BiOI single‐crystal nanosheets and their {001} facet‐dependent photoactivity
  publication-title: J Mater Chem
– volume: 31
  year: 2019
  article-title: Surface‐halogenation‐induced atomic‐site activation and local charge separation for superb CO2 photoreduction
  publication-title: Adv Mater
– volume: 11
  start-page: 1521
  year: 2018
  end-page: 1532
  article-title: Internal polarization modulation in Bi2 MoO6 for photocatalytic performance enhancement under visible‐light illumination
  publication-title: ChemSusChem
– volume: 237
  start-page: 633
  year: 2018
  end-page: 640
  article-title: Ultrathin nanosheets g‐C 3 N 4 @Bi 2 WO 6 core‐shell structure via low temperature reassembled strategy to promote photocatalytic activity
  publication-title: Appl Catal B Environ
– volume: 9
  start-page: 1803951
  year: 2019
  article-title: Interfacial charge modulation: an efficient strategy for boosting spatial charge separation on semiconductor Photocatalysts
  publication-title: Adv Energy Mater
– volume: 220
  start-page: 337
  year: 2018
  end-page: 347
  article-title: Photocatalytic activity enhancement of core‐shell structure g‐C3N4@TiO2 via controlled ultrathin g‐C3N4 layer
  publication-title: Appl Catal B Environ
– year: 1992
– volume: 65
  start-page: 1938
  year: 1994
  end-page: 1939
  article-title: Empirical formula for the dielectric constant of cubic semiconductors
  publication-title: Appl Phys Lett
– volume: 17
  start-page: 6735
  year: 2017
  end-page: 6741
  article-title: Visualizing the nano cocatalyst aligned electric fields on single photocatalyst particles
  publication-title: Nano Lett
– volume: 262
  start-page: 118262
  year: 2020
  article-title: Enhanced photoactivity and oxidizing ability simultaneously via internal electric field and valence band position by crystal structure of bismuth oxyiodide
  publication-title: Appl Catal B Environ
– volume: 8
  start-page: 13907
  year: 2017
  article-title: Ti3C2 MXene co‐catalyst on metal sulfide photo‐absorbers for enhanced visible‐light photocatalytic hydrogen production
  publication-title: Nat Commun
– volume: 113
  start-page: 19633
  year: 2009
  end-page: 19638
  article-title: Photocatalytic activity enhancement for Bi2WO6 by fluorine substitution
  publication-title: J Phys Chem C
– volume: 93
  start-page: 267
  year: 1993
  article-title: Photochemistry on nonreactive and reactive (semiconductor) surfaces
  publication-title: Chem Rev
– volume: 133
  start-page: 12422
  year: 2011
  end-page: 12425
  article-title: BiO(IO3): a new polar iodate that exhibits an aurivillius‐type (Bi2O2)2+ layer and a large SHG response
  publication-title: J Am Chem Soc
– volume: 256
  year: 2019
  article-title: Electric field induced Raman scattering at the Sb‐InP(110) interface: the surface dipole contribution
  publication-title: Phys Status Solidi B
– volume: 5
  start-page: 3736
  year: 2011
  end-page: 3743
  article-title: Synthesis, Control, and Characterization of Surface Properties of Cu O Nanostructures
  publication-title: ACS Nano
– volume: 38
  start-page: 151
  year: 1990
  end-page: 159
  article-title: DLVO and non‐DLVO interactions in hectorite
  publication-title: Clay Clay Miner
– year: 1985
– volume: 6
  start-page: 167
  year: 2014
  end-page: 171
  article-title: Synthesis and internal electric field dependent photoreactivity of Bi3O4Cl single‐crystalline nanosheets with high {001} facet exposure percentages
  publication-title: Nanoscale
– volume: 31
  year: 2019
  article-title: A full‐spectrum metal‐free porphyrin supramolecular photocatalyst for dual functions of highly efficient hydrogen and oxygen evolution
  publication-title: Adv Mater
– volume: 140
  start-page: 4965
  year: 2018
  end-page: 4968
  article-title: Chromophore dipole directs morphology and photocatalytic hydrogen generation
  publication-title: J Am Chem Soc
– year: 2001
– volume: 111
  start-page: 11952
  year: 2007
  end-page: 11958
  article-title: Enhanced photocatalytic activity of ZnWO4 catalyst via fluorine doping
  publication-title: J Phys Chem C
– volume: 25
  start-page: 4215
  year: 2013
  end-page: 4223
  article-title: Effect of ferroelectricity on solar‐light‐driven photocatalytic activity of BaTiO3—influence on the carrier separation and stern layer formation
  publication-title: Chem Mater
– volume: 58
  start-page: 10873
  year: 2019
  end-page: 10878
  article-title: Dimension‐matched zinc phthalocyanine/BiVO4 ultrathin nanocomposites for CO reduction as efficient wide‐visible‐light‐driven photocatalysts via a cascade charge transfer
  publication-title: Angew Chem Int Ed Engl
– volume: 2
  start-page: 9224
  year: 2012
  end-page: 9229
  article-title: First‐principles studies on facet‐dependent photocatalytic properties of bismuth oxyhalides (BiOXs)
  publication-title: RSC Advances
– volume: 6
  start-page: 4118
  year: 2015
  end-page: 4123
  article-title: Insights into the structure‐photoreactivity relationships in well‐defined perovskite ferroelectric KNbO3 nanowires
  publication-title: Chem Sci
– volume: 54
  start-page: 9111
  year: 2015
  end-page: 9114
  article-title: Direct imaging of highly anisotropic photogenerated charge separations on different facets of a single BiVO4 photocatalyst
  publication-title: Angew Chem Int Ed Engl
– volume: 59
  start-page: 15363
  year: 1999
  end-page: 15367
  article-title: Time‐resolved photoluminescence as a probe of internal electric fields in GaN‐(GaAl)N quantum wells
  publication-title: Phys Rev B
– volume: 42
  start-page: 2085
  year: 2008
  end-page: 2091
  article-title: Jianmin photocatalytic degradation of RhB by fluorinated Bi2WO6 and distributions of the intermediate products
  publication-title: Environ Sci Technol
– volume: 42
  start-page: 1890
  year: 2009
  end-page: 1898
  article-title: Solar fuels via artificial photosynthesis
  publication-title: Acc Chem Res
– volume: 50
  start-page: 9141
  year: 2011
  end-page: 9144
  article-title: NaSr3Be3B3O9F4: a promising deep‐ultraviolet nonlinear optical material resulting from the cooperative alignment of the [Be3B3O12F](10‐) anionic group
  publication-title: Angew Chem Int Ed Engl
– volume: 6
  start-page: 8704
  year: 2018
  end-page: 8710
  article-title: Internal electric field assisted photocatalytic generation of hydrogen peroxide over BiOCl with HCOOH
  publication-title: ACS Sustain Chem Eng
– volume: 8
  start-page: 1419
  year: 2017
  end-page: 1423
  article-title: Directly probing charge separation at Interface of TiO2 phase junction
  publication-title: J Phys Chem Lett
– volume: 28
  year: 2018
  article-title: High performance BiOCl Nanosheets/TiO2 nanotube arrays heterojunction UV photodetector: the influences of self‐induced inner electric fields in the BiOCl nanosheets
  publication-title: Adv Funct Mater
– volume: 58
  start-page: 10061
  year: 2019
  end-page: 10073
  article-title: The role of polarization in photocatalysis
  publication-title: Angew Chem Int Ed Engl
– volume: 53
  start-page: 5107
  year: 2014
  end-page: 5111
  article-title: Designing p‐type semiconductor‐metal hybrid structures for improved photocatalysis
  publication-title: Angew Chem Int Ed Engl
– volume: 2
  start-page: 13041
  year: 2014
  end-page: 13048
  article-title: Enhancement of photocatalytic activity for BiPO4via phase junction
  publication-title: J Mater Chem A
– volume: 134
  start-page: 4473
  year: 2012
  end-page: 4476
  article-title: Synthesis and facet‐dependent photoreactivity of BiOCl single‐crystalline nanosheets
  publication-title: J Am Chem Soc
– volume: 49
  start-page: 446
  issue: 5
  year: 2001
  end-page: 452
  article-title: Baseline studies of the clay minerals society source clays colloid and surface phenomena
  publication-title: Clay Clay Miner
– volume: 147
  start-page: 851
  year: 2014
  end-page: 857
  article-title: Fluorine mediated photocatalytic activity of BiPO4
  publication-title: Appl Catal B Environ
– volume: 202
  start-page: 289
  year: 2017
  end-page: 297
  article-title: Supramolecular organic nanofibers with highly efficient and stable visible light photooxidation performance
  publication-title: Appl Catal B Environ
– volume: 62
  start-page: 79
  year: 2019
  end-page: 84
  article-title: Built‐in oriented electric field facilitating durable Zn MnO2 battery
  publication-title: Nano Energy
– volume: 11
  start-page: 4
  year: 2000
  article-title: A simple method for Determing dielectric constants of materials with the similar crystal structure
  publication-title: Chem Res Chinese U
– volume: 16
  start-page: 696
  year: 2014
  end-page: 699
  article-title: Radical anions of trifluoromethylated perylene and naphthalene imide and diimide electron acceptors
  publication-title: Org Lett
– volume: 372
  start-page: 399
  year: 2019
  end-page: 407
  article-title: BiVO4 nanocrystals with controllable oxygen vacancies induced by Zn‐doping coupled with graphene quantum dots for enhanced photoelectrochemical water splitting
  publication-title: Chem Eng J
– volume: 30
  year: 2018
  article-title: Surface engineering for extremely enhanced charge separation and photocatalytic hydrogen evolution on g‐C3 N4
  publication-title: Adv Mater
– volume: 6
  start-page: 15222
  year: 2014
  end-page: 15227
  article-title: A superior photocatalytic performance of a novel Bi2SiO5 flower‐like microsphere via a phase junction
  publication-title: Nanoscale
– volume: 40
  start-page: 3000
  year: 2016
  end-page: 3009
  article-title: Nitrogen‐doped titanium dioxide (N‐doped TiO2) for visible light photocatalysis
  publication-title: New J Chem
– volume: 47
  start-page: 6951
  year: 2011
  end-page: 6953
  article-title: The {001} facets‐dependent high photoactivity of BiOCl nanosheets
  publication-title: Chem Commun (Camb)
– volume: 169
  start-page: 297
  year: 2009
  end-page: 301
  article-title: Photocatalytic decouloration of malachite green dye by application of TiO2 nanotubes
  publication-title: J Hazard Mater
– volume: 89
  year: 2014
  article-title: Band offsets of lattice‐matched semiconductor heterojunctions through hybrid functionals and G0W0
  publication-title: Phys Rev B
– volume: 11
  start-page: 9629
  year: 2019
  end-page: 9640
  article-title: Catalytic chemistry predicted by a charge polarization descriptor: synergistic O activation and CO oxidation by au‐cu bimetallic clusters on TiO (101)
  publication-title: ACS Appl Mater Interfaces
– volume: 18
  start-page: 31175
  year: 2016
  end-page: 31183
  article-title: A new understanding of the photocatalytic mechanism of the direct Z‐scheme g‐C3N4/TiO2 heterostructure
  publication-title: Phys Chem Chem Phys
– volume: 8
  start-page: 91
  year: 2017
  end-page: 100
  article-title: Gradient doping of phosphorus in Fe2O3 nanoarray photoanodes for enhanced charge separation
  publication-title: Chem Sci
– volume: 58
  start-page: 7526
  year: 2019
  end-page: 7536
  article-title: Enabling PIEZOpotential in PIEZOelectric semiconductors for enhanced catalytic activities
  publication-title: Angew Chem Int Ed Engl
– volume: 9
  start-page: 1803889
  issue: 15
  year: 2019
  article-title: Efficient plasmonic Au/CdSe nanodumbbell for photoelectrochemical hydrogen generation beyond visible region
  publication-title: Adv Energy Mater
– volume: 12
  start-page: 4370
  year: 2016
  end-page: 4378
  article-title: Polyaniline/carbon nitride nanosheets composite hydrogel: a separation‐free and high‐efficient photocatalyst with 3D hierarchical structure
  publication-title: Small
– volume: 3
  start-page: 2741
  year: 2015
  end-page: 2747
  article-title: Enhancement of photocatalytic performance via a P3HT‐g‐C3N4 heterojunction
  publication-title: J Mater Chem A
– ident: e_1_2_8_5_1
  doi: 10.1039/C4EE03271C
– ident: e_1_2_8_93_1
  doi: 10.1002/anie.201811709
– ident: e_1_2_8_42_1
  doi: 10.1016/j.apcatb.2016.09.037
– ident: e_1_2_8_47_1
  doi: 10.1002/anie.201706549
– volume: 38
  start-page: 151
  year: 1990
  ident: e_1_2_8_71_1
  article-title: DLVO and non‐DLVO interactions in hectorite
  publication-title: Clay Clay Miner
  doi: 10.1346/CCMN.1990.0380206
– ident: e_1_2_8_96_1
  doi: 10.1039/C5SC00766F
– ident: e_1_2_8_64_1
  doi: 10.1016/j.watres.2013.01.056
– ident: e_1_2_8_61_1
  doi: 10.1002/smll.201201161
– ident: e_1_2_8_98_1
  doi: 10.1021/cm402092f
– ident: e_1_2_8_68_1
  doi: 10.1016/j.jhazmat.2009.03.076
– ident: e_1_2_8_29_1
  doi: 10.1039/C3NR05246J
– ident: e_1_2_8_20_1
  doi: 10.1002/adfm.201707178
– volume: 89
  start-page: 205309
  year: 2014
  ident: e_1_2_8_50_1
  article-title: Band offsets of lattice‐matched semiconductor heterojunctions through hybrid functionals and G0W0
  publication-title: Phys Rev B
  doi: 10.1103/PhysRevB.89.205309
– ident: e_1_2_8_18_1
  doi: 10.1126/science.aad3459
– ident: e_1_2_8_36_1
  doi: 10.1016/j.apcatb.2017.08.004
– ident: e_1_2_8_35_1
  doi: 10.1016/j.jcis.2017.04.075
– ident: e_1_2_8_4_1
  doi: 10.1002/adma.201601694
– ident: e_1_2_8_19_1
  doi: 10.1073/pnas.1011972107
– ident: e_1_2_8_21_1
  doi: 10.1021/jacs.8b04039
– ident: e_1_2_8_39_1
  doi: 10.1021/acsami.9b00925
– ident: e_1_2_8_78_1
  doi: 10.1039/C6SC03707K
– ident: e_1_2_8_32_1
  doi: 10.1016/j.cej.2019.04.161
– ident: e_1_2_8_30_1
  doi: 10.1002/adma.201806626
– ident: e_1_2_8_22_1
  doi: 10.1002/cssc.201800180
– ident: e_1_2_8_27_1
  doi: 10.1039/C4NR02553A
– ident: e_1_2_8_54_1
  doi: 10.1103/PhysRevB.78.195313
– ident: e_1_2_8_9_1
  doi: 10.1002/aenm.201870040
– ident: e_1_2_8_33_1
  doi: 10.1016/j.apcatb.2013.09.050
– volume: 256
  start-page: 1800314
  year: 2019
  ident: e_1_2_8_23_1
  article-title: Electric field induced Raman scattering at the Sb‐InP(110) interface: the surface dipole contribution
  publication-title: Phys Status Solidi B
  doi: 10.1002/pssb.201800314
– ident: e_1_2_8_81_1
  doi: 10.1016/j.nanoen.2019.04.038
– ident: e_1_2_8_26_1
  doi: 10.1038/ncomms11480
– volume-title: Introduction to Colloid and Surface Chemistry An Imprint of Elsevier Science Linacre House, Jordan Hill, Oxford OX2 8DP 200 Wheeler Road
  year: 1992
  ident: e_1_2_8_69_1
– ident: e_1_2_8_31_1
  doi: 10.1021/jacs.7b12641
– ident: e_1_2_8_59_1
  doi: 10.1002/anie.201504135
– ident: e_1_2_8_14_1
  doi: 10.1021/ja210484t
– ident: e_1_2_8_67_1
  doi: 10.1016/j.apcatb.2008.01.024
– ident: e_1_2_8_72_1
  doi: 10.1021/acs.jpclett.7b00285
– ident: e_1_2_8_77_1
  doi: 10.1039/c2ce26005k
– ident: e_1_2_8_38_1
  doi: 10.1002/adma.201900546
– ident: e_1_2_8_97_1
  doi: 10.1021/ja205456b
– ident: e_1_2_8_45_1
  doi: 10.1002/adma.201801988
– ident: e_1_2_8_46_1
  doi: 10.1002/aenm.201803951
– ident: e_1_2_8_60_1
  doi: 10.1021/acs.nanolett.7b02799
– ident: e_1_2_8_65_1
  doi: 10.1002/aenm.201803889
– ident: e_1_2_8_66_1
  doi: 10.1007/s101890170025
– volume: 59
  start-page: 15363
  year: 1999
  ident: e_1_2_8_52_1
  article-title: Time‐resolved photoluminescence as a probe of internal electric fields in GaN‐(GaAl)N quantum wells
  publication-title: Phys Rev B
  doi: 10.1103/PhysRevB.59.15363
– ident: e_1_2_8_90_1
  doi: 10.1039/c1jm11005e
– ident: e_1_2_8_92_1
  doi: 10.1093/acprof:oso/9780198507789.001.0001
– ident: e_1_2_8_86_1
  doi: 10.1002/anie.201310635
– ident: e_1_2_8_17_1
  doi: 10.1002/adma.201705941
– ident: e_1_2_8_73_1
  doi: 10.1039/c2ra20881d
– ident: e_1_2_8_95_1
  doi: 10.1002/anie.201103960
– ident: e_1_2_8_48_1
  doi: 10.1016/j.apcatb.2019.118262
– ident: e_1_2_8_76_1
  doi: 10.1021/es702495w
– ident: e_1_2_8_63_1
  doi: 10.1039/C5TA01814E
– ident: e_1_2_8_7_1
  doi: 10.1021/cr00017a013
– ident: e_1_2_8_10_1
  doi: 10.1039/C4EE02914C
– ident: e_1_2_8_15_1
  doi: 10.1038/ncomms13907
– ident: e_1_2_8_51_1
  doi: 10.1039/C6CP06147H
– ident: e_1_2_8_58_1
  doi: 10.1039/C8CS00320C
– ident: e_1_2_8_41_1
  doi: 10.1039/c1cy00261a
– ident: e_1_2_8_6_1
  doi: 10.1039/C4CS00126E
– ident: e_1_2_8_44_1
  doi: 10.1039/C4TA04779F
– ident: e_1_2_8_34_1
  doi: 10.1021/es801672a
– ident: e_1_2_8_84_1
  doi: 10.1002/smll.201601546
– volume: 25
  start-page: 9
  year: 2019
  ident: e_1_2_8_16_1
  article-title: Atomically dispersed single co sites in Zeolitic imidazole frameworks promoting high‐efficiency visible‐light‐driven hydrogen production
  publication-title: Chemistry
– ident: e_1_2_8_13_1
  doi: 10.1039/C4NR05058D
– ident: e_1_2_8_11_1
  doi: 10.1021/jacs.5b12666
– ident: e_1_2_8_62_1
  doi: 10.1063/1.105227
– ident: e_1_2_8_82_1
  doi: 10.1016/j.apcatb.2018.06.013
– ident: e_1_2_8_25_1
  doi: 10.1021/acssuschemeng.8b01023
– ident: e_1_2_8_3_1
  doi: 10.1021/ar900209b
– ident: e_1_2_8_88_1
  doi: 10.1021/acs.jpcc.9b02045
– volume-title: Physical Properties of Crystal
  year: 1985
  ident: e_1_2_8_91_1
– ident: e_1_2_8_53_1
  doi: 10.1103/PhysRevB.57.R9435
– ident: e_1_2_8_37_1
  doi: 10.1016/j.nanoen.2018.05.053
– ident: e_1_2_8_85_1
  doi: 10.1002/anie.201703827
– ident: e_1_2_8_56_1
  doi: 10.1140/epjst/e2010-01212-5
– volume: 11
  start-page: 4
  year: 2000
  ident: e_1_2_8_57_1
  article-title: A simple method for Determing dielectric constants of materials with the similar crystal structure
  publication-title: Chem Res Chinese U
– ident: e_1_2_8_8_1
  doi: 10.1002/anie.201905274
– ident: e_1_2_8_80_1
  doi: 10.1039/C5NJ03478G
– ident: e_1_2_8_55_1
  doi: 10.1063/1.112823
– ident: e_1_2_8_74_1
  doi: 10.1021/jp071987v
– ident: e_1_2_8_79_1
  doi: 10.1002/adma.201705060
– ident: e_1_2_8_24_1
  doi: 10.1002/adma.201600301
– ident: e_1_2_8_89_1
  doi: 10.1039/c1cc11015b
– ident: e_1_2_8_12_1
  doi: 10.1039/C4TA01807A
– ident: e_1_2_8_28_1
  doi: 10.1002/cctc.201800859
– ident: e_1_2_8_87_1
  doi: 10.1021/nn2001933
– ident: e_1_2_8_43_1
  doi: 10.1016/j.molcata.2011.08.013
– ident: e_1_2_8_49_1
  doi: 10.1021/ol403736m
– ident: e_1_2_8_2_1
  doi: 10.1038/nphoton.2012.175
– ident: e_1_2_8_94_1
  doi: 10.1002/chem.201302884
– ident: e_1_2_8_75_1
  doi: 10.1021/jp906680e
– ident: e_1_2_8_83_1
  doi: 10.1016/j.mtadv.2019.100006
– ident: e_1_2_8_40_1
  doi: 10.1002/anie.201901361
– volume: 49
  start-page: 446
  issue: 5
  year: 2001
  ident: e_1_2_8_70_1
  article-title: Baseline studies of the clay minerals society source clays colloid and surface phenomena
  publication-title: Clay Clay Miner
  doi: 10.1346/CCMN.2001.0490511
SSID ssj0002504241
Score 2.5245838
SecondaryResourceType review_article
Snippet Photocatalysis as a desirable technology shows great potential in environmental remediation and renewable energy generation, but the recombination of...
SourceID crossref
wiley
SourceType Enrichment Source
Index Database
Publisher
SubjectTerms built‐in electric field
internal electric field
photocatalysis
photogenerated charge separation
Title Internal electric field engineering for steering photogenerated charge separation and enhancing photoactivity
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Feom2.12007
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1LS8NAEICXUi96EJ9YH2VBLwqxyea54EWkpQhVDxZ6C7vZWSu0SbH16m93Zzd9CCJ4CQnMXmYymdnJzjeEXEmZyagA7mmfKy9K0aUYVsQg5jLxNVeAf3QHT0l_GD2O4lGD3C17YRwfYlVwQ8-w32t0cCHnnTU0FKopuw1cK_kW9tYiOZ9FL6sKC8K5mB1dacI6FuPScMUnZZ318h8RaTNDtSGmt0d269yQ3jtj7pMGlAdkZ4MYeEimdQVvQt38mveC2jNoFNZS1OSh1BjPPczG1aJ6s3Bpk1xSS0YCOgfH_K5KKkpcPUbuxlIcmx1wpsQRGfa6rw99r56Y4BWhz1NP8QgYL1gm4rhQjDPhc2MkFaQy0DzMtDGYkiKJeaJDpYUMU8soU0xHkAUQHpNmWZVwQmgSSCZUxLTiYAJdIjUXiYZUmO1rHAvZItdLreVFjRPHqRaT3IGQWY4azq2GW-RyJTtzEI1fpW6s8v8QybvPA2bvTv8jfEa2TZ7D3SmUc9JcfHzChcklFrJtX5m23Ymb6-Cr-w3r-8jS
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3dS8MwEMCDzAf1QfzE-RnQF4W6Nm3T5lFkY-o2fdhgbyVpEids7dD5_5tLajdBBN9auLzc9XrX693vELoSIhVRrpinfSa9KAGXIlARUzET1NdMKvij2x_Q7ih6HMfjqjcHZmEcH6IuuIFn2Pc1ODgUpFtLaqgqZ-Q2cLPk6xElCfgliV7qEgvQuYjdXWniOlTjkrAGlJLW8viPkLSaotoY09lB21VyiO-cNXfRmir20NYKMnAfzaoS3hS7BTZvObZNaFgtpbBJRLGxnruZT8pF-Wrp0ia7xBaNpPCHctDvssC8gNMTAG98i8O0AyyVOECjTnt43_WqlQleHvos8SSLFGE5SXkc55Iwwn1mrCSDRASahak2FpOC05hRHUrNRZhYSJkkOlJpoMJD1CjKQh0hTANBuIyIlkyZSEeFZpxqlXDz_RrHXDTR9bfWsrziicNai2nmSMgkAw1nVsNNdFnLzh1F41epG6v8P0Sy9nOf2Kvj_whfoI3usN_Leg-DpxO0aZIe5lpSTlFj8f6pzkxisRDn9vH5AlWIyhg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3dS8MwEMDD2ED0QfzE-RnQF4W6Nm3TBnwZujE_Nn2wMnwpSZM4YWuHzv_ffHTdBBF8a-HSh7tc73rN_Q6AM8ZiFmSCONIl3Aki7VJIV8RESBh2JeFC_9HtD3AvCe6G4bAGrua9MJYPURXctGeY97V28CmXrQU0VBQTdOnZVvKGxuSpPd1ovySvSVVj0XguZIZXqsCuy3GRXxFKUWvxgB8xaTlHNUGmuwHWy-wQtq05N0FN5FtgbYkZuA0mZQ1vDO0Em_cMmlNoUCykoMpEoTKfvZmOilnxZvDSKr2Eho0k4Kew1O8ihzTXq0eavDEX1-0OeqrEDki6nefrnlPOTHAy3yWRw0kgEMlQTMMw44gg6hJlJu5FzJPEj6UyGWcUhwRLn0vK_MhQyjiSgYg94e-Cel7kYg9A7DFEeYAkJ0KFOswkoViKiKoP2DCkrAnO51pLsxIorudajFOLQkap1nBqNNwEp5Xs1GI0fpW6MMr_QyTtPPaRudr_j_AJWHm66aYPt4P7A7Cqkh5ij6Qcgvrs40scqcRixo7L_fMNKdrLEA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Internal+electric+field+engineering+for+steering+photogenerated+charge+separation+and+enhancing+photoactivity&rft.jtitle=EcoMat+%28Beijing%2C+China%29&rft.au=Guo%2C+Yan&rft.au=Shi%2C+Wenxin&rft.au=Zhu%2C+Yongfa&rft.date=2019-12-01&rft.issn=2567-3173&rft.eissn=2567-3173&rft.volume=1&rft.issue=1&rft_id=info:doi/10.1002%2Feom2.12007&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_eom2_12007
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2567-3173&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2567-3173&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2567-3173&client=summon